
Deriving Event Data Sharing in IoT Systems using Formal
Modelling and Analysis

Paul Fremantlea, Benjamin Azizb

aWSO2, London, U.K.

bSchool of Computing, University of Portsmouth, Portsmouth, U.K.

Abstract

The increasing presence and utilisation of IoT systems raises many fundamental security and
privacy issues that require robust approaches in understanding the behaviour of IoT systems
and tackling those issues. In previous works, we demonstrated how some of the security
and privacy questions in IoT systems could be answered by means of using federated iden-
tity management and authorisation frameworks, such as OAuth, intelligent gateways and
personal cloud systems. In this paper, we take these works into a more fundamental level
by formally modelling and analysing the OAuthing personal cloud-based IoT system. We
demonstrate that this exercise reveals how data is shared across the system, and therefore
how security and privacy guarantees can be established at a fundamental level.
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1. Introduction

The number of Internet of Things (IoT) devices has grown rapidly in recent years, with some
recent estimates suggesting that there were 12.5 billion Internet-attached devices in 2010 and
a prediction of 50 billion devices by 2020 [1]. This brings with it multiple security challenges:

• The sheer scale and number of predicted devices will create new challenges and require
new approaches to security.

• These devices are becoming more central to peoples’ lives, including in safety critical
systems such as cars. Therefore the security of IoT devices is becoming more important.

• Many IoT devices collect information that may be fingerprinted [2] and therefore be-
come personally identifiable. This can lead to privacy concerns.

• Because devices can affect the physical world, there are attacks that can cause physical
harm to people and systems.

• These devices, due to size and power limitations, may not support the same level of
security that is expected from more traditional Internet-connected systems.

Because of the pervasive nature of IoT, privacy and security are important areas for research.
In 2016, more than 100,000 IoT devices were conjoined into a hostile botnet named Mirai
that attacked the DNS servers of the east coast of the US [3]. The total attack bandwidth
of this system was measured at more than 600Gbps. In fact, the number of devices attacked
was a small number compared to the potential: previous research [4] has identified several
million devices that are available for attack.
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Therefore there is a strong motivation to find approaches to improve and enhance the se-
curity and privacy of IoT systems. In [5, 6, 7], the authors demonstrated how IoT security
and privacy can be improved through the use of token-based federated authentication and
authorisation approaches (in [5] and [6]), and through personal cloud middleware systems
(in [7]). In this paper, we extend the work in [7], which presented a personal middleware
system called OAuthing, by building a formal model of the system that aims at achieving two
goals. The first is to understand end-to-end properties of the system that disprove unwanted
behaviour. For example, to show that certain communications do not occur in order to pre-
serve security and privacy. And the second is to prove that, as a result, data can only be
shared in a safe manner based on users’ consent.

Since the system is fundamentally a distributed federation of communicating processes, we
choose to build its model using the Communicating Sequential Process (CSP) formal language
[8]. CSP offers a clear and unambiguous set-theoretic approach for describing such systems
as processes that interact using message-passing. For more in-depth review of CSP, we refer
the reader to sources such as [9, 10]. CSP is supported by means of a powerful refinement
checking tool, called Failures-Divergences Refinement (FDR) [11]. The FDR tool uses trace
refinement modelling to validate that a defined process behaves as a specification. This is
accomplished by defining two different processes, and showing that the finite traces of one
process are a subset of the finite traces of the other. While this does not handle infinite traces,
in many cases the finite model checking is sufficient. In this way it is possible to validate that
the model meets specifications.

The rest of the paper is structured as follows. In Section 2, we give a brief overview of
literature works related to this paper. In Section 3, we discuss the OAuthing model informally
using the UML notation. In Section 4, we give a brief overview of the CSP algebra. In Section
5, we present the formal model of the various entities in the OAuthing system using CSP. In
Section 6, we analyse the composition of these entities together leading to an event-sharing
analysis. In Section 7, we discuss two sets of properties of the system that can be derived
from this analysis; end-to-end and data-sharing properties. Finally, we conclude the paper in
Section 8 giving directions for future work.

2. Related Work

As we mentioned earlier, the work presented here models the OAuthing system developed
and presented in [7]. In [7], we demonstrated, at a technical level with the OAuthing sys-
tem, how IoT users could share data without linking the specific user to a given IoT device,
using a system based on the OAuth2 [12] standard. One of the major advantages of systems
such as OAuthing is that they promote interoperability by solving issues related to identity
management when several IoT components are connected to one another. Such issues have
already been highlighted and addressed in several works in literature, e.g. [13, 14, 15], all of
which can provide relevant inputs to OAuth-based systems to control access according to the
type of context the system operates within. Some of these works use formal approaches in
defining and verifying such interoperability, e.g. in [13], graph theory was used to formalise
structural controllablility in super node architectures in distributed smart grid systems leading
to nodes being able to interoperate in the system with one another. In such theory, security is
modelled based on the access control framework defined by the IEC-62351-8 standard [16].

The concept of a gateway as one of the important strategies that can facilitate interoperabil-
ity, was proposed in [14], in the context of Cyber Physical Systems (CPSs). Dependability
properties (including reliability and robustness), for which formal specification and analy-
sis techniques allow their establishment, have been highlighted as one of the control and
automation requirements for such gateway-based systems. Furthermore, in [15], a refer-
ence architecture for Industry 4.0 systems was proposed that establishes interoperability in a
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secure manner using Policy Decision Points (PDPs), which allow various access control mea-
sures, e.g. RBAC [17, 18] to be deployed when components in a critical system need to
coordinate and constrain access to their resources.

Formal analysis and verification have in recent years been applied to IoT and security protocol
standards using various approaches. For example, OAuth2 [12] has been formally analysed
using the ProVerif static analysis tool [19], in which specific threats were identified. Another
example is that of Pai et al. [20], who utilised the Alloy Framework [21] to analyse the
security constraints of OAuth2. In [22], a threat model for OAuth2 was defined, which despite
showing that threats do exist in OAuth2, it is nonetheless is a reasonably robust protocol.
More recently, a formal analysis of the MQTT protocol [23] was conducted in [24] in relation
to the quality of service semantics of the protocol, where the authors demonstrated that
certain ambiguities existed that could compromise the security of the protocol. Apart from
the above attempts, in general, applying formal modelling and analysis techniques to IoT
systems and protocols has been limited over the years, despite the critical nature of some
of such systems. An early attempt in [25] was made to model formally publish/subscribe
protocols to capture their essential properties such as minimality and completeness, however,
without any attempt to incorporate hostile environments within which these protocols may
run. In [26], a formal model of publish/subscribe protocols, within the domain of Grid
computing, was defined using Petri-Nets. The model offers a mechanism for the composition
of existing publish/subscribe protocols hence offering a viable approach for the validation
of such protocols. In [27], an early attempt was made to discuss the security properties
and requirements desirable in a publish/subscribe protocol, in particular within the domain
of Internet-based peer-to-peer systems, where such protocols became popular early on. Our
work follows in the path of such works, although in our case, the system modelled and verified
is of a complex nature, whereas in most of the above cases, only toy examples are considered.

Similar to our approach, several other works, e.g. [28, 29, 30, 31, 32], have adopted model
checking as an automated technique for verifying properties of publish-subscribe-based IoT
systems related to reliability and correctness as well as various levels of efficiency. The authors
in [28, 31] define a general framework for the model-checking of publish-subscribe systems,
without focusing on specific systems or properties. The approach of [29] adopts a specific sys-
tem, thinkteam, as the target for their analysis, and in [30], the authors propose a dedicated
model checking technique to verify properties of publish/subscribe-based Message Oriented
Middleware (MOM) systems. However, unlike our approach, none of these works seeks to
establish properties based on the flow of data accross components of the systems analysed, as
we propose to do here (Section 7.2). Another related work is that of [32], where probabilistic
model checking is used to capture uncertainties inherent in publish-subscribe systems, using a
stochastic model. On the same note, probabilistic model checking has also been used in [33]
to analyse quality of predictions in service-oriented architectures. Such probabilistic models
are more expressive that the standard approach we used in our paper, however, currently we
do not model probabilistic or stochastic aspects of the OAuthing system.

