
Assessing non-linear models for galaxy clustering III: theoretical accuracy for Stage
IV surveys

Benjamin Bose

Departement de Physique Theorique, Universite de Geneve,
24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland

Kazuya Koyama

Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, Hampshire, PO1 3FX, UK

Hans A. Winther

Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, Hampshire, PO1 3FX, UK and

Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway
(Dated: August 13, 2019)

We provide in depth MCMC comparisons of two different models for the halo redshift space power
spectrum, namely a variant of the commonly applied Taruya-Nishimichi-Saito (TNS) model and an
effective field theory of large scale structure (EFTofLSS) inspired model. Using many simulation
realisations and Stage IV survey-like specifications for the covariance matrix, we check each model’s
range of validity by testing for bias in the recovery of the fiducial growth rate of structure formation.
The robustness of the determined range of validity is then tested by performing additional MCMC
analyses using higher order multipoles, a larger survey volume and a more highly biased tracer
catalogue. We find that under all tests, the TNS model’s range of validity remains robust and is
found to be much higher than previous estimates. The EFTofLSS model fails to capture the spectra
for highly biased tracers as well as becoming biased at lower wavenumbers when considering a very
large survey volume. Further, we find that the marginalised constraints on f for all analyses are
stronger when using the TNS model.

I. INTRODUCTION

Future spectroscopic galaxy surveys will have the power to probe the growth rate of cosmological structure, f ,
to an unprecedented level of precision. The measurement of the anisotropy in the galaxy distribution, the so called
redshift space distortions (RSD) [1], is one such way to get a measure of this, and will tell us a lot about gravity
and cosmology. This comes with the caveat that we apply an accurate theoretical model to the data. If the model
we apply is not sufficiently accurate then the value of f we infer from the data will not be the ’true’ value, and our
picture of nature will be biased.

This caveat becomes very important in the context of stage IV surveys such as Euclid1 [2] and the Dark En-
ergy Spectroscopic Instrument (DESI)2 [3]. The issue here is that the data will come with very small observational
errors which will greatly penalize small inaccuracies in our modelling. This then requires that applied models be
heavily scrutinized and tested before being applied to real observational data and drawing conclusions about the
universe.

The two point correlation function, or power spectrum, has been the observable commonly used in past data
sets [4–10]. As it uses only galaxy pairs, it can be measured with relatively high statistical significance, a significance
that is enhanced as we move to smaller galaxy separations. For this reason, modeling the smaller scales becomes
an attractive means of tightening constraints on growth. But as mentioned, this needs to be done carefully and
any potential power spectrum models must be well validated. These models usually come with additional degrees of
freedom (dof) that are necessary to model largely unknown physics, such as non-linear matter dynamics or the bias
between galaxy and dark matter distributions. These so called nuisance parameters degrade constraints on cosmology
and gravity in data analyses as they are marginalised over. Thus, a model whose nuisance parameters are few and

1 www.euclid-ec.org
2 www.desi.lbl.gov
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non-degenerate with cosmological ones is strongly preferred.

In a previous work [11], we identified two prominent and competing semi-perturbative models for the redshift
space galaxy power spectrum. Namely, the TNS model [12] with a Lorentzian damping prefactor and an effective field
theory of LSS (EFTofLSS) [13, 14] inspired model. Both these models attempt to model the quasi non-linear regime of
structure formation in different ways and both were shown to do well in reproducing the measured halo power spectrum
from COLA [15–19] simulations when f was fixed to its fiducial value. In that work we were concerned with determin-
ing the degeneracies of each model’s dofs as well as forecasting the model’s constraint on f in the context of a future
spectroscopic survey. We also obtained realistic constraints in a limited Markov Chain Monte Carlo (MCMC) analysis.

In this work we go a step further in testing how robust each of these model’s accuracy is by making use of var-
ious data sets in the setting of a real data analysis. In particular, we use a large suite of high resolution COLA
simulations to test the accuracy of the TNS and EFTofLSS model. We do this by letting the growth rate of structure
and all additional model dof to vary in further MCMC analyses. We then identify where each model fails to reproduce
the fiducial growth rate and compare their respective constraints.

This paper is organized as follows: In Sec. II we present the biased tracer RSD models. In Sec. III we present
the simulations we use and our primary MCMC analysis. In Sec. IV we present the results from additional analyses
testing the robustness of the models to different data sets and errors. In Sec. V we summarize our findings and
conclude.

II. THEORETICAL MODELS

We will begin by presenting the two biased tracer RSD models. These were described and studied in [11] and we
refer the reader to this paper for more explicit information on the exact formulas.

The first is the TNS RSD model [12] combined with the tracer bias model of McDonald and Roy [20]. The
model is given by

PSTNS(k, µ) =DFoG(µ2k2σ2
v)
[
Pg,δδ(k, b1, b2, N) + 2µ2Pg,δθ(k, b1, b2) + µ4P 1−loop

θθ (k)

+ b31A(k, µ) + b41B(k, µ) + b21C(k, µ)
]
, (2.1)

where the superscript S denotes the power spectrum in redshift space, µ is the cosine of the angle between k and
the line of sight and Pg are the 1-loop galaxy power spectra with the bias model of [20] implicitly included. The
logarithmic growth rate of structure f is also implicit (again see [11]). The real space power spectra are all constructed
within standard Eulerian perturbation theory at the 1-loop level 3 , A,B and C are perturbative RSD correction terms
[12], while the prefactor, DFoG, is phenomenological and here takes a Lorentzian form

DLor
FoG(k2µ2σ2

v) =
1

1 + (k2µ2σ2
v)/2

, (2.2)

where σv is a free parameter and represents the velocity dispersion of the tracers. We again refer the reader to [11] for
the formulas for the perturbative components of the model, along with the explicit dependency on the independent
free bias parameters {b1, b2, N}, where b1 is the linear bias, b2 is the second order bias term and N is a stochasticity
term.

