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Abstract 

A large array of species distribution model (SDM) approaches have been developed for explaining 

and predicting the occurrences of individual species or species assemblages. Given the wealth of 

existing models, it is unclear which models perform best for interpolation or extrapolation of 

existing data sets, particularly when one is concerned with species assemblages. We compared the 

predictive performance of 33 variants of 15 widely applied and recently emerged SDMs in the 

context of multispecies data, including both joint SDMs that model multiple species together, and 

stacked SDMs that model each species individually combining the predictions afterwards. We offer 

a comprehensive evaluation of these SDM approaches by examining their performance in predicting 
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withheld empirical validation data of different sizes representing five different taxonomic groups, 

and for prediction tasks related to both interpolation and extrapolation. We measure predictive 

performance by twelve measures of accuracy, discrimination power, calibration, and precision of 

predictions, for the biological levels of species occurrence, species richness, and community 

composition. Our results show large variation among the models in their predictive performance, 

especially for communities comprising many species that are rare. The results do not reveal any 

major trade-offs among measures of model performance; the same models performed generally well 

in terms of accuracy, discrimination, and calibration, and for the biological levels of individual 

species, species richness, and community composition. In contrast, the models that gave the most 

precise predictions were not well calibrated, suggesting that poorly performing models can make 

overconfident predictions. However, none of the models performed well for all prediction tasks. As 

a general strategy, we therefore propose that researchers fit a small set of models showing 

complementary performance, and then apply a cross-validation procedure involving separate data to 

establish which of these models performs best for the goal of the study.  

 

Keywords: Community assembly; Community modelling; Environmental filtering; Joint species 

distribution model (JSDM); Stacked species distribution model (SSDM); Model performance; 

Prediction; Predictive power; Species interactions  

 

1. Introduction 

One of the key challenges in ecology is to predict how species and communities respond to 

spatiotemporal variation in abiotic and biotic conditions. The last two decades have seen a 

proliferation of species distribution models (SDMs) addressing the challenge of predicting the 

occurrences of individual species (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Elith 
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et al. 2006, Leathwick et al. 2006, Zimmermann et al. 2010). Methodological advances in multiple-

species distribution modelling have lagged behind, but are recently experiencing a rapid expansion 

(Leathwick et al. 2006, Guisan and Rahbek 2011, Dunstan et al. 2011, Warton et al. 2015, 

Wilkinson et al. 2019). Many previous studies (see Table 1) have compared the predictive 

performance of SDMs for single species analyses (e.g., Moisen and Frescino 2002, Thuiller et al. 

2003, Elith et al. 2006, Leathwick et al. 2006, Elith and Graham 2009, Guisan and Rahbek 2011). 

Some studies have compared single-species and multi-species distribution models (e.g. Araújo and 

Luoto 2007, Elith and Leathwick 2007, Heikkinen et al. 2007, Baselga and Araújo 2009, Baselga 

and Araújo 2010, Chapman and Purse 2011, Bonthoux et al. 2013, Madon et al. 2013, Maguire et 

al. 2016, Harris et al. 2018), while a few have examined the performance of alternative multiple 

species modelling approaches (e.g. Baselga and Araújo 2010, Madon et al. 2013, Wilkinson et al. 

2019). Yet, a comprehensive comparison among SDM methods and many of the newly emerged 

joint SDM (JSDM) methods is still lacking. Furthermore, previous comparisons have largely 

focused on asking how well SDMs predict species-level occurrences, but communities of 

interacting species are more than the sum of their constituent species. Hence, it is critical to also 

learn how well SDMs perform at a community level, i.e., in predicting how community 

composition co-varies with environmental conditions. Variation in community composition can 

arise, for instance, because of chains of indirect interactions in multispecies networks and it is not 

clear how such processes might complicate multispecies distributional modelling efforts. 

Communities of species result from numerous deterministic and stochastic assembly (and 

disassembly) processes, including the response of each species to its environment (environmental 

filtering, including episodic disturbances), to each other (biotic filtering), and to stochastic 

processes (e.g., dispersal, temporal variability, and ecological drift) (Vellend 2010, Weiher et al. 

2011, Götzenberger et al. 2012). Each statistical modelling method is based on different 

assumptions that can be viewed as hypotheses about how ecological communities are structured 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(D’Amen et al. 2017). Therefore, the capability of a modelling method to make predictions can be 

expected to depend on how well the underlying assumptions align with those assembly processes 

that shape the community. However, as most SDMs are phenomenological and based on finding 

statistical dependence between environmental and distributional data (so-called correlative models), 

they do not directly model the assembly processes themselves, but instead the patterns emerging 

from those processes (Baselga and Araújo 2009; Elith and Leathwick 2009). Thus, the link between 

the assumptions of SDMs and the assembly processes is typically indirect and challenging to 

discern. In a somewhat simplified view, environmental filtering will result in an association 

between local environmental conditions and species occurrences, whereas biotic filtering will result 

in species co-occurrence that cannot be attributed solely to correlated responses to the environment 

(Cazelles et al. 2016). Stochastic processes, as well as historical contingencies (e.g., evolutionary 

processes, founder effects, alternative stable states or past environmental conditions), can be 

expected to produce distributions with unexplained residual spatial autocorrelation, thus being best 

captured by spatial predictors (and ideally, historical information). All of these factors need to be 

woven into statistical analyses of ecological patterns. 

The aim of this study is to compare the predictive performances of a large number of SDM methods 

applied to a common suite of community data sets, and to ask how their predictive performance 

relates to their structural properties. To do so, we first classify SDM methods based on their 

structural properties (later referred as ‘Features A-G’; Table 2), and discuss how these can be 

translated into hypotheses about how communities are structured. In short, these methods differ in 

regards to whether they are parametric or semi-parametric (Feature A); whether or not they account 

for interactions among environmental covariates when estimating species responses to the 

environment (Feature B); whether or not they assess shared responses by species to the environment 

(Feature C); whether or not they explicitly include species co-occurrences not related directly to 

environmental variables (Feature D); whether or not they explicitly account for spatial structure 
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(Feature E); whether or not the statistical inference framework applies shrinkage when estimating 

the response of each species to its environment (Feature F), and whether the statistical framework 

accounts for parameter uncertainty when generating the predictions (Feature G). The next 

paragraphs explain these structural properties in more detail. 

SDMs vary in how they represent the relationship between local environmental conditions and 

species occurrences (Guisan and Thuiller 2005, Peterson et al 2011). They range from purely data-

driven SDMs allowing for very flexible predictor functions (e.g., random forest and generalised 

additive models) to more rigid ones (e.g., generalized linear models) (Guisan et al. 2002, James et 

al. 2013, Merow et al. 2014) (Table 2, Feature A). Even if there are expectations about the unimodal 

relationship that species distributions should have with main environmental predictors (Austin et al. 

2009), there is evidence that the relationship is likely skewed and there is complete lack of 

information regarding the actual relationships when several variables interact to shape the 

distribution of a species (Normand et al. 2009, Araújo et al. 2013). However, more flexibility 

carries the cost of increasing the number of degrees of freedom, which in turn increases the risk of 

statistical overfitting and thus modelling noise rather than signal (Araújo et al. 2005, Randin et al. 

2006, Wenger and Olden 2012, Merow et al. 2014, García-Callejas and Araújo 2016). The same 

consideration holds when asking whether to include interactions among environmental predictors 

(Table 2, Feature B): while both ecological theory and empirical studies suggest that how ecological 

processes depend on one covariate may depend on the value of other covariates (Harpole et al. 

2011), including interactions among covariates increases model complexity and, therefore, the risk 

of statistical overfitting (Guisan et al. 2006, Merow et al. 2014).  

With inventory data on multiple species, one can additionally make assumptions about how the 

relationship between environmental covariates and species occurrences is structured among species 

(Table 2, Feature C). The widely used stacked species distribution models are first fit separately for 

each species, after which their predictions are combined. They thus assume that species respond 
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individualistically to variation in environmental conditions (Williams and Jackson 2007, Guisan 

and Rahbek 2011). By comparison, the more recently developed joint species distribution models 

(JSDMs) represent the response of entire species assemblages to environmental variation, assuming, 

for example, that species with similar traits have similar responses (Warton et al. 2015, Ovaskainen 

et al. 2017). In complex communities, it is difficult to predict a priori the joint structure of species 

responses to environmental variation and thus one might assume that treating each species 

individually is more in line with our limited current understanding of community assembly. 

However, treating each species individually may come with a higher risk of overfitting, while 

borrowing information from other species may increase predictive performance if the species 

respond similarly enough to abiotic variation (Ovaskainen and Soininen 2011, Hui et al. 2013, 

Madon et al. 2013, Maguire et al. 2016). Intermediately common species may show more 

statistically reliable relationships with environmental variables than rare species with wide and 

scattered distributions (Segurado and Araújo 2004), so treating assemblages as a whole can in effect 

increase the statistical power of detecting true environment-species relationships for rarer species 

within communities (Ovaskainen and Soininen 2011, Hui et al. 2013). 

