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Abstract

Markov models are natural tools for modeling trajectories, following the prin-

ciple that recent location history is predictive of near-future directions. In this

work we study Markov models for describing and predicting human movement

in indoor spaces, with the goal of modeling the movement on a coarse scale to

protect the privacy of the individuals. Modern positioning devices, however,

provide location information on a much more finer scale. To utilize this addi-

tional information we develop a novel family of partially hidden Markov models

that couple each observed state with an auxiliary side information vector char-

acterizing the movement within the coarse grid cell. We implement the model

as a nonparametric Bayesian model and demonstrate it on real-world trajectory

data collected in a hypermarket.

Keywords: Hierarchical Dirichlet process, Markov models, Movement

trajectories, Nonparametric Bayesian inference, Privacy

1. Introduction1

Human movement in indoor spaces can be reliably tracked with various2

localization techniques, such as wireless network signal strength [1, 2], dead3

reckoning [3], or locally deployed high-accuracy positioning systems often based4

on Bluetooth smart [4]. The state-of-the-art solutions can localize individuals5

with sufficient accuracy to know where exactly they are in some complex indoor6

space, such as a museum, hypermarket, or other public place. The measurement7
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error of the most accurate systems is measured in the range of 0.1-1 meters, and8

is hence comparable or smaller than the personal space of an individual. For9

many practical purposes the localization can therefore be considered error-free.10

Given access to location data, a natural question to consider is modeling of11

movement trajectories, either to describe movement patterns within the building12

or to attempt predicting future locations based on already observed locations of13

an individual. In recent years models for indoor trajectories have been presented14

based on various alternative modeling approaches: For example, Nielsen et al. [5]15

used hidden Markov models for movement trajectories to improve localization16

accuracy, Yoo et al. [6] used Gaussian process models for trajectories to learn17

a map of the building, and Nianyin et al. [7] used particle swarm optimization18

for planning robot trajectories.19

Our work falls into the same general category: We model indoor movement20

trajectories based on high-accuracy positioning data, building models for both21

descriptive and predictive analysis. Our goal is to design justified and auto-22

mated Bayesian tools for this task, without requiring or revealing too detailed23

information about the individuals. Even though the measurement devices can24

provide near-perfect positioning accuracy, the typical use cases for the premise25

owners, such as targeted advertising or collecting statistics on movement pat-26

terns, do not require knowing the exact positions. In most cases it is enough27

to know that the client is, for example, browsing the dairy section of a mar-28

ket, whereas the knowledge that they are currently handling a specific product29

might be considered intrusive. To preserve the privacy of the customers, it hence30

makes sense to consider models that do not reveal or even require storing the31

exact locations.32

The easiest privacy-preserving solution is to discretize the locations on a33

sufficiently coarse scale, effectively mimicking the kind of data a less accurate34

positioning tool would provide. This is naturally not optimal since it completely35

ignores the improved positioning accuracy. In this work we build models that36

are fundamentally based on discretization, but that complement the discretized37

coarse locations (called cells) with aggregate summary statistics based on the38
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high-accuracy positioning data. These summaries intend to capture the nature39

of the movement within the cell, without retaining the actual detailed coordi-40

nates. For learning the model we then only need to store the information on41

which cell the person is in, coupled with these summary statistics, without pro-42

viding further access to the raw high-accuracy coordinates. Ideally the summary43

statistics would be computed already at the level of the positioning system itself44

so that the raw coordinates could be discarded in real time, to best guarantee45

that the privacy of the users is not compromised.46

Markov Models (MM) that assume the next state depends solely on the47

current state are computationally tractable tools for modeling trajectories over48

such discrete observed states, and have been used as a crude approximation for49

human mobility trajectories as well [8]. For improved accuracy, we should typi-50

cally model also higher-order transitions, conditioning the expected movements51

not only on the latest state but on a sequence of the recent states, for example52

using variable-order MMs [9, 10]. While Markov models are indeed good tools53

for predicting future movements, they completely ignore the detailed movement54

within the cells.55

In this work we extend MMs to support also the auxiliary statistics, via a56

latent state formulation. We provide for each cell a collection of latent states57

that generate the auxiliary statistics, and further condition the transition prob-58

abilities to the next cell not only on the observed state history but also on the59

latent state. Even though the abstract formulation reminds the concept of hid-60

den Markov models (HMM) [11] and our inference borrows some key elements61

from HMM literature, it differs fundamentally in two respects: The latent states62

are conditional on the observed states (and not vice versa as in HMMs), and63

the model efficiently supports higher-order transitions.64

We call the model partially hidden Markov model (PHMM), since the dy-65

namics operate on the combination of the observed discrete states and the latent66

states conditional on those. We implement the model within the nonparamet-67

ric Bayesian framework, using a three-level extension of hierarchical Dirichlet68

process (HDP) [12, 13] for determining the local state cardinalities and beam69
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sampling [14] for the latent state inference. We evaluate the model on artificial70