We remark that this model is very similar to the model chosen for the BOSS analysis [10] and has been very
well studied and successful in reproducing simulation measurements. It has also shown robustness when considering
alternative theories of gravity (see for example [22, 23]). The full set of nuisance parameters in this model is
{σv, b1, b2, N}.

The second model we consider is one based on the EFTofLSS prescription for the redshift space dark matter
spectrum (see [24] for example). To this we introduce the tracer bias model of [20] (same as used in Eq. 2.1) as

3 Note that within the loop integrals we parametrise the integrated wave number as k′ = kr and then take a UV cut-off of r = 10. We
have found that the integrals are insensitive to this choice at or above the chosen value. See [21] for a discussion on this issue.
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well as use a resummation scheme [24, 25] 4 for the dark matter 1-loop power spectra only as these are the leading
contributions to the oscillations associated with baryon acoustic oscillations when fitting the counter terms. Note
that we do not do a full resummation of the redshift space spectrum as in [24], but the impact of resummation has
also been shown to have a low impact on the best-fit analysis conducted in [30] where they consider halos in redshift
space. The expression is given as

PSeft(k, µ) ={1− (D2
1f

2k2µ2σ̃2
v)}
[
Pg,δδ(k) + 2µ2Pg,δθ(k) + µ4P 1−loop

θθ (k)
]

+ b31A(k, µ) + b41B(k, µ) + b21C(k, µ)

− 2D2
1PL(k)k2

[
c2s,0 + c2s,2µ

2 + c2s,4µ
4 + µ6(f3c2s,0 − f2c2s,2 + fc2s,4)

]
, (2.3)

where cs,i are the sound speed parameters of EFTofLSS, D1 is the linear growth factor, PL(k) is the primordial power
spectrum 5 and

σ̃2
v =

1

6π2

∫
dqPL(q). (2.4)

The nuisance parameters of this model are {b1, b2, N, cs,0, cs,2, cs,4} which is an additional 2 over the TNS approach
described by Eq. 2.1. A slight variant of Eq. 2.3 was found to be well motivated in [30] through a Bayesian criterion
which accounts for number of free parameters of the model as well as fits to simulations. On the other hand, the
proper treatment of bias in EFTofLSS has been presented in [32] but comes with 10 nuisance parameters (compared
to the 6 of Eq. 2.3). Given this, it is very unclear whether this model would be favoured over the ones presented here.

In Eq. 2.1 and Eq. 2.3 cosmological parameter dependence enters through the primordial power spectrum PL(k)
with the parameter σ8

6 being completely degenerate with the linear growth factor D1. In our analysis we fix D1

or equivalently σ8. Further we fix a fiducial cosmology and in doing so any results made on the robustness or range
of validity are consequently conservative. Any results on constraining power are conversely optimistic as we do not
marginalize over cosmology.

III. SIMULATIONS

The simulations used in this paper were created using a modified version [19] of the L-PICOLA code [17]. These
simulations use the fast approximate COmoving Lagrangian Acceleration (COLA) method [15]. We created a set of
35 realisations of a ΛCDM cosmology defined by Ωm = 0.307,Ωb = 0.0482, h = 0.678, σ8 = 0.823, ns = 0.961. The
simulations had N = 10243 particles in a box of B = 1024 Mpc/h with Ngrid = 30003 grid-cells. We also ran a full
N-body simulation using the RAMSES [33] code that had the same initial condition as one of the COLA simulations
which allowed us to check the accuracy of our results. These results can be found in Appendix A.

From the simulations we computed halo catalogs using a friends-of-friends (FOF) algorithm7. The halo catalogs
were then trimmed based on a number density criterion (we considered samples with n = 10−3 and 10−4(Mpc/h)−3)
giving us the mock data from which we computed the RSD multipoles and the real-space power spectrum.

PICOLA multipoles are measured using the distant-observer approximation. That is, we assume the observer is
located at a distance much greater then the box size (r � 1024 Mpc/h), so we treat all the lines of sight as parallel
to the chosen Cartesian axes of the simulation box. Next, we use an appropriate velocity component (vx, vy or vz) to
displace the position of a matter particle or dark matter halo to put it into redshift space. We then average over three
line-of-sight directions. We further average over the 35 PICOLA realisations. These are calculated at both z = 0.5
and z = 1.