SDMs also vary in their assumptions whether and how biotic interactions influence species 

occurrences (Kissling et al. 2012, Wisz et al. 2013). Biotic interactions can be expected to result in 

non-random co-occurrence patterns, with the caveat that non-random co-occurrence patterns can 

also result from species responses to unmeasured environmental variation (Araújo et al. 2011, 

Pollock et al. 2014, Ovaskainen et al. 2017). Most SDMs assume that species distributions are 

statistically independent of each other after controlling for the effects of environmental covariates 

(Table 2, Feature D). Yet, it is possible to account for interspecific associations even in the context 

of single-species SDMs by using the occurrences of some species as predictors (Leathwick and 

Austin 2001, Meentemeyer et al. 2001, Stephens and MacCall 2004, Araújo and Luoto 2007, 

Pellissier et al. 2010, Meier et al. 2011, Kissling et al. 2012, Mod et al. 2015, Mäkinen and 
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Vanhatalo 2018). This seems particularly appropriate when some species play disproportionately 

large roles in the lives of others (e.g., keystone or foundation species, and host plants for host-

specific herbivores). Alternatively, JSDMs model the occurrences of all species in a community 

simultaneously and include a covariance structure to capture species-to-species associations, 

without necessarily assuming rigid species-by-species relationships (Clark et al. 2014, Pollock et al. 

2014, Thorson et al. 2015, Ovaskainen et al. 2017). A model that accounts for species-to-species 

associations can be expected to be superior in predicting community-level features (e.g., community 

composition or species richness) for those communities in which biotic interactions are in fact a 

strong driver of local coexistence (Wisz et al. 2013). 

The impact of stochastic processes such as dispersal and ecological drift on species distributions has 

received relatively little attention in the SDM literature, partly because it is challenging to derive 

straightforward hypotheses about these processes from non-manipulative observational data (Araújo 

and Guisan 2006, Thuiller et al. 2013) and partly because stochastic process models are inherently 

challenging and still under development in ecology (Pásztor et al. 2016). The most appropriate way 

to account for such processes in the context of SDMs is to incorporate model structures and 

parameters describing directly the demographic processes underlying the community (e.g. Morin et 

al. 2008, Dormann et al. 2012, Boulangeat et al. 2012, Thuiller et al. 2013, Talluto et al. 2016, 

Zurell et al. 2016). These might for instance incorporate greater impacts of stochasticity on rare 

species within communities (Umaña et al. 2017). An alternative way to account for e.g. dispersal or 

missing covariates is to include spatial predictors or covariance structures that control for the 

variation in the data that cannot be attributed to the variation in observed abiotic or biotic 

environmental conditions (Augustin et al. 1996, Dormann 2007, Dormann et al. 2007, Miller 2012) 

(Table 2, Feature E). The inclusion of spatial structure can be expected to provide increased 

predictive performance for interpolation (predictions made for similar environmental conditions and 

same region as data used for model fitting), by borrowing information about species occurrences 
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from nearby sites, which are likely linked by dispersal (Latimer et al. 2006). A model failing to 

account for spatial autocorrelation can in some cases (but not necessarily) lead to biased or spurious 

relationships between environmental variation and species occurrence, decreasing predictive power 

both for interpolation as well as extrapolation (predictions made for dissimilar environmental 

conditions or different region as data used for model fitting) (Diniz-Filho et al. 2003,  Diggle and 

Ribeiro 2007,  Fieberg et al. 2010, Thibaud et al. 2014). 

In addition to model structure and the selection of predictors, the statistical inference framework 

within which the model is fit to data can have a major impact on predictive performance. In 

comparison to the maximum likelihood (ML) framework, parameterization with Bayesian inference 

is not only influenced by the data but also by prior information (Ellison 2004). Bayesian inference 

(or more generally shrinkage estimators, including penalized maximum likelihood; Table 2, Feature 

F), allows the researcher to utilise prior information and assumptions regarding how species 

respond to the abiotic environment or to each other, thus influencing parameter estimates, especially 

when data are scarce. Whether guiding the model parameterization with the help of prior 

information improves predictive performance, or instead deteriorates it, clearly depends on the 

accuracy of the prior information. Another important choice is how parameter uncertainty is 

accounted for in model predictions (Beale and Lennon 2012), if at all (Table 2, Feature G). While 

ML applications typically generate predictions utilising solely point estimates and only generate 

confidence intervals (if at all) through resampling, applications utilising the Bayesian inference 

framework often propagate parameter uncertainty by resampling the parameters from the posterior 

distribution for each replicate prediction (Clark 2005). 

Here, we evaluate the predictive performance of different modelling methods, all varyingly 

accounting for the features presented above. To achieve this goal, we used five spatially explicit 

data sets on species occurrence for different types of communities (birds, butterflies, herbaceous 

plants, trees, and vegetation data; Table 3) from different geographical regions. Specifically, we 
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asked how well 33 variants of 15 modelling frameworks perform in predicting species occurrences 

under spatial and environmental conditions that were either similar to (interpolation) or different 

from (partial or full extrapolation) those in the training data. Earlier studies comparing SDMs have 

evaluated predictive power mainly on a per species basis (e.g. Fielding and Haworth 1995, Elith et 

al. 2006, Allouche et al. 2006). Here, we compare the models’ predictive ability using performance 

measures defined both at the species and community levels. Moreover, while most earlier 

comparisons have assessed predictive performance in terms of discrimination (e.g., using the area 

under the curve (AUC) statistic), we evaluate predictive performance in terms of accuracy, 

discrimination, calibration, and precision (Fig. 1, Table 4). This suite of metrics provides distinctive 

assessments of model performance. 

Based on the reasoning above, our overarching hypothesis is that variation in predictive 

performance can be linked to structural variation among statistical models, as classified by Features 

A-G (Table 2). In particular, we hypothesize that semi-parametric models that allow for flexible 

responses of species to environmental covariates (Feature A; Table 2), models that account for 

interactions among environmental predictors (Feature B; Table 2), models that do not assume joint 

responses among the species (Feature C; Table 2), models that use spatial predictors (Feature E; 

Table 2), and models that do not apply shrinkage (Feature F; Table 2), are superior in predicting 

occurrence probabilities for common species with a large number of occurrences. In contrast, we 

hypothesize that for rare species with limited data the superior models will include some of the 

following: parametric responses, no interactions among environmental predictors, joint responses 

among the species, shrinkage, or no spatial predictors. The reasons for these hypotheses are several-

fold: (i) semi-parametric models and models with interaction terms require more data than 

parametric models and models without interaction terms to be successfully fitted; (ii) borrowing 

information from other species is expected to be especially beneficial for rare species for which 

fitting species-specific models is difficult (e.g. Madon et al. 2013); (iii) spatial autocorrelation is 
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pervasive in natural ecosystems (e.g. Dormann et al. 2007), as dispersal couples local communities 

into broader, regional metacommunities, but the proper estimation of spatial residual structure 

requires considerable data; and (iv) bringing prior information is expected to make important 

differences especially for modelling rare species. We further hypothesize that models which 

account for species-to-species associations (Feature D; Table 2) will exhibit better predictive 

performance especially in terms of community-level features that depend on co-occurrences, i.e., 

variability in species richness and community composition. Finally, we hypothesize that models 

which account for parameter uncertainty in their predictions (Feature G) are not necessarily more 

accurate nor have higher discrimination power, but that they are better calibrated than models that 

do not account for parameter uncertainty. 

 

2. Materials and methods 

We evaluate the predictive performance of 33 variants of 15 SDMs (Table 2) using five data sets on 

species-rich communities (Table 3). The general workflow of our study is summarised in Figure 1. 

 

2.1 Analysed data sets  

All of our data are presence-absence data in the sense that they consist of 0s and 1s for all species 

and sampling units (rather than only coordinates of known occurrences of species), but with some 

of the data sets a proportion of the zeros are likely to result from lack of observation or observation 

error rather than true absences (Guillera-Arroita 2017). The herbaceous plant, tree, and vegetation 

data sets were all collected at a spatial scale at which the organisms can be expected to interact 

within each community, and thus can be considered as data on local ecological communities. In 

contrast, the data on butterfly and bird distributions represent atlas data on species assemblages 
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sampled at broader spatial scales, which likely comprise many local communities. The tree and 

vegetation data were acquired with exhaustive sampling of study plots, and thus can be considered 

true presence-absence data, whereas absences in the other data sets may to a degree represent 

inadequate sampling, and so conservatively should be viewed as “presence-only” data. All data sets 

are spatially explicit, in that the sampling units involve information on their geographical 

coordinates. However, the data for the different functional groups come from different geographical 

regions, so the analyses presented here do not delve into some community ecology processes which 

can bear importantly on distributions (e.g., butterfly dependencies on plant host species, or impacts 

of vertebrate herbivores on herbaceous species assemblages). 

As some of the statistical methods are computationally intensive (see Supporting Information S3), 

their application to the original full data was not possible. To enable comparison among all 

methods, we subsampled each data set to 1200 sampling units and included only those species that 

were present in at least 10 sampling units and that were present at least once in all three training 

data sets (see below). The main features of subsampled data are described below and in Table 3. 

Bird data. The data originate from national common bird monitoring programs in Finland, Sweden 

and Norway (Lindström et al. 2015). Between 2013 and 2014, a total of 141 bird species were 

surveyed using line transects (Finland and Sweden) and point counts (Norway). The largest distance 

between the sampling units was 1853 km. The covariates (which are detailed in Appendix S2 for all 

five data sets) include 21 variables related to land cover, climate, and variation in sampling effort. 

