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We investigate the evolution of timidity in a prey species whose predator has cannibalistic tendencies. 

The ecological model is derived from individual-level processes, in which the prey seeks refuge after 

detecting a predator, and the predator cannibalises on the conspecific juveniles. Bifurcation analysis of the 

model reveals ecological bistability between equilibrium and periodic attractors. Using the framework of 

adaptive dynamics, we classify ten qualitatively different evolutionary scenarios induced by the ecological 

bistability. These scenarios include ecological attractor switching through catastrophic bifurcations, which 

can reverse the direction of evolution. We show that such reversals often result in evolutionary cycling 

of the level of timidity. In the absence of cannibalism, the model never exhibits ecological bistability nor 

evolutionary cycling. We conclude that cannibalistic predator behaviour can completely change both the 

ecological dynamics and the evolution of prey. 
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. Introduction 

Most prey species have strategies against predation, such as

roup defence, camouflage, and defensive armour. A simple yet

ommon strategy is to avoid the predators by being timid, that

s, to seek refuge after detecting a predator. Such timid behaviour

as consequences for both the prey and the predator species. The

rey benefits from a reduced risk of predation, but since forag-

ng in refuge is typically unfeasible, timidity has a negative effect

n the overall foraging effort. On the other hand, timid behaviour

ay also result in decreased prey availability for the predator. This

rompts the predator to search for alternative prey or resort to

annibalism, as is common in many predator species. The literature

rovides a plethora of observed examples, ranging from fish and

nsects to birds and mammals ( Fox, 1975; Polis, 1981 ). For instance,

n the spider Lycosa lugubris cannibalism accounts to 85% of juve-

ile mortality ( Edgar, 1969 ), while in the crow Corvus corone 75% of

he eggs are cannibalised ( Yom-Tov, 1974 ). The evolution of timid-

ty and cannibalism in the predator-prey context has been studied

sing several mathematical models ( Matsuda and Abrams, 1994;

ercole and Rinaldi, 2002; Geritz and Gyllenberg, 2014; Vitale and

isdi, 2018 ). These include a study that considered the evolution-

ry consequences of an alternative prey ( Vitale and Kisdi, 2018 ).

owever, previous studies that address cannibalism neglect timid-

ty, and vice versa. In this paper, we investigate the evolution of
∗ Corresponding author. 
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imidity in a prey species whose predator has cannibalistic tenden-

ies. 

Evolution by natural selection is ultimately driven by interac-

ions between individuals. These interactions form the basis for the

cological environment, which changes gradually over the course

f evolution. To describe the direction in which phenotypic traits

volve, one needs to know the state of the ecological environment,

hat is, the ecological attractor. While most evolutionary models

hare the notion that the phenotypic traits uniquely determine

he ecological attractor, real environments can have multiple sta-

le attractors ( Scheffer et al., 2001 ). Such ecological bistability has

een found to cause abrupt switching between alternative ecologi-

al attractors ( May, 1977 ) or catastrophic collapse of the ecosystem

 Rietkerk et al., 2004 ). Thus, it is essential to derive the ecological

odel from the individual-level processes, so that every model pa-

ameter can be clearly interpreted in terms of the individual be-

aviour ( Rueffler et al., 2006 ). By doing so, one can sensibly iden-

ify the underlying individual-level processes that induce ecological

istability, and investigate how ecological bistability affects long-

erm evolutionary outcomes. 

In models that contain ecological bistability, a single phenotypic

rait can correspond to multiple ecological attractors, in which the

irections of evolution are possibly different. Consequently, the

aths of evolution should be investigated separately for each eco-

ogical attractor, where the branches of the attractors are traced

uring the course of evolution. When the gradual evolutionary

hanges in the phenotypic traits are sufficiently small and muta-

ions occur infrequently, the changes in the ecological attractors
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

List of model parameters. 

Prey parameters 

Symbol Description 

b rate of moving to refuge 

τ mean sojourn time in refuge 

μ natural death rate 

G birth rate 

Predator parameters 

Symbol Description 

α rate of cannibalism 

β rate of prey capture 

h handling time per captured prey 

γ conversion factor of prey capture 

λ conversion factor of cannibalism 

T maturation time 

δ adult death rate 

σ juvenile death rate 
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are also relatively small. Hence abrupt switching between alter-

native attractors is rare, and occurs only when the branch of the

ecological attractors which is being traced disappears ( Geritz et al.,

2002 ). When the ecological environment undergoes such attractor

switching, the direction of evolution may change as well. If further

such drastic ecological changes occur, the evolutionary path could

return to the original state. In other words, phenotypic traits would

cycle on the evolutionary timescale. 

Evolutionary cycling can be driven by many different mecha-

nisms ( Khibnik and Kondrashov, 1997; Kisdi et al., 2001 ). Various

instances of evolutionary cycles are known in models of diverse

nature, such as predator-prey systems ( Dieckmann et al., 1995;

Abrams and Matsuda, 1997; Law et al., 1997 ), multispecies coevo-

lution ( Khibnik and Kondrashov, 1997; Hui et al., 2018 ), and coop-

erative games ( Hauert et al., 2002 ). Although evolution is typically

considerably slower than ecological dynamics, in some instances

cyclic evolution has been observed empirically ( Decaestecker et al.,

2007 ). All these studies share the same underlying mechanism of

genetically driven cycles. Evolutionary cycling can also be driven by

recurrent branching and extinction of cannibalistic predators ( Kisdi

et al., 2001; Dercole, 2003 ). However, ecogenetically driven cycles

involving ecological attractor switching is present in fewer studies

( Doebeli and Ruxton, 1997; Khibnik and Kondrashov, 1997; Dercole

et al., 2002 ). These studies have ignored individual-level processes

in the model derivation. Although these models produce intriguing

outcomes, the lack of clear interpretation in terms of individual be-

haviour raises the question whether such outcomes are feasible in

nature. 

Several models have been proposed to investigate the evolu-

tion of timidity in the context of predator-prey dynamics. In an

early study, Matsuda and Abrams (1994) considered a model with

ecological bistability and a fixed predator population size, and

found that the evolution of foraging effort can drive the prey

species into extinction. Unfortunately, the model by Matsuda and

Abrams lacked the derivation from individual-level processes. Later,

Geritz and Gyllenberg (2014) enhanced ecological realism by deriv-

ing the model from individual-level processes, and assumed that

also the predator population changes in the ecological dynamics.

In particular, Geritz and Gyllenberg considered a prey that seeks

refuge only after detecting a predator individual. The evolutionary

analysis revealed that periodic predator-prey population attractors

were necessary for timidity to be favourable by natural selection,

while ecological bistability and evolutionary suicide were absent.

In a more recent study, Vitale and Kisdi (2018) extended the model

of Matsuda and Abrams (1994) by introducing an alternative prey

that acts as the main resource for the predator. Vitale and Kisdi

showed that in this extended model, evolutionary suicide of the

focal prey can occur, similar to Matsuda and Abrams (1994) . 

The organisation of the paper is as follows. In Section 2 we

derive a predator-prey model from individual-level processes with

timid prey in the spirit of Geritz and Gyllenberg ( 2012,2014 ), but

now also with cannibalistic predators. Then, in Section 3 we estab-

lish some analytical results concerning the existence and unique-

ness of an interior equilibrium, and its stability properties. We

also apply numerical bifurcation analysis, which reveals ecologi-

cal bistability between equilibrium and periodic attractors. Next, in

Section 4 the evolution of the timidity of the prey is analysed using

the framework of adaptive dynamics ( Geritz et al., 1998 ). We clas-

sify ten qualitatively different evolutionary scenarios, in which eco-

logical bistability plays a central role. These include abrupt switch-

ing between the ecological attractors that may reverse the direc-

tion of evolution. We show that such reversals can result in evolu-

tionary cycling of the level of timidity. Finally, in Section 5 we dis-

cuss the role of individual behaviour in both ecological bistability

and evolutionary cycling. Throughout the paper, we rely on numer-
a  
cal examples that are easy to visualise. Frequently used symbols

re found in Table 1 . 