IV. RESULTS

Our aim here is to test the accuracy of each of the models outlined in Sec. II and their ability to model the non-linear
regime. To do this we perform a fit to the simulated data. First we perform an angular decomposition of P (k, µ) in

4 See [26–28] for alternative schemes that have been shown to be equivalent to the one adopted here in [29].
5 Produced using CAMB [31] for example.
6 σ2

8 = 1
2π2

∫
|W (kR)|2P (k)k2dk governs the amplitude of density perturbations at R = 8Mpc/h where W (x) =

3(sin(x)−x cos(x))

x3
is the

tophat window function.
7 The halo finder MatchMaker has been included in the MGPICOLA code used in this paper. See https://github.com/damonge/MatchMaker

and https://github.com/HAWinther/MG-PICOLA-PUBLIC
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terms of the multipole moments. This is what is commonly done in real data analyses [7, 10]. These multipoles can
be defined as

P
(S)
` (k) =

2`+ 1

2

∫ 1

−1

dµPS(k, µ)P`(µ), (4.1)

where P`(µ) denote the Legendre polynomials and PS(k, µ) is given by Eq. 2.1 or Eq. 2.3. For the majority of our
analyses we utilize the monopole (` = 0) and quadrupole (` = 2). The inclusion of the hexadecapole is known to
significantly restrict the range of validity/applicability of the models considered. This partly comes from the fact
that each multipole has a different damping scale and so we do not expect a model with less RSD parameters than
the number of multipoles, to be able to capture all of them accurately. Higher order multipoles have finer features
as a function of angle and so may also pick out inaccuracies in the full anisotropic spectrum. Since the information
gain is roughly proportional to each independent k one can access, a restriction in range results in a reduction in
valuable cosmological information. So, since the monopole and quadrupole contain most of the RSD information
we first perform fits using only P0 and P2 and then introduce P4 but restrict the scales to which we compare it to
the data. This is what was done in the BOSS analysis [10]. An analysis using this procedure is outlined in a later
subsection.

Using the multipoles we perform a large number of MCMC analyses on the simulation data in order to test the
model’s recovery of the fiducial growth rate f at various inclusion of scales. We vary all model nuisance parameters
in these analyses as well as f , imposing the following flat priors σv, c

2
s,i, b1 ≥ 0.

We model our log likelihood using the χ2 statistic

− 2 ln(L) =

kmax∑
k=kmin

∑
`,`′=0,2(,4)

[
PS`,data(k)− PS`,model(k)

]
Cov−1

`,`′(k)
[
PS`′,data(k)− PS`′,model(k)

]
, (4.2)

where Cov`,`′ is the covariance matrix between the different multipoles, kmax is the smallest physical scale used in
the analysis and conversely kmin = 0.006h/Mpc is the largest physical scale. We apply linear theory to model the
covariance matrix between the multipoles (see Appendix C of [12] for details). This has been shown to reproduce
N-body results up to k ≤ 0.3h/Mpc at z = 1 [12]. Again, for the majority of our analyses we only consider ` = 0, 2
since these have the largest signal and contain most of the RSD information. We do consider the impact of ` = 4 in
a later subsection.

We wish to work within the context of stage IV surveys. Therefore, we will concentrate our analysis on z = 1
which will be a key redshift targetted by the Euclid mission [34]. Further we use planned tracer number density,
n = 10−3h3/Mpc3 and a realistic observational volume8 of V = 4Gpc3/h3 [3, 34, 35] in our covariance matrix in
Eq. 4.2 9. This volume and number density are also reflected in our halo catalogues and unless otherwise stated,
these will be the default parameters of the analysis.

We will also provide supplementary analyses which will consider the hexadecapole, a lower redshift where non-
linear structure formation is greater, a different catalog of halos with a lower number density and the impact of
having a larger survey volume which will better reflect the combined power of the whole survey over many bins.

A. Dark Matter

Before considering halos, we look at the dark matter distribution as it will be instructive to understand the capabil-
ities of the pure RSD models, i.e. setting b1 = 1 and b2 = N = 0 in Eq. 2.1 and Eq. 2.3. Again, this is done at z = 1
using V = 4Gpc3/h3. Fig. 1 shows the two-dimensional posterior distributions for the TNS and EFTofLSS models
when we only consider dark matter for various kmax used in Eq. 4.2 while Fig. 2 shows the marginalised constraints
on f as a function of kmax. We clearly see both models become biased with a 2σ criterion in their recovery of the
fiducial value of f at around kmax = 0.186h/Mpc. The TNS model diverges quickly as we include even smaller scales
in the analysis while the EFTofLSS model remains biased but this bias does not seem to increase significantly with

8 Note that this depends on the bin-width, and here the volume chosen corresponds to a bin width of ∆z ∼ 0.1.
9 Note we also assume a linear bias in the covariance as determined by the simulation halo catalogs, i.e. the ratio of Pδδ to Pδh. For the
n = 10−3h3/Mpc3 catalog we take b1 = 2.03 for z = 1 and b1 = 1.49 at z = 0.5.
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the inclusion of smaller scales. This is likely due to the fact that TNS has one free parameter to describe the damping
thus it cannot capture the different damping of P0 and P2. At kmax = 0.186h/Mpc the fractional 2σ marginalised
error on f is found to be 3.6% and 3.1% for TNS and EFTofLSS respectively.

Secondly, we immediately note from Fig. 1 that there are significant degeneracies between f and the model nui-
sance parameters. This is not a new result for the TNS model [36, 37]. What we find here though is that this
degeneracy doesn’t weaken as we go to smaller scales. For the EFTofLSS we can see degeneracy between the sound
speed parameters and f as well. This degeneracy seems to weaken as we push to non-linear scales, especially between
c2s,0, c2s,2 and f . The degeneracy between c2s,0 and c2s,2 is also very clear10.