There is substantial overlap in the species composition within these countries, and so it is 

reasonable to consider the data set as a cohesive Fennoscandian faunal survey. 
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Butterfly data. The data originate from the Butterflies for the New Millennium recording scheme 

in Great Britain (Asher et al. 2001). The data on 50 butterfly species were recorded in 1995-1999 on 

a 10 km × 10 km grid, and the largest distance between sampling units was 640 km. The 

environmental covariates include 34 variables related to land cover, topography and climate. 

 

Herbaceous plant data.  The data originate from the Victorian Biodiversity Atlas 

(https://www.environment.vic.gov.au/biodiversity/victorian-biodiversity-atlas), which is a state 

database that collaborates with the Atlas of Living Australia (http://www.ala.org.au). The presence-

absence data on 161 herbaceous species were collected in years 1984-2014 on sampling plots of 

size 900 m2, and the largest distance between the sampling units was 895 km. The environmental 

covariates include 19 variables related to soil, topography and climate. 

Tree data. The data originate from the US Forest Service’s Forest Inventory and Analysis 

(http://fia.fs.fed.us/). The data on 89 tree species were recorded in 2012 on sampling plots of 672 m2 

across Eastern USA, and the largest distance between the sampling units was 3500 km. The 

environmental covariates include 38 variables related to soil, topography and climate. 

Vegetation data. The vegetation data originate from a community ecological study conducted in 

northern Norway (Niittynen and Luoto 2017). The data on 245 species of plants, bryophytes and 

lichens were surveyed in 2014-2016 on sampling plots, each of which consisted of four 1 m2 

squares. The largest distance between the sampling units is 18 km. The environmental covariates 

include six variables related to soil, topography and climate. 

2.2 Selection of covariates and subsampling the data sets into training and validation data 

While covariate selection is an important part of any statistical modelling exercise, we utilised the 

same set of pre-selected covariates in all statistical models to ensure the comparability of the results 
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by minimizing the number of model-specific subjective choices. To reduce the number of potential 

predictors and thus the risk of overfitting, we reduced the raw predictors using principal 

components of the environmental covariates at the sampling locations. We then included the first 

five principal components (PC) as predictors, except if a smaller number was sufficient to explain at 

least 80% of the variation. The numbers of principal components included (and their proportions of 

explained variance) were respectively five (56%) for the bird data, five (47%) for the butterfly data, 

five (78%) for the herbaceous plant data, three (83%) for the tree data and four (88%) for the 

vegetation data. 

We split each data set into two parts to form training data and validation data. We did this in three 

ways to mimic the tasks of interpolation, partial extrapolation, and full extrapolation. Interpolated 

validation data represent environmental and spatial conditions that are similar to those in the 

training data, whereas the conditions in the partially and, especially, the fully extrapolated 

validation data differ systematically from those in the training data, making the task of prediction 

more challenging. The predictive ability of a model to interpolate tests the ability to capture species 

occurrence within known environments, while extrapolation tests that model’s ability to predict to 

environmental conditions outside of the training data (Randin et al. 2006). The interpolated 

validation data were constructed by randomly selecting half of the sampling units and leaving the 

remaining half for training. The fully extrapolated validation data include those sampling units for 

which the PC1 value was higher than the median value. To construct partially extrapolated 

validation data, we grouped the sampling units randomly into pairs and selected from each pair the 

one with the lower PC1 value for training data, and the other one for validation data. This resulted 

in the training data having, on average, lower PC1 values. While we split the data into training and 

validation data based on the distributions of the environmental covariates, at the same time these 

splits resulted in related patterns of spatial partitioning: in the case of interpolation, the training and 

validation data are spatially randomly distributed with respect to each other, whereas in the case of 
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full extrapolation, they are spatially well separated from each other (Appendix S2). Thus, in the 

interpolated cases the validation and training data cannot be considered fully independent, whereas 

for the extrapolated data the assumption of independence holds better (Roberts el. al 2017). 

The data used for fitting the statistical models (i.e. the training data) are the  ×   matrix  of 

species occurrences, the  ×   matrix  of environmental covariates, and the spatial coordinates of 

the sampling units. Here  is the number of sampling units,  the number of species, and  the 

number of environmental predictors. The validation data consist of the corresponding matrices  

and  and their spatial coordinates. To examine the effect of the size of the data set on our 

outcomes, we included either = 600 or = 150 sampling units in the training data. To do so, we 

either used the full training data, or randomly sampled 150 units from it. The validation data always 

consisted of = 600 sampling units. The reason for not following alternative possible protocols 

(e.g. a leave-one-out cross-validation strategy) was that some of the models were computationally 

too intensive to be fitted repeatedly. 

 

2.3 Modelling methods considered 

We selected 15 SDM methods that are suitable for modelling presence-absence data (hence 

excluding e.g. Maxent; Guillera-Arroita et al. 2014) based on reviewing recent literature and 

selecting both routinely used and recently emerged methods (Table 2). We included several variants 

of some of the SDMs in order to provide resolution on how different types of underlying 

assumptions (Features A-G, Table 2) influence predictive capability. In particular, we included 13 

variants of the widely applied GLM (out of which 11 were non-spatial and two spatial; six were 

without and seven with shrinkage) in order to examine the sensitivity of the results to the statistical 

inference framework and how it is implemented. For all 33 SDM variants included, we utilised the 

same environmental predictors, but the spatial coordinates of the sampling units were included only 
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for spatially explicit models. We classified 23 of the 33 SDM variants as stacked species 

distribution models (SSDM; Dubuis et al. 2011, Guisan and Rahbek 2011), since they essentially 

model species individually and then stack the model predictions together to build up a compound 

prediction at the community level (Ferrier and Guisan 2006) (Table 2). The remaining ten model 

variants were classified as joint species distribution models (JSDM), as they construct a single 

model that connects the species together, with some of the model parameters being at the 

community level (Warton et al. 2015). 

When fitting models that make strict assumptions about the functional forms of the response to the 

environment (Feature A classified as 0, Table 2), we included the linear and squared effects of the 

PCs as predictors in accordance with niche theory, which predicts that species will usually have 

their maximum occurrence at some interior position within their multidimensional niche space, say 

nearer the centroid than on the edge (Austin 2002). When fitting models that do not make such 

assumptions (Feature A classified as 1, Table 2), we did not include squared predictors, since those 

models test and account for non-linear relationships by default. To examine the influence of 

interactions among the environmental predictors, we included three comparisons (GLM.12 vs 

GLM.1; GLM.13 vs GLM.4; HMSC.4 vs HMSC.1) out of which one included and the other one 

excluded such interaction. In cases where model fitting failed technically (e.g. due to quasi-

complete separation), we fitted an intercept-only model, except for the case of spatial models that 

failed technically, for which we first attempted to fit the corresponding non-spatial model. Further 

technical details on how the statistical models were fitted to the data are presented in Appendix S1. 

As many of the communities included a high proportion of rare species, and predicting their 

occurrences can be challenging, we further considered either all species, or included only species 

with a prevalence of at least 10%, henceforth called common species. Thus, for the SSDMs we 

fitted the species-specific models once, and stacked them either for all species or for the common 
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species only. For JSDM, model fitting is influenced by the selection of the species, and thus we 

fitted the JSDM models separately for all and for the common species. 

To summarise, we fitted 33 statistical model variants to five data sets. Each of these data sets was 

split in three different ways into training and validation sets, and, in each case, two different sizes of 

data set were assessed, and two types of species communities (all or common) were included. Thus, 

the total number of cases that we considered was 1980. 

 

2.4 Evaluating predictive performance 

We compared the predictive performance of the different statistical frameworks both at the species 

and at the community levels. To do so, we fitted the models based on the training data  and , then 

used the fitted model and the environmental conditions  to predict species occurrences in the 

validation data, and finally compared the predicted occurrences to the true occurrences . 

Community-level tests require joint predictions for all species, which we did by using the models to 

predict 100 random realisations of species occurrence matrices, i.e. matrices of zeros and ones. The 

mean of the predicted occurrences equals occurrence probability (up to sampling error), but the 

predicted occurrences involve also information on dependencies among species (and sometimes 

among spatial units) beyond occurrence probabilities (see below and Appendix S1). Typical 

applications of Bayesian models account for parameter uncertainty when making predictions, 

whereas predictions derived from ML models are often based on point estimates. To follow these 

conventions, in models fitted with Bayesian inference, the 100 random realizations corresponded to 

Monte Carlo estimates from the posterior predictive distribution, whereas for models fitted with 

maximum likelihood (ML) inference, we used the point estimates for each prediction and applied 

100 realisations of Bernoulli randomisation based on the predicted occurrence probabilities. As an 

exception, to examine specifically the influence of parameter uncertainty, we included two SDM 
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variants (GLM.8 and GLM.11) that were fitted in the ML framework, but for which we accounted 

for parameter uncertainty in the predictions by a parametric bootstrap routine (used in e.g. Foster 

and Dunstan 2010). We did so by drawing the parameters for each of the 100 predictions from the 

estimated asymptotic distribution and transforming to the response scale, using the inverse link 

function 

The samples of  provide a Monte Carlo approximation for the joint predictive distribution of all 

species. We note that many previous applications of SDMs have evaluated them based on either the 

predicted species-specific marginal occurrence probabilities, or occurrences derived by thresholding 

the occurrence probabilities (Liu et al. 2005, Jiménez-Valverde and Lobo 2007, Lawson et al. 