. Derivation of the ecological model 

Consider an ecological environment consisting of a single prey

pecies whose predator has cannibalistic tendencies. The preda-

ors are divided into adults and juveniles, in which the juveniles

re the victims of cannibalism, and only the adults predate on the

ommon prey. Within the prey species, many different prey types

ay coexist that are assumed to differ only in their level of timid-

ty. Here, timidity is understood as a behavioural trait, which de-

cribes the readiness to seek and remain in refuge after detect-

ng a predator individual. The prey in refuge are protected from

redation, while their foraging has halted. As in Geritz and Gyl-

enberg ( 2012,2014 ), we assume that the prey detects a preda-

or individual and moves to a refuge at the rate b , and τ is the

ean sojourn time in the refuge. Although the handling preda-

ors are harmless to the prey, they are unable to distinguish be-

ween searching and handling predators. However, since the juve-

ile predators are typically considerably smaller than the conspe-

ific adults, we have reason to assume that the prey react only to

he adult individuals. Throughout this paper, ‘predator’ without a

pecification always refers to an adult individual, as only the adults

eed on the prey. 

Thus, we divide each prey population x i with the parameter val-

es b i and τ i into foragers x F 
i 

and hiders x H 
i 
, 

 i = x F i + x H i . (1)

oth foraging and hiding prey have the same natural death rate

, which is independent of the prey and the predator populations.

he foraging prey compete for some common resource, such as ter-

itory or breeding sites, so that their birth rate is limited by the

otal population of foraging prey. To make this pattern explicit, we

ssume that the per capita birth rate G ( 
∑ 

j x 
F 
j 
) is monotonically

ecreasing, and assume the existence of x 0 such that G (x 0 ) = μ.

herefore, in the absence of the predators, the prey populations

ttain the equilibrium state x 0 , which is the carrying capacity of

rey-only dynamics. Examples of mechanistic derivations of the

er capita birth rate G based on competition for breeding sites or

ood are found in Appendix C of Geritz and Gyllenberg (2014) . 

As for the predator, we assume that a searching predator cap-

ures prey at the rate β , and the average handling time per cap-

ured prey is h . For each prey capture, the predators produce juve-

iles with the average conversion factor γ , and the juveniles have

he mean maturation time T . The natural death rates of the adults

nd the juveniles are δ and σ , respectively. The conspecific juve-



S.O. Lehtinen and S.A.H. Geritz / Journal of Theoretical Biology 479 (2019) 1–13 3 

n  

i

y  

 

s  

v  

t  

t  

p  

i  

fi  

w  

s  

e  

z  

n  

p  

i  

i  

t  

s  

p

 

e  

f  

r  

i  

t  

c  

h  

s  

a  

p  

l  

c  

t  

r  

t  

t

 

a  

n  

m  

t  

l  

n  

d  

A  

o  

n  

f

 

d

x

y

N  

s  

s

x

y

O  

p  

(  

t  

i  

v  

b  

a

 

r  

d

z  

A  

t  

t  

r  

o  

b  

w  

i  

(  

i  

h

z

 

s  

e

x

y

w  

t  

t  

t  

f

F  

w  

t  

a  

i  

s

x

y

 

t  

t  

t  
iles have the population z , and the adult population y is divided

nto searchers y S and handlers y H , 

 = y S + y H . (2)

To extend the model of Geritz and Gyllenberg (2014) , we as-

ume that the adult predators cannibalise on the conspecific ju-

eniles at the rate α, where cannibalism has the conversion fac-

or λ. To keep the model simple, we assume that the handling

ime of cannibalism is negligible. Biologically, this assumption im-

lies that the victims of cannibalism are smaller or otherwise eas-

er to digest and kill than the typical prey. Indeed, many predator

sh and insects cannibalise on eggs and post-hatching stages, in

hich the victims are unable to defend themselves and are con-

iderably smaller than the cannibals ( Fox, 1975; Polis, 1981 ). For

xample, the juveniles of Eurasian perch ( Perca fluviatilis ) feed on

ooplankton, while the adults prey on fish, which includes can-

ibalism ( Hjelm et al., 20 0 0 ). Then, it stands to reason that the

redator needs more rest after capturing a prey that can defend

tself. Admittedly, in nature both the prey and the juveniles come

n various sizes, hence a more realistic model could include a con-

inuum of sizes that affect the handling times. However, analysis of

uch a size-structured model is beyond the scope and aim of this

aper. 

Since a total of five different individual states is present, the full

cological dynamics are described by a system of five ordinary dif-

erential equations (see Appendix A ). To simplify the analysis, we

educe the number of equations by a separation of timescales. That

s, we divide the full ecological dynamics into nested timescales by

he occurrence of transitions between the individual states. These

onsist of short timescale for the transitions between foraging and

iding prey states, and between searching and handling predator

tates; intermediate timescale of juvenile predator birth and death;

nd long timescale of adult predator maturation and death, and

rey birth and death. Admittedly, in nature the prey dynamics are

ikely occur also on the intermediate timescale, which could in-

lude their respective juvenile birth and death interactions. Here,

he implicit assumption is that the juvenile prey are always in the

efuge, so that their population dynamics are independent from

he predators. Then, the prey birth term of our model corresponds

o maturation of a juvenile prey, which now starts foraging. 

To achieve the separation of timescales, we assume that the

dult predator population is considerably smaller than the juve-

ile population, and that the prey are abundant. In addition, we

ake the following assumptions about the individual behaviour:

he predators have a long maturation time, the prey are more

ikely to move to refuge than fall victim to predation, and can-

ibalism is commonplace for the predator. The precise technical

etails on how to achieve the timescale separation are found in

ppendix A . There we also propose an alternative separation with

nly two timescales and different biological assumptions, but that

evertheless results in the same system of differential equations

or the long timescale dynamics. 

With the above assumptions, we obtain the following system of

ifferential equations for the short timescale dynamics, 

˙ 
 

F 
i = − b i x 

F 
i y + 

1 

τi 

x H i , (3) 

˙ 
 

S = − βy S 
∑ 

j 

x F j + 

1 

h 

y H . (4) 

ote that the population numbers x, y , and z are constants in this

hort timescale. The system of Eqs. (1)–(4) has unique quasi-steady

tate, 

 

F 
i = 

x i 
1 + b τ y 

, (5) 

i i u  
 

S = 

y 

1 + βh 

∑ 

j x 
F 
j 

. (6) 

bserve that the parameters b i and τ i are always found in the

roduct b i τ i , which describes the level of timidity of the prey

 Geritz and Gyllenberg, 2014 ). Thus while timidity is a behavioural

rait, it can be explicitly quantified by the product of two inher-

table parameters. While two prey types with different parameter

alues may have the same level of timidity, we make no distinction

etween these prey types. For convenience, we treat this product

s a single parameter, and write it as b τ i . 

Next, assuming that the variables x F 
i 

and y S have attained their

espective quasi-steady states (5) and (6) , we obtain the following

ifferential equation for the intermediate timescale dynamics, 

˙ 
 = γβy S 

∑ 

j 

x F j + λαy S z − αy S z − σ z. (7)

 biological restriction on the efficiency of cannibalism is λ< 1, so

hat the number of juveniles lost to cannibalism is always greater

han the new juveniles directly produced from cannibalism. This

estriction essentially follows from the assumption that the victims

f cannibalism are distinctly smaller (e.g. eggs), and fully canni-

alistic predators are unable to sustain the population. However,

hen also larger conspecific individuals are being cannibalised, it

s possible to sustain a population solely by means of cannibalism

 Popova and Sytina, 1977; van den Bosch et al., 1988 ). Now, by us-

ng the Eqs. (5)–(7) , we find that the juvenile predator population

as unique quasi-steady state, 

 = 

γ βy S 
∑ 

j x 
F 
j 

σ + (1 − λ) αy S 
. (8) 

Finally, assuming that the variable z has attained its quasi-

teady state (8) , we obtain the following system of differential

quations for the long timescale dynamics, 

˙ 
 i = x F i G 

(∑ 

j 

x F j 

)
− μx i − βx F i y 

S , (9) 