data, and then proceed to demonstrate its use in modeling actual high-precision71

indoor data collected in a hypermarket during a period of one month. We illus-72

trate how the model naturally provides interpretable summaries of movement73

patterns within the space via the latent states, and that it can predict future74

movements of the individuals.75

The main contributions of this work can be summarized as:76

• Introduction of the novel PHMM model that extends Markov models by77

complementing them with latent states that influence both the transition78

probabilities and emission probabilities for feature vectors associated with79

the observed discrete states, improving both interpretability and predic-80

tion accuracy.81

• Non-parametric Bayesian implementation of PHMM to automatically de-82

termine the required number of latent states, and generalization of the83

PHMM model for higher-order histories.84

• Use of PHMM for modeling indoor movement trajectories in a privacy-85

preserving manner; instead of modeling raw coordinates we model move-86

ment along coarse grid that does not reveal unnecessarily detailed infor-87

mation about the user, while using the detailed coordinates only to create88

a feature vector characterizing the type of movement within each grid cell.89

2. Background90

Before describing the proposed model, we briefly cover the necessary back-91

ground. We introduce first the most closely related models to enable under-92

standing how the partially hidden Markov model is related to regular and hid-93

den Markov models, as well as dynamic Bayesian networks in general, and then94

give a quick overview to the mathematical tools used when building the non-95

parametric PHMM in Section 3.96
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Figure 1: A Markov model (top left) operates solely on the observed states st and easily sup-

ports higher-order transition histories, whereas a hidden Markov model (top right) introduces

latent states zt that govern the transitions but the inference is only efficient for first-order

transitions. The partially-hidden Markov model (bottom) introduced in this work combines

advantages of both: It supports higher-order transitions but can still take advantage of latent

states, though in a different manner than a HMM. In a PHMM the latent states are con-

ditional on the observed state st, and generate an auxiliary representation ft instead of the

main observed state st.

2.1. Markov Models97

Markov models (Figure 1; top left) are tools for modeling fully observed98

sequences of discrete states. Given a sequence s1, ..., sT , the goal is to learn99

the underlying dynamics in form of the transition probabilities p(st|st−1). This100

is computationally easy, since the maximum likelihood estimates are obtained101

by merely counting the observed transitions into a S × S matrix, where S is102

the number of different states. Bayesian inference is effectively as easy, using103

Dirichlet priors for the transition probabilities.104

For many real-word sequences the pure Markovian assumption of the next105

state being conditioned only on the previous one does not hold. Higher-order106
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Markov models relax the assumption by modeling transitions p(st|st−1, ..., st−O)107

up to some order O. Even though the transitions probabilities now become ten-108

sors of order O + 1 and hence require more memory, the inference algorithm109

remains the same. For better accuracy with finite data sets the models are110

typically implemented with some sort of backing-off, allowing the model to bor-111

row statistical strength from lower-order history for the rare sequences, which112

increases the complexity of the algorithms but reduces the memory consump-113

tion. The backing-off can be implemented for example by variable order Markov114

models; for nonparametric Bayesian examples, see [15] and [10].115

2.2. Hidden Markov Models116

A hidden Markov model (HMM) (Figure 1; top right) generalizes Markov

models by coupling the observed states st with latent states zt. The Markovian

dynamics are assumed for the latent states, so that zt depends on zt−1, and the

observed states are emitted by the latent states:

zt | zt−1 ∼ πzt ,

st | zt, θ ∼ F (θzt).

Here πz is a vector of probabilities for the K possible latent states, and F (θz)117

is some density over the space of the observed states, parameterized by θz.118

HMMs are more expressive than MMs, but it comes with a notable increase119

in computational cost: The latent state sequence z1, ..., zT needs to be inferred120

in addition to the transition probabilities, and these two tasks are coupled in a121

manner that typically requires alternating algorithms.1122

Ideally the whole latent state sequence is inferred at once, using dynamic pro-123

gramming [11]. For sampling-based Bayesian inference the algorithm is called124

Forward-Filtering Backward-Sampling (FFBS). Importantly, this part of the in-125

ference algorithm has computational complexity O(TK2), where T is the length126

1See [16] for a closed-formed solution that requires access to highly accurate estimates of

multivariate densities.
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of the sequence and K the number of the latent states. In practice HMMs are127

only applicable for first-order histories because of this term; for completing the128

forward-backward inference for an Oth order model the complexity would be129

O(TKO+1), which quickly becomes infeasible, often already for the 2nd order.130

Both MMs and HMMs, as well as the PHMM introduced in this work, are131

special cases of dynamic Bayesian networks [17]. Even though all of them can132

be presented in this general framework, the special cases typically result in con-133

siderably more efficient inference and hence dedicated solutions are important.134

