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A B S T R A C T

Climate change is causing novel forest stress around the world due to changes in environmental conditions.
Forest pest insects, such as Ips typographus (L.), are spreading toward the northern latitudes and are now able to
produce more generations in their current range; this has increased forest disturbances. Timely information on
tree decline is critical in allowing forest managers to plan effective countermeasures and to forecast potential
infestation areas. Field-based infestation surveys of bark beetles have traditionally involved visual estimates of
entrance holes, resin flow, and maternal-gallery densities; such estimates are prone to error and bias. Thus,
objective and automated methods for estimating tree infestation status are required.

In this study, we investigated the feasibility of dual-wavelength terrestrial lidar in the estimation and de-
tection of I. typographus infestation symptoms. In addition, we examined the relationship between leaf water
content (measured as gravimetric water content and equivalent water thickness) and infestation severity. Using
two terrestrial lidar systems (operating at 905 nm and 1550 nm), we measured 29 mature Norway spruce (Picea
abies [L.] Karst.) trees that exhibited low or moderate infestation symptoms. We calculated single and dual-
wavelength lidar intensity metrics from stem and crown points to test these metrics' ability to discriminate I.
typographus infestation levels using regressions and linear discriminant analyses.

Across the various I. typographus infestation levels, we found significant differences (p < 0.05) in gravimetric
water content, but not in equivalent water thickness due to the latter statistic's high correlation with leaf density.
The results show correlations between the lidar intensity metrics and several infestation symptoms: defoliation,
discoloration and resin flow. The intensity metrics explain 50% of the variation in the infestation severity (as
determined in the field based on canopy and stem symptoms). The overall accuracy with three infestation classes
(no, low, or moderate) was 66%, but the overall accuracy with two infestation classes (not infested, or infested) was
90%. The classifiers combine lidar intensity metrics from the stem and the canopy to allow for the detection of
bark-beetle infestations in the early, so called green-attack stage. The intensity metrics explain part of the
variations in tree-level gravimetric water content and equivalent water thickness, with adjusted R2 values of 0.48
and 0.68, respectively. Terrestrial dual-wavelength lidar shows potential for providing objective tree-decline
measurements at tree level: this method can be further used to enhance forest inventories and automate tree-
vigor data collection, which has traditionally required expert knowledge.

1. Introduction

Climate change is causing novel stress to forests and individual trees
(Allen et al., 2015; Allen et al., 2010; Carnicer et al., 2011; Seidl and

Rammer, 2017; Sturrock et al., 2011; Wong and Daniels, 2017). Be-
cause of the longer summers and higher summer temperatures, which
lead to prolonged drought periods, pest insects such as the European
spruce bark beetle (Ips typographus L.) have more favorable survival
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conditions, as well as increased voltinism; this results in exponential
growth of bark beetles' population densities (Faccoli, 2009; Kärvemo
et al., 2016). I. typographus bores through the bark of mature Norway
spruce (Picea abies [L.] Karst.) trees to the phloem region in order to
excavate nuptial chambers and maternal galleries, where they can mate
and lay eggs. The larvae feed on the phloem tissue, which disrupts the
translocation of photosynthates within the tree. In addition to dama-
ging the phloem, I. typographus carries blue-stain fungi (e.g., En-
doconidiophora polonica), which disrupt the flow of water in the xylem,
thus causing the infested tree to die back (Linnakoski et al., 2017;
Wermelinger, 2004). E. polonica causes a rapid decline in leaf water
content (LWC) in Norway spruce seedlings (Junttila et al., 2018). Both
the increasing number of I. typographus individuals and the species'
range shift toward higher latitudes have led to increased stress and
damage in forests (Lange et al., 2006). For instance, I. typographus has
already caused vast forest damage in central Europe, especially as a
secondary damage factor after large windthrows (Marini et al., 2017).
The estimated frequency and damage of Northern European storms has
increased, resulting in an increase in optimal reproduction material for
I. typographus (Gardiner et al., 2010; Gregow et al., 2017; Marini et al.,
2017). In Sweden, for instance, in 2005 and 2007, strong storms led to
the colonization of approximately 1.4 million m3 of Norway spruce; the
unusually warm summer of 2018 then resulted in about1.5 million m3

of bark-beetle-affected forest (Långström et al., 2009). The uncertainty
in estimating how climate change affects both bark beetles' dynamics
(among other disturbances) and the resulting forest decline is one of the
largest sources of error in evaluations of forests' role in climate-change
mitigation (Trumbore et al., 2015).

Early detection of damage by I. typographus is important for the
mapping and mitigation of forest disturbances (Abdullah et al., 2019).
Several researchers have investigated the estimation of I. typographus-
induced forest damage using airborne sensors. The mapping of I. typo-
graphus-caused mortality using hyperspectral imagery can result in high
overall accuracies (94%–97%) when a generic algorithm is used to se-
lect the spectral regions (Fassnacht et al., 2014). Depending on the type
of algorithm, the selected bands can involve the red edge
(680–690 nm), near-infrared (e.g. 1076 nm), or short-wave infrared
(e.g. 1532, 1651, 2065, 2245, and 2280 nm). Hyperspectral imaging
(517–814 nm) from an unmanned aerial vehicle shows potential for
detecting infested trees, as it can produce a relatively good overall
classification accuracy of 76%, with the largest differences in re-
flectance between infested and healthy trees in the near-infrared region
around 750–814 nm (Näsi et al., 2015). By forecasting forest vitality
with airborne hyperspectral imaging, researchers achieved an overall
classification accuracy of 64% for healthy and infested forests, such that
the best spectral characteristics for determining spruces' vitality status
are located between 450 and 890 nm (Lausch et al., 2013). Early de-
tection of the mountain-pine beetle (Dendrotonus ponderosae Hopkins)
using hyperspectral data indicates that the strongest spectral features
for detecting the green-attack stage (which occurs before there is visible
deterioration of the canopy) are between 950 and 1390 nm (Cheng
et al., 2010; Niemann et al., 2015). The effects of cell structure and LWC
generally dominate the spectral responses of plants in this region.
Scholars have also used the Sentinel-2 satellite to discriminate between
healthy forests and I. typographus green-attacked areas with an overall
accuracy of 67% (Abdullah et al., 2019). In that study, the largest
spectral differences between healthy and infested foliage were in the
following regions: 520–685 nm, 740–1130 nm, 1420–1850 nm, and
2000–2200 nm. Abdullah et al. (2018) were the first researchers to
detect the green-attack stage of I. typographus infestation with fairly
good accuracy, but their study area consisted of 30m×30m plots that
were fully under green attack from bark beetles. This situation rarely
occurs in Nordic countries, where infestations are generally spatially
dispersed and affected by local conditions (Blomqvist et al., 2018;
Eriksson et al., 2007). Other researchers have mainly succeeded in
mapping dead trees and forest areas with severe infestation symptoms;

the existing remote-sensing methods have shown relatively good ac-
curacy. Still, the early detection of I. typographus using remote sensing
methods is challenging, especially if the infestation is dispersed and the
crown symptoms are weak, as is typical in an early outbreak of I. ty-
pographus (Blomqvist et al., 2018).