Within the domain of sensor network protocols, there is more focus of effort on the formal
analysis and verification of IoT protocols. For example, in [34], the authors apply model
checking techniques in the verification of a medium access control protocol called LMAC.
Similarly, in [35] propose a formal model of flooding and gossiping protocols for analysing
their performance probabilisitic properties. More recently, the authors in [36] proposed a
formal model and analysis of clock-synchronised protocols in sensor networks based on timed
automata. Such works remain at the level of what we call device-based systems (Section 5.1),
whereas in our case, we also incorporate higher level concepts, such as users.

3. Background: The OAuthing System

We describe in this section, informally, the various concepts and components underlining the
model of the OAuthing system using the UML notation [37]. We start by describing what we

3



mean by a device. The concept of a device is restricted to systems that can directly contact
the Internet. For example, the prototype uses a WiFi-connected chip, which allows direct
connection to Internet systems. This excludes systems that connect via Bluetooth or other
non-IP networking. It is possible to think of such Bluetooth connected systems as sensors or
actuators connected wirelessly to a “device” (such as a mobile phone), that does participate
in this model. For example, a connected car might be seen as a “device” in the terms of
this model, and some sensors or actuators might be wirelessly connected over various non-IP
protocols to the central processing unit of the car. In addition, this model assumes that devices
have at least intermittent connections to the Internet, whereby tokens can be refreshed.

Figure 1 shows the current situation for many IoT systems [7], where the device talks to a
single service that manages identity, stores data, provides a user Web interface, etc.

Cloud Service

Device

1

many

Figure 1: Existing Model of IoT Systems [7]

By comparison, the federated model of OAuthing proposed in [7] and shown in Figure 2,
allows different federated parties to provide different services that work together.
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Figure 2: Proposed Model: OAuthing [7]

The participants of the OAuthing model are:
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• The User Identity Provider (UIdP): this is an existing login system where Users present
their credentials (e.g. Google, Facebook, Github, Twitter or any other OpenID Connect
(OIDC) [38] login).

• The User: A User may own one or more Devices. A User must have at least one identity
with a UIdP.

• The Device Identity Provider (DIdP): this is an Identity Broker that first authenticates
a User with a UIdP using existing federated identity protocols including OAuth2, OIDC
or SAML2. Once the identity is validated, it then creates a secure random anonymous
identity which is used in all further processing. This anonymous identity is not shared
except with the Intelligent Gateway. Devices and Cloud Services are issued with random
tokens that give permission to perform certain actions but do not identify users in any
way. Currently, each instance of OAuthing has a single DIdP.

• Personal Cloud Middleware (PCM): this is an isolated broker that shares data between
devices and Third Party Applications (TPAs) on behalf of the user. The PCM talks to the
Devices and the TPAs. Within the remit of a single OAuthing instance there is one PCM
per user. A cloud environment is used to dynamically launch PCM instances on behalf
of users as needed.

• Intelligent Gateway (IG): The IG interfaces with the DIdP to validate identities and
access authorisation policies and to the cloud infrastructure to instantiate new PCMs.
Devices and CSs connect to the IG, and it routes requests to each user’s PCM.

• Third Party Application (TPA): A device is an IoT device if and only if it shares or
receives data and commands with an Internet service. Users control which TPAs can
access their sensor data or control their actuators by explicitly consenting to authorise
a TPA. Any third party can provide a TPA. If no TPA is authorised by the user then a
Device’s data is neither shared nor stored.

• The Device: The device consists of one or more sensors and actuators together with a
controller. The device is issued with a Client ID at manufacturing time. Once the device
is registered with a user, it stores a token that identifies the user, the Client ID and the
scopes of access that the user has authorised.

• The Manufacturer: The Manufacturer is the logical organisation that creates and mar-
kets the Device, irrespective of whether they actually outsource any part of the physical
manufacturing to a third party. In this model, the Manufacturer configures each device
with a single DIdP.

Figure 3 shows the UML sequence diagram of a runtime interaction between a device and a
third-party application [7]. This model utilises the OAuth2 model as a basis for the identity
and ownership of devices. One concern with IoT is that hardware devices can be compromised
and secrets read from them. It is therefore important that each device has its own credentials.
Each device is to be a unique OAuth2 Client, and the system uses the OAuth2 Client ID as a
secure device ID that is only ever shared with the DIdP. Ownership of a device is defined by
the user authorising the issuance a security token to the device giving it permission to act on
the user’s behalf.

3.1. Lifecycle

The UML lifecycle diagram corresponding to the OAuthing model is shown in Figure 4. Once
the device is initially flashed it is connected to a manufacturing server. The manufacturer
then uses the DCR API into the DIdP to request a Client ID and Secret. These are configured
into the device by the manufacturing server. At the same time, the DIdP returns a unique User
Registration URI (URU), that is printed onto the device (usually as a Quick Response (QR)
code) by the manufacturer.
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Device

Device

Device IdP

Device IdP

Intelligent Gateway

Intelligent Gateway

Personal Cloud Middleware

Personal Cloud Middleware

Third Party App
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CONNECT with Access Token over WebSocket

introspect token

token validity and scopes
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route SUBSCRIBE to correct PCM

CONNECT with Access Token

introspect token
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route CONNECT to correct PCM

PUBLISH /d/sensor1 {data:1}

validate scope for PUBLISH

route PUBLISH to correct PCM

PUBLISH to CS

PUBLISH /d/sensor1 {data:1}

Figure 3: Device Publishing Data to App [7]

When the user buys the device, they scan the QR code or otherwise access the URU. This
directs the user to the DIdP which presents a choice of UIdPs to the user. Once the user is au-
thorised with their existing UIdP, they are asked in turn to authorise the device. The resulting
OAuth2 refresh token is then stored on the device, and represents the logical ownership of
the device. If at some future point the user sells the device they can revoke the OAuth2 token
- either by resetting the device back to its initial state or by using a web interface at the DIdP.

3.2. Personal Cloud Middleware

A key part of the model is the concept of a personal hub: where each user’s data is routed
to its’ own hub, protecting the data from multi-tenant attacks. Each hub is run in its own
virtualised Cloud environment. When a request comes in from a device or CS, the pseudonym
associated with the bearer token is used to route the request to an instance that is specific
to that user. If there is no cloud server available, the routing system makes a call to the
cloud management system to instantiate a new PCM “on-demand”, and then waits until the
instance is running before routing the request to the PCM. In the model the PCM supports
routing, distribution of data and commands, as well as summarisation and filtering of data.
These capabilities have an important role in protecting users privacy: firstly, the runtime
does not inherently share data such as IP addresses or MAC addresses that can be used to
identify devices or users. Secondly, by filtering or summarising data, the PCM can avoid
many fingerprinting attacks on devices [2]. The PCM can also provide protocol mapping and
device shadow capabilities, meaning that it is simpler for TPAs to connect to devices.

3.3. Scopes

The DIdP implements consent-based authorisation policies called scopes. The concept of
scopes comes from the OAuth2 specification but also features in other frameworks, e.g. the
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Manufacture

The device is created

Device Registration

The manufacturer embeds secure random credentials in the device

Physical Distribution

The owner gains physical access to the device

Claim

The owner scans the QR code attached to the device

Presence

The device is present and connected to the DIdP

Consent

The user consents to the device acting on their behalf

Owned Device

The device now has a token identifying its ownership

Use

The device is now publishing data and
acting on user commands

revoke ownership token

Figure 4: Lifecycle of a Device
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IEC/TS 62351-8 [16] role-based access control framework for power systems management.
Each scope controls access to a set of APIs. These APIs may be implemented in multiple pro-
tocols. Users may consent to a third-party to have access to a specific scope, which is captured
in a token. One of the outcomes of defining scopes as part of this model is that there is a clean
mapping between the different roles in the system and the scopes which each role requires
access to, which is shown in Table 1.

Role Scopes Description of roles and scopes 

UIdP N/A This IdP is the primary source of identity to the Device IdP 
and does not have any OAuth2 scope permissions 

DIdP openid 
(or UIdP 
Specific) 

The Device IdP is the “source” of scopes to the other roles. It 
requires access to the third-party IdPs, which may define their 
own scopes. 

Manu-
facturer 

dcr Dynamic Client Registration (DCR): allows caller to create 
new ClientIDs using the DCR API  

Intelligent 
Gateway 

intro Introspection: allows the IG to ask the DIdP for the 
pseudonym and scopes for a given Bearer Token 

TPA Rd, Pc Read/Subscribe to Data (Rd) and Publish Commands (Rc) 
The TPA may be allowed one or other or both 

Device Pd, Rc Publish Data (Pd). Read/Subscribe to Commands (Rc). 