2014). The reason why we did not solely use the marginal (species-specific) occurrence 

probabilities is that these probabilities neglect correlations among species occurrences, thus 

predicting inevitably that two species with marginal occurrence probabilities 0.5 are found from the 

same sampling unit with probability 0.25. In contrast, our predictions accommodate possible co-

occurrence as estimated by joint species distribution models, thus allowing for the prediction where 

both of the above-mentioned species are present in half of the sampling units and both are absent in 

the remaining half of the sampling units. By predicting the joint distribution of  we can evaluate 

both marginal species- and sampling unit-specific predictions and the joint species distribution 

predictions. 

To further examine the performance of ensemble modelling (Thuiller 2004, Marmion et al. 2009), 

we averaged predictions produced by the individual model variants. As one approach to ensemble 

modelling, we averaged the predictions of all 33 model variants. To do so, we generated 99 random 

realisations of species occurrence matrices by randomly selecting three such matrices generated for 

each model variant, and we then added one prediction of randomly selected model variant to obtain 

100 matrices as for the other models. As an alternative approach to ensemble modelling, we 

averaged the predictions of the best performing model variants of the five best performing models 
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(see below on how these were selected). In this case we generated 100 random realisations of 

species occurrence matrices by randomly selecting 20 such matrices generated for each selected 

model variant. 

2.5 Measures of predictive performance 

In order to compare predictive performance in a comprehensive and coherent manner, we evaluated 

the ability of the models to predict withheld validation data at three levels: (i) species occurrence, 

(ii) species richness and (iii) community composition. For each of these levels, we measured 

predictive performance in terms of accuracy, discrimination power, calibration, and precision (Fig. 

1, Table 4). In statistical terminology, accuracy is the opposite of bias, and measures the degree of 

proximity between the predicted and the true value (here the observed value in the validation data). 

Discrimination power does not examine the absolute match between predicted and true values, but 

how well (some) predictive value can discern different types of true values (e.g. presence/absence). 

Calibration refers to statistical consistency between distributional predictions and the true values; 

that is, in calibrated predictions the relative frequency of test values with predictive probability p 

should be p (Gneiting and Raftery 2007). Precision (also referred to as sharpness) measures the 

width of the predictive distribution and thus its information content. 

 

Performance measures related to species-specific occurrence probabilities 

For the measures of predictive performance at the species level, we averaged the 0/1 predictions 

over the 100 replicate matrices, thus obtaining species- and site-specific predicted occurrence 

probabilities. As a measure of accuracy, we used the absolute difference between the observed 

occurrence (0 or 1) and the predicted probability of occurrence, averaged over species and sampling 

units. As a measure of discrimination power, we used AUC values of species-specific predictions, 

which we then averaged over species. We note that while AUC has often been considered to be a 
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measure of accuracy, it is not so in the statistical meaning of the word “accuracy”: AUC does not 

compare the predictive point estimate to a corresponding test value. Instead, it measures how well 

the occurrence probabilities discriminate sampling units to either occupied or empty. As a measure 

of calibration, we used the mean error between predicted and observed numbers of occurrences in 

10 probability bins (each including the same number of sampling units based on quantiles), 

averaged over species. As a measure of precision, we used the standard deviation of the predicted 

species occurrence, i.e. the square root of the product of the probability of species presence and the 

probability of species absence. We averaged precision over species and sampling units. 

Performance measures related to species richness 

To evaluate predictive performance at the level of species richness, we summed species occurrences 

separately for each of the 100 replicate matrices, thus producing 100 replicate vectors of predicted 

species richness for each sampling unit. The measures of accuracy and discrimination power are 

based on the mean prediction, i.e., the average over the 100 replicate predictions. As a measure of 

accuracy, we used the square root transformed mean squared error between mean prediction and 

observed species richness. As a measure of discrimination power, we used the Spearman rank 

correlation between mean prediction and observed species richness, the correlation being computed 

among the sampling units. The quantification of calibration was assessed with the relative 

frequency, p, of test values within the corresponding predictive 50% central interval and we report | − 0.5| so that smaller values indicate higher performance. To assess precision, we calculated the 

standard deviation of the prediction intervals, and averaged these standard deviations over the 

sampling units. 
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Performance measures related to community composition 

Using all pairs of sampling units to evaluate predictive performance at the level of community 

composition would have led to excessive computations. Thus, we selected a random sample of 300 

pairs of sampling units. For each of these pairs, we calculated three measures of pairwise 

community similarity: the Sørensen-based dissimilarity , the Simpson-based dissimilarity , 

and the nestedness-resultant dissimilarity  (Baselga 2010). We computed each of these 

separately for the 100 replicate predictions. We then evaluated the accuracy, discrimination power, 

calibration, and precision exactly as we did with species richness, but replacing species richness 

with one of the dissimilarity indices, and by comparing the predicted and observed values over pairs 

of sampling units rather than over individual sampling units. 

 

Computing details 

All analyses were carried out in the R statistical environment (R Core Team 2018) or Matlab 

(MathWorks Inc 2015). The R and Matlab packages used for model fitting are described in 

Appendix S1. As the Bayesian models are computationally intensive, we ran the MCMC chains for 

50,000 iterations (for exceptions, see Appendix S1). To examine the level of MCMC convergence, 

we fitted all Bayesian models twice, and computed the correlation among the predicted species 

occurrence probabilities between the two chains. We note that while MCMC convergence should 

ideally be examined based on all model parameters, the convergence should be checked at least for 

the key model parameters to be used in subsequent inference (Gelman et al., 2014). Hence, we 

chose to base our analyses on predicted occurrence probabilities as that is the primary parameter 

controlling the performance of models’ predictive performance. We note that convergence is an 

issue also in optimization related to ML estimation. However, we did not check whether the 

optimization algorithms had found true (global) maxima, but assumed that if optimization stopped 
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before the maximum number of iterations it had reached or was very near the maxima. For 

calculating the performance measures, we used several packages available in R, details of which 

can be found from the codebase used for producing the results (see Data Availability; Norberg 

2019). 

 

2.6 Synthesizing the results 

As described above, we generated 60 predictions (5 data sets, 3 prediction types, 2 data sizes, 2 

community sizes) for each of 35 model variants (the original 33 and the two ensemble models) and 

assessed the quality of these predictions by 20 performance measures, resulting in a total of 42,000 

performance measure values. To simplify the interpretation of the results, we reversed the signs of 

the performance measures as needed, so that higher values of the performance measures always 

corresponded with higher accuracy, greater discrimination power, more accurate calibration, and 

higher precision. We further standardized each performance measure to have zero mean and unit 

variance among the SDM variants, separately for each data set and for each prediction task. As 

some of the models failed completely in some of their predictions, this produced outliers that would 

have dominated the variation over performance measures, hampering the comparison among the 

non-failed models. To avoid this effect, we delimited the values of performance measures to a 

maximum (and minimum) of plus (and minus) two standard deviations. To obtain a single summary 

of predictive performance at the level of community composition, we averaged the normalized 

performance measures obtained for ,  and , and thus our results involve 12 instead of 

20 performance measures. The raw results for all the performance measures are provided in 

Appendix S3. 
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To compare the 35 model variants, we first averaged each of the twelve performance measures over 

the 60 predictions. To obtain an overall measure of performance, we further averaged the nine 

measures of accuracy, discrimination and calibration, but excluded the three measures for precision. 

The reason for this is that while the quality of the predictions unambiguously increases with 

increasing accuracy, increasing discrimination power, and increasing calibration, the interpretation 

of precision depends on the accuracy of the predictions (Gneiting and Raftery 2007). If the 

predictions are accurate, their quality increases with precision. However, if the predictions are not 

accurate, with increasing precision the true value will increasingly fall outside the prediction 

interval, meaning that a high value of precision actually decreases the calibration of predictive 

distributions (as illustrated in the precision panel of Fig. 1D). We selected the best performing 

variants of the five best performing models based on this overall ranking as a basis of ensemble 

modelling. 

 

To examine how much ranking among the model variants depends on the type of the data and the 

prediction task, we also produced rankings separately for different subsets of the data. Specifically, 

we examined: (i) interpolation, partial extrapolation and full extrapolation; (ii) each of the five data 

sets; (iii) small versus large data sets; and (iv) each of the twelve performance measures. Further, to 

evaluate which model variants and their combinations perform generally well in many kinds of 

prediction tasks, we examined the performances of the model variants over all of the performance 

evaluations for the data sets with all species. We classified a model variant as “well performing” in 

a given performance evaluation if its performance measure exceeded min+0.9*(max-min), where 

min and max were the performance measures of the worst and the best model variant. We computed 

for each model variant the proportion of the performance evaluations in which it was ranked as well 

performing. To identify a set of model variants of complementary value, we first selected the model 

variant that was scored as well performing the highest number of times. We then restricted the 
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analysis to those performance evaluations in which the selected model variant did not perform well, 

and selected a second model variant that performed well in the highest number of times. We 

continued iteratively to produce an ordering of model variants out of which at least one model 

performed well in as many performance evaluations as possible.  