Terrestrial lidar, or terrestrial laser scanning (TLS), can be used to
accurately measure the 3D structures of forest environments, thus en-
abling the mapping of trees' functional traits (e.g., leaf area index) or
forests' structural parameters with good accuracy (Liang et al., 2016;
Zhu et al., 2018). In addition to this 3D information, TLS can measure
the strength of backscattered light, which is referred to as intensity. This
intensity can be described using the radar equation, which states that
transmitted power (Pt), aperture area (D), optical efficiency (Q), laser-
beam divergence (β), atmospheric transmission losses (T), range (R),
and backscattering target cross-section (σ) all affect received power
(Pr):

=P P DQ T
R4πβ
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t
2

2
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where σ comprises target reflectance, geometry, and illuminated area.
According to Eq. (1), Pr is linearly dependent on transmitted power,
aperture, optical efficiency, and target reflectance. Atmospheric trans-
mission losses can be neglected in a terrestrial forest environment.
However, the effect of R varies depending on the shape of the target (as
a result of spherical losses). Variations in the powers of R can be ob-
served between large planar surfaces that fill the entire laser footprint
and linear or blob-like targets that partially cover the footprint (Wagner
et al., 2006). Large surfaces create reflections that diminish less with
distance than do reflections from wires or needles. Both incidence angle
and the reflective properties of the target also influence intensity, which
further complicates the calibration of that measure (Kaasalainen et al.,
2011; Kaasalainen et al., 2018).

Many scholars have used TLS intensity to measure leaves' bio-
chemical properties, including nitrogen, chlorophyll, and water con-
tent, but the radiometric calibration of this measure has been challen-
ging (Eitel et al., 2014; Eitel et al., 2010; Eitel et al., 2011; Gaulton
et al., 2013; Zhu et al., 2015). Traditionally, each TLS operates on a
single-wavelength. However, recent developments in laser technologies
have enabled dual-wavelength, multispectral, and even hyperspectral
TLSs that simultaneously operate at multiple wavelengths, thus al-
lowing for the measurement of forests' structural and spectral properties
(Douglas et al., 2012; Hakala et al., 2012; Niu et al., 2015). Some re-
searchers have used several TLSs to add wavelengths to these mea-
surements (Elsherif et al., 2018; Junttila et al., 2018). Depending on the
properties of a leaf's surface, using a spectral index from two wave-
lengths can reduce the effects that incidence angle and the various
target cross-sections have on the measured value (Junttila et al., 2018;
Kaasalainen et al., 2016).

Multispectral TLS has potential for the accurate mapping of LWC in
controlled environments (Gaulton et al., 2013; Junttila et al., 2016). For
instance, Junttila et al. (2018) used multispectral TLS to predict the
LWC of Norway spruce (P. abies [L.] Karst.) seedlings, resulting in good
agreement between LWC and spectral indices (coefficient of determi-
nation, R2= 0.91). However, thus far, researchers have only conducted
studies in controlled environments that have with little variation in
plant material or in environmental factors such as temperature and
humidity. LWC, chlorophyll, and nitrogen concentration are sig-
nificantly affected even in the green-attack stage of an I. typographus
infestation (Abdullah et al., 2018, 2019). This stage is usually followed
by discoloration of the crown (from green to yellow to reddish brown)
and by defoliation (Coulson et al., 1985). Similarly, researchers have
found significant differences in LWC during the green-attack stage of
infestations involving the mountain-pine beetle (Cheng et al., 2010).
Because the 1550 nm wavelength is sensitive to variance in LWC,
multispectral TLS could be used to detect varying levels of bark-beetle
infestation (Hunt Jr and Rock, 1989; Zhu et al., 2015). However, in
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addition to the 1550 nm wavelength, a second wavelength in the near-
infrared region is required to normalize the effects on a leaf's structure
(both its internal structure and its dry matter); the 905 nm wavelength,
which is not sensitive to LWC, is suitable for that purpose (Ceccato
et al., 2001; Junttila et al., 2018; Peñuelas et al., 1997). Additionally,
this wavelength could aid in detecting I. typographus infestations, as the
near-infrared region is affected during the green-attack stage (Abdullah
et al., 2019). Scholars have used TLS to detect defoliation due to the
European pine sawfly (Neodiprion sertifer Geoffr.) by measuring the
changes in lidar returns over time (Kaasalainen et al., 2010). However,
the use of dual-wavelength lidar intensity metrics in the detection and
assessment of bark-beetle infestation symptoms has not yet been stu-
died.

The objective of this study was to investigate the potential value of
dual-wavelength TLS in, first, detecting various symptoms of I. typo-
graphus infestation and varying LWC in a mature Norway spruce forest;
and second, providing objective assessments of tree decline, with an
emphasis on the exploitation of intensity information. TLS and other
lidar point-cloud collection methods, such as mobile lidar systems and
systems that use unmanned aerial vehicles, are increasingly being used
whenever accurate forest-structure measurements are required. The
development of lidar-based measurements of tree decline could allow
for a single-sensor solution for the simultaneous and automatic mea-
surement of forests' structures and trees' health (Eitel et al., 2016). To
address the research questions raised above, two TLSs (operating at the
905 and 1550 nm wavelengths) were used to measure mature, I. typo-
graphus-infested Norway spruce trees. The infestation symptoms were
classified in the field according to the severity of the crown and stem
symptoms. The hypothesis was that infestation symptoms (e.g., dis-
coloration, defoliation, and resin flow) significantly affect lidar in-
tensity distributions, thus allowing for the detection of infested trees.
The aims of the study were as follows: 1) to investigate the capability of
multisensor dual-wavelength TLS in predicting various I. typographus
infestation levels, with an emphasis on the early detection of I. typo-
graphus colonization; 2) to study the relationship between LWC and the
level of I. typographus infestation; and 3) to examine dual-wavelength
lidar's potential for estimating LWC in a mature Norway spruce forest.

2. Methods

2.1. Field measurements

The field measurements were conducted in August 2017 in the
Viitalampi Forest, within the Ruokolahti municipality in southeast
Finland (Fig. 1). The study area comprises a forest of mature Norway
spruce mixed with European rowan (Sorbus aucuparia L.), European
aspen (Populus tremula L.), and silver birch (Betula pendula Roth). The
forest area suffered major damage from a 2010 storm and milder da-
mage from subsequent storms, so it has provided a continuously op-
timal source for I. typographus breeding, leading to an elevated amount
of related damage within the study area. In all, 33 Norway spruce trees
were selected for further measurements according to their infestation
status. The aim was to sample an even distribution of trees at various
infestation levels. However, the cold summer of 2017 reduced the da-
mage caused by I. typographus, so there were relatively few trees with
severe symptoms in the study area; thus, the empirical data is char-
acterized by low to moderate damage among the green-attacked trees
(i.e., those that are colonized but that have no canopy discoloration).
No dead trees were selected because the emphasis was on the early
infestation symptoms.

The height of each tree and the height of its living crown were
measured using a Vertex hypsometer (Haglöf Sweden AB, Långsele,
Sweden); in addition, a caliper was used to measure diameter at breast
height (DBH; Table 1). To measure each tree's LWC, needle samples
were collected before midday (between 10:00 and 12:00) from two
heights in the canopy: one from the upper third and one from the

middle third. The samples were collected from the same side as the lidar
measurement so as to ensure a match between the lidar and LWC data.
The needle samples were taken by shooting down branches using a 12-
gauge shotgun; the heights of the sample branches were recorded.
Twigs of approximately 10 cm in length were cut from these branches,
stored in zip-top bags, and placed in a cooler for transportation to the
laboratory in order to prevent the loss of moisture. During the needle-
sample collection, the temperature was approximately 12 °C, and the
skies were overcast.