In our case, the notable advantage compared to generic formulation is that the135

conditional independence assumptions made on the latent states enable efficient136

nonparametric treatment where the cardinality of the latent states is learned au-137

tomatically. To our knowledge, no generic inference solutions for nonparametric138

dynamic Bayesian networks have been presented.139

2.3. Hierarchical Dirichlet Process140

HMMs, as well as PHMMs, assume the data is generated by some unknown141

number of latent states K. While the number K could be manually set by142

the analyst, an interesting alternative is to infer the number directly based on143

the data using nonparametric Bayesian modeling techniques. Here we briefly144

review the nonparametric model of hierarchical Dirichlet process (HDP) [12],145

which has been used to implement nonparametric HMMs [18, 19, 14]. Later we146

will use tools belonging to the same family to create a nonparametric version of147

the proposed model.148

Dirichlet process (DP) is a stochastic process that provides densities of the149

form f(θ) =
∑∞
k=1 πkδθk(θ), where δ is the delta measure and πk sum upto one.150

A draw from such a process is denoted by G ∼ DP (αH), where H is a density151

from which the θk are drawn, and α is a concentration parameter that controls152

the decay of the weights πk. In other words, DP gives a countably infinite153

collection of atoms, weighted points in some space, and can hence be used for154

example for creating mixture models: Instead of assuming a fixed mixture of K155

components, we can use a DP to generate infinitely many of them, of which only156
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a finite set is still needed for modeling any finite data collection. This enables157

efficient inference [12].158

A hierarchical DP (HDP) extends DPs into a hierarchy, generating parallel159

DPs that share the same atoms but that can have different weights for them.160

In the simplest form the hierarchy is stated as161

G ∼ DP (αH), Gj ∼ DP (βG).

The lower level DPs use G as their prior, which necessarily implies the θ drawn162

from them are part of the discrete set provided by G, and hence the different163

Gj share the same atoms, where Gj is the jth random probability measure that164

shares atoms with the base measure G. Since a HMM can be re-formulated165

as a collection of mixture models where the mixture weights depend on the166

previous mixture allocation, the HDP construction can be used to implement a167

nonparametric HMM [18, 19, 14].168

3. Partially Hidden Markov Model169

In this work we propose a novel family of partially hidden Markov models170

for modeling discrete sequences with associated feature vectors, illustrated in171

Figure 1 (bottom). The input is given as sequences of observations denoted by172

x1, x2, . . . xT , where each time instance is determined by a tuple xt = (st, ft).173

The first element st is a discrete state, whereas the second element ft is a174

D-dimensional feature vector providing (typically real-valued) auxiliary side in-175

formation for that state. In our application the former corresponds to the grid176

cell the user is in, and the latter to summary statistics of the movement pattern177

within the cell. Both st and ft are observed.178

A regular Markov model would model such data by ignoring ft completely,179

simply modeling st conditional on some Oth order history of previous locations.180

This is naturally sub-optimal, since it completely ignores the features. Another181

classical alternative for modeling such sequences would be a HMM, which would182

have a set of K latent states that would emit the whole tuples xt. In a straight-183

forward application of HMM, each latent state could hence generate several cell184
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locations, and hence the latent states could not be directly interpreted as lo-185

cation information. Furthermore, inference for HMMs is only feasible for very186

low-order transition histories, typically the first order.187

To combine the advantages of both classical alternatives, we model the se-188

quences with a model we call partially hidden Markov model (PHMM). As189

regular MMs, it supports efficient inference for higher order transitions and di-190

rectly models the observed state sequence st. At the same time, it inherits from191

HMMs the capability of modeling also the associated feature vectors ft with192

a collection of latent states lstt . An important difference to HMMs is that the193

latent states are conditional on the observed state st.194

The basic formulation of the model is given by

st ∼ p(st|lst−1

t−1 , st−1, st−2, ..., st−O),

lstt ∼ p(l
st
t |l

st−1

t−1 , st, st−1), (1)

ft ∼ p(ft|lstt ),

with additional special cases for the first time points, not written out here for195

brevity. In verbal terms, the feature vector itself depends only on the latent196

state, the latent state depends on the previous latent state and the previous cell197

(and naturally also on the current cell, since each cell has its own set of latent198

states), and finally the next cell depends on the previous latent state and the199

Oth order history of the cell locations. The use of only first-order history for200

the latent states themselves is crucial for efficient inference of the latent states,201

yet the whole model exhibits higher-order transitions efficiently because of the202

transitions for st.203

The full model, developed in the next sections, instantiates a nonparametric204

Bayesian version of this basic pattern by coupling the transition probabilities205

with suitable prior distributions, inferring the number of local states for each206

cell nonparametrically, and by hierarchically sharing the latent states of different207

locations.208
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3.1. Nonparametric PHMM209