To explore the factors influencing predictive performance in more detail we used a multivariate 

GLM framework (as implemented via HMSC, Ovaskainen et al. 2017) to analyse the results, where 

we consider the performance measures as response variables, and the properties of the data and the 

model variants as explanatory variables. We performed this analysis in two ways. In the first 

analysis, we included the size of the data set and the type of prediction as fixed explanatory 

variables, and the model variant and the identity of the data set as random effects. With this 

analysis, we aimed to examine the variation and co-variation (i.e., correlations between the twelve 

different performance measures) in predictive performance among model variants. In the second 

analysis, we included the Features A-G (Table 2) used to classify the model variants as additional 

fixed explanatory variables. We further included the SDM model (i.e., the 15 models that the 33 

variants represent, Table 2) as an additional random effect. With this second analysis, we aimed to 

assess how much of the variation in predictive performance among model variants could be 

attributed to the modelling framework and in particular to its characteristics, which we included as 

explanatory variables. To test our hypotheses related to the influence of rare species, we also 

conducted these analyses basing the performance measures either on all species or only on the 

common species. 
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3. Results 

Based on the overall performance, the five best-performing model variants (including only one from 

each modelling framework) were HMSC.3, GLM.5, MISTN.1, MARS.1 and GNN.1 (Fig. 2A). The 

ensemble model ENS.BEST5 consisting of the above mentioned five variants performed worse than 

HMSC.3 but better than the other four model variants of which it was composed. The ensemble 

model ENS.ALL performed worse than seven, and better than 26 of the 33 model variants of which 

it was comprised. The variants of the same models ranked close to each other, with the major 

exception of GLM, for which some variants performed well but others poorly. When restricting the 

evaluation of predictive power to the common species (Fig. 2B), the relative performance of some 

of the models (e.g. BORAL, some of the GLM variants, the BC models and GJAM) increased 

substantially. 

A variance partitioning among the performance measures showed that the properties of the data, the 

prediction tasks, and the model variant that was applied all strongly influenced predictive 

performance, whereas the size of the data sets had only a minor effect (Fig. 2C). Averaged over the 

twelve measures of predictive performance and considering all species, 33% of the explained 

variance was attributed to the model variant, 38% to the properties of the data, and 29% to whether 

the prediction task was interpolation, or partial, or full extrapolation (Fig. 2C). When considering 

only common species, 30% of the explained variance was attributed to the model variant, 49% to 

the properties of the data, and 21% to whether the prediction task was interpolation, or partial, or 

full extrapolation. So, predictive performance is influenced by both the model employed and by the 

predictive goal, as well as by qualities of the available data. The choice of the model variant is 

especially important for communities with a high proportion of rare species. The measures of 

accuracy, discrimination and calibration were positively correlated with each other among the 

model variants (Fig. 2D). This result suggest that some model variants performed generally well 

with respect to many performance measures, while others performed generally poorly, justifying the 
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comparison based on overall performance (Fig. 2A, B). In contrast, the measures of precision were 

positively associated with each other, but negatively associated with some measures of accuracy, 

discrimination and calibration (Figs. 2D), meaning that those model variants that produced the least 

uncertain predictions performed otherwise the poorest. 

Out of the sources of variation among the model variants, Features A-G explained together 58% 

(54% if considering common species only) of the variation, the random effect of model (i.e., the 15 

models as listed in Table 2) 18% (15%), whereas the remaining 24% (31%) remained as 

idiosyncratic variation among the model variants. Thus, even if we classified the models with seven 

different features that we expected to play a major role, half of the variation remained unexplained 

by these. When considering all species, the most important features were Feature F, i.e. whether the 

model involved shrinkage (35% of all variation attributed to all Features A-G), Feature A, i.e. 

whether the model was parametric or semi-parametric (23%), and Feature D, i.e. whether the model 

accounted for species associations (17%), the remaining features explaining only minor parts of the 

variation. When instead considering common species, Feature F (35%) remained as important, 

Feature A (17%) was somewhat less important, whereas Feature D became more important (20%). 

Regardless of the data set, degree of extrapolation, or data set size, the ranking of the model variants 

was generally, but not entirely, consistent. Concerning the influence of the data set, perhaps the 

clearest contrast emerged between the butterfly data, collected at large spatial scale and including a 

relatively small number of species, and the vegetation data, collected at a small spatial scale and 

including a large number of rare species. For the butterfly data, the best model was the stacked 

species distribution model GLM5, whereas for the vegetation data, the best models were joint 

species distribution models (Fig. 3A, B). As expected a priori, extrapolation was much more 

difficult than interpolation (Fig. 3C, D), but in general the same models performed well for both 

interpolation and for extrapolation. The rankings among the models for other subsets of results, as 

well as separately for each performance measure, are shown in Appendix S3. 
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The models that performed well in a large proportion of performance evaluations (Fig. 4A) were 

generally the same models that achieved the highest average performance scores (Figs. 2A, B), 

suggesting the robustness of the results. In particular, HMSC.3, which achieved the highest average 

performance (Figs. 2A, B) and was also most frequently (in 44% of the performance evaluations) 

classified as a well performing model (Fig. 4A). However, many of the other well performing 

models performed well in the same cases as did HMSC.3. The model that provided the highest 

amount of complementarity in its performance was GLM.5 (Fig. 4B), which was also the second 

best in the variant-specific comparisons (Fig. 4A). The second most complementary model was 

SAM.1, which was only the 15th best model in the model-variant specific comparisons (Fig. 4A). 

At least one of the four models HMSC.3, GLM.5, SAM.1 and GLM.12, performed well in 76% of 

all the evaluation tasks (Fig. 4B).  

 

4. Discussion 

Statistical models cannot mimic the complexity of the real world, but in order to help understand 

this complexity, a useful model should predict reality as accurately as possible (Burnham et al. 

2011, Hand 2014, Houlahan et al. 2017). In the absence of detailed process knowledge, which is the 

norm for ecological systems (Urban et al. 2016), statistical models such as those we have explored 

here are essential tools in many applied ecological arenas.  Given the wide range of models now 

available, it is important to provide a degree of guidance to practitioners attempting to apply these 

models, including an articulation of the limits in model performance. 

The differences we have found in the predictive performance among models arise from a large 

number of factors, including differences in their structural assumptions, their statistical inference 

frameworks, qualities of the available data sets, and software implementations. The SDM variants 

that we compared showed consistent variation in their performance, with some performing 
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generally well and others poorly across most data sets, prediction tasks, and measures of predictive 

performance. This tentatively points to some models as being the initial ‘go-to’ models in analyses 

of distributional data. Despite this consistency, however, our results do not yield any 

straightforward explanation of why some models performed better than others, as much of the 

variation among model variants remained unexplained. In particular, our results failed to give 

strong support for the hypothesis that the structural model assumptions (Features A-G, Table 2) 

would explain differences in predictive performance (see Introduction). An intriguing question that 

remains is identifying which model features explain the consistent variation that we observed in 

predictive performance. As the models simultaneously differ from each other in many aspects, it is 

difficult, in general, to conclusively pinpoint the causal and inferential reasons for differences in 

their performance. However, our study includes specific sets of model variants differing only in 

single features, and thus it provides suitable cases for comparison. We next discuss the results on 

the influence of each model feature, based on such controlled comparisons when possible to do so. 

 

Feature A: parametric versus semi-parametric models 

In our results, the majority of the best performing models were based on the parametric GLM 

framework. One reason for the success of parametric models might have been that we considered 

presence-absence data on species-rich communities that involve a large proportion of rare species. 

In other situations, such as those involving a large amount of data for a few common species, more 

flexible semi-parametric models are likely to be more informative (Merow et al. 2014). Further, as 

discussed above, the model variants differ simultaneously in many aspects, and it is difficult to 

make controlled comparisons where the only difference would be whether the model is parametric 

or not. In one such comparison, GLM.1 (parametric) and GAM.1 (semi-parametric) performed 

roughly equally well, both being in the intermediate category of models. 
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Feature B: interactions among environmental covariates 

To pinpoint the influence of interactions between environmental covariates, we included three 

controlled comparisons: between HMSC.4 and HMSC.1, between GLM.12 and GLM.1, and 

between GLM.13 and GLM.4. The sole difference in each of these comparisons is that the first 

model variant includes interactions among the environmental predictors while the second variant 

does not. In all of these comparisons, the models without interactions performed better, suggesting 

that models including interactions were generally too complex to be estimated with the data 

considered here. However, for some specific prediction tasks GLM.12 performed well, and we 

found it to be among the model variants that provided most complementary information after 

HMSC.3 (Fig. 4B).  

 

Feature C: shared information on environmental responses 

To pinpoint the influence of sharing information among the species, we included the controlled 

comparison between GLM.4 and HMSC.1. The sole difference between these two models is that 

while GLM.4 estimates the influence of covariates independently for each species, HMSC.1 shares 

information among the species. Our results showed that HMSC.1 performed better when all species 

were considered (Fig. 2A), but with only common species included, GLM.4 performed better (Fig. 

2B). This is in line with other recent literature on species distribution modelling showing that 

assuming shared responses to the environment can improve predictive performance especially for 

rare species through “borrowing information from other species” (Guisan et al. 1999, Ovaskainen 

and Soininen 2011, Hui et al. 2013, Madon et al. 2013, Ovaskainen et al. 2016, Tikhonov et al. 

2017). Since most ecological communities consist of a few common and many rare species, and 

given that rare species are often the focus of study in community-level analyses, particularly those 

with a conservation bent (e.g. Aizen et al. 2012, Mouillot et al. 2013), we expect the assumption of 
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joint responses to be generally beneficial in community ecology studies. The concept of “shared 

responses to environmental covariates” can be incorporated in many different ways. For example, 

HMSC assumes that the species-specific regression parameters are sampled from a multivariate 

normal distribution, whereas SAM classifies them into distinct groups. As HMSC and SAM also 

differ in many other aspects, it is difficult to resolve whether the difference in model performance 

relates to how shared responses are modelled or instead to how the models are implemented. 