˙ 
 = 

1 

T 
z − δy, (10) 

here the variables x F 
i 

and y S are given by (5) and (6) , respec-

ively. The functional response F i ( x, y ) of the predator for the prey

ype i is equal to the rate of prey capture βx F 
i 

y S divided by the to-

al predator population y . As in Geritz and Gyllenberg (2014) , the

unctional response is given by 

 i (x, y ) = 

βx F 
i 

1 + βh 

∑ 

j x 
F 
j 

= 

βx i 
1+ bτi y 

1 + βh 

∑ 

j 
x j 

1+ bτ j y 

, (11)

hich is the multi-prey version of the Beddington-DeAngelis func-

ional response ( Beddington, 1975; DeAngelis et al., 1975; Geritz

nd Gyllenberg, 2012 ). By rewriting the long timescale dynamics

n terms of the functional response F i ( x, y ) and the quasi-steady

tates of y S and z as given by (6) and (8) , we obtain 

˙ 
 i = x F i G 

(∑ 

j 

x F j 

)
− μx i − yF i (x, y ) , (12) 

˙ 
 = 

γ (1 + βh 

∑ 

j x 
F 
j 
) y 

∑ 

j F j (x, y ) 

T (σ (1 + βh 

∑ 

j x 
F 
j 
) + (1 − λ) αy ) 

− δy. (13) 

It is now clear that no constant parameter can describe the

ranslation of each prey capture into the adult predator popula-

ion. Although we assumed instantaneous production of juveniles,

he transition to the adult population occurs only later after mat-

ration. As the juveniles are subject to cannibalism, the rate of
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maturation depends on the cannibalistic pressure they experience

throughout their juvenile period. Moreover, at high prey popula-

tions the cannibalistic pressure is lower, due to a larger fraction of

the predators being in the handling state. The rate of recruitment

to the adult population is hence affected by both the prey and the

predator populations, and is captured by the term 

γ (1 + βh 

∑ 

j x 
F 
j 
) 

T 
(
σ (1 + βh 

∑ 

j x 
F 
j 
) + (1 − λ) αy 

) . (14)

It would have been near impossible to arrive at a biologically

sound interpretation of the term (14) without a mechanistic

derivation. 

In the limiting case when cannibalism is absent, α = 0 , the

recruitment rate (14) is simply a constant γ /( T σ ). That is, with-

out cannibalistic predators, the model is reduced into that of

Geritz and Gyllenberg (2014) , but the constant recruitment rate

now has a slightly different interpretation. Furthermore, in the lim-

iting case when both cannibalism and timidity are absent, α =
bτ = 0 , we recover the classical ( Rosenzweig and MacArthur, 1963 )

model. 

3. Ecological dynamics with a single prey type 

When only a single prey type is present, the ecological dynam-

ics described by (12) and (13) are given by 

˙ x = x F G 

(
x F 

)
− μx − βx F y 

1 + βhx F 
, (15)

˙ y = 

γβx F y 

T (σ (1 + βhx F ) + (1 − λ) αy ) 
− δy, (16)

where x F = x/ (1 + bτy ) . When the prey is at the predator-free

equilibrium state x 0 , an initially rare predator is viable if and only

if the rate of prey capture and its conversion factor are sufficiently

large, 

β > 

δσ T 

x 0 (γ − δσhT ) 
and γ > δσhT . (17)

Note that the above condition is independent of the rate of canni-

balism, α, or the level of timidity, b τ . 

Suppose that the conditions (17) are satisfied so that the preda-

tor can invade the ecological environment. Then, the ecological dy-

namics described by (15) and (16) have the following properties: 

(i) Unique interior equilibrium ( ̄x , ̄y ) exists. 

(ii) For every b τ , at most one α exists where ( ̄x , ̄y ) undergoes a

Hopf bifurcation. 

(iii) For every α, at most one b τ exists where ( ̄x , ̄y ) undergoes a

Hopf bifurcation. 

The proofs are rather algebraic, and are found in

Appendix B and Appendix C . Thus, if the interior equilibrium

is unstable in the absence of both cannibalism and timidity,

then increasing either cannibalism or timidity will eventually

stabilise the equilibrium through a Hopf bifurcation. Afterwards,

the equilibrium undergoes no further bifurcations. 

The parameter values at which Hopf bifurcations occur were

solved numerically. For the numerical analysis, we employed the

following choice for the per capita birth rate G , 

G (x F ) = 

{
a − cx F if 0 ≤ x F < a/c, 
0 otherwise. 

(18)

This form follows when the prey is the consumer of a re-

source with a linear functional response, and where the resource

grows logistically in the absence of the prey ( Geritz and Gyl-

lenberg, 2014 ). It is known that the Hopf bifurcation of the
osenzweig and MacArthur (1963) model is always supercritical.

ecall that for supercritical Hopf bifurcation, equilibrium and pe-

iodic solutions are arbitrarily near in the vicinity of the bifur-

ation, resulting in a continuous transition between these stable

ttractors. However, the numerical analysis revealed that in the

odel described by (15) and (16) both sub- and supercritical Hopf

ifurcations can occur. If the equilibrium is stabilised through a

ubcritical Hopf, it generates an unstable periodic solution, but

he periodic attractor is still present. Thus the ecological dynam-

cs exhibit bistability between equilibrium and periodic attractors,

here the regions of attraction are separated by the unstable peri-

dic orbit. Furthermore, the two periodic solutions eventually col-

ide and disappear through a fold bifurcation of periodic orbits

 Kuznetsov, 1998 ). When a need arises to distinguish between dif-

erent bifurcations, subindex and superindex H are used, respec-

ively, for sub- and supercritical Hopf, and fold of periodic orbits is

enoted by subindex F . 

The numerical analysis was done using the Mathematica ® soft-

are. Population sizes less than 10 −16 were considered too small

nd no longer relevant for the analysis. To find periodic orbits, we

umerically integrated (15) and (16) using an explicit Runge-Kutta

ethod for NDSolve , and collected data of the population numbers

t each point in time along the orbit. The convergence of the orbit

as evaluated using a Poincaré section, which we implemented us-

ng the EventLocator method for NDSolve . The population numbers

ere collected until the distance between two consecutive equilib-

ium points of a Poincaré map was smaller than 10 −5 , after which

e discarded the transient data. Then, the periodic orbit is de-

cribed by the data from the last iteration, and the period is the

ime-interval between the last two consecutive equilibrium points

f the Poincaré map. 

Stable periodic orbits were found using (x, y ) = (x 0 , 0 . 001) as

he initial value of the numerical integration, but in principle, any

 x 0 , y ) with y > 0 works as well. This is because ( x 0 , y ) must be-

ong to the region of attraction, as ˙ x < 0 for all ( x 0 , y ). Unstable

eriodic orbits were found using the same method in reverse di-

ection, and by choosing a non-equilibrium initial value from the

nterior of the stable periodic orbit. To find the value b τ 1 at which

wo periodic orbits undergo a fold bifurcation, we first set an b τ -

nterval in which the ecological dynamics corresponding to the left

imit point contain bistability, while only the equilibrium attractor

xists for the right limit point. Then, after checking the ecological

ynamics at the middle point of the interval, we halved the inter-

al so that it retains b τ 1 . We iterated the process until b τ 1 was

ound with the accuracy of 10 −5 . 

Fig. 1 presents an example in which the ecological attrac-

ors undergo subcritical Hopf and fold bifurcations by increasing

 τ . When bτ = 0 . 40 0 0 , the interior equilibrium is unstable and

he predator-prey populations are at a periodic attractor. Then, at

τH = 0 . 4077 the equilibrium stabilises through a subcritical Hopf

ifurcation, after which the ecological dynamics exhibit bistability

etween equilibrium and periodic attractors, separated by an un-

table periodic solution. By further increasing b τ , the amplitude of

he unstable solution also increases, whereas the amplitude of the

table solution decreases. At bτF = 0 . 4430 these two periodic solu-

ions collide and disappear through a fold bifurcation, after which

he equilibrium is the only attractor and no further bifurcations

ccur. 