In the following, we will provide the details on how to implement PHMM210

using nonparametric Bayesian tools for automatically inferring the number of211

latent states required for each of the observed states st. Since the latent states212

are conditional on the observed ones, a parametric model would require setting S213

different complexity parameters manually. Unless assuming the same cardinality214

for each observed state, this would render tools like cross-validation completely215

infeasible. Consequently, nonparametric inference is particularly important for216

this model class.217

A simple mixture density for ft|st could be implemented with a DP prior.218

Sharing the clusters across the observed states would require a HDP instead [12],219

as would taking time dependencies into account as in HDP-HMM [18]. Since220

our model combines both elements, we will need yet another hierarchical layer,221

for which we adopt the tree-HDP construction [13]. In the following we present222

the details of these constructions only to the extent it is necessary for deriving223

the eventual sampling equations for the proposed model; for formal treatment224

of the random processes the reader should consult the original sources.225

The full model, illustrated in Figure 2, is a single tree-HDP with three layers.226

At the highest level stand a collection of global latent states with associated227

weights, drawn from the top-level DP. At the next level are S collections of local228

latent states (l), one for each geographic cell. These use the global collection229

as their prior, which means they share identities but have different weights.230

Typically, each local collection uses only a subset of the global states.231

Finally, the conditional transformations are tied to each other so that all232

incoming transitions to a cell s use the local latent state collection as their prior.233

This means that only the latent states present in that cell can be reached, and234

that the weights of incoming transitions (π) are regularized towards each other.235

In the end each local state generates a feature vector (f). The generating236

distribution can be arbitrary, but in our work we use multivariate Gaussian237

emissions.238

The formal notation for the model can be constructed as a special case of
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Figure 2: Plate diagram of the nonparametric partially hidden Markov model. The nodes at

the left indicate the three levels of the tree-structured HDP construction, lt are latent states,

and the shaded nodes correspond to the observed coarse locations st and the associated feature

vectors ft.

the tree-HDP model [13]. Tree-HDP extends HDPs into general tree structures,

whereas the model used here is a specific simple tree with three layers, defined

as

G0 ∼ DP (γH),

Gs ∼ DP (α0G0),

Gis ∼ DP (α1Gs).

Here H is a base measure over the feature vector space, G0 is the root-level DP239

that provides the global latent states, and Gs correspond to the collections of240

latent states for each cell. Given a grid of S cells, there are S of these collections.241

Finally, Gis refers to one particular incoming transition from a neighboring cell242

to the sth cell. Here i is an implicit index that runs over the possible states from243

where one can reach the sth cell; each i corresponds to an Oth order sequence244

of cells combined with the latent state of the previous time index.245

One approach for understanding the fairly abstract formulation above is to246

think in terms of the analogous finite model. Then we would simply have K247

global latent states with emission distributions drawn from the prior H and248

weights following a Dirichlet distribution. For each cell s we would then have249
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Dirichlet-distributed weights using the global weights as their prior, and fi-250

nally for all incoming transitions to that location the probabilities would again251

be Dirichlets, this time using the local weights as their prior. In practice252

the nonparametric construction can also be implemented in a similar fash-253

ion, using the stick-breaking construction [20]; the finite Dirichlets are replaced254

with infinite ones parameterized via sticks drawn from beta-distributions. We255

denote the global sticks by Vk ∼ Beta(1, γ) and the associated weights by256

βk = Vk
∏k−1
i (1−Vi), the cell-level sticks by vjk ∼ Beta(α0βk, α1(1−

∑
l<k βl))257

and the corresponding weights by pjk, and finally the sticks and weights cor-258

responding to the transitions by aijk ∼ Beta(α1pjk, α1(1 −
∑
l<k pjl)) and259

πijk = aijk
∏
l<k(1− aijl). For derivations of these exact forms, see [12, 13].260

3.2. Inference261

Given a collection of observed sequences, we infer the model parameters by262

Gibbs sampling. The whole inference process is split into two separate parts:263

Inference of the latent state sequences given the rest of the parameters, and264

inference of the parameters given the state sequences.265

Given the latent state sequences the inference details follow from [13], since266

the model is a special case of their tree-HDP model. Despite the somewhat267

complicated machinery required for correctly handling the nonparametric na-268

ture of the model, the updates for the model parameters still depend only on269

aggregate count statistics as they would for a parametric model.270

We denote by Nj the total number of incoming transitions into the jth grid271

cell, and by nijk the number of those coming from the ith history and using272

the global latent state k. Furthermore, we denote by mjk the total number273

of latent states at the grid cell level Gj that are assigned to the global latent274

state k. The quantities nijk and mjk are not fully observed, but instead need275

to be sampled as explained by [13]. Finally, the transition counts tgjkl are the276

number of transitions from the gth grid cell using the latent state l to the jth277

grid cell using the latent state k. Given the above aggregate statistics, the model278

parameters can be sampled as follows:279
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1. Break more sticks at the global level to support creation of new states at280

lower levels:281

β | γ ∼ Stick(γ)

2. Update the global weights:

P (mjk = m) ∝ s(mjk, k).(α0β
old
k )m

vk =
∑
j

mjk

βk ∼ Dirichlet(v1, . . . , vk, γ)