2.2. Assessment of symptoms and attack-level scores

Forest health experts visually assessed the symptoms caused by I.
typographus for each tree in the field. The classification of these symp-
toms was based on visual assessments of the tree's crown and stem. The
crown's color and foliage loss were assessed, as was the condition of the
bark in terms of the number of resin-flow spots, the amount of bark's
structural damage and the number of I. typographus entrance holes.
Each symptom class was evaluated using a three-class scheme—low (1),
moderate (2), and high (3)—except for the intensity of defoliation,
which was assessed in four classes—0-25% (1), 25–50% (2), 50–75%
(3), and 75–100% (4), following Blomqvist et al. (2018), who provided
details on how the symptom classes are assessed in the field using this
method.

A tree-wise attack-level score was developed using the classified
symptoms. It was calculated as the sum of all the symptoms, thus
forming a continuous variable of infestation intensity; for instance, a
tree with green foliage and no defoliation, resin flow, entrance holes, or
bark damage would get a score of 5. This attack-level score was then
used to classify each tree into one of three classes: no infestation (score 5
or 6, n=10), low infestation (score 7–11, n=13), or moderate infesta-
tion (score 12–15, n=10). The low infestation class included eight
green-attacked trees that had been colonized but whose crowns lacked
discoloration.

2.3. TLS measurements

Of the 33 sampled trees, 29 were measured using two TLSs of dif-
ferent wavelengths. The TLS instruments used were a FARO X330
(FARO Europe GmbH & Co. KG, Korntal-Münchingen, Germany), which
operates at 1550 nm; and a Trimble TX5 (Trimble Inc., Sunnyvale, CA,
USA), which operates at 905 nm. These scanners have similar technical
specifications, and both utilize phase shifting range measurements
(Table 2). Each tree was scanned from the same position with one
scanner and then the other so as to avoid wind effects. The scanning
distances varied from 7.5m to 18m, according to the terrain and the
position of the trees. Both scanners' resolutions were set to 0.25, re-
sulting in a vertical spacing of 6.14mm at a 10m distance; the quality
parameter was set to 2× (i.e., two measurements were made for each
point, and the resulting value was the mean of the two). The scanners
have same beam divergence (0.19 mrad), resulting in 6.1mm and
6.8 mm laser-beam diameters at 10m for the FARO X330 and Trimble
TX5, respectively. Four target spheres (each of diameter 140mm) were
placed around the scanner for further scan registration. A Lambertian
Spectralon reflectance panel (Labsphere, North Sutton, NH, USA) with a
nominal reflectance of 20% was used as a reference target to normalize
the laser intensity. The temperature during data acquisition was ap-
proximately 13 °C, the relative humidity was approximately 60%, and
the wind speed varied from 3 to 4m/s.

Additional TLS measurements were conducted in a laboratory set-
ting to evaluate the sensitivity of the lidar intensity to varying incidence
angles and distances. Spectralon reflectance panels with nominal re-
flectance of 99% and 40%, as well as silver birch and Norway maple
(Acer platanoides L.) leaves, were measured at incidence-angle intervals
of 10° from 0° to 70°. The 40% reflectance panel was also measured at
2-m intervals to determine the relationship between intensity and
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distance.

2.4. LWC measurements

Approximately 30 needles were randomly collected from among the
sample twigs in the laboratory. The fresh weight of these needles was
weighed (with a precision of 0.0001 g), their combined leaf area was
scanned using an Epson V370 Photo flatbed scanner (Epson America,
Inc., San Jose, CA, USA) at 800-dpi resolution, and the samples were
dried in an oven at 60 °C for 48 h before their dry weight was measured.
The scanned images were analyzed using the R software package so as
to calculate leaf area by segmenting the needles in the images and
transforming the number of segmented pixels into a leaf-area value
based on the scanner's resolution (R Core Team, 2013). This calculated
leaf area was multiplied by 2.57 to take into account the pyramidal

shape of the needles and then divided by 2, resulting in a one-sided leaf
area (Waring, 1983). LWC was then calculated as both equivalent water
thickness (EWT; Danson et al. (1992)) and gravimetric water content
(GWC; (Datt, 1999)), as follows:

= − ⎛
⎝

⎞
⎠

EWT FW DW
A

g
cm

,2 (2)

⎜ ⎟= − ⎛
⎝

⎞
⎠

GWC FW DW
FW

g
g

,
(3)

where FW (g) is the fresh weight, DW (g) is the dry weight, and A (cm2)
is the leaf area of the fresh sample.

2.5. The processing of TLS data

The subsequent TLS scans at both wavelengths were registered to a
common (arbitrary) coordinate system using FARO Scene software. The
four sphere targets were used to align the point clouds using the
Helmert transformation process (Watson, 2006), resulting in a mean
accuracy of 4.5mm between targets. Each tree was manually seg-
mented from the point clouds using the CloudCompare software
package (version 2.10) for further processing (Girardeau-Montaut,
2011). Because the laser scanners utilize the phase-shifting technique
for range measurements, a large amount of noise (e.g., ghost points)
was apparent in the point clouds (Balduzzi et al., 2011). To reduce the
number of ghost points, a statistical-outlier algorithm was applied to
the point clouds in order to filter out the points that are far from other

Fig. 1. A map of the Viitalampi study-area location and an aerial false color image of the study area (near-infrared values are shown in red; red values are shown in
green; and green values are shown in blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary statistics for tree structure, attack-level score, and several leaf mea-
sures.

Variable Mean Std. dev. Min. Max.

DBH (cm) 29.0 6.69 18.9 55.4
Height (m) 25.2 2.81 18.8 30.3
Attack-level score 9.4 3.00 5 15
Equivalent water thickness (g/cm2) 0.013 0.0061 0.0037 0.031
Gravimetric water content (%) 54.1 3.58 45.3 60.4
Leaf mass per area (g/cm2) 0.011 0.0054 0.0028 0.024

Table 2
Technical specifications of the laser scanners.

Laser scanner Beam divergence
(mrad)

Beam diameter at exit
(mm)

Wavelength (nm) Output power
(mW)

Scan rate
(kHz)

Intensity recording (digital
number)

Ranging error
(mm)

FARO X330 0.19 2.25 1550 500 488 −2048 to 2033 ±2
Trimble TX5 0.19 3 905 20 488 −2048 to 2033 ±2
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points (based on the distance to the neighboring points). The maximum
distance for a point to be included was calculated as follows:

= + ×MaxD MeanD nSigma Std Dev. . , (4)

whereMaxD is the maximum distance for a point to be included,MeanD
is the mean distance to the neighboring points, nSigma is the standard-
deviation multiplier threshold, and Std. Dev. is the standard deviation of
the distance of the neighboring points. The algorithm parameters were
determined based on a visual examination of the resulting point cloud.
For each point cloud, the number of neighbors was set to 8, and nSigma
was set to 0.7.