Fig. 2 depicts which types of ecological attractors are present in

he ( b τ , α)-plane. The figures (a) and (b) correspond to two dif-

erent rates of prey capture, β , demonstrating how fold bifurcation

s unattainable when β is small. Fig. 2 (a) illustrates that when the

ate of prey capture is low, β = 11 , the ecological dynamics behave

imilarly to the Rosenzweig and MacArthur (1963) model. That is,

hen b τ and α are sufficiently small, the ecological attractor is

eriodic and the interior equilibrium is unstable. By increasing ei-
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Fig. 1. Predator-prey ecological attractors for different levels of timidity. Thick lines: ecological attractors; Dashed lines: unstable periodic solution; Closed circles: Stable 

equilibrium; Open circles: Unstable equilibrium; Thin lines: predator-prey isoclines, where directional change is absent. In this figure, c = 2 , a = 2 , μ = 1 , γ = 3 , λ = 0 . 6 , 

δ = 1 , h = 1 , T = 1 , σ = 0 . 7 , α = 6 , and β = 15 . 

Fig. 2. Bifurcation diagrams for the ecological model in the ( b τ , α)-plane. White: stable equilibrium; Light gray: periodic attractor; Dark gray: bistability between equilibrium 

and periodic attractors. The lines at which supercritical Hopf, subcritical Hopf, and fold bifurcations occur are denoted by, respectively, super-H, sub-H, and F. The generalised 

Hopf bifurcation is denoted by GH. In this figure, c = 2 , a = 2 , μ = 1 , γ = 3 , λ = 0 . 6 , δ = 1 , h = 1 , T = 1 , and σ = 0 . 7 . 
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her of these parameters stabilises the equilibrium through a su-

ercritical Hopf bifurcation, after which the equilibrium is the only

ttractor and no further bifurcations occur. 

Fig. 2 (b) illustrates that when the rate of prey capture is large,

= 18 , the ecological dynamics are qualitatively different from the

revious example. When b τ and α are sufficiently small, the eco-

ogical attractor is periodic and the equilibrium is unstable. Then,

ncreasing either of these parameters stabilises the equilibrium

hrough a Hopf bifurcation, which can be either sub- or super-

ritical. Whenever the equilibrium is stabilised through a subcriti-

al Hopf, the ecological dynamics exhibit bistability between equi-

ibrium and periodic attractors. Then, further increasing either of

hese parameters causes a fold bifurcation. The generalised Hopf

ccurs when the bifurcation switches from being subcritical to su-

ercritical, which in this example occurs at bτ = 1 . 2610 and α =
 . 8110 . That is, for α < 4.8110, supercritical Hopf is the only pos-

ible bifurcation, whereas for 10.6756 > α > 4.8110, both subcritical

opf and fold bifurcations are possible. For 13.7880 > α > 10.6756,

opf bifurcation is no longer possible for any b τ , but ecological

istability is still present when bτ = 0 and fold bifurcation hap-

ens for some b τ F > 0. Finally, for α > 13.7880 fold bifurcation is no

onger possible, which disappears through the boundary bτF = 0

hen α = 13 . 7880 . That is, for α > 13.7880 the interior equilib-

ium is the only attractor and no bifurcations happen for any b τ .

hus, for the parameters in Fig. 2 (b), ecological bistability is possi-

le for 4.8110 < α < 13.7880, and for each fixed α in that interval,

he bistability is present for a different set of b τ values. 
In Fig. 3 , we extend the above examples by letting both α and

vary. That is, for each combination of α and β , we investigate

ll possible bifurcations that occur by varying the level of timid-

ty, b τ . In this way, we find four regions of qualitatively different

ifurcations, denoted A-D. The left panel of Fig. 3 shows a typical

xample of these four regions in the ( α, β)-plane, and the right

anels show examples of the bifurcations for some α and β be-

onging to each of these regions. For simplicity, in these examples

nly the prey population numbers are shown, and when periodic

olutions exist, we plotted only the maximum prey population at

uch periodic solutions. 

In bifurcation region A, the interior equilibrium is the only at-

ractor for all b τ , and bifurcations never occur. Moreover, the prey

opulation at the equilibrium remains largely unchanged when b τ
aries, which is visible in Fig. 3 when α = 10 and β = 7 . 

In bifurcation region B, a periodic attractor exists at bτ = 0 ,

here the interior equilibrium is unstable. Then, increasing b τ sta-

ilises the equilibrium through a supercritical Hopf bifurcation, af-

er which periodic attractors are absent. For example, when α = 0

nd β = 6 , the supercritical Hopf occurs at bτH = 0 . 6289 . 

In bifurcation region C, the dynamical behaviour at bτ = 0 is

he same as in B. But now increasing b τ stabilises the interior

quilibrium through a subcritical Hopf bifurcation, which gener-

tes ecological bistability between equilibrium and periodic attrac-

ors. Further increasing b τ causes a fold bifurcation, whereupon

he equilibrium is the only attractor and no further bifurcations

ccur. For example, when α = 8 and β = 16 , the subcritical Hopf
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Fig. 3. The regions of qualitatively different bifurcations of b τ ( left ) and examples of the bifurcations corresponding to each region ( right ). In the panels on the right, thin 

curves represent the maximum of x along period orbits, while thick curves are the equilibrium numbers. Unstable solutions are shown using dashed curves. The parameters 

are the same as in Fig. 2 . 
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and fold bifurcations occur at bτH = 0 . 1608 and bτF = 0 . 2839 , re-

spectively, and ecological bistability is present between these bi-

furcations. 

In bifurcation region D, the interior equilibrium is stable for all

b τ , as in A. But now a periodic attractor also exists when bτ = 0 ,

implying the presence of ecological bistability for sufficiently small

b τ . For example, when α = 13 and β = 20 , fold bifurcation occurs

at bτF = 0 . 2802 , after which ecological bistability is absent. 

4. Evolution of timidity of the prey 

In the previous section, we investigated bifurcations of the eco-

logical dynamics by varying the parameters b τ , α, and β . We

found a wide range of values for which the ecological attractors

disappear through subcritical Hopf and fold bifurcations. However,

this analysis fails to provide any information whether evolution

causes an ecological attractor to disappear, or how such an eco-

logical change affects the course of evolution. To investigate these

questions, we will now study the evolution of timidity of the prey.

Recall that while timidity is a behavioural trait, it is characterised

by the product of the two parameters b and τ that can be subject

to natural selection. First, we write the ecological dynamics (12) for

the prey type i in terms of the environment E , 

˙ x i = f (bτi , E) x i , (19)

where E = (E 1 , E 2 ) is given by 

E 1 = y (predator density) , 

E 2 = 

∑ 

j 

x j 

1 + bτ j E 1 
(foraging prey density) , (20)

and where f is given by 

f (bτi , E) = 

1 

1 + bτi E 1 

(
G ( E 2 ) − βE 1 

1 + βhE 2 

)
− μ. (21)

Hence f ( b τ i , E ) describes the per capita population growth rate for

prey type i in environment E . Although the Eqs. (19)–(21) are iden-

tical to Geritz and Gyllenberg (2014) , the dynamics of the environ-

ment E as described by (12) and (13) are different. 
We study evolution using the framework of adaptive dy-

amics, the necessary preliminaries of which are found in

eritz et al. (1998) . We assume that any mutant has only a small

henotypic effect on the resident trait. Moreover, mutations occur

nfrequently, so that the fate of the previous mutant has been es-

ablished, and the ecological environment has attained an attrac-

or by the time a new mutant appears. The resident environment

etermines the growth rate of a mutant population, while the en-

ironment is unaffected by an initially rare mutant. Whenever a

utant can invade a resident-generated environment, but invasion

ould be impossible if the roles were switched, the mutant re-

laces the resident. The Tube Theorem ( Geritz et al., 2002 ) ensures

hat under these assumptions, through repeated invasion and re-

lacement events the resident environment traces the same branch

f ecological attractors as long as no catastrophic bifurcations oc-

ur, such as subcritical Hopf or fold bifurcation. However, if such a

atastrophic bifurcation is encountered, the current branch of the

cological attractors disappears and the population either goes ex-

inct or settles on an alternative attractor. In this paper, only the

atter outcome can occur, as the prey or the predator species never

o extinct by the evolution of timidity. This is clear since both the

xtinction equilibrium (x, y ) = (0 , 0) and the prey-only equilibrium

(x, y ) = (x 0 , 0) are unstable for all levels of timidity. 