Table 1: Mapping of Roles to Scopes

4. A Brief Overview of CSP

We start by first giving a brief overview of CSP. CSP is an algebraic approach for reason-
ing about components that communicate via messages. In CSP, components are called pro-
cesses. CSP allows reasoning about individual processes and also communicating groups of
processes. Each process communicates using events, which may pass messages.

A process P accepts an event e, and then (→) stops (accepts no further events):

P = e→ STOP

STOP is a well-defined process that cannot accept any further events. STOP effectively cap-
tures deadlock, so to distinguish successful termination, the event X, (pronounced “success”)
identifies successful termination. The process SKIP is defined as a process that does nothing
but terminate successfully.

The process Q accepts event e and then continues as Q, showing recursion. In effect, Q can
accept any number of events e:

Q = e→ Q

A process can be parameterised, leading to a set of processes:

Q(d) = e.d→ Q(d)
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In this process, e.d indicates that event e transfers data d.

In addition, CSP supports pattern matching, which is a common approach in functional pro-
gramming languages. For example, the following three lines of CSP syntax define the function
f(x) for all values of x:

f(0) = True

f(1) = False

f( ) = Error

An equivalent definition of the same function as a bijection would be:

f =
{

(0, T rue), (1, False), (x,Error)
∣∣∣ ∀x /∈ {0, 1}}

Pattern matching is also applicable to processes:

P (0) = e.A→ P (1)

P (1) = e.B → P (0)

P ( ) = e.C → P (0)

This defines a set of interlinked processes. An event can have associated data. For example,
we said that e.d was defined as an event e parameterised with data d. In addition to param-
eterised events, it is also possible to indicate the sending or receiving of data with events;
sending data is written e!d, whereas receiving data as e?d. e$d indicates that d may be any
arbitrary non-deterministic choice of data from the range of allowed values of d. This range
can be restricted; if D is a set, then e.d : D allows e.d where d ∈ D. The same is applicable
with e$d : D and e!d : D.

If P,Q are processes, P 2 Q is the choice between P and Q where the environment chooses
which process continues based on the initial event received. This is called external choice. For
example, (a→ P ) 2 (b→ Q) will behave as P after an event a, or Q after an event b. Hence,
the “incoming event” chooses the path that the process takes.

CSP also supports general external choice across a set of processes. Therefore:

2
x∈S

Px

is equivalent to:
Pa 2 Pb 2 . . . 2 Pm

where a, b, . . . ,m ∈ S.

P 9 Q is the process where P and Q interleave: that is, they operate independently with no
synchronisation of events. On the other hand, P ‖ Q is the process formed by running P and
Q in parallel and synchronising on all events. In other words, they must both accept the same
event at the same time.

The ‖-step law captures this most clearly:

(?x : A→ P ) ‖ (?y : B → Q) =?z : A ∩B → (P ‖ Q)

One can say that P and Q only synchronise on events in set E using the following construct:

P ‖
E

Q
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In many cases, there is the need to define the combination of two processes that each offer
certain events, whilst synchronising on yet others. Therefore, the construct:

P X‖Y Q

indicates that P handles events in X except those in Y (notated X \ Y ), Q handles events in
Y \ X and the processes synchronise on events in X ∩ Y .

In some cases, one needs to rename events:

Q = P [[to/from]]

to indicate that the process Q acts like P with event from renamed to event to. CSP also
allows the hiding of events. For example:

(P ‖
E

Q) \ E

is the process where P and Q synchronise on events in set E, however, only events that are
not in E are visible outside the process. The opposite of hiding is projection:

P |̀ E

which represents process P but where only events in E are visible.

Hiding events is the most obvious cause of non-determinism. For example, if there is a process:

(a→ b→ P 2 c→ d→ Q) \ {a, c}

then the external observer is not aware of whether internal (i.e., hidden) events are taking
the process down the a path or the c path. This gives rise to the concept of internal choice
(R u S), where there is non-deterministical choice between processes R and S. Therefore:

(a→ b→ P 2 c→ d→ Q) \ {a, c} = b→ P u d→ Q

The concept of linked parallel processes encapsulates renaming, hiding and parallel processes
into a single concise definition:

R = P [c↔ d, e↔ f ]Q

indicating that the process R behaves like P interleaved with Q, except that event c from P
is renamed as d for Q and vice-versa. Similarly, P sees event f from Q as e and vice-versa.
The overall process synchronises on the events (c/d, e/f), which are hidden in R.

Effectively, if f is a fresh unused name:

P [c↔ d]Q = (P [[f/c]] ‖
f

Q[[f/d]]) \ {f}

Another useful notation is:
R = P ΘE Q

which indicates that R behaves like P until an exception event from the set of events E occurs,
after which it behaves like Q.

CSP defines the concept of refinement (v), based on traces. Traces are possible patterns of
visible events that a process will accept. One can say that P is trace-refined by Q (written
P vT Q) meaning that every finite trace of Q is also a finite trace of P :

P vT Q⇔ traces(P ) ⊇ traces(Q)
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This model offers an operational semantics for CSP based on the concept of Labelled Transition
Systems [39]. The CSP tool FDR [11] allows one to evaluate these trace refinements. The trace
refinement model does not however, fully show that the implementation process properly
implements the specification. To say that all the traces of the implementation are also traces
of the specification is not enough. One also needs to show that the implementation has the
same failures as the specification (i.e., that it refuses the same events that the specification
does). The failures of a process P are formally defined as the set of pairs (s,X), such that the
process can follow the sequence of events s (written P/s) and then refuse event X:

failures(P ) = {(s,X)
∣∣∣ s ∈ traces(P ) ∧ X ∈ refusals(P/s)}

P vF Q⇔ failures(P ) ⊇ failures(Q) ∧ traces(P ) ⊇ traces(Q)

There is one more assertion one can make. A process can diverge if it follows a finite trace and
then ends up in a state where it can perform an infinite number of internal events. As well as
the visible events of a process, it may have internal events that are hidden from the external
world. In CSP, these events all have the same name τ since they are indistinguishable from
one another. A process P is failures-divergence refined by Q (P vFD Q) if the failures and
divergences of Q are also failures and divergences of P .

Refinement can be used in two slightly different ways. Firstly, one can define a higher-level
model that is refined into a more detailed model. This allows one to show an abstraction
away from the details and ensure that the system meets that abstraction. For example, this
work defines a device abstractly and then shows that the more complex device lifecycle is
a refinement of the simpler concept. Secondly, one can specifically define behaviours that
either the model implements or does not implement. The FDR trace refinement analysis can
prove that the model either refines or does not refine these behaviour specifications.

5. The OAuthing Formal Model in CSP

Each of the different participants — Device, Manufacturer, Device Identity Provider, Gateway,
Personal Cloud Middleware, User, and Application — are modeled in CSP [8]. The whole sys-
tem is modeled as a composition of these components. The model does not address discovery
of the DIdP, UIdP or IG. These could be addressed as further work. Similarly, there is no
modeling of change of ownership of a device, which could also be addressed in further work.
Moreover, we assume that all distributed communications channels are encrypted, except the
PCM-to-PCM communications where the model treats a PCM as CSP processes that commu-
nicate internally. Since this PCM-to-PCM communication is internal, it is not encrypted.

5.1. Devices

An IoT device is a system that contains either sensors or actuators or both and supports con-
nections to the Internet either directly or via some intermediary. A sensor is a system that
can emit an event containing data about the world. A sensor can be defined as a process that
senses the world and then emits sensor data events. Once it has done this, it can once again
sense.

Definition 5.1. Sensor

SENSOR = sense$d→ sd !d→ SENSOR

sense$d indicates that this process may internally choose, non-deterministically, among all val-
ues of data. The notation sd !d indicates that the event sd sends the value d. Non-deterministic
choice correctly models a sensor since real-world events that prompt the sensor data are hid-
den from the model and so appear “internally” within the sensor.
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Similarly, an actuator is defined as a system that receives a command and then acts on it.