3. Update the cell weights:

P (nijk = n) ∝ s(nijk, k).(α1β
old
jk )n

ljk =

Nj∑
i

nijk

βjk ∼ Dirichlet(lj1, . . . , ljk, α0β
old
k )

4. Update the transition probabilities:

πgjl ∼ Dirichlet(tgjl1, . . . , tgjlk, α1β
old
jk )

Here s(n, k) denotes the Stirling numbers of the first kind; see [13] for further282

explanation.283

Given the current values for the transition probabilities we then sample the284

full state sequence of T elements at once. Even though the model is not a285

HMM, we can perform this stage using an analogous forward-backward sam-286

pling procedure since the transitions depend only on the previous latent state287

and not longer history of those. As we recall from Section 2, the complexity288

of this depends on the number of latent states, which here is unbounded. The289

first HDP-HMM models circumvented this by not sampling the whole sequence290

at one go, but the beam sampler by [14] showed how we can not only perform291

forward-backward sampling for HDP-HMM but in fact can often do it with less292

computational demand compared to a regular HMM with similar state cardi-293

nality; only transitions with sufficiently high probability need to be considered,294
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which often means considerably less computation in total.295

We extend the beam sampler of [14] for our model as follows. We denote296

by st the grid cell at time t, and by lt the corresponding latent state, and for297

brevity denote (st, lt) by ht.298

Following the basic idea of beam sampling (and slice samplers in general), we

draw an auxiliary slice variable ut ∼ Uniform(0, πht−1,ht
) for each time point to

represent the lowest transition probability that need to be considered, adaptively

truncating the model to a finite one for the purpose of this step alone. The

forward filtering step can then be written as

P (ht | x1:t, u1:t) ∝ P (ht, ut, xt | x1:t−1, u1:t−1)

= P (xt | ht)
∑
ht−1

1(ut < πht−1,ht)P (ht−1 | x1:t−1, u1:t−1)

= P (xt | ht)
∑

ht−1:ut<πht−1,ht

P (ht−1 | x1:t−1, u1:t−1),

and the backwards sampling is performed by

ht ∼ P (ht | x1:t, u1:t)P (ht+1 | ht, ut+1).

Note that this adaptive truncation is not a heuristic strategy, but the slice sam-299

pling technique indeed draws samples from the correct posterior. Furthermore,300

we typically need to consider only a small subset of the states for each summa-301

tion above; see [14] for details.302

4. Illustration303

To illustrate the basic behavior of the model, we apply it on four different304

artificial data sets generated from a parametric version of the PHMM model,305

assuming a set of S = 6 discrete states (cells). The four data sets showcase in-306

creasingly more complex dynamics, the easiest corresponding to regular Marko-307

vian assumption and the last one corresponding to second-order Markovian308

transitions further conditioned on K = 5 latent states associated with each cell.309

The generative process is exactly as described in (1), where we draw the tran-310

sition probabilities for both s and l from Dirichlet distributions with the prior311
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Table 1: Predictive accuracy (in percentages) of the proposed partially observed Markov model

(PHMM) and the baseline of regular Markov model (MM) on four artificial data sets. For

the data sets with only one latent state (K=1) the models are equivalent, as they should, but

for cases with more latent states (K=5) PHMM outperforms MM that ignores the auxiliary

features. The table also shows the models restricted to only first order histories are not as

accurate if the data exhibits second order transitions (O=2), motivating the support for higher-

order dynamics. The boldface font indicates for each data set the best methods for which the

performance is indistinguishable; the small deviations are because of random fluctuation.

Artificial Data MM-1 MM-2 PHMM-1 PHMM-2

O = 1, K = 1 92.3 92.2 91.9 92.5

O = 1, K = 5 34.5 44.0 65.7 64.5

O = 2, K = 1 33.8 63.7 34.1 62.3

O = 2, K = 5 28.4 40.3 46.3 65.4

parameter 0.1, in order to create distributions that deviate notably from uni-312

form density. For the cases with latent states the emissions p(ft|lt) are normal313

distributions with means (−5,−2.5, 0, 2.5, 5) and shared standard deviation 1.314

We applied four alternative models on each of the data sets: MM-1, MM-2,315

PHMM-1, and PHMM-2, where the number after the dash denotes the order of316

the model. These correspond exactly to the requirements of the four data sets;317

all four methods should solve the first data sets, whereas only the last one is318

flexible enough to model the most complex data set. We train the models using319

a sequence of 5, 000 samples drawn from the model and evaluate them using the320

predictive accuracy on a separate test sequence of 5, 000 samples, for the task of321

identifying the next cell. Table 1 shows the methods work as expected; PHMM-2322

is superior for the data that requires 2nd order dynamics and latent states. The323

simpler data sets can be modeled correctly by some of the alternatives as well,324

but notably PHMM-2 is always on par with the best ones. We also confirmed325

that the nonparametric PHMM models correctly learnt the number of the latent326

states, and that the best methods reach the optimal accuracy obtained when327

predicting with the true generating model.328
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Finally, we also tried higher-order MMs for the last data set to study whether329