 

Feature D: species co-occurrences 

To pinpoint the influence of accounting for species co-occurrences, we included the three controlled 

comparisons between HMSC.2 and HMSC.1, between BC.2 and BC.1, and between BORAL.1 and 

GLM.7. In each of these comparisons, the principal difference is that the first of the variant pairs 

accounts for residual species-to-species associations, while the second does not. A general 

comparison (Fig. 2A, B) among these models supports the hypothesis that models that account for 

statistical non-independence among species have better predictive performance, except that GLM.7 

performed better than BORAL.1 for the case that included all species. However, compared to 

sharing information among the species on their responses to covariates (Feature C), accounting for 

residual co-occurrences (Feature D) provided only a minor improvement (HMSC.2 performed only 

a little better than did HMSC.1 which in turn performed better than GLM.4 when all species were 

included). 

It is important to note that our evaluation of model performance entailed generating predictions for 

new sampling units, in which the occurrences of all species were unknown. However, if one knows 

the occurrences of some of the species at the validation sites, it is possible to improve predictions 

for other species by including potentially interacting species as predictors (e.g. Araújo and Luoto 

2007, Heikkinen et al. 2007, Wisz et al. 2013, Mod et al. 2015, but see Godsoe et al. 2016), or by 
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using joint species distribution models to predict occurrences of a target species conditional on the 

occurrences of all other species (e.g. Ovaskainen et al. 2017). This suggests that in other kinds of 

prediction tasks, the utility of including species-to-species associations can be greater. That models 

which account for associations produce better predictions could be either due to species having real 

ecological interactions with each other, or to unrecognised environmental covariates not included in 

the model (Pollock et al. 2014, Ovaskainen et al. 2017). 

 

Feature E: spatial versus non-spatial models 

To pinpoint the influence of including spatial predictors, we included the controlled comparison 

between HMSC.3 and HMSC.2, between GLM.5 and GLM.4, between GLM.3 and GLM.2, and 

between GAM.2 and GAM.1. The sole difference in each of these comparisons is that the first 

model variant includes an explicit spatial structure while the second variant does not. In our overall 

evaluation (Figs. 2A), the spatial models performed better in two comparisons (HMSC.3 vs. 

HMSC.2 and GLM.5 vs. GLM.4), whereas the non-spatial model performed better in the other two 

comparisons (GLM.3 vs GLM.2 and GAM.2 vs GAM.1) Results were similar for the case of 

common species, except that GAM.2 outperformed GAM.1 (Fig. 2B). Thus, Bayesian methods 

tended to improve when spatial effects were added, whereas ML methods did not, suggesting that 

the inclusion of prior information (even if weak) was important for the proper estimation of spatial 

structure, especially when also the rare species are included.  

The result that spatial structure increased performance for some models is in line with previous 

studies on single species SDMs highlighting the importance of accounting for spatial 

autocorrelation (e.g. Dormann et al. 2007, Record et al. 2013, Crase et al. 2014). As discussed in 

previous studies, this is because dispersal processes, historical contingencies and missing covariates 

(Foster et al. 2012) generate spatial variation in species communities (e.g. Bokma et al. 2001, 
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Fernando et al. 2007, Kessler 2009). Although the degree to which dispersal and historical 

processes influence species occurrences might vary depending on the community type or spatial 

coverage of the study (Record et al. 2013), including a spatially-structured random effect is 

recommended so as not to violate the assumption of independence among sampling units (and 

consequently overestimating confidence in ecological inferences or in model predictions). However, 

the utility of spatial information depends also on the prediction task: for the case of full 

extrapolation, the non-spatial HMSC.2 actually performed somewhat better than the spatial 

HMSC.3 (Figs. 3C, D), as can be expected from the grounds that the use of spatial information is 

especially useful for making predictions for sampling units near the training data. 

 

Feature F: shrinkage 

To identify the influence of shrinkage, we may compare GLM.1 to GLM.4, and GLM.6 to GLM.9. 

In these comparisons, the latter model variant includes shrinkage, whereas the former one does not. 

However, we note that GLM.1 and GLM.4 differ also in how parameter uncertainty is accounted for 

in the prediction, the influence of which is discussed below. In our results, GLM.4 (fitted in the 

Bayesian framework) was among the best performing model variants, whereas GLM.1 (fitted in the 

ML framework) showed average performance. As adding parameter uncertainty to ML models 

decreased their performance (see below), we attribute the superior performance of GLM.4 

specifically to the influence of the Bayesian prior and thus to shrinkage. In GLM.4, the prior shrinks 

the regression parameters towards zero, thus restricting the effect sizes of the environmental 

covariates.  

Consistent with the comparison between GLM.4 and GLM.1, we found that GLM.9 (with shrinkage 

through penalized likelihood) performed better than GLM.6 (which does not involve shrinkage) for 

the case of all species (Fig. 2A), but the opposite was found for common species (Fig. 2B). As data 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

on rare species inherently have limited potential to estimate parameters, the inclusion of shrinkage 

can indeed be expected to make a major difference. However, in contrast with the above results, we 

found that GLM.10 (with shrinkage through penalized likelihood) performed worse in our overall 

evaluation (Figs. 2A, B) than GLM.9, suggesting that the way in which shrinkage is implemented 

can make a major difference. 

 

Feature G: parameter uncertainty 

To pinpoint the influence of accounting for parameter uncertainty in making predictions, we 

included the two controlled comparisons of GLM.8 vs GLM.1, and GLM.11 vs GLM.10. In these 

comparisons the model variants are otherwise identical, except that when making predictions, 

GLM.8 and GLM.11 account for parameter uncertainty using the standard asymptotic distribution 

approximation (e.g., Foster and Dunstan, 2010), while GLM.1 and GLM.10 use only ML estimate. 

In both cases, we found the model variant that was based on point estimates to perform generally 

better (Fig. 2A, B) than the one that accounted for uncertainty using the asymptotic distribution 

approximation. However, we note that GLM.4, which is the Bayesian version of GLM.1, generally 

performed well (Fig. 2A), especially when considering only common species (Fig. 2B). This is 

again likely to be related to the fact that our data comprised of species-rich communities large 

species communities containing many rare species. In this case, the asymptotic approximations 

might not work well for finite samples, and the disparity seems to be an over-estimation of the 

uncertainty, making the predictions uninformative. On the other hand, the uncertainty estimate in 

GLM.4 is based on a Bayesian joint posterior distribution and moreover, but unlike GLM.8, it also 

includes shrinkage. 
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Other factors affecting model performance 

While the comparisons discussed above in the context of the Features A-G yielded results that were 

largely consistent with our hypotheses, the overall comparison among the models showed a large 

amount of idiosyncratic, unexplained variation in model performance. One source of such variation 

is that, while we attempted to optimise the performance of each individual model, doing so was 

more challenging for some models than for others. All models used in this study were implemented 

in freely available software, but these packages varied in their level of documentation and the 

amount and transparency of the user-defined tuning parameters. One reason for the popularity of 

modelling frameworks such as GAM, GLM and MARS might simply be the relative availability of 

their user-friendly and well-documented software, and that they are computationally efficient. One 

important further difference among the models, which we have not explored in this study, is that 

additional data types could be incorporated in some of the modelling frameworks, which could have 

improved their predictive performance. For example, including species traits can both bring more 

ecological insight (McGill et al. 2006) as well as improve predictive performance (Brown et al. 

2014). Only some of the models have the capacity to incorporate traits directly, and thus we did not 

include traits in these analyses so as to keep the results more comparable among the models. 

Another direction is to tie SDMs more directly to models of community dynamics with strongly 

interacting species. In some cases (e.g., specialist herbivores tracking their required host plants, or 

generalist predators constraining the distribution of vulnerable prey), there can be large-scale 

distributional imprints of locally strong interactions (Gilman et al. 2010, Godsoe et al. 2017). 

Previous studies have shown that one of the main sources of variation in SDM performance is the 

structure of the data (Fielding et al. 1995), especially the prevalence of species (Leathwick et al. 

2006, Meynard and Quinn 2007, Syphard and Franklin 2009, Santika 2011, Madon et al. 2013) and 

the strength and shape of the environmental gradient (Thuiller et al. 2003, Austin et al. 2006, 

Santika and Hutchinson 2009, Hoffman et al. 2010, Santika 2011). Consistent with this, our results 
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demonstrate that the specific data set studied has a major impact on predictive performance, as well 

as the type of prediction task. In particular, our results pinpoint the difficulty of extrapolative 

predictions, which has direct implications for model transferability across systems, space and time 

(Wenger and Olden 2012, Owens et al. 2013). Furthermore, a detailed inspection of the results 

(Supporting Information 3) shows that the rank order of the models differs considerably with 

respect to the measure used for evaluating their performance. This is for instance illustrated by the 

fact that even the generally best performing model variant (HMSC.3) belonged to the well-

performing models in only 44% of the evaluation tasks, and applying just this model means it 

would perform substantially less well in 56% of the cases than some other models. Thus, it is 

important for the researcher to evaluate which aspect of model performance is especially critical 

given the aim of the modelling. For example, if the goal is to predict the probability that a focal 

species is present in a site, or the expected species richness in a site, or the expected level of beta-

diversity between a pair of sites, then measures of accuracy are likely to be the most relevant 

criterion. If the goal instead is to prioritize sites in terms of their species occurrences, species 

richness, or community composition, then measures of discrimination are likely to be the most 

relevant. If the goal is to make statements about prediction uncertainty, e.g. whether the predicted 

species occurrence probabilities are reliable, or whether the uncertainty estimates involved in 

predictions of species richness or community composition are valid, then measures of calibration 

are likely to be important. In theory, measures of precision would be relevant if one wishes to 

minimize uncertainty, but as we have shown, the models that involve the least uncertainty in their 

predictions tend to behave badly with respect to the other measures of performance. 