Definition 5.2. Actuator

ACTUATOR = rc?c→ act !c→ ACTUATOR

The notation rc?c indicates that this event is receiving the value c. The sensor and actuator
have no need to synchronise and can operate without recourse to each other. Therefore they
are interleaved. Next, we define a device as follows.

Definition 5.3. Device

DEVICE = SENSOR 9 ACTUATOR

From a set-theoretic point of view, there can be multiple sensors and actuators per device.
The CSP view of the device only defines that it can produce data or consume commands.
Each sensor or actuator belongs to exactly one device. This is modeled as a function device
that maps sensors and actuators to the device they belong to:

∀ s ∈ Sensors,∃ d ∈ Devices : device(s) = d

∀ a ∈ Actuators,∃ d ∈ Devices : device(a) = d

The function device is surjective:

∀ d ∈ Devices,∃x ∈ Sensors ∪Actuators : device(x) = d

In other words, a device must have at least one sensor or actuator, as shown in Figure 5.

Device

Sensor Actuator

1

*

1

*

Figure 5: UML Model of a Device

The model is built up in stages. This creates a natural lifecycle for a device (as depicted earlier
also in Figure 4). At the high level, the device lifecycle is:

claim → consent → connect → DEVICE

In other words, a device is claimed by a user, who consents to it operating on their behalf. The
device then connects to a data-sharing system to share data and accept commands. In this
model, the specifics of the OAuth2 claim, login and consent flows, as well as the data-sharing
model are deliberately expressed in detail. This refinement is important because the specifics
of the device’s lifecycle and the usability of the system when devices have no user interface
or input mechanism are key requirements of the system.

A device is initially a Fresh Device (FD). This means that it has just been manufactured and
does not have a well-defined identity. This model does not rely on any implicit identity such as
a Media Access Control (MAC) address. Instead, the system injects an identity and credential
into the device at manufacturing time. A Registered Device (RD), on the other hand, is a de-
vice that has a credential injected into it during the manufacturing process. Because aspects
of this model are closely based on existing OAuth2 model, OAuth2 ClientIDs and ClientSecrets
are explicitly modeled as such credentials. Each device is modeled as a unique OAuth2 Client.
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As discussed above, this mapping of OAuth2 to the IoT device world was chosen because it is
important that every device has a unique credential.

Definition 5.4. Device Registration

FD = manufacture → updatedevice?cid .cs → RD(cid, cs)

A registered device must then be “owned”. This process consists of a User consenting to allow
the device to publish data and/or receive commands on the user’s behalf. In this system, the
OAuth2 approach is extended to support this. The extension is based on the requirement to
support devices with almost no User Interface (UI). The only hard requirement on a UI is that
the system must have the ability for the user to see if the device is switched on. When the
device is switched on, it notifies the DIdP that it is present. The user then initiates a claim
process for the device. This involves the ClientID of the device. For example, in the prototype
implemented in [7], the device has a QR code printed onto it, which embeds the ClientID into
a URL. When the QR code is scanned, it takes the user to a claim page specific to that device.

The specific OAuth2 flow used for this work is the Authorisation Code flow. This is a two-
part flow whereby the client is first issued an Authorisation Code (AuthCode), which is then
“swapped” for a Refresh Token and Bearer Token. The second step is used to ensure that the
client authenticates. This is known as a three-legged flow as the user and the client both
authenticate to the DIdP.

Definition 5.5. Ownership

RD(cid, cs) = presence!cid → authcode?ac → RDA(cid, cs, ac)

RDA(cid, cs, ac) = token ac req !cid .cs.ac → token ac resp?r .a → OD(cid, cs, r)

This produces an Owned Device (OD). Every device is either owned or not owned. In other
words, there is a function owns, such that:

∀ d ∈ OwnedDevices,∃u ∈ Users : owns(d) = u

∀ d ∈ UnownedDevices, 6 ∃u ∈ Users : owns(d) = u

Devices = UnownedDevices ∪OwnedDevices

Fresh devices and registered devices are not owned:

FreshDevices ⊆ UnownedDevices

RegisteredDevices ⊆ UnownedDevices

This definition of ownership is very high-level. In the model, a user must claim a device. In
the implementation, claiming is done by being the first person to scan a QR code attached
to the device, but it could also be done by an NFC chip or simply typing a URL or code into
a browser. The claiming process requires the device to be switched on and connected, and
therefore present. Once the user initiates the claim, they must login and then consent to the
device acting for them.

As a simplification of the model, the device only needs to remember the Refresh Token. In
the OAuth2 specification, a client has both a refresh token and a bearer token. The bearer
token is inherently insecure as anyone who has a copy of it can act as the client. Therefore, it
expires regularly and once it has expired, the client must refresh it, which requires the client
to present its credentials to the OAuth2 server. The refresh process leading to a Secure Device
(SD) is defined follows.

Definition 5.6. Refresh Flow

OD(cid, cs, r) = token refresh req .cid .cs.r → token refresh resp?b → SD(b, cid , cs, r)
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When a device was modeled above, there was nothing that addressed whether a device can
publish events without those events being accepted by the Gateway. In the prototype, the
MQTT protocol supports queuing at the Gateway and back-pressure on the client. Modeling
queuing adds an unnecessary complexity to the model, as well as being specific to a protocol.
On the other hand, if there is nothing addressing queuing or back-pressure, the model also
becomes unmanageable because of state explosion. Therefore, this model uses the simplest
approach, which is that the Device must wait for an acknowledgement before publishing fur-
ther data. This is a simple form of back-pressure. This corresponds to protocols like Transport
Control Protocol (TCP), where the server acknowledges the client messages, etc. Therefore,
the refined definition of a device is as follows.

Definition 5.7. Acknowledging Device

SENS = sense$d→ sd !d→ dackd → SENS

ACT = rc?c→ act !c→ dackc → ACT

DV = SENS 9 ACT

Finally a Secure Device is one that connects using the bearer token and then publishes and
subscribes.

Definition 5.8. Secure Device

SD(bearer , cid , cs, r) = connect !bearer → connected → DV

5.2. Manufacturer

In order to register a device, there needs to be an interface that will create a ClientID and
a ClientSecret. This Application Programming Interface (API) is defined by the OAuth2 Dy-
namic Client Registration (DCR) API [40]. The details of the actual API are abstracted in
the model. The manufacturer indicates that a device has been manufactured and requests a
ClientID and ClientSecret, which are stored in the device.

The device itself does not connect to the DCR API. Instead, there is a manufacturer that re-
quests the credential and updates the device. The reason for this is that in order to call the
DCR API on the DIdP, the requestor needs its own credential. Adding this credential to every
device would be a significant security issue. In the model, the trust relationship between the
Manufacturer and the DIdP is not explicitly modeled but assumed. In an implementation, this
is enabled by a specific token for the manufacturer with scope allowing DCR access.

Definition 5.9. Manufacturer

MAN = manufacture → dcrrequest → credential?cid .cs → updatedevice!cid.cs→ X

This is the only process involving the manufacturer, which means that the manufacturer is
not involved in the system any further

5.3. User Identity Provider

The modelling of federated login into the User Identity Provider (UIdP) is purposely minimal.
The only requirement is that the UIdP validates the user and provides a unique identifier for
the user. In addition, it needs to be clear in the model that the User’s credentials are only
shared with the UIdP. In the prototype, multiple approaches for UIdP login are supported,
mainly based around OAuth2. As in other aspects of the model, it is possible to refine this
further to cover those alternative approaches. However, unlike the device authentication and
authorisation flows, these flows take place in a normal browser and are well understood, so
there is no benefit in further refinement of the model in this area.
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The login process starts with a request for login (login). The user is either successful in which
case a user identifier (lu.u) is returned, or it fails (failure).

Definition 5.10. Login

LOGIN (u) = login → (success → lu.u → SKIP 2 failure → STOP)

This is refined to include a federated login (fedlogin), which takes a credential (fc).

Definition 5.11. User Identity Provider

UIDP = login → fedlogin?fc → (success → lu.u → SKIP 2 failure → STOP)

The credential is unimportant. The requirement is that there is a bijective function from
federated credentials to users:

fu ∈ Fedcred ×Users ∧ dom fu = Users ∧ fu(c1) = fu(c2)⇔ c1 = c2

where dom fu is the domain of fu.