the lack of latent states can be compensated by considering even longer histories330

on the observed states. The accuracy of MM indeed goes up for higher orders,331

reaching 50.8% for MM-3 and 48.0% for MM-4, but PHMM-2 still outperforms332

these clearly while requiring smaller transition tensors than MM-4. The same333

effect is visible already in the O = 1,K = 5 case where MM-2 outperforms334

MM-1.335

To summarize the results, PHMM reached the best accuracy in all experi-336

ments; for the more complex data sets it outperformed the simpler alternatives,337

but even for the simpler generative processes it reached the same accuracy and338

hence the only drawback is in additional computational cost. Importantly, MMs339

with even higher order transitions were not as accurate as PHMMs.340

5. Modeling Indoor Movement341

The main application motivation for this work is in modeling indoor move-342

ment while preserving the privacy of the clients. Typical end-use scenarios for343

such models are in understanding how people behave in public spaces such as344

shopping centers, museums, or office buildings. For all these cases the owners345

of the premise are interested in understanding the flows and making predictions346

to support location-based services and to dynamically allocate resources, for ex-347

ample by opening more counters based on the predicted movement patterns. At348

the same time, these are all examples where the owner has no need to know the349

exact locations of the individuals, and it is reasonable to actively prevent them350

from being able to spy on them by never storing the detailed location data.351

5.1. Data and feature representation352

We apply the model in a retail environment, modeling location data col-353

lected in a hypermarket by tracking shopping carts and baskets with a com-354

mercial high-accuracy positioning system (HAIP) provided by Quuppa. The355

system tracks small Bluetooth Smart chips integrated in the carts and baskets,356
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providing accurate (error less than 1 meter) position with 10Hz frequency. We357

model the data at granularity of 20x20 meter coarse locations, to get a rough358

overview at a departmental level, using a total of 1,839 sequences collected dur-359

ing a period of 30 days.360

At the core of the PHMM model are the aggregate summaries collected361

based on the more detailed location data, stored to accompany each time point362

of the coarse trajectory. In this work we present a few simple alternative rep-363

resentations, primarily to demonstrate that the more accurately the aggregate364

characteristics capture the nature of the movement within the coarse location,365

the better the overall model will be.366

These representations are not specifically tuned for our evaluation, since the367

idea is that the features would be extracted already before handing the data368

for someone that learns the actual model and hence they should be generally369

applicable for various kinds of modeling tasks.370

We compute a set of eight basic features (Table 2). These features ex-371

tract natural elements about the movement, covering aspects like the amount372

of time spent (∆t), how often the person stopped (for example to pick items373

from the shelves; Pauses), and characterizations of their general movement di-374

rection (∆X+,∆X−,∆Y+,∆Y−). All of these features are privacy-preserving375

in the sense that they do not reveal the precise location of the person at any376

point. For illustrating the effect of the quality of the local representation, we377

then construct alternative feature sets as subsets of these eight basic features.378

The simplest set includes just the time spent (corresponding to a semi-Markov379

model), whereas the best coverage is obtained by using all of them. Besides380

these extremes, we also ran experiments with two intermediate collections.381

5.2. Experiments382

The PHMM model has two core elements that control its expressive power:383

The maximum order of transition history with respect to s, and the accuracy of384

the feature vector f in characterizing the local movement behavior. To illustrate385

how the model behaves with respect to these two elements, we first conduct386
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Table 2: Description of the features used for characterizing the local movement patterns. Each

feature describes the movement within the cell, and hence for example the mean coordinates

are with respect to the origin of the grid cell. ∆X+ and ∆X− correspond to the distances

moved in positive X direction and negative X direction respectively. Similarly, we have ∆Y+

and ∆Y−.

∆t Logarithm of the total time spent

∆X+,∆X−,∆Y+,∆Y− Total distance moved rightwards, leftwards, upwards, downwards

Mx,My Mean of the x and y

Pauses Total number of stops or pauses

separate experiments for each of them in isolation. After demonstrating that387

improving either element indeed results in better predictive accuracy, we present388

the results for a model that uses the best choices for both elements.389

For all models we measure the accuracy using a setup where 1, 471 trajec-390

tories are used for training and 368 trajectories are used for testing. We train391

the model using the training trajectories, running the Gibbs sampler for 2, 000392

iterations and discarding the first 1, 500 samples as burn-in. For each test tra-393

jectory we randomly sample a time of prediction, meaning that we assume we394

have recorded the trajectory up to that point and then need to predict the next395

few locations. For the observed part we infer the latent trajectory as we do for396

the training samples, and we then predict the future points using simple forward397

sampling: We instantiate 100 particles for each test sequence, propagate them398

forward in time using the transition probabilities, and finally compute the ac-399

curacy by averaging over the predictions of these particles. The accuracy score400

is defined as the ratio of these particles that fall to the exact correct grid cell.401