Classification of the needles and stem points was required to in-
vestigate how the lidar intensity responds to varying LWC values.
However, as the spruce needles were smaller than the laser footprint,
the twigs and needles could be illuminated simultaneously, making it
impossible to separate true needle points from points that are a mix of
needles and twigs or branches. Thus, the classification instead was
based on the separation of tree stems and twigs from needles. This
classification was done using a classifier based on the multiscale di-
mensionality criterion (Brodu and Lague, 2012); the system was trained
with 40,000 manually classified needle and stem points from eight
trees. The reported balanced accuracy of the training sample was 0.95.
The classifier was then applied using the CloudCompare software
package. The classification procedure provided the confidence level of
the classification as an output; only points with a confidence value of at
least 0.98 were used.

2.6. Intensity calibration

The calibration of intensity was necessary due to the variety of
factors that affected the measured intensity. The data-processing
workflow, which included distance and logarithmic corrections and the
normalization of intensity, is illustrated in Fig. 2. Lidar intensity is
sensitive to range, so a range correction is required (Kaasalainen et al.,
2011). The relationship between range and lidar intensity was in-
vestigated by scanning a Spectralon panel with a nominal reflectance of
40% at 2-m intervals from 3m to 33m. Distance strongly affected the
intensity of both scanners—especially distances of< 20m, where the
intensity showed a peak, followed by a positive slope toward longer
distances (Fig. 3).

For the reflectance panel polynomial, the model was fitted to the
acquired empirical relationship between range and mean intensity, si-
milar to the approach of Tan et al. (2016). This approach was improved
using an external reference target to normalize the intensity; this al-
lowed for the removal of the effect of varying instrument temperatures
(Errington and Daku, 2017). This model was then used to remove the
effect of the distance from each point cloud on the raw laser intensity,
using a polynomial model of degree 10 within R (version 3.4.3, (R Core
Team, 2013)), as shown in Table 3. The variation of intensity caused by
changes in distance was significantly reduced after the distance cor-
rection, with the test data set having just 5.9% and 3.4% of the original
variation for the X330 and TX5 scanners, respectively.

Both TLSs have showed logarithmic relationship between intensity
and reflectance, especially for low-reflectance targets (Junttila et al.,
2018; Kaasalainen et al., 2009). Thus, the distance-corrected intensity
was transformed into a relative reflectance using an empirical model
based on scans of the Spectralon reflectance panels at nominal re-
flectance values of 5%, 10%, 20%, 40%, and 60%. This logarithmic
correction was done using the following equation (Kaasalainen et al.,
2009):

=
−

y 10 ,
x A

A
( 1)

0 (5)

where A0 and A1 are empirical parameters determined by fitting the
measured intensity and reflectance of the reflectance panels (Fig. 4).
The model parameters, A0 and A1, were 503.9 and 1758.7 for the

Trimble TX5 and 438.9 and 2020.5 for the FARO X330.
Finally, the distance and log corrected intensity were normalized

with the mean intensity of an external reference target (a Spectralon
panel with 20% nominal reflectance) to eliminate any effects on the
intensity due to a varying instrument or ambient temperature. The
output of the intensity-calibration process is referred to as calibrated
intensity within this paper. Incidence angle was not considered during
the calibration procedure due to the small sizes of the needles, which
resulted in multiple scattering when the laser-beam diameter at the
target was larger than the width of a single needle. This complicated the
calculation of the incidence angle from the point cloud but should not
have caused large errors, as (based on a previous study of lidar in-
tensity), the Norway spruce is less affected by incidence angle than
deciduous species are (Kaasalainen et al., 2018).

A normalized difference index (NDI) was calculated for each point
by finding the nearest neighbor in the point clouds for the 905 and
1550 nm wavelengths, using the following equation:

= −
+

NDI I I
I I

,905 1550

905 1550 (6)

where I is calibrated intensity at the wavelength indicated by the
footnote. A maximum distance of 1 cm was used to filter the points and
to ensure geometrical similarity between the point clouds.

2.7. Explanatory variables

A set of intensity metrics was calculated for each point cloud
(Table 4). These metrics are based on statistics that describe the dis-
tribution of intensity values within a given point cloud. The metrics
were individually calculated for the 905 and 1550 nm wavelengths and
for the NDI. These metrics were calculated separately and at the tree
level for classified needle points in the canopy and for stem points
between 1.6m and 3.6m in height. Because the upper parts of the stems
could not be visually assessed, a height range was used. The utilization
of two independent point clouds for each tree enabled the development
of more complex regression models. The subscript indicates the source
of the calculated metric, and i denotes the wavelength or NDI (e.g.,
1550_meancanopy).

2.8. Statistical analysis

The differences in GWC and EWT between the various infestation
classes were assessed using two-sided, independent-sample Student's t-
tests. Each group was tested for normality using the Shapiro-Wilk test
(Royston, 1982). If non-normality was detected, the Kolmogor-
ov–Smirnov test was used instead of a t-test. The correlations between
infestation symptoms and both LWC metrics and tree structural attri-
butes were assessed using Pearson correlations for the continuous
variables and using Spearman correlations when ordinal-scale variables
were involved (i.e., for individual infestation symptoms).

Due to the ordinal nature of the assessed tree symptoms, ordinal
logistic regression modeling was used to determine which intensity
metrics provided the strongest links to the tree symptoms that could
affect the lidar intensity distribution: resin flow, discoloration, and
defoliation. This was done by producing cumulative link models with a
single predictor and then comparing the models in terms of statistical
significance and McFadden pseudo R2 to determine the best predictors,
using the following equation (Agresti, 2002; Agresti and Tarantola,
2018; McFadden, 1973):

= −R d d
d

0
0

,2
(7)

where d0 is the deviance of a null model, and d is the deviance of the
actual model. The McFadden pseudo R2 describes how the deviance
decreases compared to the null model. For each symptom, the six
strongest predictors according to R2 are reported in the Results section.
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Linear-regression modeling was used to estimate each individual-
intensity metric's ability to explain attack-level score, GWC, and EWT. A
model was developed with each intensity metric as a predictor, and all
the models were compared according to R2 and root mean square error
(RMSE). The six strongest predictors were reported.

Additionally, multiple-regression models were developed to eval-
uate the intensity metrics' ability to estimate attack-level score, GWC,
and EWT. The regression models were developed using a sequential
stepwise algorithm with a maximum of three explanatory variables,
resulting in nearly 10 subjects per variable at the maximum number of
variables (n=29). At least two subjects are needed for each variable to
ensure the reliable estimation of regression coefficients (Austin and
Steyerberg, 2015). The Schwarz–Bayesian information criterion, which
penalizes for model complexity, was used to select the model (Schwarz,
1978). Variance inflation factor was used to detect multicollinearity,
and a simpler model was selected if this value was> 3 for a given
variable (Zuur et al., 2010). Adjusted R2 and predicted R2 were used to
evaluate the goodness of fit so as to avoid overfitting the models. The
accuracy of the developed regression models was assessed using RMSE
and the coefficient of determination, which were calculated using
leave-one-out cross-validation, per the following equations:


=

∑ −=RMSE
y y
n

( )
,i

n
i i1

2

(8)

= ×
−

RMSE RMSE
y y

% 100 ,
max min (9)

where n is the number of observations, yi is the observed value for the
measurement i, yi is the predicted value for the measurement i, ymin is
the minimum of the observed data, and ymax is the maximum of the
observed data.