5.4. Device Identity Provider

The Device Identity Provider (DIdP) implements all the identity and policy model for the de-
vice. It defers user logins to the User Identity Provider (UIdP). The DIdP is modeled as a
collection of stateful processes that evolve, based on their interactions with existing devices,
manufacturers and users. These processes start with issuing a credential.

Definition 5.12. Device Registration API

DCR(cid , cs) = dcrrequest → credential .cid .cs → UR(cid , cs)

Once a credential is issued, the system must support User Registration. User registration for a
device (URD) is as follows:

Definition 5.13. User Registration of Devices

URD(cid , cs) = presence.cid → claim.cid → login → URDA(cid , cs)

URDA(cid , cs) = success → lu?u → URDB (cid , cs, u) 2 failure → error → STOP

URDB (cid , cs, u) = devconsent → authcode$ac →
TOKEN AC (p(u), cid , cs, ac,PdRc) 2 noconsent → error → STOP

Firstly, the device must be present. There must be a claim by a user, which initiates a user
login, which either succeeds or fails. If it fails then the process ends with an error. Otherwise,
the federated login returns a user identifier. Then there must be user consent for a device.
This consent is by definition consent for the device to use scope PdRc, which means the device
can publish data and receive commands. If the consent is granted, the device receives an
AuthCode. At this stage the DIdP is now ready to handle the second half of the authorisation
code flow (i.e. the swapping of the AuthCode for the Refresh Token by calling TOKEN AC
and TOKEN REF , which are defined in Definitions 5.18 and 5.19, respectively).

The scopes defined in this model are deliberately kept simple in order to demonstrate the
concept only:
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Pd Publish Data
Pc Publish Commands
Rd Receive Data
Rc Receive Commands
PdRc Publish Data and Receive Commands
RdPc Read Data and Publish Commands

Table 2: Scopes and their Meanings

Definition 5.14. Scopes

Scope = PdRc | RdPc | Pd | Rc | Rd | Pc

The meaning of these scopes is described in Table 2. Note that there are other scopes in the
overall system (e.g. a dcr scope which allows manufacturers to call the DCR system, and an
introspection scope that allows a gateway to call the introspection API. These are not formally
modeled as they don’t affect the core model or the proofs of data sharing.

At this stage, the DIdP applies a pseudonymisation function p(u), which replaces the username
with a random pseudonym. Note that the definition of pseudonymisation in this work is some-
what different to other privacy-enhancing systems. In many systems, the user may choose to
use multiple pseudonyms that are shared with third-parties to reduce identifiability. In this
system, the pseudonym is automatically generated and remains hidden from third-parties. It
is used to make the attack tree more complex by requiring an attacker to attack two different
systems to identify a user.

Definition 5.15. Pseudonymisation

∀u ∈ Users, p(u) ∈ Pseud

∀u1, u2 ∈ Users, p(u1) = p(u2)⇔ u1 = u2

Before continuing with the device flow of the DIdP, it is useful to examine the application
approval process. A user must also authorise an application to be able to interact with the
system. In this case, an application is expected to have the scope RdPc, which allows it to
receive data and publish commands. A further refinement of the model could support apps
that only send commands, or only receive data. Similarly the model can support devices that
can only act and not sense. However, this refinement is not required to demonstrate the core
properties of the model.

Definition 5.16. User Approval of Applications

URA(cid , cs) = useraccess → login → URAA(cid, cs)

URAA(cid , cs) = success → lu?u → URAB(cid, cs, u) 2 failure → error → STOP

URAB (cid , cs, u) = appconsent → authcode$ac→
TOKEN AC (p(u), cid , cs, ac,RdPc) 2 noconsent → error → STOP

This definition is analogous to the device consent flow, except for two differences. First,
instead of a claim and presence event, there is simply useraccess. This event signifies that
a user has requested access to an application. Second, the user offers appconsent , which
provides the app with the RdPc scope.

The overall user approval process is the combination of these two processes:
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Definition 5.17. User Approval support in the DIdP

UR(cid, cs) = URD(cid , cs) 2 URA(cid , cs)

This ties back to Definition 5.12. The DIdP supports a Token interface (part of the OAuth2
specification) which supports the AuthCode flow and the Refresh flow.

Definition 5.18. Token Response to AuthCode

TOKEN AC (p, cid , cs, ac, scope) =

token ac req .cid .cs.ac → token ac resp$r$a → TOKEN REF (p, cid , cs, r , scope)

The refresh flow allows a client to send a valid refresh token, together with the client’s creden-
tials, and receive a fresh, active bearer token. Once this is done, the DIdP can then support
introspection of the bearer token.

Definition 5.19. Token Refresh Flow at DIdP

TOKEN REF (p, cid , cs, r , s) =

token refresh req .cid .cs.r → token refresh resp$bearer → INTRO(bearer , p, s)

This introspection is defined by the OAuth2 Introspection API [41]. The introspection looks
at a bearer token and returns the validity, user and scope of the token. In the model, intro-
spection only returns the pseudonym instead of the actual user information.

Definition 5.20. Introspection

INTRO(b, p, s) = introspect .b → valid !p!s → INTRO(b, p, s)

2 introspect?x :
{
x
∣∣∣ x ∈ Bearer, x 6= b

}
→ invalid → INTRO(b, p, s)

This definition says that the specific process that has previously initialised the client with a
bearer b, pseudonym p, and scope s will respond to events “querying” a bearer token. If the
bearer token queries matches, the scope and pseudonym will be returned, otherwise it will
return invalid .

Note that a further refinement of this is possible using Timed CSP [42] which allows one to
model time. This refinement would include the timing-out of bearer tokens, forcing a refresh.
While this would be a nice enhancement to the model, it would not aid in proving any of the
fundamental properties of the model and therefore it is left for further work.

The DIdP that supports a given credential is now defined, and this can be generalised:

Definition 5.21. Device Identity Provider

DIDP = 2
cid∈ClientID,cs∈ClientSecret

DCR(cid, cs)

5.5. Third Party Application

The DIdP and the Device, are now defined, so it is a good time to look at the system that
interacts at the other end. This is called a Third Party Application (TPA) or simply an App. The
reason that this is called a third-party application is that the model enforces that no system
is inherently trusted to look at device data. Therefore, every app that wishes to access data
from a device or send commands to a device must register with the DIdP and gain consent,
just as a third-party would in any OAuth2 flow.

The data consumer (DC) is a component that receives data (rd), and then logs that data.
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Definition 5.22. Data Consumer

DC = rd?d→ logdata.d→ DC

A command publisher first demands an action in the form of a command, and then sends that
command (sc).

Definition 5.23. Command Publisher

CP = demand$c→ sc!c→ CP

An application can support data consumption and command publication concurrently.

Definition 5.24. Application

APP = DC 9 CP

Once again there is a refinement of this that supports acknowledgements.

Definition 5.25. Acknowledging Application

DCack = rd?d→ logdata!d→ aackd → DCack

CPack = demand$c→ sc!c→ aackc → CPack

APPack = DCack 9 CPack

The logic of an application is very similar to the logic of a device. Given the similarity, the
logic can be presented more concisely before discussing the differences.

Definition 5.26. Full Application

APPCREATE = dcrrequest → credential?cid?cs → RA(cid , cs)

RA(cid , cs) = useraccess → authcode?ac → RAA(cid , cs, ac)

RAA(cid , cs, ac) = token ac req !cid .cs.ac → token ac resp?r .b → SA(cid , cs, r)

SA(cid , cs, r) = token refresh req !cid .cs.r → token refresh resp?bearer →
TA(bearer , cid , cs, r)

TA(b, cid , cs, r) = connect !b → connected → APPack

The difference is minor: the application needs a user to request access (useraccess). Other
than that, the consent flow is analogous as far as the app is concerned. However, the user
sees a different flow, explored next.

5.6. User

The only key roles that the users play are:

• to login,

• to claim devices,

• to request access to apps, and

• to provide consent to devices and apps.
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The user participates in two flows, consenting to devices and applications. The user can claim
a device. In this, the User u specifically claims a device with identity cid. The user must login
successfully and consent to the device, or the login may fail, or the user may not agree to the
scope of sharing requested.

Definition 5.27. User Registration of a Device

USERCLAIM (fc, cid) = claim.cid → login → (fedlogin!fc → (success → lu!u →
(devconsent → SKIP 2 noconsent → STOP) 2 failure → STOP))

A given user u may claim any device:

UC (fc) = 2
cid∈ClientID

USERCLAIM (fc, cid)

The second user flow is similar, where the user consents to an application seeing their data
and sending commands to their devices.