These results can almost be directly compared to those from [24] who also use simulations using the Multidark
cosmology in their comparisons. They consider z = 0 and find that P0 and P2 match the simulation measurements
within 2% and 25% respectively up to k = 0.400h/Mpc. These results are significantly higher than what we find
here, when we consider bias of cosmological parameters as our criterion for kmax. Our kmax is more comparable to
[28] who determine a reliable scale of k = 0.130h/Mpc at z = 0.56, using a percent level deviation criterion.

10 Note that c2s,4 only comes with powers of µ greater or equal to 4 and so in the monopole and quadrupole it does not significantly
contribute.
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FIG. 1: Redshift space dark matter results at z = 1. Top: The 1σ and 2σ confidence contours for the TNS model
for varying kmax ∈ [0.152, 0.280]h/Mpc. Bottom: The 1σ and 2σ confidence contours for the EFTofLSS model for
varying kmax ∈ [0.152, 0.280]h/Mpc. The fiducial value of f is denoted by a dashed line and only P0 and P2 were used
in the analyses.
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FIG. 2: Redshift space dark matter results at z = 1. The mean value of f/ffiducial as a function of kmax using the
TNS (blue triangles) and EFTofLSS (green crosses) models with the marginalised 2σ error bars. Only P0 and P2 were
used in the analyses.

B. Halos

Here we investigate the halo multipoles. Fig. 3 shows the 2σ marginalised constraints on f from the MCMC
analyses as a function of kmax for both TNS and EFTofLSS models. We see that again, under a 2σ criterion, the
models seem to do equally well, and become biased at around kmax = 0.310h/Mpc, which is significantly larger than
the dark matter case. This suggests the bias model provides much added freedom to the models. Further, for TNS,
the velocity dispersion of halos is found to be significantly less indicating that different damping of the monopole and
quadrupole is not as necessary as in the dark matter case. At kmax = 0.310/Mpc the fractional 2σ marginalised error
on f is found to be 3.8% and 6.0% for TNS and EFTofLSS respectively.

In Fig. 4 and Fig. 5 we plot the two-dimensional posterior distributions for TNS and EFTofLSS respectively at
two different kmax; 0.152h/Mpc and 0.310h/Mpc. In the TNS model the degeneracy of f with σv persists but is
significantly reduced by the inclusion of non-linear information. Further, degeneracies of f with the bias parameters
is also reduced with the inclusion of smaller scales. This results in a significant improvement of constraints, with the
fractional 2σ marginalised error on f going from 6.9% to 3.8%. In the EFTofLSS case we find a marginal improvement
on the fractional error on f from 6.9% to 6.0%. This is unsurprising due to the larger number of nuisance parameters
we need to marginalise over.
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FIG. 3: Redshift space halo results at z = 1 with V = 4Gpc3/h3 taken as the bin volume and using a halo number
density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix used in the
analyses. We show the mean value of f/ffiducial as a function of kmax using the TNS (blue triangles) and EFTofLSS
(green crosses) models with the marginalised 2σ error bars. Only P0 and P2 were used in the analyses.
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FIG. 4: Redshift space halo results at z = 1 with V = 4Gpc3/h3 taken as the bin volume and using a halo number
density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix used in the
analyses. The 1σ and 2σ confidence contours for the TNS model for kmax = 0.152h/Mpc (purple) and kmax =
0.310h/Mpc (red). The fiducial value of f is denoted by a dashed line and only P0 and P2 were used in the analyses.
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FIG. 5: Same as Fig. 4 but for the EFTofLSS model.
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C. Analysis at z = 0.5

Here we consider the same survey volume and number density as in the previous subsection but repeat the analysis
for z = 0.5. Fig. 6 again shows the mean value of f obtained from MCMC analyses using V = 4Gpc3/h3 and
n = 10−3h3/Mpc3 as a function of kmax. Here we see that again the TNS model does very well in capturing the
non-linear RSD halo multipoles without biasing estimates of f . On the other hand, the EFTofLSS model becomes
slightly biased at kmax > 0.253h/Mpc. Using the same 2σ criterion, we have kmax = 0.310h/Mpc for the TNS and
kmax = 0.253h/Mpc for the EFTofLSS models. At these kmax we find the fractional 2σ marginalised error on f to
be 4.6% and 5.2% for TNS and EFTofLSS respectively. We find at kmax = 0.253h/Mpc the TNS gives a 5.8% error
which is in fact worse than EFTofLSS despite the smaller parameter space. This is consistent with what we find in
[11], but in that work we did not provide a robust check for the ’true’ kmax.

We again plot the two-dimensional posterior distributions in Fig. 7 and Fig. 8 for TNS and EFTofLSS respec-
tively at two different kmax; 0.152h/Mpc and 0.310h/Mpc for TNS and 0.152h/Mpc and 0.253h/Mpc for EFTofLSS.
We find that the parameter degeneracies do not change significantly between z = 1 and z = 0.5 for both models. We
also find that at z = 0.5 we get similar gains in the constraints on f by going to smaller scales. This improves its
fractional 2σ marginalised error on f from 9.1% to 4.6% while the EFTofLSS gains less due to its lower kmax, going
from 7.2% to 5.2%.

So far the TNS model seems to outperform the EFTofLSS model considered here, but this may be because we
are not fully utilising all the EFTofLSS free parameters. To better test the capabilities of this model we will next
include P4 in our analyses.
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FIG. 6: Same as Fig. 3 but for z = 0.5.
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FIG. 7: Same as Fig. 4 but at z = 0.5.
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FIG. 8: Same as Fig. 7 but for the EFTofLSS model.