To assess the separability between the infestation classes, linear
discriminant analysis (LDA) was conducted using the “mass” package in
R (Ripley et al., 2013). Two classification schemes were tested: a three-
class scheme (no infestation, low infestation, and moderate infestation) and
a two-class scheme (not infested and infested). The number of ex-
planatory variables in the LDA was kept to the maximum of three, and
the variables were chosen based on the results of the ordinal logistic
regression so as to avoid overfitting due to the limited number of
samples (n=29). The accuracy of the classification was then computed
using leave-one-out cross-validation. All of the statistical analyses were
conducted in R (version 3.4.3, (R Core Team, 2013)).

3. Results

3.1. The relationship between I. typographus symptoms and LWC

Among the LWC metrics, only GWC is affected by the symptoms of I.
typographus infestation (Fig. 5). GWC shows a significant correlation
(p < 0.001) with attack-level score and is significantly correlated with
all infestation symptoms except for bark damage (Table 5). GWC shows
the strongest correlation with discoloration of the crown. GWC is sig-
nificantly lower for trees in the medium infestation class than those in the
low infestation class, which in turn is significantly lower than in the no

Fig. 2. The point-cloud processing workflow: tree segmentation, outlier removal, point classification, and then intensity calibration.
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infestation class (p < 0.05). Due to non-normality in the no infestation
class of EWT, the Kolmogorov–Smirnov test was used to compare the no
infestation and low infestation classes of EWT. However, no significant
changes between the infestation classes exist, and no significant cor-
relation exists between EWT and attack-level score.

3.2. Other factors that affect LWC

EWT shows a strong correlation with leaf mass area (LMA), a
measure of leaf density (r=0.93), but not with GWC (Table 5). Sam-
pling height shows a significant correlation with EWT: higher sample
heights correlate with higher EWT. LMA also correlates positively with
sampling height. In addition, GWC shows a weak but nonsignificant
positive correlation with sampling height; thus, LWC seems to exhibit

vertical variation within the tree crown.

3.3. Sensitivity of lidar intensity to varying incidence angles

Both wavelengths are sensitive to variations in the incidence angle
(Fig. 6). The 99% reflectance panel shows a continuous decrease as the
incidence angle increased; at the 70° angle, this results in an intensity
reduction of 66.3% and 72.1% for the 905 and 1550 nm wavelengths,
respectively. The NDI value stays near 0 for values up to 50°, at which
point it increases slightly with increasing angles, up to 70°. The 40%
reflectance panel shows a similar trend, with 60.8% and 70.2% de-
creases for the 905 and 1550 nm wavelengths at the 70° angle; the NDI
also shows a slightly increasing trend, albeit with less volatility. How-
ever, the leaf samples for the silver birch and Norway maple have a
different pattern, with a more linear decrease as the incidence angle
increases. For the silver birch leaf samples, the 905 and 1550 nm wa-
velengths decrease by 66.0% and 78.3%, respectively; the NDI value
increase by 72.5%. The Norway maple leaf samples show a smaller
decrease in calibrated intensity: 57.5% and 68.8% for the 905 and
1550 nm wavelengths, respectively; the NDI value increases by 42.4%.

3.4. Lidar intensity response to infestation symptoms

The lidar intensity metrics for the 905 and 1550 nm wavelengths, as
well as the calculated NDI, vary according to the infestation symptoms
(Table 6). The extent of resin flow is best detected with the 905_ran-
gestem, 905_maxstem, 1550_maxstem, and 1550_rangestem features, thus
indicating an increase in the strength of intensity due to resin on tree
stem. Discoloration affects the following features most strongly: NDI_-
kurcanopy, 1550_p40canopy, 1550_p30canopy, 1550_p50canopy, and

Fig. 3. The relationship between raw intensity and distance, before and after the distance correction.

Table 3
The polynomial model parameters used for the distance correction of lidar in-
tensity.

Parameter Trimble TX5 FARO X330

Intercept 1826.5 1550.813
a1 −142.5 −214.561
a2 126.0 167.473
a3 0.3037 −58.98
a4 −75.7555 −54.93
a5 65.4323 121.396
a6 −1.75 −112.53
a7 −19.41 51.282
a8 8.4852 1.697
a9 26.2545 −32.113
a10 −21.18 25.183
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905_skecanopy. The intensity features that are most sensitive to defolia-
tion are 1550_skecanopy, 1550_maxcanopy, 905_skecanopy, and 1550_ran-
gecanopy. The features 905_skecanopy and 1550_skecanopy are among the

top predictors of both discoloration and defoliation in the canopy. The
905_skecanopy feature also has the strongest explanatory power for the
infestation class in the two-class system. Other predictors that are among
the strongest predictors of this class include 1550_maxcanopy,
1550_rangecanopy, and NDI_kurstem.

3.5. The prediction of infestation level and LWC

The results of the linear-regression models with single intensity
metrics as predictors indicate that, at both wavelengths, the strongest
predictor for attack-level score was skewness (905_skecanopy and
1550_skecanopy), as shown in Table 7. Regarding GWC, the distribution
of NDI from the stem has the strongest explanatory power; the canopy
metrics show only weak correlations with GWC. The best predictors of
EWT use the kurtosis of the 905 and 1550 nm wavelengths for the
whole data set. The removal of a single outlier from the EWT data re-
sults in different intensity metrics (minimum, maximum, and range of
NDI) that show the best explanatory power; removing the outlier also
leads to slightly improved RMSE.

The developed multiple-regression models show fair agreement
between the point-cloud and tree-infestation metrics (Fig. 7). The point-
cloud metrics explain 50% of the variation in attack-level score
(RMSE=1.95), using intensity metrics from both the stem and the
canopy (Table 8). The regression model for EWT shows slightly higher

Fig. 4. The relationship between measured raw intensity (Digital Number, DN) and reflectance for both scanners, including the predicted reflectance that was used
for correcting the logarithmic behavior.

Table 4
Summary of the calculated intensity metrics. N.B. i denotes the wavelengths
905 and 1550 nm, as well as the calculated NDI.

Metric Description

i_mean Average intensity
i_std Standard deviation of intensity
i_p10, i_p20, … i_p90 Multiple-of-10 percentiles (10th through 90th) of the

intensity distribution
i_max Maximum intensity
i_min Minimum intensity
i_kur Kurtosis of the intensity distribution (Davies, 1947)
i_ske Skewness of the intensity distribution (Davies, 1947)
i_entropy Shannon diversity index (entropy) of the intensity

distribution (Shannon, 2001)
i_MAD Median absolute deviation of intensity (Leys et al.,

2013)
i_range Difference between maximum and minimum intensity
i_DBW Density bandwidth calculated with the rule of thumb in

the kernel density estimation (Silverman, 2018)
i_D05, i_D25, i_D50,

i_D75
Density variables: the 95th percentile divided by 5th,
25th, 50th, and 75th percentiles, respectively.