Definition 5.28. User Approval of an Application

USERAPPROVE (fc) = useraccess → login → (fedlogin!fc → (success → lu!u →
(appconsent → SKIP 2 noconsent → STOP)) 2 failure → STOP)

A user is simply the combination of these two processes.

Definition 5.29. User

USER(fc) = UC (fc) 9 USERAPPROVE (fc)

An important aspect of a user’s capability is the opportunity to revoke tokens and remove
access. This applies to both devices and applications. A device that has a token revoked needs
to be informed of the revocation by the DIdP. This is managed by an appropriate return code
from the DIdP to the device on the TOKEN REF interaction. This then changes the device
from the OD stage back to RD , where it can then be claimed by the same or another user.
Similarly an App that has been revoked will lose all access and will need to be re-authorised
by a user.

5.7. Intelligent Gateway (IG)

The role of the IG is to validate the bearer token of either the device or the app using the in-
trospection defined in 5.20. This returns a pseudonym and a scope. The IG should not share
this pseudonym, and the DIdP permissions do not allow other parties to access introspection.
Once the IG has a valid response, it passes the message to the Personal Cloud Middleware
(PCM), which implements the scope sharing.

Definition 5.30. Gateway

IG = connect?b → introspect !b → (valid?p?s → connected → PCM (p, s) 2

invalid → error → STOP)

5.8. Personal Cloud Middleware (PCM)

Each user has their own instance of PCM. If u is a user, then PCM (u) is the user’s PCM.

∀u ∈ Users ∃ p ∈ PCM , p = PCM (u)

The PCM is modeled in two halves: a sending component and a receiving component. This
way, it can be ensured that a device that has permission to publish data is allowed to publish
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and an app that is allowed to receive data can correctly subscribe. In order to model the
PCM properly, once again there is need to support simple acknowledgements to prevent state
explosion in the model. The acknowledgements are in two parts. Firstly, the PCM acknowl-
edges that it has received or sent messages to the device or app (these acknowledgements
were seen in Definition 5.7).

The second type of acknowledgements defined as (pcmacksd , pcmackrd , pcmacksc, pcmackrc)
allows the two halves of the PCM to acknowledge delivery. For example, if a device is correctly
connected to the PCM, but there is no authorised application, the PCM will not acknowledge
that messages have been delivered. The connection between the two halves is modeled us-
ing the linked parallel construct described above. For example, the “device half” of the PCM
will senddata.p!d which will be renamed to be received by the “app half” of the PCM as
recdata.p?d . Notice that these messages are synchronised on the pseudonym. This models
the privacy of the PCM: each user’s PCM can only communicate with its other half. The PCM
is defined using pattern matching on the different scopes:

Definition 5.31. Personal Cloud Middleware

The “device half” is defined as follows:
PCM (p,Pd) = sd?d → senddata.p!d → pcmacksd → dackd → PCM (p,Pd)

PCM (p,Rc) = reccom.p?c → rc!c → pcmackrc → dackc → PCM (p,Rc)

PCM (p,PdRc) = PCM (p,Pd) 9 PCM (p,Rc)

The “app half” is defined as:
PCM (p,Pc) = sc?c → sendcom.p!c → pcmacksc → aackc → PCM (p,Pc)

PCM (p,Rd) = recdata.p?d → rd !d → pcmackrd → aackd → PCM (p,Rd)

PCM (p,RdPc) = PCM (p,Rd) 9 PCM (p,Pc)

One of the concepts that is important in the PCM is that of summarisation and filtering. These
were not modeled in the PCM. This is because any proofs established in the CSP model will
become intractable in the presence of summarisation and filtering. In addition, the complexity
of the model increases making it much harder to analyse automatically using FDR.

A summarisation or filtering is a function defined on a stream of data or commands:

stream =< d1, d2, d3, d4, . . . dn . . . >

f(stream) =< d′1, d
′
2, . . . d

′
m . . . >

where the number of output data elements can be the same, fewer or even more than the
number of input data points. Summarisation and filtering are, as identified in [43], key
technologies to fight against fingerprinting. In addition, during the creation of this model, we
identified the possibility of filtering commands, which did not emerge in [43].

Filtering commands may initially seem to be counter-intuitive: if a device user wishes to
turn off a light, that user does not want the light turned off “on average”. However, take the
example of a connected car. Command filtering could be seen as an example of an application-
level firewall for device commands. For example, the filter may allow commands to remotely
switch on the engine when the device is parked, but disallow any events that effect the speed
or direction of the car. A more complex filtering rule might allow a command to switch off
the engine when the speed is zero and the parking brake is applied, but filter out any other
attempts to switch off the engine. While there are examples of specific firewalls, e.g, for cars,
in the literature, there was no evidence of a more general filtering and summarising approach
to commands. Next, we combine the components into a full architecture and to demonstrate
specific properties of the system.
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6. An Event-Sharing Analysis

This section builds up the composition of individual components and analyses the events that
are shared between those components. The first part is to connect a device to the manufac-
turer, DIdP, user and gateway.

Definition 6.1. System with Connected Device

Connecting the manufacturer and the DIdP:

DSYS1 = MAN me‖didpe DIDP

where me is the set of events that the manufacturer interacts on, and didpe is the set of events
that the DIdP interacts on.

me = {manufacture, dcrrequest ,credential .cid .cs, updatedevice.cid .cs
∣∣∣

cid ∈ ClientID , cs ∈ ClientSecret}

The set of events that the DIdP interacts with is quite extensive. Firstly, the events between
the device and the DIdP are:

didp2d = {presence.cid , authcode.ac,token ac req .cid .cs.ac, token ac resp.r .b,

token refresh req .cid .cs.r ,token refresh resp.b
∣∣∣

cid ∈ ClientID , cs ∈ ClientSecret ,

ac ∈ AuthCode, r ∈ Refresh, b ∈ Bearer}

The events between the manufacturer and the DIdP are:

didp2m = {dcrrequest , credential .cid .cs
∣∣∣ cid ∈ ClientID , cs ∈ ClientSecret}

The events between the DIdP and the application creator are the same:

didp2ac = {dcrrequest , credential .cid .cs
∣∣∣ cid ∈ ClientID , cs ∈ ClientSecret}

The events between the DIdP and the Gateway are:

didp2gw = {introspect .b, valid .p.s, invalid
∣∣∣ b ∈ Bearer , p ∈ Pseud , s ∈ Scope}

The events between the DIdP and the User are:

didp2u = {lu.u, claim.cid , useraccess,devconsent , appconsent ,noconsent ,

login, success, failure
∣∣∣ cid ∈ ClientID , u ∈ User}

The error event is:

didperr = {error}

And finally, all the DIdP events are:

didpe = didp2d ∪ didp2m ∪ didp2ac ∪ didp2gw ∪ didp2u ∪ didperr

As discussed in the introduction to CSP above, the alphabetised parallel operator (A‖B) has
the following rule:
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Law 6.1. Alphabetised Parallel

P A‖B Q = (P ‖
Σ\A

STOP) ‖
A∩B

(Q ‖
Σ\B

STOP)

where Σ is the set of all events in the system.

In other words, when the alphabetised parallel operator P A‖B Q is used, all possible events
that communicate between P and Q can be defined as the intersection A ∩ B. One of the
key aspects of this system is where there are multiple parties conjoined using alphabetised
parallel. Alphabetised parallel has both symmetry and associativity laws.

Law 6.2. Alphabetised Parallel Symmetry

P A‖B Q = Q B‖A P

Law 6.3. Alphabetised Parallel Associativity

(P A‖B Q) A∪B‖C R = P A‖B∪C (Q B‖C R)

This gives the following theorem:

Theorem 6.1. (Manufacturer to DIdP Events)

As this is the only place where the DIdP interacts with the manufacturer, we can assert that
the Manufacturer only sees the events didpe ∩ me:

{dcrrequest , credential .cid .cs
∣∣∣ cid ∈ ClientID , cs ∈ ClientSecret}

The proof is obvious instantiation of Law 6.1. In addition, this can be derived using the probe
capabilities of FDR that allow this combined process to be explored.