Overall, our analyses show that there is considerable variation in performance among models, and 

that it may be difficult to predict a priori which kind of model features do — or do not — improve 

model performance. Which model works best will not only depend on how the assumptions of the 

model relate to the assembly processes shaping a particular community, but also on other 
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characteristics such as the amount, quality, and spatial structure of the data. Two data sets, even 

with apparently similar characteristics, might be best modelled by different methods (James et al. 

2013). A general strategy that we recommend is to apply at least a few alternative models, and use 

cross-validation or other model selection approaches to assess critically how well the models 

predict the aspects of the data that are relevant, given the aims of the study. Based on our results on 

model complementarity (Fig. 4B), including e.g. model variants HMSC.3, GLM.5, SAM.1 and 

GLM.12 among the set of the candidate models is likely to lead to a good result, in the sense that at 

least one of these models will perform almost as well as any of the 35 model variants considered 

here. The results of the cross-validation exercise will then tell which of these models is to be trusted 

most. The recommendation of using these specific models as the set of candidate models is of 

course conditional on the data and the prediction tasks being similar to those considered here: 

presence-absence data on large ecological communities with many rare species. We hope that our 

results provide a helpful starting point for researchers applying species distribution modelling in 

community ecology, both in terms of gauging the potential pitfalls and advantages in the models 

available to choose from among, and in defining the characteristics of the predictions that they may 

wish to validate. 
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Table 1. A review on recent species distribution model comparison studies. ’Data’ indicates 

whether the comparisons were based on models fitted to simulated (S) and/or real empirical data 

(R); ’Type’ refers to whether the compared model types were single species distribution models 

(SDM), stacked species distribution models (SSDM), joint species distribution model (JSDM) or 

ordination-based models (ORD). The last column provides the names of the modelling frameworks 

compared.  

 

Study Data Type Model name abbreviations 
Fielding and Haworth (1995)  R   SDM  DFA, GLM   

Lek et al. (1996) R SDM MR, NN   

Mastrorillo et al. (1997) R SDM ANN, DFA   

Bio et al. (1998) R SDM GAM, GLM   

Franklin (1998) R SDM CT, GAM, GLM  

Manel et al. (1999) R SDM GLM, NN, LDA  

Vayssières et al. (2000) R SDM CART, GLM  

Moisen and Fescino (2002) R, S SDM, SSDM ANN, CART, GAM, LM, MARS  

Olden and Jackson (2002) R, S SDM ANN, CFT, GLM, LDA  

Loiselle et al. (2003) R SDM BIOCLIM, DOMAIN, GLM, GARP  

Thuiller et al. (2003) R SDM CART, GAM, GLM  

Segurado and Araùjo (2004) R SDM CT, ENFA, GAM, GLM, GOWER, NN, SI   

Thuiller (2004) R SDM ANN, CT, GAM, GLM  

Elith et al. (2006) R SDM, SSDM BIOCLIM, BRT, BRUTO, DOMAIN, GAM, 

GARP, GDM, GLM, LIVES, MARS, MAXENT  

Austin et al. (2006) S SDM GLM, GAM  

Leathwick et al. (2006) R SDM, SSDM GAM, MARS  

Maggini et al. (2006) R SDM GAM   

Pearson et al. (2006) R SDM ANN, CER, CGM, CT, GA, GAM, GARP, GLM   

Randin et al. (2006) R SDM GAM, GLM   



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Guisan et al. (2007a) R SDM, SSDM BIOCLIM, DOMAIN, GLM, GAM, BRUTO, 

MARS, BRT, GARP, GDM, MAXENT   

Guisan et al. (2007b) R SDM, SSDM BIOCLIM, DOMAIN, GLM, GAM, BRUTO, 

MARS, BRT, GARP, BRT, MAXENT   

Heikkinen et al. (2007) R SDM GAM   

Meynard and Quinn (2007) S SDM GLM, GAM, GAM, CART, GARP  

Peterson et al. (2007) R SDM GARP, MAXENT   

Wisz et al. (2008) R SDM, SSDM BIOCLIM, DOMAIN, GLM, GAM,  

BRUTO, MARS, BRT, GARP, MAXENT, LIVES   

Elith and Graham (2009) S SDM GLM, BRT, RF, MAXENT, GARP  

Santika and Hutchinson 

(2009) 

S SDM BIOCLIM, GLM, GAM, CART  

Syphard and Franklin (2009) R SDM GAM, GLM, CT, RF   

Baselga and Araújo (2010) R SDM, SSDM GLM, CQO  

Hoffman et al. (2010) S SDM GLM, GAM, MAXENT, DCM  

Santika (2011) S SDM GLM, GAM, CART  

Wenger and Olden (2012) R  SDM  ANN, GLM, RF  

Bahn and McGill (2013)  R   SDM BRT, GAM, GARP, MARS, MAXENT, RF  

Hui et al. (2013)  R   SDM, JSDM  GLM, SAM  

Owens et al. (2013)  S, R SDM GAM, GARP, MAXENT  

Madon et al. (2013) R SDM GLM  

Miller (2014) S SDM -  

D’Amen et al. (2015) R SDM, SSDM GLM, GAM, BRT, RF (SESAM2)   

Maguire et al. (2016) R ORD, SDM, 

SSDM 

CAO, CQO, MANN, MARS, MRT, GLM, GAM, 

ANN, MARS, CART  

D’Amen et al. (2017) R SDM, JSDM GLM, GAM, BRT, BORAL 

Sor et al. (2017) R SDM ANN, GLM, RF, SVM  

Harris et al. (2018) R SDM, JSDM  BRT, RF, MISTNET 

Nieto-Lugilde et al. (2018)  - ORD, SDM, 

SSDM, 

JSDM 

CLO, CQO, CAO, GDM, GF, HBM, MANN, 

MARS, MRT, GLM, GAM, RF, ANN, CART  

Zhang et al. (2018) S, R JSDM HMSC, BORAL, GJAM, MISTNET, BC 

Wilkinson et al. (2019) R JSDM BC, GJAM, BORAL, HMSC 
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Table 2. Summary of statistical modelling frameworks considered in this paper. The column 

‘Statistical inference framework’ describes whether the model was fitted to data in the Bayesian or 

in the maximum likelihood (ML) framework. The column ‘Type’ classifies each model either as 

stacked species distribution model (SSDM) or joint species distribution model (JSDM). Feature A 

refers to the assumed form of species response to their environment, classified as semi-parametric 

(1) or parametric (0). Feature B describes whether the statistical inference framework accounts (1) 

or does not account (0) for interactions among environmental covariates when estimating the 

responses of species to them. Feature C classifies the models according to whether models share (1) 

or do not share (0) information among the species when modelling their responses to environmental 

covariates. Feature D describes whether the modelling method accounts (1) or does not account (0) 

for species co-occurrences not explained by their environmental niches. Feature E describes 

whether the model accounts (1) or does not account (0) explicitly for spatial variation. Feature F 

describes whether the statistical inference framework involves (1) or does not involve (0) shrinkage 

when estimating the responses of species to environmental covariates.  Feature G describes whether 

the statistical inference framework accounts for (1) or does not account for (0) parameter 

uncertainty when generating the predictions. For more detailed descriptions of the models, 

information on their practical implementations, as well as more references for the methods and their 

use in practice, see Appendix S1. 