Fig. 5. Box plots of gravimetric water content (GWC) and equivalent water thickness (EWT) for the trees (n=66) in each infestation class. There are significant
differences (p < 0.05) between the a, b, and c groups.
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agreement between predicted and observed values (adjusted R2= 0.68,
RMSE=0.0026 g/cm2); 48% of the variation in GWC (RMSE=2.03)
can be explained with a regression model that includes only stem-based
intensity metrics. The canopy-based intensity metrics show low pre-
dictive power (adjusted R2= 0.19, RMSE=2.58) for GWC. The re-
moval of a single outlier from the EWT distribution results in slightly
different explanatory variables; according to the stepwise algorithm,
the mean and minimum canopy NDI are most appropriate. All the
models employed a mix of intensity metrics from the 905 and 1550 nm
wavelengths.

The explanatory variables selected in the models do not exhibit a
clear trend, but similar intensity metrics are among the top predictors in
the simple models. The models all include variety of intensity metrics
from both the 905 and 1550 nm wavelengths and from the NDI.
However, the presence of variables that explain the shape of the in-
tensity distribution (e.g., skewness, kurtosis, and density) is pro-
nounced in these models. Every model includes at least one explanatory
variable that describes the shape of the distribution.

The LDA shows fair discrimination between the not infested and in-
fested classes (Table 9), but the low and moderate infestation classes show
weak accuracy. The overall accuracy is 66% in the three-class scheme
but 90% in the two-class scheme. The classification accuracy is the
same for not infested and infested trees in the two-class classification
scheme, with a producer's accuracy of 75%.

4. Discussion

4.1. Incidence angle and distance effects on lidar intensity

The sensitivity of TLS intensity to varying incidence angles and
calculated NDIs was studied to evaluate the extent to which NDI
moderates the effect of the incidence angle. The results show that, with
Lambertian scatterers such as the reflectance panels used in this study,
NDI cancels out a large portion of the incidence angle's effect; the NDI
value shows only a slight increase as incidence angles increase.
However, the results of tests with leaf samples from fresh Norway
maple and silver birch trees reveal that incidence angle influences the
NDI nearly as much as it does the individual wavelengths. The NDI
increases steadily with increasing incidence angles in both samples.
This is likely due to the leaves' specular (mirror-like) reflection beha-
vior, which results in differing relationships between intensity and in-
cidence angle at each wavelength (Kaasalainen et al., 2018). NDI's in-
cidence-angle dependency seems species-specific, as scholars have
identified various types of relationships between NDI (and other spec-
tral ratios) and incidence angle (Elsherif et al., 2018; Kaasalainen et al.,
2016). Variations in wavelength affect Norway spruce less than they
affect deciduous species (Kaasalainen et al., 2018). Tests are required to
determine which leaf structures enable more reliable intensity mea-
surements by reducing the incidence-angle effect. Conifer needles can
exhibit a variety of incidence angles, even within a single lidar

footprint, which complicates corrections for incidence angle. Moreover,
the varying cross-section of lidar-illuminated needles creates additional
variations in the intensity measurements. However, scholars have re-
cently shown that NDI can reduce these effects among coniferous spe-
cies, as compared to single-wavelength intensity (Junttila et al., 2016,
2018).

The intensity response of Norway spruce among other conifer spe-
cies is characterized by a so called edge effect, in which the target does
not completely fill the laser beam's diameter, resulting in a weaker
intensity response (Eitel et al., 2010). Fig. 8 shows how, in each defo-
liation scenario, the laser footprint encounters a distinct amount of
target edge, as well as how the complexity of the surface pattern varies
under the illuminated area. The effect that distance has on the reflected
light (and therefore on the measured intensity) can explain the reduc-
tion in the strength of the intensity response. The range has at least
double the effect on small linear targets as it has on large surfaces
(Korpela, 2017). Well-defined surfaces thus show much higher in-
tensities than complex surfaces (e.g., needles or branches with needles),
which was observed in the data for this study as well. Although the
reflectance of needles and bark should be near the same magnitude
(Hoque et al., 1990), bark has nearly twofold higher calibrated intensity
than foliage. Similarly, the skewness values of both the 905 and
1550 nm wavelengths are among the strongest predictors for defolia-
tion in this study despite the low intensity of defoliation observed in the
data; this indicates that a reduced amount of edge in the defoliated
canopies influences the intensity-value distribution. Therefore, the ab-
solute calibration of lidar intensity is complicated by the effect of the
varying target distance within the canopy. This distance correction
should be further investigated using other coniferous tree species so as
to improve the radiometric calibration of TLS intensity. According to
this study's results, the lidar-intensity distribution can explain part of
the variation in infestation severity despite these challenges.

4.2. LWC as an indicator of bark-beetle infestation

The measured LWC from Norway spruce trees with varying I. ty-
pographus infestation levels shows that LWC varies due to the rate of
bark-beetle colonization. Significant differences in GWC exist between
the no infestation and low infestation groups, despite the relatively small
sample size of 33 trees. The relationship between GWC and infestation
severity is linear, even though the study area is entirely characterized
by low and moderate infestation symptoms due to the low temperatures
and high precipitation during the summer of the sample collection.
GWC shows significant correlations with all the observed infestation
symptoms except for bark damage, but the strongest is the discoloration
of the crown, which has a correlation coefficient of 0.71. Infestation
severity does not significantly affect EWT; however, EWT has a weak
negative trend with increasing bark-beetle infestation severity. Other
researchers have identified a significant decrease in EWT in the upper
canopy during the green-attack stage of infestation (Abdullah et al.,

Table 5
Correlation matrix of the infestation symptoms, attack-level score, structural attributes, and LWC (tree level, n=33), as well as needle measurements (EWT, GWC,
and sampling height) (twig level, n=66). The correlations in bold are significant (p < 0.05).

Attack-level score Defoliation Discoloration Resin flows Insertion holes Bark damage DBH Tree height Sampling height EWT GWC

LMA −0.04 0.11 0.16 −0.10 −0.03 −0.28 0.21 0.20 0.30 0.93 −0.20
Attack-level score 0.77 0.68 0.89 0.88 0.59 −0.24 −0.14 − −0.26 −0.59
Defoliation 0.63 0.56 0.59 0.09 −0.15 −0.07 − −0.09 −0.51
Discoloration 0.44 0.50 0.19 0.08 −0.07 − −0.05 −0.71
Resin flows 0.89 0.57 −0.04 −0.02 − −0.12 −0.39
Insertion holes 0.48 −0.11 −0.03 − −0.10 −0.43
Bark damage −0.14 −0.13 − −0.23 −0.14
DBH 0.62 − 0.19 −0.08
Tree height − 0.15 −0.07
Sampling height 0.34 0.16
EWT 0.15
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2019), as well as significant reflectance differences in the water ab-
sorption bands within the canopy (Immitzer and Atzberger, 2014).
Within-tree variation and relatively small sample sizes may have hin-
dered the detection of significant EWT differences in this study.

There is a strong relationship between EWT and LMA in this study
(r=0.93). Both measures express significant, positive correlations with
sampling height and seem to vary due to local illumination. Scholars
have found similar vertical variations of EWT before, but only with
smaller trees (Elsherif et al., 2018). Local illuminance conditions affect
LMA due to its relationship between photosynthetic capacity, which is
supported by the correlation between sample height and LMA (Poorter
et al., 2009). These results suggest that GWC is a more robust indicator
of leaf water status than EWT.