Introduce a novel mutant prey with the level of timidity b τm 

.

hat is, the mutant trait b τm 

differs from the resident through ei-

her b m 

or τm 

, or through both of them, but it is essentially the

roduct of these parameters that determines the mutant type. As

efore, we treat this product as a single parameter. The long-term

nvasion fitness of the mutant type b τm 

is the time average of the

nstantaneous population growth rate. In a periodic resident envi-

onment E set by a single resident type b τ , the fitness of the mu-

ant is described by 

 E (bτm 

) = 

1 

t p 

∫ t p 

0 

f (bτm 

, E(t )) dt , (22)

here t p = t p (bτ ) is the period. Here, we have written the en-

ironment E explicitly as a function of time t , but for simplicity

e often drop time from our notations. When the environment
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s at an equilibrium, then the population growth rate f described

y (21) fully determines the long-term fitness of the mutant. Note

hat whether the resident environment is equilibrium or periodic

s intentionally inexplicit in the notation for E . The reasoning be-

ind this choice of notation is to avoid situations in which state-

ents are made for certain types of environments that are absent

or some trait values. 

To find the value of invasion fitness numerically, we first solved

he ecological attractors for the resident trait and checked whether

here is bistability. Whenever a resident trait corresponds to two

table ecological attractors, these cases were treated separately. In-

asion fitness in equilibrium environment can be solved directly

y using (21) , in which E is replaced by the corresponding equilib-

ium environment. In periodic environments, we solved (22) using

he NIntegrate method of Mathematica ®. The state of the resident

nvironment E ( t ) for each t ∈ [0, t p ] was evaluated using the peri-

dic orbit obtained by the Poincaré section, the details of which

re found in Section 3 . 

By definition, every resident must have fitness equal to zero, as

n average their abundances neither grow nor decline. Thus, every

esident b τ satisfies r E (bτ ) = 0 . As the environment E consists of

wo components, then at most two coexisting prey types can si-

ultaneously have zero fitness: a result known as the principle of

ompetitive exclusion ( MacArthur and Levins, 1964; Geritz et al.,

997 ). Thus, the environment sets the upper limit of diversity at-

ainable through evolution. Note that while it is possible to find

arameters for which two prey types coexist, long-term evolution

ay cause one of those prey types to go extinct. 

Through repeated invasion and exclusion events, b τ evolves in

he direction described by the fitness derivative, 

 (bτ ) = 

[ 
∂r E (bτm 

) 

∂(bτm 

) 

] 
bτm = bτ , (23) 

hich as with the invasion fitness, is evaluated at the ecological

nvironment where the resident is present. The directional evolu-

ion comes to a halt when the fitness derivative vanishes, D (bτ ∗) =
 , and such a value b τ ∗ is called an evolutionary singularity. Fur-

hermore, a singularity that is attainable through evolution is an

volutionary attractor. In this paper, all evolutionary singularities

re also evolutionary attracting. Note that if an alternative ecologi-

al environment exists for the trait bτ = bτ ∗, then this trait is un-

ikely to be an evolutionary attractor for the alternative environ-

ent. Also, note that when evolution drives b τ all the way down

o zero, then generally the fitness derivative is negative at bτ = 0 .

n such a case, the trait bτ = 0 is an evolutionary attractor, but it is

onceptually different from an evolutionary singularity. Whenever

 need arises to distinguish between the ecological environments

n which an evolutionary attractor is present, we write b τ• and

 τ ◦, respectively, for equilibrium and periodic environments. 

An evolutionary singularity is evolutionarily stable if it is unin-

adable by any new mutant ( Maynard Smith, 1982; Geritz et al.,

998 ). It follows that a singular trait b τ ∗ is evolutionarily stable if

he invasion fitness is at a maximum, 

 

∂ 2 r E (bτm 

) 

∂(bτm 

) 2 

] 
bτm = bτ= bτ ∗ < 0 . (24) 

hroughout the numerical analysis, at most one evolutionary sin-

ularity existed for the branch of periodic attractors. Moreover,

uch singularities were always attracting and evolutionarily stable,

roviding no evidence for evolutionary branching. But since we are

nly able to obtain the periodic environment E numerically, ex-

luding evolutionary branching altogether is difficult. Likewise, ev-

dence is lacking for the existence of multiple singularities for the

ranch of periodic attractors. In a related model without cannibal-

sm, Geritz and Gyllenberg (2014) came to similar conclusions. 
Lower levels of timidity are always favoured by natural selec-

ion in equilibrium environments, as shown by Geritz and Gyl-

enberg (2014) . Therefore, when bifurcations are absent for these

nvironments, the evolutionary outcome is bτ • = 0 . On the other

and, when the equilibrium is unstable for bτ = 0 , then evolution

y natural selection will cause Hopf bifurcation of the ecological

nvironment. Recall that in our model, both sub- and supercritical

opf bifurcations can occur. When the Hopf bifurcation is super-

ritical, there is a smooth transition between the equilibrium and

eriodic environments, and the direction of evolution remains un-

hanged. Later when the periodic environments have larger ampli-

ude, evolution may attain a positive singularity b τ ◦ > 0. 

When the equilibrium undergoes a subcritical Hopf bifurcation,

 discontinuous transition occurs between equilibrium and peri-

dic environments. After passing subcritical bifurcation through

volution, the ecological environment settles on the alternative

eriodic attractor already present in the system. Such an attrac-

or switch may also reverse the direction of evolution, which we

all an evolutionary reversal. If such an evolutionary reversal oc-

urs when switching from an equilibrium to a periodic attractor,

t means that higher levels of timidity are now favoured by nat-

ral selection. Then, by tracing evolution along the branch of pe-

iodic attractors, either a singularity b τ ◦ is attained, or the evolu-

ion crosses the point of fold bifurcation. If the latter outcome oc-

urs, the periodic environment disappears and an attractor switch

auses the environment to settle on the equilibrium attractor. Such

n attractor switch also causes an evolutionary reversal, where-

pon selection favours lower levels of timidity. Eventually, the

quilibrium environment disappears through the subcritical Hopf

ifurcation, and the whole process repeats again. In other words,

his process describes evolutionary cycling of the level of timidity. 

A simple classification of qualitatively different evolutionary

cenarios is constructed from two ingredients. The first depends on

he existence of ecological attractors, and the second on the evolu-

ionary dynamics along the ecological attractors. Assuming that at

ost one evolutionary attractor exists for each branch of ecologi-

al attractors, we find ten classes of evolutionary scenarios. These

re denoted by Roman numerals I-X, and are catalogued in Table 2 .

umerical analysis reveals that all of the evolutionary scenarios are

ossible. Fig. 4 shows a typical example of the parameter regions

n the ( α, β)-plane resulting in these scenarios. For each scenario,

e have also provided an example of the evolutionary dynamics

f b τ using pairwise invasibility plots for each ecological attrac-

or. For information on how to read pairwise invasibility plots, see

eritz et al. (1998) . In the following analysis, recall that the bifur-

ation regions of the ecological dynamics are illustrated in Fig. 3 . 

In scenario I, the ecological dynamics are described by bifurca-

ion region A. The environment is always at an equilibrium, and

imidity evolves all the way down to zero, bτ • = 0 . 

In scenario II, the ecological dynamics are described by bifurca-

ion region B. When the environment traces the branch of equilib-

ium attractors, evolution crosses a supercritical Hopf bifurcation,

fter which the environment is periodic. Then, while tracing the

ranch of periodic attractors, timidity evolves all the way down to

ero, bτ ◦ = 0 . For example, when α = 0 and β = 4 , the supercriti-

al Hopf bifurcation occurs at bτH = 0 . 1745 . 

In scenario III, the ecological dynamics are described by bifurca-

ion region B. When the environment traces the branch of equilib-

ium attractors, evolution crosses a supercritical Hopf bifurcation,

fter which the environment is periodic. Then, while tracing the

ranch of periodic attractors, timidity evolves to a positive singu-

arity, b τ ◦ > 0. For example, when α = 0 and β = 6 , the supercriti-

al Hopf bifurcation occurs at bτH = 0 . 6298 , and the singularity is

t bτ ◦ = 0 . 3864 . 

In scenario IV, the ecological dynamics are described by bifur-

ation region C. When the environment traces the branch of equi-
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Fig. 4. Regions of qualitatively different evolutionary scenarios in the ( α, β)-plane ( above ), and examples of pairwise invasibility plots (PIP) for each scenario ( below ). 