D. Impact of hexadecapole

In this subsection we include P4 in the analysis. As mentioned previously, this would severely restrict the range of
scales allowed in the analysis since in general modelling of P4 has been found to be poor for the TNS model [10, 38],
and taking it to too high a kmax can result in a biased estimate for f . We thus proceed by fixing kmax for P0 and P2

as determined in the previous section (see Fig. 3 and Fig. 6). Then, we include P4 up to a new kmax,4 testing for bias
of f at the 2σ level as before. Note that above kmax,4 we only include terms with ` = 0, 2 in the likelihood given in
Eq. 4.2. We do this for both z = 0.5 and z = 1.
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Fig. 9 and Fig. 10 shows the marginalised constraints as a function of kmax,4 at z = 1 and z = 0.5 respectively.
At z = 1 we see that the TNS becomes slowly biased, with a determined kmax,4 = 0.186h/Mpc while the EFTofLSS
remains unbiased up to kkmax,4 = 0.310h/Mpc. A similar trend is seen at z = 0.5, with the EFTofLSS remaining
unbiased all the way up to kmax,4 = kmax = 0.253h/Mpc while the TNS becomes biased before kmax,4 reaches
kmax = 0.310h/Mpc, which at the 2σ level is determined to be kmax,4 = 0.253h/Mpc. This is to be expected as the
EFTofLSS allows for individual non-linear damping over the 3 multipoles using all 3 c2s,i while the TNS only utilises
a single free parameter for all 3 multipoles.

We find that at the determined kmax,4, the 2σ marginalised fractional errors on f for the TNS model to be 4.0 (3.8)%
and 3.4 (4.6)% while the EFTofLSS model’s are 5.7 (6.0)% and 5.1 (5.2)% at z = 1 and z = 0.5 respectively, where
in brackets we indicate the fractional errors determined only using P0 and P2. This indicates that at z = 1, given
the hexadecapole’s weak signal and our errors, it doesn’t offer significant additional information on the growth of
structure. At z = 0.5 it becomes more important and improves constraints significantly for the TNS model whereas
for the EFTofLSS it again doesn’t add to the constraints. To gain insight into this we look at the two-dimensional
posterior distributions. This is shown in Fig. 11 and Fig. 12 for the TNS and EFTofLSS respectively. In the TNS
case, P4 both affects the degeneracy and the constraints on σv, which has a strong degeneracy with f . This results in
the noticeable improvement of the marginalised constraints on f . In the EFTofLSS case, although P4 improves the
constraints on the value of c2s,2 and c2s,4, these lack a strong degeneracy with f (unlike c2s,0) and so constraints on f

are not improved. Further, by including P4 we move the best fit sound speed parameters, c2s,i, to larger values which
reduces the impact of the positivity priors we impose on these parameters. This can explain why at z = 0.5 including
P4 does not improve the constraint on f in the EFTofLSS case.

We also comment on the effect of P4 at z = 1 in the TNS case. Given the small kmax,4 = 0.186h/Mpc, we
don’t expect P4 to make a noticeable impact. By inspection of the two-dimensional posteriors between the P0 + P2

and the P0 + P2 + P4 analyses (not shown in the paper), we find the parameter degeneracies are not impacted by P4

and it only serves to sharpen most of the marginalised distributions, with the exception of f which broadens slightly.
Since the constraint on f does not degrade significantly we do not investigate this matter further.

Of course all the results so far rely on the errors and scatter of the data. The next three subsections are dedi-
cated to investigating these issues. We first look at the effect of smaller errors.
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FIG. 9: Redshift space halo results at z = 1 with V = 4Gpc3/h3 taken as the bin volume and using a halo number
density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix used in the
analyses. Here we fix kmax = 0.310h/Mpc and include P4 and the relevant covariance in the likelihood only up to
kmax,4. We show the mean value of f/ffiducial as a function of kmax,4 using the TNS (blue triangles) and EFTofLSS
(green crosses) models with the marginalised 2σ error bars.
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FIG. 10: Same as Fig. 9 but at z = 0.5.
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FIG. 11: Redshift space halo results at z = 0.5 with V = 4Gpc3/h3 taken as the bin volume and using a halo number
density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix used in the
analyses. The 1σ and 2σ confidence contours for the TNS model for kmax = 0.310h/Mpc and kmax,4 = 0.253h/Mpc
without P4 (purple) and with P4(red). The fiducial value of f is denoted by a dashed line.
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FIG. 12: Same as Fig. 11 but for the EFTofLSS model. Here kmax = kmax,4 = 0.253h/Mpc.

E. Analysis with V = 15Gpc3/h3

In this section we again concentrate on z = 1 and the number density n = 10−3h3/Mpc but consider a much larger
survey volume, V = 15Gpc3/h3 which will give a better representation of the errors when using many redshift bins
and of the total power of upcoming surveys.