Of course the manufacturer also interacts with the device, but in this case the device is sim-
ply receiving data that the manufacturer provides to the device. One thing to note is that
the manufacturer can retain the ClientID and ClientSecret. A possible improvement to the
model would be to enable a flow whereby the device directly contacts the DIdP to update
the ClientSecret, which would ensure that the manufacturer is not in possession of the device
credentials. This increases security at the cost of making it harder for the manufacturer to
provide support. This is left for further work.

The next stage of constructing the system is to conjoin this with a fresh device:

DSYS2 = FD deve‖didpe∪me DSYS1 \ me

where deve is the set of events that the device communicates on. Note that the overall set
of events that a device interacts on are specified here individually, but later the actual events
that two parties interact on is formally derived using laws of CSP.

The device to manufacturer events are:

dme = {manufacture, updatedevice.cid .cs
∣∣∣cid ∈ ClientID , cs ∈ ClientSecret}

The device to DIdP events are:

dde = {presence.cid , authcode.ac,token ac req .cid .cs.ac, token ac resp.r .b,

token refresh req .cid .cs.r ,token refresh resp.b
∣∣∣

cid ∈ ClientID , cs ∈ ClientSecret ,

ac ∈ AuthCode, r ∈ Refresh, b ∈ Bearer}

Note that dde = didp2d.
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The device to gateway events are:

dge = {connect .b, connected , sd .d , rc.c,dackd , dackc
∣∣∣

b ∈ Bearer , d ∈ Data, c ∈ Command}

The devices own events are:

hde = {act .c, sense.d
∣∣∣d ∈ Data, c ∈ Command}

All device events are the union of these:

deve = dme ∪ dde ∪ dge ∪ hde

The device is conjoined with both the DIdP and the Manufacturer. Once this happens, the the
manufacturer’s events are no longer visible, and therefore are hidden.

Theorem 6.2. (Device to Manufacturer Events)

The device to manufacturer events are defined as deve ∩me. The intersection is calculated
as:

{manufacture, updatedevice.cid .cs
∣∣∣cid ∈ ClientID , cs ∈ ClientSecret}

This can be proven using FDR or by applying the alphabetised parallel rule twice.

Theorem 6.3. (Device to DIdP Events)

The device to DIdP events are defined as the intersection didpe ∩ deve. This intersection is
calculated by FDR as:

{presence.cid , authcode.ac,token ac req .cid .cs.ac, token ac resp.r .b,

token refresh req .cid .cs.r ,token refresh resp.b
∣∣∣

cid ∈ ClientID , cs ∈ ClientSecret ,

ac ∈ AuthCode, r ∈ Refresh, b ∈ Bearer}

In order to authorise the system, the user must connect to the UIdP. Firstly, the events that
the UIdP interacts on:

fedevents = {fedlogin.fc, login, lu.u, success,failure
∣∣∣ u ∈ User, fc ∈ Fedcred}

The set of events that the federated user interacts on are:

fue ={claim.cid , useraccess, fedlogin.fc, lu.u,login, success, failure,

appconsent , devconsent ,noconsent∣∣∣ cid ∈ ClientID , fc ∈ Fedcred , u ∈ User}

Once the federated user is combined with the UIdP, this communicates with the DIdP on a set
of events due:

due = {claim.cid , useraccess, lu.u, login,success, failure, appconsent , devconsent ,

noconsent
∣∣∣ cid ∈ ClientID , u ∈ User}

A user claiming a device is defined as:

FUSER(fc) =UC (fc) fue‖fedevents UIDP |̀ due
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Theorem 6.4. (User to UIdP Events)

By application of the alphabetised parallel law1, it can be ascertained that the user to UIdP
events are fue ∩ fedevents. These are calculated by FDR as:

{login, lu.u, success, failure, fedlogin.fc
∣∣∣u ∈ User , fc ∈ FedCred}

Now this user can be conjoined with the existing system, hiding the login and lu events from
the rest of the system. DSYS3 (fc) indicates the user with credentials fc approving a fresh
device (with the associated DIdP, UIdP and manufacturer).

DSYS3 (fc) = DSYS2 didpe∪deve‖dueFUSER(fc) \ {login, lu.u
∣∣∣ u ∈ User}

Theorem 6.5. (UIdP to DIdP Events)

Using the Associative Law 6.3 it can be shown that the DIdP to UIdP events are defined as the
set (didpe ∪ deve) ∩ fedevents, which (using FDR) evaluates to:{

login, lu.u, success, failure
∣∣∣ u ∈ User

}
Theorem 6.6. (User to DIdP Events)

The user to DIdP events are defined as the set (didpe ∪ deve) ∩ ue. These are calculated by
FDR.

{devconsent , appconsent ,noconsent , login,lu.u, success, failure, claim.cid , useraccess∣∣∣ u ∈ User , cid ∈ ClientID}

Definition 6.2. Device System

This is now joined with the Gateway (IG):

DSYS (fc) = IG gwe∪pcme‖didpe∪gwe∪hdeDSYS3 (fc)

where gwe are the events that the gateway interacts on, and pcme are the events that the two
halves of the PCM interact on:

gwe = {connect .b, connected , introspect .b,valid .p.s, invalid , dackd , dackc, aackd , aackc,

rd .d , sd .d , rc.c, sc.c
∣∣∣b ∈ Bearer , p ∈ Pseud , d ∈ Data,c ∈ Command , s ∈ Scope}

pcme = {senddata.p.d , sendcom.p.c,recdata.p.d , reccom.p.c, pcmackrd , pcmacksd ,

pcmacksc, pcmackrc
∣∣∣d ∈ Data, c ∈ Command , p ∈ Pseud}

This process (DSYS (fc)) indicates a user with credential fc approving a device that is now
fully connected to the rest of the system (IG, DIdP, UIdP, Manufacturer and User).

Theorem 6.7. (Device to Gateway Events)

Once again the associative law can be used to calculate all events that the device can com-
municate with the gateway on, which are defined as the set (gwe ∪ pcme) ∩ deve:

{sd .d , rc.c, connect .b, connected , dackd , dackc
∣∣∣d ∈ Data, c ∈ Command , b ∈ Bearer}

1Note that the user is also present in the app approval process below. The law is applied to both conditions, but
the theorem is presented here for reasons of explication.
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Theorem 6.8. (Gateway to DIdP Events)

The events shared between the DIdP and the IG are derived as (gwe ∪ pcme) ∩ (didpe ∪ hde),
which evaluates to:

{introspect .b, valid .p.s, invalid
∣∣∣b ∈ Bearer , p ∈ Pseud , s ∈ Scope}

Theorem 6.9. (The Gateway Shares no Events with the UIdP, the User and the Manufacturer)

By similar calculations of the alphabetised parallel laws, it is shown that the set of events
shared between the gateway and the manufacturer, user, and UIdP are all empty.

The creation of the App half of the system is analogous, and therefore is presented without
discussion.

Definition 6.3. Application Connected to the DIdP, UIdP, User and IG

FUA(fc) = USERAPPROVE (fc) fue‖fedeventsUIDP |̀ due

All the events an app can participate in are defined as ae, and the set of events that the DIdP
communicates with apps as appdidpe. The user to App events are uae.

ASYS1 = DIDP appdidpe‖ae APPCREATE

ASYS2 (fc) = (ASYS1 didpe∪ae‖uaeFUA(fc)) \ {login, lu.u
∣∣∣ u ∈ User}

ASYS (fc) = IG gwe∪pcme‖appdidpe∪gwe∪haeASYS2 (fc)

The process ASYS (fc) indicates an app that has been approved by user with credential fc
that is connected to the DIdP, UIdP, User, and IG.

6.1. The Complete System

Finally, these two systems (DSYS and ASYS) are connected together. They synchronise only
at the PCM using the PCM events. This is modeled using the linked parallel approach de-
scribed above. The parameterisation of the users’ credentials is retained so that the system
can be tested with different users (with one credential being used to authorise the device and
the other to authorise the app).

Definition 6.4. The Complete System
SYS (fc1 , fc2 ) =DSYS (fc1 )


reccom↔ sendcom

pcmacksd↔ pcmackrd
pcmackrc↔ pcmacksc
senddata↔ recdata

ASYS (fc2 )


Θ{error}STOP

Theorem 6.10. (Application Events)

The same logic as above can be applied to calculate the events that the App shares with
different components. The proofs can be derived by the use of the Associative Law, or more
effectively through probing the model with FDR. These events are summarised in Table 3.