Table 2 provides detailed descriptions of these scenarios. In each PIP shaded regions depict the mutant traits that can invade the resident trait. Dashed and thick vertical 

lines indicate, respectively, Hopf and fold bifurcations. The parameters are the same as in Fig. 2 . 
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Table 2 

List of qualitatively different evolutionary scenarios. Evolutionary attractors corresponding to equilibrium and periodic environ- 

ments are distinguished by b τ•
and b τ ◦ , respectively. 

Evolutionary scenario Bifurcation region Bifurcations via evolution Evolutionary reversals Evolutionary attractors 

I A none no bτ • = 0 

II B supercritical Hopf no bτ ◦ = 0 

III B supercritical Hopf no b τ ◦ > 0 

IV C subcritical Hopf no bτ ◦ = 0 

V C subcritical Hopf no b τ ◦ > 0 

VI C subcritical Hopf yes b τ ◦ > 0 

VII C subcritical Hopf and fold yes evolutionary cycle 

VIII D none no bτ • = 0 and bτ ◦ = 0 

IX D none no bτ • = 0 and b τ ◦ > 0 

X D fold yes bτ • = 0 

Fig. 5. Graphical illustration of an evolutionary cycle driven by ecological attractor 

switching. 
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ibrium attractors, evolution crosses a subcritical Hopf bifurcation

nd the environment switches to the periodic attractor. However,

he direction of evolution is unchanged. Then, while tracing the

ranch of periodic attractors, timidity evolves all the way down to

ero, bτ ◦ = 0 . For example, when α = 4 . 56 and β = 10 . 42 , the sub-

ritical Hopf and fold bifurcations occur at bτH = 0 . 0012 and bτF =
 . 0107 , respectively. Therefore, ecological bistability is present for

 τ ∈ (0.0012, 0.0107). 

In scenario V, the ecological dynamics are described by bifur-

ation region C. When the environment traces the branch of equi-

ibrium attractors, evolution crosses a subcritical Hopf bifurcation

nd the environment switches to the periodic attractor. However,

he direction of evolution is unchanged. Then, while the environ-

ent traces the branch of periodic attractors, timidity evolves to

 positive singularity, b τH > b τ ◦ > 0. For example, when α = 4 . 6

nd β = 12 , the subcritical Hopf and fold bifurcations occur at

τH = 0 . 2410 and bτF = 0 . 2467 , respectively, and the evolutionary

ingularity is at bτ ◦ = 0 . 2266 . Therefore, ecological bistability is

resent for b τ ∈ (0.2410, 0.2467). 

In scenario VI, the ecological dynamics are described by bifurca-

ion region C. When the environment traces the branch of equilib-

ium attractors, evolution crosses a subcritical Hopf bifurcation and

he environment switches to the periodic attractor. This attractor

witch also causes an evolutionary reversal towards higher levels

f timidity. Then, while the environment traces the branch of peri-

dic attractors, timidity evolves to a positive singularity, b τ ◦ > b τH .

or example, when α = 5 and β = 12 , the subcritical Hopf and fold

ifurcations occur at bτH = 0 . 1520 and bτF = 0 . 1676 , respectively,

nd the evolutionary singularity is at bτ ◦ = 0 . 1582 . Therefore, eco-

ogical bistability is present for b τ ∈ (0.1520, 0.1676). 

In scenario VII, the ecological dynamics are described by bifur-

ation region C. When the environment traces the branch of equi-
ibrium attractors, evolution crosses a subcritical Hopf bifurcation

nd the environment switches to the periodic attractor. This attrac-

or switch also causes an evolutionary reversal towards higher lev-

ls of timidity. Then, while the environment traces the branch of

eriodic attractors, evolution crosses a fold bifurcation and the en-

ironment switches back to the equilibrium attractor. This attractor

witch also causes an evolutionary reversal towards lower levels of

imidity, and then repeats the whole process. In other words, this

cenario describes cyclic prey evolution. Since evolutionary singu-

arities are absent, an evolutionary cycle is attained for any ini-

ial trait b τ and any ecological environment. For example, when

= 8 and β = 16 , the subcritical Hopf and fold bifurcations oc-

ur at bτH = 0 . 1608 and bτF = 0 . 2839 , respectively, and ecological

istability is present for b τ ∈ (0.1608, 0.2839). During the evolu-

ionary cycle in this example, the evolving trait b τ is bounded in

he interval (0.1608, 0.2839). 

In scenario VIII, the ecological dynamics are described by bi-

urcation region D. Whether the environment traces the branch

f equilibrium or periodic attractors, timidity always evolves all

he way down to zero. Thus, the evolutionary attractors are bτ • =
 and bτ ◦ = 0 , respectively, for equilibrium or periodic environ-

ents. Bifurcations are never encountered through evolution, and

he ecological dynamics remain similar throughout the course of

volution. Therefore, the initial ecological state fully determines

hether the environment traces the branch of equilibrium or pe-

iodic attractors. For example, when α = 4 . 32 and β = 10 . 08 , the

old bifurcation occurs at bτF = 0 . 0041 , and ecological bistability is

resent for b τ ∈ [0, 0.0041). 

In scenario IX, the ecological dynamics are described by bi-

urcation region D. When the environment traces the branch of

quilibrium attractors, timidity evolves all the way down to zero,

τ • = 0 . When the environment traces the branch of periodic at-

ractors, timidity evolves to a positive singularity, b τ ◦ > 0. Bifurca-

ions are never encountered through evolution, and the ecological

ynamics remain similar throughout the course of evolution. For

xample, when α = 5 and β = 10 . 99 , the fold bifurcation occurs

t bτF = 0 . 0182 , and the evolutionary singularity for the branch of

eriodic attractors is at bτ ◦ = 0 . 0122 . Therefore, ecological bistabil-

ty is present for b τ ∈ [0, 0.0182). 

In scenario X, the ecological dynamics are described by bifurca-

ion region D. When the environment traces the branch of equilib-

ium attractors, timidity evolves all the way down to zero, bτ • = 0 .

hen the environment traces the branch of periodic attractors,

volution crosses a fold bifurcation and the environment switches

o the equilibrium attractor. This attractor switch also causes an

volutionary reversal towards lower levels of timidity. Thus, the

volutionary outcome is the same for any initial state, but the

ourse of evolution may involve a detour towards higher levels of

imidity. For example, when α = 13 and β = 20 , the fold bifurca-

ion occurs at bτF = 0 . 2802 and ecological bistability is present for

 τ ∈ [0, 0.2802). 
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Based on the data collected for Fig. 4 , the prevalences of dif-

ferent evolutionary outcomes are as follows. Scenario I: 54.155%,

scenario II: 0.848%, scenario III: 22.673%, scenario IV: 0.143%, sce-

nario V: 5.164%, scenario VI: 4.432%, scenario VII: 7.625%, scenario

VIII: 0.029%, scenario IX: 0.121%, and scenario X: 4.810%. 

5. Discussion 

In this paper, we investigated the evolution of timidity in a

prey species whose predator has cannibalistic tendencies. The eco-

logical model was derived from individual-level processes in the

spirit of Geritz and Gyllenberg (2014) , who investigated the same

subject but without cannibalistic predators. We found that canni-

balism induces ecological bistability between equilibrium and pe-

riodic attractors. We classified ten qualitatively different evolu-

tionary scenarios, in which ecological bistability plays a central

role. In particular, the analysis revealed that the end result can

be an evolutionary cycle of the level of timidity, driven by eco-

logical attractor switching and evolutionary reversals (scenario VII,

7.6% prevalence in Fig. 4 ). This evolutionary scenario falls under

the ecogenetically-driven cycles in the classification of Khibnik and

Kondrashov (1997) . 