Again, we show the 2σ marginalised constraints on f from the MCMC analyses as a function of kmax for both
TNS and EFTofLSS models in Fig. 13. Immediately we note the EFTofLSS model becomes biased very quickly with
a new kmax = 0.152h/Mpc which is to be expected from Fig. 3 where all the mean values from the MCMC analyses lie
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significantly above the fiducial. On the other hand the TNS model seems robust against the reduced error bars and
barely maintains its original kmax = 0.310h/Mpc. We find the 2σ marginalised fractional errors on f at these kmax are
2.8 (3.8)% and 4.7 (6.0)% for TNS and EFTofLSS respectively where the bracketed values are from the analysis using
V = 4Gpc3/h3. Naturally the TNS constraints are improved significantly maintaining the same kmax, but we also
note that the EFTofLSS results also improve despite the far lower kmax. If we maintain the same kmax = 0.310h/Mpc
the EFTofLSS produces a 2.5% fractional error, but its mean value of f is biased by over 4σ. Similarly, if we take the
TNS model to kmax = 0.152h/Mpc we find a fractional error of 4.9% which is comparable to that of the EFTofLSS
model.

0.10 0.15 0.20 0.25 0.30 0.35
kmax [h/Mpc]

0.9

1.0

1.1

1.2

f
/f

fi
d

z = 1
Vs = 15 Gpc3/h3

n = 10−3 h3/Mpc3

EFT

TNS

FIG. 13: Redshift space halo results at z = 1 with V = 15Gpc3/h3 taken as the total survey volume and using a
halo number density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix
used in the analyses. We show the mean value of f/ffiducial as a function of kmax using the TNS (blue triangles) and
EFTofLSS (green crosses) models with the marginalised 2σ error bars. Only P0 and P2 were used in the analyses.

F. Analysis with n = 10−4h3/Mpc3

Here we investigate the impact of taking a catalog of more massive halos which translates to a lower number
density. On the theoretical side, in the analytic covariance we use b1 = 2.95 and n = 10−4h3/Mpc3 while keeping
V = 4Gpc3/h3 while the halo catalog measured from simulations makes a number density cut of n = 10−4h3/Mpc3.
This naturally introduces larger errors through the analytic covariance prescription used in Eq. 4.2 as well as larger
scatter in the data due to a lower number of halos. These halos are more massive and so also more biased allowing a
test for the flexibility of the bias model, as well as its compatibility with each RSD model.

Once again, Fig. 14 shows the 2σ marginalised constraints on f from the MCMC analyses as a function of kmax

for both models. Similar to Fig. 13, where we considered a larger survey volume, we find the TNS model remains
robust achieving kmax = 0.310h/Mpc. The EFTofLSS model on the other hand becomes biased much earlier at
kmax = 0.124h/Mpc, but this bias seems to be within 3− 4σ over a large range of kmax. Again, the fractional errors
at the determined kmax are 4.8 (3.8)% and 10.1 (6.0)% for the TNS and EFTofLSS model respectively, where the
bracketed value is that obtained from the n = 10−3h3/Mpc3 analysis.

To investigate why the EFTofLSS fails at such a small kmax we provide a test in Appendix B where we com-
pare the best fit value of b1 over the full range of kmax to that measured from the simulations. This gives a good
indication of what scales the bias model works well at. In particular, we refer the reader to Fig. 19, which supports
a failure in the bias model when considering highly biased tracers as seen in Fig. 14 for the EFTofLSS. Further, in
[28, 39] which consider the full biased tracer model for EFTofLSS [32], they consider terms which scale with halo
mass. These typically go as k4 or are partially degenerate with the counter terms considered here. Since we observe
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a biased recovery of f in the EFTofLSS-like model we consider at k = 0.124h/Mpc we do not expect these terms to
rescue this model. Further, in Appendix B we also find that the Roy and McDonald model seems to break down at
the same scales for both TNS and EFTofLSS model and so additional bias terms may be needed in both of these
RSD models.
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FIG. 14: Redshift space halo results at z = 1 with V = 4Gpc3/h3 taken as the total survey volume and using a
halo number density of n = 10−4h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix
used in the analyses. We show the mean value of f/ffiducial as a function of kmax using the TNS (blue triangles) and
EFTofLSS (green crosses) models with the marginalised 2σ error bars. Only P0 and P2 were used in the analyses.

G. Analysis using fewer realisations

Finally, as mentioned in Sec. III, our simulation measurements are the average of 35 realisations and so represent
an ideal measurement which are not truly representative of a real observation which will come with scatter which is
associated with the errors we’ve attached. Our goal was to test for bias in the models when modelling non-linearity
and so we wanted to use highly converged data. In reality, scatter in the data may affect the kmax and in turn
introduce a bias if we are to trust a kmax determined from mocks. To investigate this issue we consider 2 sets of
4 realisations taken randomly from the original 35. We repeat the analysis at z = 1, using V = 4Gpc3/h3 and
n = 10−3h3/Mpc3 for kmax = 0.310h/Mpc twice, once each using the average of both these sets.

Fig. 15 shows the results at kmax = 0.310h/Mpc for the 2 sets of 4 realisations (shown as circular dots) for the
TNS and EFTofLSS models. The plot indicates that the kmax we have determined using the 35 realisations is robust
against scatter in the data within the given errors. Further, for both models we find the qualitative shape of the
contours does not change appreciably for most of the parameters although central positions and overal sizes do shift
within 2σ of the 35 realisation average contours for some parameter pairs.
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FIG. 15: Same as Fig. 3 but only at kmax = 0.310h/Mpc (all points except the green cross have been offset for better
visualisation). The cross and triangle show the same results as Fig. 3 while squares and circles are the results when
we only use an average of 4 realisations rather than 35 for the TNS and EFTofLSS models respectively. Only P0 and
P2 were used in the analyses.