 

     
Feature 

 

Model Model name Variant Statistical 
inference 
framework 

Type 

 
A B C D E F G 

Reference 

BC 

Bayesian 
Community 
Ecology 
Analysis 

BC.1 Bayes JSDM 0 0 0 0 0 1 1 
Golding and 
Harris (2015) 
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– with species 
associations 

BC.2 Bayes JSDM 0 0 0 1 0 1 1 
Golding and 
Harris (2015) 

BORAL  

Bayesian 
Ordination and 
Regression 
Analysis 

BORAL.1 Bayes JSDM 0 0 0 1 0 1 1 Hui (2017) 

BRT 
Boosted 
regression trees 

BRT.1 ML SSDM 1 1 0 0 0 0 0 

Hijmans et al. 
(2017), 
Ridgeway 
(2017) 

GAM 
Generalized 
additive models 

GAM.1 ML SSDM 1 0 0 0 0 0 0 Wood (2011) 

 
– with spatial 
structure 

GAM.2 ML SSDM 1 0 0 0 1 0 0 Wood (2011) 

GJAM 
Generalized 
joint attribute 
modelling 

GJAM.1 Bayes JSDM 0 0 0 1 0 1 1 
Clark et al. 
(2017) 

GLM 
Generalized 
linear models 

GLM.1 ML SSDM 0 0 0 0 0 0 0 
R Core Team 
(2018) 

 
– fitted with 
PQL 

GLM.2 ML SSDM 0 0 0 0 0 0 0 
Venables and 
Ripley (2002) 

 
– with PQL and 
spatial random 
effect 

GLM.3 ML SSDM 0 0 0 0 1 0 0 
Venables and 
Ripley (2002) 

 
– Bayesian 
(single species 
HMSC) 

GLM.4 Bayes SSDM 0 0 0 0 0 1 1 
Ovaskainen  
et al. (2017) 

 
– Bayesian and 
spatial (single 
species HMSC) 

GLM.5 Bayes SSDM 0 0 0 0 1 1 1 
Ovaskainen  
et al. (2017) 

 
– fitted with 
MVABUND 

GLM.6 ML SSDM 0 0 0 0 0 0 0 
Wang et al. 
(2012) 

 

– Bayesian 
(BORAL with 
no latent 
variable) 

GLM.7 Bayes SSDM 0 0 0 0 0 1 1 Hui (2017) 

 

– same as 
GLM.1, but 
predictions 
incorporate 
parameter 
uncertainty 

GLM.8 ML SSDM 0 0 0 0 0 0 1 

Foster and 
Dunstan 
(2010), R Core 
Team (2018) 
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– fitted with 
MVABUND 
with LASSO 

GLM.9 ML SSDM 0 0 0 0 0 1 0 
Wang et al. 
(2012) 

 
– fitted with 
GLMNET with 
LASSO 

GLM.10 ML SSDM 0 0 0 0 0 1 0 
Friedman  
et al. (2010) 

 

– same as 
GLM.10, but 
predictions 
incorporate 
parameter 
uncertainty 

GLM.11 ML SSDM 0 0 0 0 0 1 1 
Friedman  
et al. (2010) 

 

– same as 
GLM.1, but the 
model includes 
interactions 
between 
covariates 

GLM.12 ML SSDM 0 1 0 0 0 0 0 
R Core Team 
(2018) 

 

– same as 
GLM.4, but the 
model includes 
interactions 
between 
covariates 

GLM.13 Bayes SSDM 0 1 0 0 0 1 0 
Ovaskainen  
et al. (2017) 

GNN 
Gradient nearest 
neighbour 

GNN.1 ML SSDM 1 1 1 0 0 0 0 
Crookston and 
Finley (2008) 

HMSC 

Hierarchical 
modelling of 
species 
communities 

HMSC.1 Bayes JSDM 0 0 1 0 0 1 1 
Ovaskainen  
et al. (2017) 

 
– with species 
associations 

HMSC.2 Bayes JSDM 0 0 1 1 0 1 1 
Ovaskainen 
et al. (2017) 

 

– with species 
associations 
implemented as 
spatial random 
effects 

HMSC.3 Bayes JSDM 0 0 1 1 1 1 1 
Ovaskainen  
et al. (2017) 

 

– same as 
HMSC.1, but the 
model includes 
interactions 
between 
covariates 

HMSC.4 Bayes JSDM 0 1 1 0 0 1 1 
Ovaskainen  
et al. (2017) 

MARS 

Multivariate 
adaptive 
regression spline 
(MARS-
COMM) 

MARS.1 ML SSDM 1 0 0 0 0 0 0 
Milborrow 
(2017) 
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– with 
interactions in 
covariate 
selection 
(MARS-INT) 

MARS.2 ML SSDM 1 1 1 0 0 0 0 
Milborrow 
(2017) 

MISTN 
Multivariate 
stochastic neural 
networks 

MISTN.1 ML JSDM 1 1 0 1 0 0 0 Harris (2015) 

MRTS 
Multivariate 
regression tree 

MRTS.1 ML SSDM 1 1 1 0 0 0 0 
De’ath et al. 
(2014) 

RF Random forest RF.1 ML SSDM 1 1 0 0 0 0 0 
Liaw and 
Wiener (2002) 

SAM 
Species 
archetype model 

SAM.1 Bayes JSDM 0 0 1 0 0 1 1 

Hui et al. 
(2013)  
(the exact 
implementatio
n provided by 
the developer) 

SVM 
Support vector 
machines 

SVM.1 ML SSDM 1 1 0 0 0 0 0 
Meyer et al. 
(2017) 

XGB 
Gradient 
extreme 
boosting 

XGB.1 ML SSDM 1 1 0 0 0 0 0 
Chen et al. 
(2018) 
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Table 3. Descriptions of the data sets used to test the performance of the statistical modelling 

approaches. The columns show for each dataset (i) the types of organisms included in the set, (ii) 

whether the set is true community data or based on atlas data, (iii) the number of species in the data 

set, (iv) the prevalence of species in the data set (including data for both for training and validation), 

(v) a reference to the data. 

 

 

 Dataset Type Species Species prevalence range
as median (min–max) 

Reference 

1 
Breeding Bird Surveys 
in Finland, Sweden and 
Norway 

Atlas data 141 0.16 (0.0066–0.97) Lindström et al. (2015) 

2 
Butterflies in the Great 
Britain 

Atlas data 50 0.43 (0.018–0.94) Asher et al. (2001) 

3 
Plants from Victorian 
Biodiversity Atlas 

Community 162 0.018 (0.0033–0.23) 
https://www.environment.vi
c.gov.au/biodiversity/victori
an-biodiversity-atlas 

4 Trees in the USA Community 63 0.04 (0.0067–0.36) http://fia.fs.fed.us/ 

5 
Vegetation in northern 
Norway 

Community 242 0.045 (0.0017–0.69) Niittynen and Luoto (2017) 
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Table 4. The performance measures used to assess how well the different statistical frameworks are 

able to predict held out validation data. 

Ecological 
level (rows) 
and aspect of 
performance 
(columns) to 
be measured 

a Accuracy b Discrimination c Calibration d Precision 

1 Species-
specific 
occurrence 

Absolute difference 
between expected 
(probability) and 
observed (0/1) 
occurrence, averaged 
over species and sites 

AUC, averaged 
over species 

Absolute difference 
between predicted and 
observed numbers of 
occurrences in 10 
probability bins (each 
including same number of 
data points, based on 
quantiles), averaged over 
species 

(1 − ), 
where  is the 
probability of 
species 
occurrence, 
averaged over 
species and 
sampling units 

2 Species 
richness 

Root mean squared 
error (RMSE) 
between mean 
prediction and 
observed richness  

Spearman rank 
correlation among 
sites/regions, 
based on 
predictive mean  

|p-0.5|, where p is the 
proportion of predictions 
that fall within 50% 
prediction interval 

Average of 
predictive 
standard 
deviations 

3 Community 
composition 
measured by 
Sorensen, 
Simpson and 
nestedness 
indices 

Root mean squared 
error (RMSE) 
between predictive 
mean and observed 
composition  

Spearman rank 
correlation among 
pairs of sites 

|p-0.5|, where p is the 
proportion of predictions 
that fall within 50% 
prediction interval 

Average of 
predictive 
standard 
deviations 

 

 

Figure legends 

Figure 1. Workflow of the study. We split data sets into training and validation data (A), fitted 

models to training data (B), and compared model predictions to validation data in terms of species 

occurrences, species richness, and community composition (C). We evaluated the predictive power 

in terms of accuracy, discrimination, calibration and precision (D). Panel B describes the Features 

A-G with respect to which the models have been classified, as detailed in Table 2. An accurate 

prediction is close to the true value (a), predictions with high discrimination can separate e.g. sites 
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where species occurs from those where it does not (b), well calibrated predictions have valid 

confidence intervals (c), and precise predictions present little uncertainty (d). 

Figure 2. Variation in predictive performance among model variants. Panels A (based on all 

species) and B (restricted to species with prevalence at least 0.1) rank the model variants based on 

their overall predictive performance, i.e. the average among measures of accuracy, discrimination 

and calibration. Panel C partitions variation in predictive performance among the properties of the 

data (data set and data size), type of prediction (interpolation/partial or full extrapolation), and the 

model variant. Panel D shows correlations among the different measures of predictive performance 

(accuracy, discrimination, calibration and precision). Red colour refers to positive correlation and 

blue colour to negative correlation, and cases with lower than 75% posterior support for positive or 

negative association are shown by white. Panels C and D are based on analyses on all species at the 

levels of species (1), species richness (2) and community composition (3).  

Figure 3. Variation in predictive performance among data sets and prediction tasks. The panels 

show the overall performance of the models based on predicting all species (as in Fig. 2A) but 

evaluated for butterfly data (A) or vegetation data (B) separately, or only for interpolation (C) or 

full extrapolation (D) tasks. 

Figure 4. The proportion of prediction tasks for the case of all species, among which model variants 

and their combinations performed well. Panel (A) shows how the proportion of the prediction tasks 

for which each model variant was classified among the well performing models (see text for how 

this was defined). Panel (B) shows the cumulative proportion of prediction tasks among which at 

least one of the included model variants performed well. In panel B, the model variants were added 

one by one from left to right, the orange bar shows the proportion achieved by model variants 

included before the focal one, and the blue bar shows the additional proportion achieved by the 

focal variant. The model variants were added in the order of the proportion of prediction tasks for 
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which the candidate model was well performing but for which none of the already included models 

was well performing, Thus, unlike panel A, panel B accounts for complementarity among the 

prediction tasks.  
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