For evolutionary cycling and evolutionary reversals to occur in

our model (scenarios VI, VII, and X), two conditions must be satis-

fied on the ecological timescale. Firstly, periodic ecological environ-

ments are necessary for positive levels of timidity to be favoured

by natural selection. Secondly, ecological bistability is necessary

for attractor switching to occur. Fig. 5 illustrates the role of these

ecological conditions in evolutionary cycling. The second condition

follows from the fact that without ecological bistability, the level

of timidity uniquely determines the direction of evolution. Admit-

tedly, without ecological bistability, it may be possible to find cy-

cles of evolutionary branching and extinction, in which a species

branches into two types only to be later followed by a chance ex-

tinction of one of them ( Kisdi et al., 2001; Dercole, 2003 ). Here

we have found no evidence for evolutionary branching nor extinc-

tion, suggesting that the branching-extinction cycle is unlikely in

our model. 

We now ask which individual-level processes drive the afore-

mentioned ecological conditions for evolutionary cycling and evo-

lutionary reversals, and particularly, what are the roles of canni-

balism and timidity in such outcomes? Could we relax some of

the assumptions made on the basis of individual-level processes,

such as non-negligible handling time per prey capture, while still

satisfying these ecological conditions? 

All evidence obtained here suggests that both cannibalism and

timidity can only forestall the occurrence of periodic ecological at-

tractors. Whenever a periodic attractor is present, increasing ei-

ther cannibalism or timidity always causes it to disappear either

through a supercritical Hopf or a fold bifurcation. This implies that

if there are no periodic attractors in the absence of cannibalism

and timidity, then equilibrium is always the only attractor. 

It is well known that the ecological dynamics (15) and (16) with

bτ = α = h = 0 can only have equilibrium attractors. Therefore,

non-negligible handling time per prey capture is necessary for the

existence of periodic attractors. When h > 0, we found that peri-

odic attractors are easily obtained by increasing β . However, when

β is set to a relatively large value, the populations at the periodic

attractor go near to extinction and the model loses biological sig-

nificance. When the parameters were as in Fig. 2 and bτ = α = 0 ,

such problems arose at β = 25 , where the minimum prey popula-

tion at the attractor was less than 10 −19 . 

While we found that cannibalism seems to induce ecological

bistability, understanding why this occurs is difficult. Part of the

difficulty is because in our model, ecological bistability is always

between equilibrium and periodic attractors. Since periodic attrac-
ors are rather difficult to deal with analytically, we were unable

o perform a thorough investigation on the role of cannibalism in

cological bistability. Nevertheless, the numerical analysis suggests

hat ecological bistability is often induced by increasing cannibal-

sm if, in the absence of cannibalism, the periodic attractor has a

arge amplitude. Curiously, cannibalism is known to induce eco-

ogical bistability in models of different nature, including models

here the time and the population structure are both continuous

 Claessen and de Roos, 2003 ), or where the time is discrete but the

opulation structure is continuous ( Cushing, 1991 ). In these mod-

ls, ecological bistability typically occurs between multiple equilib-

ium states. In comparison, the present model assumes a discrete

opulation structure and a continuous time. 

In the present paper we have investigated only the evolution of

he prey, but in nature the predator and the prey typically evolve

ogether. For example, if the prey evolves to favour high levels of

imidity, it effectively reduces the food availability for the preda-

or. Thus, prey evolution exerts selective pressure on the predator,

hich must now find a way to compensate for the lack of food.

e envision that cannibalism could then emerge as the predator’s

volutionary response. However, we have reason to believe that

n reality, cannibalism has various direct trade-offs, such as non-

egligible handling time for cannibalism or decreased rate of prey

apture. Thus, cannibalism may evolve only when the benefits ex-

eed the costs, which depend both on the environmental condi-

ions and the trade-off that cannibalism poses on other individual-

evel processes. 

As natural selection acts only for the benefit of the individ-

al, evolution of cannibalism may have a decreasing effect on the

redator population. When cannibalism is harmful for the preda-

or population, but they become voracious cannibals through evo-

ution, then fewer prey are captured. Consequently, lower levels of

imidity become favourable, reversing the direction of prey evo-

ution. Eventually, the benefits of cannibalism are lessened by in-

reased prey availability, whereupon natural selection favours less

annibalistic predators. Such coevolutionary dynamics between the

redator and the prey species may lead to a purely genetically-

riven evolutionary cycle without switching between ecological at-

ractors ( Dieckmann et al., 1995 ). 

The analysis conducted here shows that model derivation from

ndividual-level processes is essential in making predictions con-

erning both the ecological and the evolutionary outcomes. We

ave shown that a single trait can correspond to multiple ecologi-

al attractors, and these attractors can disappear as a consequence

f evolution. Switching between alternative attractors is a likely

volutionary consequence of ecological bistability, and it can also

ring about evolutionary reversals and evolutionary cycling. For-

unately, the necessary techniques for evolutionary analysis with

cological bistability are readily implemented in the framework of

daptive dynamics. Most often the difficulties in our research had

o do with numerical analysis, and less with model derivation or

he theoretical framework. 
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ppendix A 

On the separation of ecological timescales 

The dynamical system of the interactions between all five indi-

idual states is given by 

dx F 
i 

dt 
= −b i x 

F 
i y + 

1 

τ
x H i − βx F i y 

S 
i 
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2  

e  

c  

t  

m  

m  

t

d

+ x F i G 

(∑ 

j 

x F j 

)
− μx F i , (A.1) 

dx H 
i 

dt 
= b i x 

F 
i y −

1 

τi 

x H i − μx H i , (A.2)

dy S 

dt 
= −βy S 

∑ 

j 

x F j + 

1 

h 

y H − δy S + 

1 

T 
z, (A.3)

dy H 

dt 
= βy S 

∑ 

j 

x F j −
1 

h 

y H − δy H , (A.4) 

dz 

d t 
= (λ − 1) αy S z + γβy S 

∑ 

j 

x F j − σ z − 1 

T 
z. (A.5) 

We now separate the above dynamics into three separate

imescales. Let ε > 0 be a small and dimensionless scaling param-

ter, and assume the following scalings for the model parame-

ers: b = ε −3 b 0 , α = ε −2 α0 , β = ε −1 β0 , σ = ε −1 σ0 , T = ε −1 T 0 , x =
 

−1 x 0 ′ , y = εy 0 , τ = ε 2 τ0 , h = ε 2 h 0 , and G ( 
∑ 

j x 
F 
j 
) = G 0 (ε 

∑ 

j x 
F 
j 
) .

ext, rewrite the above system using these scaled parameters, and

he equations for the total prey and adult predator populations,

 i = x F 
i 

+ x H 
i 

and y = y S + y H . For convenience, we also drop the

ubindex zero from these scaled parameters, which results in 

 

2 
dx F 

i 

dt 
= −b i x 

F 
i y + 

1 

τi 

x H i − ε 2 βx F i y 
S 

+ ε 2 x F i G 

(∑ 

j 

x F j 

)
− ε 2 μx F i , (A.6) 

dx i 
dt 

= x F i G 

(∑ 

j 

x F j 

)
− μx i − βx F i y 

S , (A.7)

dy 

dt 
= 

1 

T 
z − δy, (A.8) 

 

2 dy S 

dt 
= − βy S 

∑ 

j 

x F j + 

1 

h 

y H − ε 2 δy S + 

ε 2 

T 
z, (A.9) 

 

dz 

d t 
= (λ − 1) αy S z + γβy S 

∑ 

j 

x F j − σ z − ε 2 

T 
z. (A.10) 

To investigate the above dynamics on the short timescale, we

ntroduce a scaled time t ∗∗ := ε −2 t, and let ε → 0. Then, the dy-

amics are given by 

dx F 
i 

dt ∗∗ = − b i x 
F 
i y + 

1 

τi 

x H i , (A.11) 

dy S 

dt ∗∗ = − βy S 
∑ 

j 

x F j + 

1 

h 

y H , (A.12) 

hich are equivalent to (3) and (4) , and where the variables x,

 , and z are constants on this timescale. Next, assuming that the

hort timescale dynamics have attained a quasi-steady state, we in-

estigate the dynamics (A .6)–(A .10) on the intermediate timescale.

ewrite these dynamics using the quasi-steady states (5) and

6) for the short timescale, and introduce a scaled time t ∗ := ε −1 t .

hen, let ε → 0, which results in 

dz 

dt ∗
= γβy S 

∑ 

j 

x F j + αλy S z − αy S z − σ z, (A.13)
hich is equivalent to (7) , and where x i and y are constants in this

ntermediate timescale. 