V. DISCUSSION AND CONCLUSION

In this work we have extended a number of previous analyses [30, 38, 40] which attempt to discern which models are
most apt to model galaxy clustering for upcoming surveys. In particular, we select the two models identified in [11] as
being contenders; the TNS model with a Lorentzian damping factor and an EFTofLSS based model. The EFTofLSS
model is similar to one of the leading models identified in [30]. We extend previous works by completing many MCMC
analyses, using high quality PICOLA simulation data, in which we vary the growth rate of structure f as well as all
model nuisance parameters (4 for TNS and 6 for EFTofLSS). In particular, we thoroughly test for biased estimation of
f by the models when considering quasi non-linear scales. These tests are all conducted within the context of upcoming
surveys through our selection of the halo catalogs, the simulation volume and our modelling of the RSD-multipole co-
variance matrix. Further, we test the robustness of the models by considering a different redshift, the hexadecapole, a
different halo catalog, a different survey volume and scatter in the data. All our core results are summarised in Table I.

Overall, we find that the TNS model seems to do better in its constraints on f and range of validity than the
EFTofLSS model considered here, despite the EFTofLSS’s larger nuisance parameter space. This is not inconsistent
with the results of [11] where a robust test for kmax was not performed. In fact at both redshifts we find a much
larger kmax for the models. Although [11] find that at z = 1 both models achieve the same kmax = 0.276h/Mpc, with
EFTofLSS giving better marginalised constraints, we find the models push to a higher kmax when properly tested
for bias, and the inclusion of these smaller scales may give TNS the edge we see here. But, our conclusion here of
course comes with a number of caveats. First, we do not vary the Alcock-Paczynski parameters [41] nor consider
cosmology beyond f , and so do not account for degeneracies between nuisance parameters and these. Second, our
EFTofLSS model is phenomenological in the sense that we have treated tracer bias in an ad hoc way by bolting on
the bias model of [20]. Appendix B suggests that this treatment seems to do well for low biased tracers. The proper
treatment of bias within the EFTofLSS follows [32] and includes 4 more nuisance parameters. With so many nuisance
parameters, it seems unlikely that one can achieve better performance in terms of constraints as suggested in [30].
But it is still left to be checked if the full biased tracer EFTofLSS model can achieve better constraints than the
TNS and we leave that for a future work. Finally, we used an idealised mock data based on dark matter halos and
a Gaussian covariance matrix in this work. In order to apply these models to actual observations, we need to take
into account the distributions of galaxies within dark matter halos, a survey window function as well as non-Gaussian
covariance matrix. These strongly depend on specifications of a specific future survey and we will need to redo the
analysis using galaxy mocks designed for the survey.
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Beyond constraining power, the models each offer their own advantages and disadvantages. The TNS model is
simpler in terms of number of parameters which makes it computationally preferable especially when performing
MCMC analyses with a large parameter space where convergence may become an issue. It is flexible in terms of
modelling the small scale fingers-of-god damping. Using the Lorentzian damping, it effectively re-sums an expansion
of the damping term in k2. The fact that its constraining power strongly depends on the form of the this damping
term indicates that we could improve the model by taking into account the different damping of multipoles. Priors on
σv can also be conceivably achieved through simulations and even observations [42], which would improve the model’s
constraining abilities. Further, loop corrections in the perturbative part can be added to improve its modelling of
the small scales at the considered redshifts. Alternatively, these corrections can be calibrated by simulations [43, 44].
The model has also been already extended to general theories of gravity and dark energy [22, 23].

On the other hand, the EFTofLSS model provides a very systematic way of modelling the small scales and also
a way of keeping track of theoretical uncertainties. This will be very important for upcoming surveys where percent
level accuracy is needed. It also provides more flexibility in modelling higher order multipoles as seen here, without
biasing f . Further, priors on the sound speed parameters, c2s,i can be achieved through multiple redshift measurements
and a knowledge of their dependency on redshift [45]. There have also been some attempts to extend this model to
modified theories of gravity and dark energy [29, 46, 47].

Independent of model comparisons, we find that the TNS with a Lorentzian damping factor as well as the per-
turbative components modelled within SPT is a very good prescription for galaxy clustering modelling, achieving
kmax = 0.310h/Mpc at z = 1 and z = 0.5. In previous analyses this particular form of the TNS model was not
considered, and rather a Gaussian damping was used with a RegPT [48] prescription for the perturbative components
[7, 10] which was found to have significantly worse fits to simulations in [11] at the redshifts considered here. A
feature left to be desired of this model is an ability to model the hexadecapole up to a larger kmax. Ways to include
the hexadecapole in an optimal way is left to a future work. Further, in principle, for a self-consistent joint data
analysis of lensing and galaxy clustering, across a wide range of scales, one would need the same input matter power
spectrum. Perturbative models for lensing are highly restrictive and so including a non-linear matter spectrum as
input for RSD modelling is also something the authors are highly interested in. This would be very relevant for
upcoming surveys that perform both lensing and clustering such as Euclid.

TABLE I: Summary of results: 2σ marginalised fractional errors on f from the MCMC analyses with
kmax[h/Mpc] indicated in curved brackets and kmax,4 indicated with parentheses. Note analyses with P4 assume

kmax determined from the P0 + P2 only analysis.