4.3. Predicting LWC with lidar intensity

The linear-regression models for GWC and the individual-intensity
metrics reveal a relationship with an R2 of 0.38 (RMSE=2.35) between
NDI_p10stem metric and GWC. The higher percentiles and the
NDI_meanstem have similar relationships. A multiple-regression model
with three intensity metrics (NDI_kurstem, 1550_D75stem, 1550_p40stem)

from the stem explained 48% of the variation in GWC (RMSE=2.03).
Scholars have used NDI to estimate EWT, which is sensitive to water
content (Gaulton et al., 2013; Junttila et al., 2018), so NDI could also
possibly be used to measure bark water content and to indicate a tree's
water status. There could be a link between GWC and bark water
content because bark beetles feed on phloem, ultimately causing trees
to die, dry out, and drop their bark. Bark water content is sensitive to
moisture stress, which can increase a tree's susceptibility to bark-beetle
attacks (Lorio Jr and Hodges, 1968; Økland and Berryman, 2004). No
measurements of bark water content were conducted in this study, so
this remains speculative. However, the consistency and the strength of
the relationship between stem NDI and GWC is an unexpected outcome
that is worth investigating in future studies so as to further evaluate the
potential value of stem lidar intensity measurements.

The canopy-intensity metrics show the capability of explaining EWT
(adjusted R2= 0.68, RMSE=0.0026 g/cm2), but the accuracy may be
overestimated due to a single EWT value that is significantly higher
than the rest of the data points. The developed regression models for
EWT show that the NDI and 1550 nm wavelength features are among
the best predictors for EWT, which is in line with what researchers have
found in previous studies in which they estimated the effectiveness of

Table 6
Summary of the statistics for the ordinal logistic-regression models for infestation symptoms, infestation class, and the individual-intensity metrics. The six strongest
predictors for each symptom are reported here.

Resin flow Discoloration

Intensity metric p R2 Intensity metric p R2

905_rangestem 0.034 0.14 NDI_kurcanopy 0.024 0.23
905_maxstem 0.043 0.12 1550_p40canopy 0.011 0.20
1550_maxstem 0.057 0.10 1550_p30canopy 0.0085 0.19
1550_rangestem 0.056 0.10 1550_p50canopy 0.013 0.19
905_skestem 0.037 0.09 905_skecanopy 0.012 0.19
NDI_D75stem 0.086 0.05 1550_skecanopy 0.010 0.18

Defoliation Infestation class

Intensity metric p R2 Intensity metric p R2

1550_skecanopy 0.0068 0.13 905_skecanopy 0.0025 0.20
1550_maxcanopy 0.011 0.11 1550_maxcanopy 0.0053 0.19
905_skecanopy 0.0096 0.11 1550_rangecanopy 0.0059 0.18
1550_rangecanopy 0.013 0.11 NDI_kurstem 0.0071 0.14
905_p60canopy 0.011 0.10 NDI_D50stem 0.0095 0.13
905_p50canopy 0.012 0.10 NDI_D25stem 0.0098 0.13

Table 7
Summary of the six strongest individual-intensity predictors of the linear-regression models for attack-level score, GWC, and EWT.

Attack-level score GWC

Intensity metric R2 RMSE RMSE% Intensity metric R2 RMSE RMSE%

905_skecanopy 0.39 2.28 22.8 NDI_p10stem 0.38 2.35 22.1
1550_skecanopy 0.30 2.45 24.5 NDI_p20stem 0.37 2.37 22.3
1550_maxcanopy 0.27 2.49 24.5 NDI_p30stem 0.36 2.39 22.4
1550_rangecanopy 0.26 2.51 25.1 NDI_p40stem 0.35 2.41 22.6
905_p30canopy 0.24 2.55 25.5 NDI_meanstem 0.34 2.42 22.8
905_p20canopy 0.23 2.55 25.5 NDI_p50stem 0.34 2.43 22.8

EWT EWT (without outliers)

Intensity metric R2 RMSE RMSE% Intensity metric R2 RMSE RMSE%

905_kurcanopy 0.33 0.0039 16.3 NDI_mincanopy 0.16 0.0033 26.8
1550_kurcanopy 0.33 0.0040 16.4 NDI_rangecanopy 0.16 0.0033 27.0
1550_skecanopy 0.32 0.0040 16.5 NDI_maxcanopy 0.15 0.0033 27.0
1550_rangecanopy 0.30 0.0040 16.7 1550_skecanopy 0.14 0.0033 27.2
1550_maxcanopy 0.30 0.0040 16.8 1550_rangecanopy 0.13 0.0033 27.3
905_rangecanopy 0.23 0.0042 17.5 NDI_entropycanopy 0.13 0.0033 27.4
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TLS intensity in mapping EWT, as both are suitable for EWT estimation
(Junttila et al., 2018; Zhu et al., 2017). This study's stepwise algorithm
chose the following intensity features: 1550_kurcanopy, NDI_sdcanopy, and
NDI_mincanopy. The selection of features based on the shape of the in-
tensity-value distribution—rather than on statistics that depend on the
scale of the value distribution (e.g., mean and percentiles)—is ex-
plained by the complications in the intensity calibration due to the
varying effect that distance has on lidar intensity. The canopy-intensity
metrics show only a weak relationship with GWC in this study.

LWC exhibits within-tree variation in this study; this is especially
high for EWT, which shows vertical variation; it may be that, for each
tree in the GWC and EWT reference data, the sampling rate does not
sufficiently describe the variation of LWC in mature trees, thus hin-
dering the development of more accurate regression models. TLS
measures the entirety of the tree canopy that is visible from the scan-
ner's point of view, so local variations in LWC can significantly affect
the development of tree-wise regression models. The point-cloud clas-
sification could also have affected the results because it is difficult to
quantify the effect that the woody material under the needles has on the
intensity response.

4.4. Lidar intensity in response to I. typographus infestation

Various infestation symptoms influence a variety of dual-wave-
length TLS intensity metrics. The single-predictor, ordinal, logistic-re-
gression models indicate that the range and the maximum lidar in-
tensity increase for both the 905 and 1550 nm wavelengths when there
is a large amount of resin on the tree stem, thus indicating that resin can
cause a strong and distinguishable backscatter. This could be due to the
smooth and glossy surface of the resin, which could create a strong,
mirror-like reflection that can be detected in the intensity distributions.
The strongest predictors of crown discoloration are in the distributions

of NDI and the 1550 nm wavelength, which are both sensitive to LWC
(Gaulton et al., 2013; Junttila et al., 2018; Zhu et al., 2015). This result
is in line with the finding that, of all the infestation symptoms, dis-
coloration has the strongest relationship with GWC. Defoliation most
affects the skewness of both the 1550 and 905 nm wavelengths, in
addition to the range and maximum values of the 1550 nm wavelength.
The reduction that the edge effect has on lidar intensity (as discussed
above), as well as the alterations in reflectance, can explain the effect
that defoliation has on the intensity-distribution skewness. The reduc-
tion in LWC in the defoliated tree canopies can explain this influence on
the range and maximum of the 1550 nm wavelength, as there is a sig-
nificant correlation between defoliation and GWC. In addition, re-
searchers have previously observed increases in the reflectance of the
905 nm wavelength during bark beetles' green attack; this could be due
to changes in the needles' cell structures (Cheng et al., 2010).