Figure 3 illustrates the complete modeling pipeline, showing both how indi-402

vidual trajectories are represented using grid cells and feature vectors, as well403

depicting the training and test procedure described above.404
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7

Train PHMM

Predict

a)

b)

states (s)  grid cell        feature vector (f) 

 1          (1,2)       2.0, 2.5, 2.5, 0.1, 1.0, ...
 2          (2,2)       5.0, 0.1, 2.5, 10 , 0.1, ...
 3          (3,2)       6.0, 10 , 0.1, 0.5, 5.0, ...
 4          (3,3)       4.0, 10 , 0.1, 0.1, 0.1, ...
 5          (3,4)       14., 5.0, 2.0, 5.0, 10., ...
 6          (4,4)       0.1, 0.2, 0.2, 0.2, 0.2, ...
 7          (3,4)       12., 5.0, 3.0, 5.0, 4.0, ...
 8          (3,5)       8.0, 10., 0.1, 3.5, 2.5, ...
 9          (3,6)       4.0, 7.0, 0.1, 0.1, 5.0, ...

Entrance Exit

2

3 4

6

8 9(5,7)

1

Figure 3: Illustration of the way the PHMM model is applied for modeling indoor trajectories

in a privacy-preserving manner. a) Every path is pre-processed by extracting the grid cell

identifiers for all distinct visits to individual cells, and for each visit we compute the feature

vector representation characterizing the nature of the movement within the cell. b) We

use 75% of the path sequences for training, utilizing the full trajectories. The empirical

performance of the model is then evaluated in a prediction task: For the remaining 25% of

sequences we observe the sequence only upto a randomly determined time point, and attempt

to predict the remaining steps along the sequence, indicated here by the dotted lines.

5.2.1. Higher-order History405

We start the experiments by looking at a special case of PHMM with no406

local states, which corresponds to a regular MM. This experiment is conducted407

to verify that higher-order transitions indeed are useful for this kind of data.408

Figure 4 (left) shows that 2nd order MMs are considerably more accurate than409

1st order, but there is no notable difference between 2nd order models and the410

ones with even higher order on this data. Based on this observation, we will use411

2nd order history for the final PHMM model, as the lowest complexity choice412

of the well-performing ones.413

5.2.2. Local Pattern Models414

The more interesting element of the PHMM model is the local feature de-415

scription and the associated local states. Here we experiment with increasingly416

more complex feature descriptions, keeping the order of the model fixed to one,417
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Figure 4: Left: 2nd order Markov models are clearly more accurate than 1st order models,

but on this data the higher order ones do not help. Middle: More descriptive local feature

representations improve the accuracy of a 1st order PHMM. Merely knowing the time the user

spent in the grid location does not help much compared to no local states (see the left sub-

figure), but all additional features improve the accuracy. Right: Combining the 2nd order

history with the best local model further improves the accuracy for short-term predictions,

but not for long-term ones. In all three sub-plots the x-axis denotes how many time-points

in future we are predicting and the y-axis indicates the accuracy of making exactly the right

prediction.

to show that knowing more about the fine movements within the grid cell helps418

creating more expressive models.419

The more interesting element of the PHMM model is the local feature de-420

scription and the associated local states. Here we experiment with increasingly421

more complex feature descriptions, keeping the order of the model fixed to one,422

to show that knowing more about the fine movements within the grid cell helps423

creating more expressive models.424

Figure 4 (middle) shows prediction accuracies for four model variants. The425

first variant has very simple feature representation (only the time spent in the426

cell), whereas all others progressively add more features. The best accuracy is427

obtained with the model that has the most features, which confirms the intuitive428

expectation.429

To further understand the difference between the different local models, we430

can inspect the number of global latent states the nonparametric formulation431

learns for each of them. These also go up when the feature description contains432

more information, from 6 to 24 (averaged over the posterior samples; note that433

none of the cells actually use all of these) when going from the simplest repre-434
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Figure 5: Illlustration of prevalences of movement patterns across the hypermarket. The pat-

tern on the top row corresponds to primarily leftwards movement carried out without notable

pauses, illustrated for examples on the right. The heatmap on the left shows the pattern

is primarily used in the top-most areas of the store, near the counters, and it corresponds

to customers walking in front of the counters towards one with a short queue. The other

example shown on the bottom row corresponds to more complex movement pattern within a

grid cell, revealing multiple stops or reversals. This pattern is frequent in the left side of the

store, which contains clothes and other items the customers often browse for a longer time.