Multipoles z n[h3/Mpc3] V [Gpc3/h3] TNS-based model EFTofLSS-based model

P0 + P2 1 10−3 4 3.8% (0.310) 6.0% (0.310)

P0 + P2 + P4 1 10−3 4 4.0% (0.187) 5.7% (0.310)

P0 + P2 0.5 10−3 4 4.6% (0.310) 5.2% (0.253)

P0 + P2 + P4 0.5 10−3 4 3.4% (0.253) 5.1% (0.253)

P0 + P2 1 10−3 15 2.8% (0.310) 4.7% (0.152)

P0 + P2 1 10−4 4 4.8% (0.310) 10.1% (0.124)
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Appendix A: Comparison of N-body and COLA

In this appendix we present a comparison of real and redshift space matter power spectrum of the halo distribution
from full N-body to those obtained using approximate COLA simulations. COLA simulations are computationally
much cheaper than doing full N-body simulations, but they are not exact and it’s therefore important to ensure that
the results are in agreement. This is especially important when it comes to halos. Having a too low force resolution
(low Ngrid compared to N particles in the simulation) or using too few time-steps in a COLA simulation can easily
bias the halo population both in terms of abundance and halo properties. For a study on this see [49], but note that
the results depends sensitively on simulations parameters like the boxsize, the number density and also on the halo
finder used. We found that using a simple FOF halo finder gave the best agreement (apposed to using for example
Rockstar which also takes into account velocity information to locate halos).

For one of the COLA realisations used in this paper we output the initial conditions and ran a full N-body simulation
using RAMSES [33]. We computed FOF halo catalogs and estimated P0, P2 and P4 for a subsample of the halos with
number density n = 10−3(h/Mpc)3. The comparison at z = 1 can be seen in Fig. 16. P0 is shown to agree to ∼ 1−2%
down to k = 0.300h/Mpc, P2 agrees to ∼ 1% and for P4 the scatter is quite big, but the overall agreement is typically
∼ 5− 10%.
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FIG. 16: Comparison of P`(k) in COLA and full N-body for one of the realisations used in this analysis. We have
used exactly the same initial conditions in both simulations. The solid black lines shows the N-body result and the
error bars displayed on the COLA results represent 2%, 2% and 20% for P0,P2 and P4 respectively. The results shown
are for z = 1.

Appendix B: Testing the Bias Model

In this appendix we provide an additional test for the models, specifically we check at which scales the TNS and
EFTofLSS give biased estimates of the linear bias b1. This value can be measured from the halo and matter simulation
spectra in the large scale limit. We would expect a full model of tracer bias to maintain this value for b1 even when
fitting to the small scales since additional bias degrees of freedom should capture non-linear bias effects independent
of b1. In this way, if the models predict a value for b1 that does not match the ’fiducial’ b1 it is an indication that
the bias model is failing and additional modelling is required. One may also expect such a failing to be strongly
correlated with resulting biased estimates of cosmological parameters.

In Fig. 17 we show the mean value of b1 from the MCMC analyses at z = 1 with V = 4Gpc3/h3 and n = 10−3h3/Gpc3

at varying kmax. We also show the 2σ error bars from the analyses as well as dashed lines representing the 2σ errors
from the simulation measurements. We find that both the TNS and EFTofLSS model do not produce biased values
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of b1 for k ≤ 0.343h/Mpc. The inclusion of the hexadecapole also does not bias the recovered value of b1, shown as
orange and red dots on the plot. Similarly, Fig. 18 shows the z = 0.5 case. Again, both models do not show any
biasing of the value of b1.

Finally, when we consider more highly biased tracers (more massive halos) the recovered value of b1 does indeed
move away from its measured value. These results are shown in Fig. 19. We find that both of the models prefer lower
values of b1 that are more than 2σ away from the measured value when we consider scales k > 0.186h/Mpc. This is
reflected in Fig. 14 where we see an early biasing of the recovered value of f by the EFTofLSS model.
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FIG. 17: Redshift space halo results at z = 1 with V = 4Gpc3/h3 taken as the redshift bin volume and using a
halo number density of n = 10−3h3/Mpc3 both in selecting the halo catalog and in the analytic covariance matrix
used in the analyses. We show the mean value of b/bsim as a function of kmax using the TNS (blue triangles) and
EFTofLSS (green crosses) models with the marginalised 2σ error bars. The dashed lines indicate the 2σ errors on the
measurement from simulations. The green and blue points come from analyses where only P0 and P2 were used while
the orange square and red circle indicate the analysis including P4 at kmax,4 = 0.186h/Mpc and kmax,4 = 0.310h/Mpc
for the TNS and EFTofLSS model respectively. Note the EFTofLSS and TNS models give biased (at the 2σ level)
estimates of f above kmax = 0.310h/Mpc.
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FIG. 18: Same as Fig. 17 but at z = 0.5. Again the orange square and red circle indicate the analysis with P4 included
at kmax,4 = 0.253h/Mpc for both models. Note the EFTofLSS model gives biased (at the 2σ level) estimates of f
above kmax = 0.253h/Mpc while the TNS above kmax = 0.310h/Mpc.
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FIG. 19: Same as Fig. 17 but with n = 10−4h3/Mpc3. Note the EFTofLSS model gives biased (at the 2σ level)
estimates of f above kmax = 0.124h/Mpc while the TNS above kmax = 0.310h/Mpc.
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