The relationship between infestation severity and lidar intensity was
analyzed using two response variables: infestation class and attack-level
score. Both analyses indicate that the 905_skecanopy intensity metric has
the most predictive power, with the 1550_skecanopy and 1550_maxcanopy
metrics in the following positions. Based on these analyses, the 905 nm
wavelength seems to be more sensitive to bark-beetle infestation than
the 1550 nm wavelength. This could be due to generally stronger re-
flectivity of Norway spruce needles in the 905 nm band, thus enabling
observations in that band to detect more subtle changes than can be
found in the 1550 nm band (Rautiainen et al., 2018).

4.5. The early detection of I. typographus infestations using lidar intensity

Dual-wavelength TLS were shown to detect I. typographus infesta-
tions even in the green-attack stage. This early detection was enabled
by the application of intensity metrics from both the stem and the ca-
nopy as part of a LDA model. The separation of the low and moderate

Fig. 7. Observed vs. predicted attack-level score, GWC, and EWT. The adjusted R2 of the multiple-regression models is reported within the plots. Green attack trees
(i.e., those with no visible discoloration) are circled in the attack-level score plot. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 8
Summary of the regression analysis for the estimation of attack-level score, GWC, and EWT at tree level, with the p for each of the selected variables (⁎p < 0.001;
⁎⁎p < 0.01).

Independent variable Explanatory variables Models Adjusted R2 Predicted R2 RMSE RMSE%

Attack-level score Canopy, stem 1550_ rangecanopy⁎, 905_rangestem⁎, 1550_D75canopy⁎⁎ 0.50 0.44 1.95 19.5
GWC Canopy, stem NDI_kurstem⁎, 1550_D75stem⁎⁎, 1550_p40stem⁎⁎ 0.48 0.36 2.03 19.1
GWC Canopy 905_p80canopy⁎⁎, 1550_D75canopy⁎⁎ 0.19 0.11 2.58 24.2
EWT Canopy 1550_kurcanopy⁎, NDI_sdcanopy⁎, NDI_mincanopy⁎ 0.68 0.50 0.0026 10.7
EWT (without outliers) Canopy NDI_meancanopy⁎. NDI_mincanopy⁎ 0.39 0.35 0.0027 22.0
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infestation classes was only moderately successful, with an overall
classification accuracy of 66%. The two-class classification scheme (not
infested and infested) showed an overall classification accuracy of 90%.
However, it should be noted that the balance of trees within each class
was unequal, which increased the measured overall classification ac-
curacy. The producer's accuracy for the not infested class was 75% for
both classification schemes. These results are encouraging, but more
research is required to further evaluate the accuracy of this method
because the sample size was small and because there was no separate
test data set to provide an independent assessment of the classification
accuracy. A large data set with hundreds or thousands of trees would
enable the employment of machine-learning techniques that could as-
sist in harnessing the full potential of the high-resolution multispectral
TLS data for the reflectance and structural variables.

The multiple-regression model shows fair agreement between the
attack-level score and the lidar intensity metrics (R2= 0.50,
RMSE=1.95), further indicating the potential of using lidar intensity
in assessments of infestation severity; the data was characterized only
by low and moderate damage, however. The variables for the stepwise
algorithm differed slightly from the selected LDA variables due to the
former's different data-fitting approach (multiple regression), but the
selected variables did include the 905_rangestem feature, which shows
predictive power for detecting resin flows. All the developed multiple-
regression models employ more metrics that describe the shape of the
value distribution (in terms of kurtosis, skewness, and density) than
actual values (e.g., means or percentiles). This is an interesting result
because it indicates that absolute radiometric calibration between data
sets may not be necessary for the detection of bark-beetle infestations;

Table 9
Leave-one-out cross-validation results of the LDA classification for the three-class and two-class schemes (n=29).

Three-class scheme

Explanatory variables: NDI_kurcanopy, 905_rangestem, 905_skecanopy

Classification

No infestation Low infestation Moderate infestation Total Producer accuracy (%)

Field control
No infestation 6 2 0 8 75
Low infestation 1 8 3 12 67
Moderate infestation 1 3 5 9 56

Total 8 13 8 29
User accuracy (%) 75 62 63 Overall accuracy: 66%

Two-class scheme

Explanatory variables: 905_skecanopy, 905_rangestem, 905_skestem

Classification

Not infested Infested Total Producer accuracy (%)

Field control
Not infested 6 2 8 75
Infested 1 20 21 95

Total 7 22 29
User accuracy (%) 86 91 Overall accuracy: 90%

Fig. 8. Illustration of dead, defoliated, and undefoliated branches with laser-beam diameters (to scale) for a distance of 20m using the 905 nm wavelength.
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this would simplify the preprocessing requirements.
TLS and other terrestrial lidar techniques (e.g., mobile lidar sys-

tems) are also increasingly common in operational forest inventories in
both the public and private sectors, largely due to their ability to de-
scribe forest structures accurately (Liang et al., 2018). In the future,
lidar sensors will likely be integrated into harvesters, thus assisting
drivers in the selection and partitioning of trees and enabling the col-
lection of vast amounts of data on the remaining trees (Liang et al.,
2014). As lidar sensors develop, their prices will drop, and their sizes
will decrease, allowing for an increasing in multispectral applications
and enabling simultaneous measurements of trees' vigor and structure
(Eitel et al., 2016). The collection of such data could aid in the large-
area mapping of forest health by providing ground-truth data for use in
training models based on, for instance, satellite imagery. As an ex-
ample, Sentinel-2 images have shown potential for the early detection
of I. typographus when the infected area is large, but such models still
require ground-reference data for calibration and validation (Abdullah
et al., 2019). Based on the results of this study, TLS intensity has po-
tential for the objective assessment of trees' condition and health, de-
spite the relatively small sample size of this study. This method should
thus be further investigated. The method could be improved by, for
instance, combining intensity metrics with structural metrics that better
assess defoliation levels and that thus better distinguish the severity of a
tree's decline. The lidar-intensity calibration for coniferous trees also
requires further research so as to eliminate some of the random varia-
tion and improve the usability of the data. In addition, the stability of
the various intensity metrics across multiple data-acquisition scenar-
ios—in which scanning angles can vary and cause changes in viewing
positions—should be investigated.

This is the first step toward the development of a single-sensor so-
lution for simultaneously measuring trees' structure and vigor. TLS
shows the ability to detect early bark-beetle colonization, which could
enable forest managers to predict bark-beetle infestations at higher
accuracy so that they can take preemptive measures to prevent further
forest damage and to mitigate the existing damage, such as by con-
ducting salvage cuttings to remove infested trees. Up-to-date informa-
tion on tree vigor could also help identify which trees are most vul-
nerable to bark-beetle attacks; such trees could then be removed when
the risk of a bark-beetle outbreak is high. In future studies, researchers
should focus on improving the distance calibration of TLS intensity for
targets that cause multiple scattering, such as coniferous species, as
well as on comparing multispectral TLS to other lidar-sensor platforms
across a variety of tree species, symptoms, and causes of tree decline or
damage.
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