The heatmaps show the cell-level probabilities acting as the prior for all incoming transitions,

roughly corresponding to the ratio of partial trajectories belonging to this particular latent

state; both of these patterns explain 10-15% of the local movement patterns in the most

common cells.

sentation to the most complex. Intuitively, there is no need for multiple local435

states when the feature descriptions are not expressive, whereas more states can436

be used to differentiate between different movement patterns when the feature437
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Figure 6: Illustration of PHMM in analysis of indoor movement. The grid on the top-right

corner shows the discretized store layout, and we have chosen two cells (green and red) for

illustrating the model. This posterior sample contains 24 global latent states shared by all

cells (ordered in decreasing global probability βk), and the bar plot in the middle shows the

local probabilities pjk of these two cells. We see that infrequently used global states (states

from 19 to 24) have on average lower weights for these cells and some rare states can also have

high probability in specific cells (like state 22 for the red cell). To further illustrate the results

we show three latent states in more detail, presenting two example path snippets falling into

each of these. State 4 has high probability in the green cell and corresponds to downwards

movement that eventually turns left; it is almost absent in the red cell that has no corridors

like this. State 9 corresponds to a pattern where the customer stops to inspect something, and

it is present in both cells. Finally, state 12 corresponds to leftwards movement and naturally

has low probability in the green cell since the store ends on its left side. Even though we

here illustrated the actual path snippets for visualization purposes, it is good to remember

the model itself only knew about the summary statistics.

vector is rich.438
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5.2.3. Combination439

Given the above results indicating that higher-order history and accurate440

local feature representations are beneficial, we run the final experiments with a441

PHMM model that uses 2nd order history and the most complex representation442

for the local movements.443

Figure 4 (right) collects the predictive accuracies of the earlier special cases444

together with this final model, showing that for predicting the immediate next445

grid cell the combination provides the best accuracy. For longer-term predictions446

it is only on par with the PHMM using 1st order history, and in fact less accurate447

than a standard 2nd order MM. However, it is important to note that predictive448

accuracy is here merely a proxy for roughly evaluating the models, and not the449

end goal of our work as such. Even though the PHMM model is only comparable450

to the alternatives in pure predictive accuracy, its primary use is in describing451

the movement patterns, which we will illustrate next.452

The only way to interpret a Markov model is to inspect the transition prob-453

abilities, which becomes cumbersome especially when looking at higher order454

transitions, whereas HMMs would not directly associate the latent states with455

the grids. PHMM, in turn, provides latent states for each grid cell and the states456

share identities across different cells. Each latent state is also coupled with a457

prototypical feature vector that describes a movement pattern within the cell.458

By inspecting the probabilities of the different local states across the space we459

can easily identify areas where people exhibit certain type of behavior. We460

present an brief example of such analysis in Figure 6, showing example latent461

states for two distinct locations of the store. We also show a spatial distribution462

of the usage of a particular latent state, and examples of real trajectory pieces463

mapped to these latent states in Figure 5 More detailed analysis of the move-464

ment patterns within the undisclosed market studied here is outside the scope465

of this publication.466
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6. Conclusion467

In this work we studied Markovian models for privacy-preserving modeling of468

indoor movement patterns in a fixed physical space. Instead of directly modeling469

high-accuracy positioning traces, we model the movement patterns at a level of470

a coarse grid, representing the fine movements with the grid cells via aggregate471

feature vectors. This way the detailed locations of the user are not revealed for472

the analyst, yet some information about them enters the model.473

To model sequences of observed grid locations and the associated feature474

vectors, we proposed novel partially-hidden Markov model, which borrows ele-475

ments both from higher-order Markov models and hidden Markov models. It476

supports transitions that take into account higher-order dynamics in terms of477

the observed grid locations, but still can infer the latent states associated with478

them with a forward-backward step that is as efficient to compute as the cor-479

responding algorithm for HMMs. We instantiated a nonparametric Bayesian480

version of the general model structure, using tools from tree-structured HDPs481

[13] and beam sampling [14] for inference.482

We demonstrated on real trajectory data collected in a hypermarket that483

the proposed model is suitable for this kind of data, and that both good-quality484

auxiliary features and higher-order transitions are needed for interpretable sum-485

maries that are also predictive of future movement. While a regular higher-order486

Markov model provides predictions of comparable accuracy, it does not provide487

the latent states that describe typical movement patterns in different parts of488

the space.489

The main limitation of the work considers specification of the cell grid un-490

derlying the model. Here we used a simple evenly spaced grid that did not take491

the layout of the store into account. This sometimes results in spurious back492

and forth movement between two cells when cell borders are located on areas493

where the users spends time without moving much. Furthermore, the While the494

model handles these cases correctly, learning states that correspond to short495

visits followed by returning to the previous cell, it has detrimental effect on the496
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prediction accuracy. One potential remedy would be to discard very short visits497

as a pre-processing step. Taking the store layout into account when placing the498

grid, so that cell borders would typically be along walls or shelves, would help499

as well. Finally, an interesting possibility for future work would be to extend500

the model to support more flexible cells that would not necessarily fall into a501

regular grid but would be designed based on the actual layout.502

The main focus in this work was in presenting the PHMM model itself and503

providing the necessary inference details. For practical applications the feature504

representation used for characterising detailed movement within grid cells would505

warrant more extensive study; replacing the crude representation used here with506

more elaborate descriptions would likely result in improved accuracy with no507

additional computation.508
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