For an alternative scaling with only two timescales, assume that

, z, τ , and h are of order ε; β and σ are of order ε −1 ; and that

and b are of order ε −2 . Now, when the dynamics of both the

tate-transitions and the juvenile population dynamics are stud-

ed on the t ∗ := ε −1 t timescale, we find exactly the same quasi-

quilibria as before. Thus, the only differences are in the biological

nterpretation; in the case with two timescales we assumed that

he adult and the juvenile predator population numbers are on the

ame scale, and predator maturation time is much shorter. 

ppendix B 

On the existence and uniqueness of an interior equilibrium 

Any interior equilibrium corresponds to an intersection be-

ween isoclines. At the prey isocline we have ˙ x = 0 , which we

rite in terms of x F , 

˜ 
 1 = 

(G (x F ) − μ)(1 + βhx F ) 

β + μbτ (1 + βhx F ) 
. (B.1) 

The prey isocline is positive for x F < x 0 , and has unique root at

 

F = x 0 . The second derivative of the prey isocline with respect to

 

F is given by 

˜ 
 

′′ 
1 = 

[ 
2 β2 h (bτβhμ(μ − G (x F )) 

+ (β + bτμ(1 + βhx F )) G 

′ (x F )) 

+ (1 + βhx F )(β + bτμ(1 + βhx F )) 2 G 

′′ (x F ) 
]

/ (β + bτμ(1 + βhx F )) 3 , (B.2) 

hich is concave if and only if 

 

′′ (x F ) < 2 β2 h (bτβhμ(G (x F ) − μ) 

− (β + bτμ(1 + βhx F )) G 

′ (x F ) . (B.3) 

In particular, for any G such that G 

′′ ≤ 0 the above condition

olds. Similarly, we write the predator isocline in terms of x F , 

˜ 
 2 = 

β(γ − δσhT ) x F − δσ T 

αδT (1 − λ) 
. (B.4) 

The predator isocline increases monotonically in x F for

> δσhT and λ< 1, and positive for β > δσT / (x F (γ − δσhT )) .

oth of these conditions are satisfied whenever the predator can

nvade the environment where only the prey is present. By conti-

uity ˜ y 2 is also positive for some x F < x 0 . This implies the existence

f x 1 < x 0 at which the isoclines intersect, and where x 1 satisfies 

(G (x 1 ) − μ)(1 + βhx 1 ) 

β + μbτ (1 + βhx 1 ) 
= 

β(γ − δσhT ) x 1 − δσ T 

αδT (1 − λ) 
. (B.5) 

In other words, an interior equilibrium exists. If also (B.3) holds,

hen the uniqueness follows from the concavity of the prey isocline

nd the monotonicity of the predator isocline. 

ppendix C 

On the stability of the interior equilibrium 

Let tr J and det J denote the trace and the determinant of the

 × 2 Jacobian matrix J of (15) and (16) evaluated at the interior

quilibrium ( ̄x , ̄y ) = (x 1 (1 + bτ ȳ ) , ̄y ) . We show that the equilibrium

an switch stability only through a Hopf bifurcation. First, we show

hat det J > 0 for all b τ and α. Then, we show that for all b τ , at

ost one α1 exists for which tr J = 0 , and similarly, for all α, at

ost one b τ 1 exists for which tr J = 0 . By the Routh-Hurwitz cri-

eria, such values α1 and b τ 1 correspond to a Hopf bifurcation. 

The determinant of J is given by 

et J = γβ ȳ x 1 
[
α(1 − λ) ̄y (2 bτμ(1 + βhx 1 ) 

2 + β(2 + βhx 1 )) 
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+ (1 + βhx 1 ) { σ (β(1 + bτhμx 1 ) + bτμ) 

+ α(1 − λ) μ(1 + βhx 1 ) } + αG (x 1 )(λ − 1)(1 + βhx 1 ) 
2 

+ α(λ − 1) x 1 G 

′ (x 1 )(1 + βhx 1 ) 
2 
]
/ [

T (1 + bτ ȳ )(1 + βhx 1 ) 
2 (σ (1 + βhx 1 ) + αȳ (1 − λ)) 2 

]
. 

(C.1)

The sign of det J is given by the numerator in the above equa-

tion. Rewriting the numerator of det J in terms of b τ gives a linear

equation, with positive coefficient 

γμβx 1 ̄y (1 + βhx 1 ) 
2 (2 αȳ (1 − λ) + σ ) , (C.2)

and so the numerator of det J is minimised at bτ = 0 . Substituting

bτ = 0 and μ = G ( ̄x ) − β ȳ / (1 + βh ̄x ) into the numerator of det J

results in 

α(λ − 1) ̄x G 

′ ( ̄x )(1 + βh ̄x ) 2 + β(σ (1 + βh ̄x ) + αȳ (1 − λ)) , (C.3)

which is positive for all α. Therefore, det J is strictly positive for all

b τ . Similarly, rewriting the numerator of det J in terms of α gives

a linear equation, with coefficient 

γβ(λ − 1) x 1 ̄y 
[
G (x 1 )(1 + βhx 1 ) 

2 − β ȳ (2 + βhx 1 ) 

+ (1 + βhx 1 ) 
2 (x 1 G 

′ (x 1 ) − (1 + 2 bτ ȳ ) μ) 
]
. (C.4)

Then, upon substituting G (x 1 ) = μ(1 + bτ ȳ ) + β ȳ / (1 + βhx 1 ) ,

the above coefficient is clearly positive. The numerator of det J in

terms of α is then minimised at α = 0 , and has the clearly positive

value 

γβσ x 1 ̄y (1 + βhx 1 )(β + bτμ + bτβhμx 1 ) . (C.5)

We have now shown that det J is positive for all b τ and α. 

The trace of the Jacobian matrix J is given by 

tr J = 

1 

1 + bτ ȳ 

[ 
x 1 G 

′ (x 1 ) + 

β ȳ 

1 + βhx 1 
− β ȳ 

(1 + βhx 1 ) 2 

+ 

γβx 1 ̄y (α(λ − 1)(1 + 2 bτ ȳ ) − bτσ ) 

T (α(λ − 1) ̄y − σ (1 + βhx 1 )) 2 

] 
. (C.6)

To prove the claim, we shall show that the sign of tr J can

change at most once in b τ and α. The derivative of tr J with re-

spect to α is given by 

∂ tr J 

∂α
= γβ(1 − λ) x 1 ̄y 

[
βhσ x 1 (1 + 2 bτ ȳ ) 

+ α(λ − 1) ̄y (1 + 2 bτ ȳ ) + σ
]

/ 
[
T (1 + bτ ȳ )(α(λ − 1) ̄y − σ (1 + βhx 1 )) 

3 
]
, (C.7)

and vanishes at the positive value 

α2 = 

σ (1 + βhx 1 (1 + 2 bτ ȳ )) 

(1 − λ)(1 + 2 bτ ȳ ) ̄y 
. (C.8)

Moreover, since the derivative ∂ tr J / ∂ α is negative at α = 0 ,

then by continuity it is negative for all α < α2 , and positive for

α > α2 . Next, observe that at the equilibrium 

ȳ = 

γ βx 1 − T δσ (1 + βhx 1 ) 

αT δ(1 − δ) 
, (C.9)

and so ȳ vanishes as α → ∞ . Consequently, tr J → x 0 G 

′ ( x 0 ) < 0. Now

since ∂ tr J / ∂ α vanishes only once and is initially negative, then tr J

can change sign at most once in α. That is, whenever tr J > 0 holds

at α = 0 , there exists unique α1 > 0 at which tr J = 0 . But if tr J < 0

holds at α = 0 , the trace remains negative for all α > 0. 

Finally, we show that tr J = 0 for at most one bτ = bτ1 . Since

the term 1 / (1 + bτ ȳ ) is strictly positive, it is sufficient to show the

claim for tr J without that term. This results in a linear equation in

b τ , with coefficient 

γ βx 1 ̄y (2 α(λ − 1) ̄y − σ ) 

T (βhσ x 1 + αȳ (1 − λ) + σ ) 2 
, (C.10)

which is clearly negative. Therefore, tr J is decreasing in b τ and

can change sign at most once. 
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