7. Properties of the OAuthing System

Two sets of properties of the system are derived from the model presented above: end-to-end
and data sharing properties.
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User ∅
UIdP ∅
Device ∅
Manufacturer ∅

DIdP

{presence.cid , authcode.ac,
token ac req .cid .cs.ac, token ac resp.r .b,

token refresh req .cid .cs.r , token refresh resp.b
∣∣∣

cid ∈ ClientID , cs ∈ ClientSecret , ac ∈ AuthCode,
r ∈ Refresh, b ∈ Bearer}

Gateway
{rd .d , sc.c, connect .b, connected , aackd , aackc∣∣∣ d ∈ Data, c ∈ Command , b ∈ Bearer}

Table 3: Events Shared Between the App and Other Components

7.1. End-to-End Analysis

The definition of a complete system allows reasoning about the whole system and not just
its individual components. To do this, specifications can be defined in CSP that are either
expected to pass or fail.

Theorem 7.1. (Consent Cannot Follow Failed Login)

In order to demonstrate that consent must follow successful login, an “anti-specification” can
be disproved:

LSPEC = failure → appconsent → STOP2 failure → devconsent → STOP

The specification suggests that the model will support appconsent or devconsent after a fail-
ure. This must be disproven. The specification will only be evaluated on these events:

lspecevents = {error , appconsent , devconsent ,success, failure}

Because this is an anti-specification, disproving means proving that the traces of this are not
a subset of the traces of the system.

Therefore FDR is used to evaluate whether or not:

SYS (FC .0 ,FC .0 ) |̀ lspecevents vT LSPEC

where FC .0 is a valid credential in the system.

FDR shows that this is not true with the following trace of events:

Counterexample (Trace Counterexample)

Specification Debug:

Trace: <failure>

Available Events: {error, success}

Implementation Debug:

LSPEC (Trace Behaviour):

Trace: <failure>

Error Event: devconsent

which means that the system does not accept devconsent after failure.

A positive specification is that when the system is properly consented on both halves, by the
same user, then data that is sensed in the device will be logged in the app, and commands
that are demanded in the app, will be acted on in the device.
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Definition 7.1. Normal System Specification (NS)

This outlines the possibilities for consent. Either there are both of the consents (in either
order), or consent on one side followed by an error, or an error. Internal choice properly
identifies the specification because it does not consider whether the consent failed because
of a failed login, or because the user refused to grant consent, and therefore there are non-
deterministic choices of how these event patterns emerge.

NSSUCC =appconsent → devconsent → NS2 u devconsent → appconsent → NS2 u
error → STOP u appconsent → error → STOP u devconsent → error → STOP

A successful operation is defined as:

NS2 = sense$d → logdata.d → NS2 2 demand$c → act .c → NS2

This specification only considers the following events:

specevents = {error , appconsent , devconsent ,logdata.d , act .c
∣∣∣ d ∈ Data, c ∈ Command}

The overall specification is then:

NS = NSSUCC Θ{error} STOP |̀ specevents

The system is now evaluated using FDR’s refinement checker.

Theorem 7.2. (The System Meets the Specification if the Same User Authorises the Device
and the App)

NS vT SYS (FC .0 ,FC .0 ) |̀ specevents ∧NS vF SYS (FC .0 ,FC .0 ) |̀ specevents ∧
NS vFD SYS (FC .0 ,FC .0 ) |̀ specevents

This is proved by FDR:

NS [T= SYS(FC.0, FC.0) |\ specevents:

Log:

Result: Passed

Visited States: 1,461,364

Visited Transitions: 7,440,420

Visited Plys: 68

Estimated Total Storage: 268MB

NS [F= SYS(FC.0, FC.0) |\ specevents:

Log:

Result: Passed

Visited States: 1,461,364

Visited Transitions: 7,440,420

Visited Plys: 68

Estimated Total Storage: 268MB

NS [FD= SYS(FC.0, FC.0) |\ specevents:

Log:

Result: Passed

Visited States: 1,461,364

Visited Transitions: 7,440,420

Visited Plys: 68

Estimated Total Storage: 268MB
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Theorem 7.3. (The System Fails the Specification if Different Users Authorise the Device and
the App)

If user with credential FC .0 authorises the device and user with credential FC .1 authorises
the app then there are no data or commands transferred:

SYS (FC .0 ,FC .1 ) |̀ specevents vT NS

In other words, this tests whether the correct traces are a subset of the traces of the incorrect
system, and it is desired that this is not the case. This is once again proved by FDR, which
postulates the following counter-example:

SYS(FC.0, FC.1) |\ specevents [T= NS:

Log:

Result: Failed

Visited States: 27

Visited Transitions: 42

Visited Plys: 8

Estimated Total Storage: 0B

Counterexample (Trace Counterexample)

Specification Debug:

Trace: <appconsent, devconsent>

Available Events: {}

Implementation Debug:

NS (Trace Behaviour):

Trace: <tau, tau, tau, tau,

appconsent, devconsent, tau, tau>

Error Event: logdata.D.0

This shows that even though appconsent and devconsent occur, no data is transferred as the
logdata event cannot occur in the system where different users consent.

7.2. Data Flow Between Components

In the analysis of the model above, the messages that flow between components are identified.
Those findings are summarised in Table 4, which captures all the data elements that are
transferred in messages between each component.

Man Dev User UIdP DIdP GW/PCM App

Man — {ClientID,
ClientSec} ∅ ∅ {ClientID,

ClientSec} ∅ ∅

Device {ClientID,
ClientSec} — ∅ ∅

{ClientID,
ClientSec,
AuthCode,
Bearer}

{Bearer ,
Data,

Command}
∅

User ∅ ∅ — {FedCred,
User}

{User ,
ClientID} ∅ ∅

UIdP ∅ ∅ {FedCred,
User} — {User} ∅ ∅

DIdP {ClientID,
ClientSec}

{ClientID,
ClientSec,
AuthCode,
Bearer}

{User ,
ClientID} {User} —

{Bearer ,
Pseud,
Scope}

{ClientID,
ClientSec,
AuthCode,
Bearer}

GW/PCM ∅
{Bearer ,
Data,

Command}
∅ ∅

{Bearer ,
Pseud,
Scope}

—
{Bearer ,
Data,

Command}

App ∅ ∅ ∅ ∅

{ClientID,
ClientSec,
AuthCode,
Bearer}

{Bearer ,
Data,

Command}
—

Table 4: Component Data-Sharing Matrix

This data-sharing matrix captures a key property of the system. The distribution and sharing
of data between components can be used to analyse the security and privacy properties of
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the system. This is done by threat modeling. Threat modeling allows the analysis of different
attacks on the system. Here, we only show this matrix as a demonstration of the information
that can be obtained from such a formal analysis exercise, however, in a future work, we plan
to use this matrix in as an input to a STRIDE [44] or a LINDDUN [45] analysis to properly
understand the security and privacy properties of the OAuthing system.

8. Conclusion and Future Work

As was shown in [7], the OAuthing personal cloud-based IoT data management system pro-
vides significant improvements over existing IoT approaches, leading to much stronger guar-
antees of privacy, where data and identity information are not shared without consent, and
personal sensitive data can be shared anonymously. We presented in this paper a formal
model of the OAuthing system. We used this model to analyse end-to-end and data-sharing
properties of the system.

In summary, the formal model of the system has shown that the system cannot transfer mes-
sages unless:

• A user has successfully logged in to consent,

• the user has granted consent for applications to read data and publish commands,

• the user has granted consent for devices to publish data and read commands, and finally,

• the same user has granted consent for both the application and device.

As a major result, this work proves that the OAuthing approach permits data to be shared
between devices and apps if and only if the same user has consented to both systems being
authorised to do so.

Future work will focus on ustilising the results of the analysis in performing a comprehensive
security and privacy analysis for OAuthing using by interpreting the results using frameworks
such as STRIDE [44] and LINDDUN [45]. We also plan to model the OAuthing system using
other formal specification and analysis methods, e.g. Event-B [46, 47], in order to better
understand the properties of the system. Another important direction for future work would
consider the application of the system and the current formal analysis to a real-world case
study, e.g. from the domains of manufacturing systems or power grid systems, both of which
are relevant to IoT systems.
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