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ABSTRACT
We investigate an interacting dark sector scenario in which the vacuum energy is free to interact
with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity,
i.e. it is in freefall (geodesic), as in �CDM. The interaction is characterized by a dimensionless
coupling qV(z), in general a function of redshift. Aiming to reconstruct the evolution of
the coupling, we use cosmic microwave background data from Planck 2015, along with
baryon acoustic oscillation, redshift space distortion, and Type Ia supernova measurements to
constrain various parametrizations of qV(z). We present the full linear perturbation theory of
this interacting scenario and use Monte Carlo Markov Chains (MCMC) sampling to study five
different cases: two cases in which we have �CDM evolution in the distant past, until a set
redshift ztrans, below which the interaction switches on and qV is the single-sampled parameter,
with ztrans fixed at ztrans = 3000 and 0.9, respectively; a case where we allow this transition
redshift to vary along with qV; a case in which the vacuum energy is zero for z > ztrans and then
begins to grow once the interaction switches on; and the final case in which we bin qV(z) in
four redshift bins to investigate the possibility of a dynamical interaction, reconstructing the
redshift evolution of the function using Gaussian processes. We find that, in all cases where the
high-redshift evolution is not modified, the results are compatible with a vanishing coupling,
thus finding no significant deviation from �CDM.
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1 IN T RO D U C T I O N

Over the past 20 yr, observational cosmology has provided a wealth
of evidence in support of the idea that the expansion of the Universe
is accelerating. The first direct evidence for the acceleration came
from Type Ia supernovae observations (Riess et al. 1998; Perlmutter
et al. 1999) and subsequent measurements of the cosmic microwave
background (CMB, Hinshaw et al. 2009; Aghanim et al. 2018)
and other cosmological probes such as baryon acoustic oscillations
(BAOs, Alam et al. 2017) have all confirmed the late-time domi-
nance of a dark energy component in our Universe.

The standard cosmological model, �CDM, has been largely
successful in explaining these measurements, with the cosmological
constant, �, being the simplest driver of an accelerated expansion
and cold dark matter (CDM) being responsible for structure for-
mation. However, there are problems with �CDM which motivate
the investigation of alternative models. These problems manifest in
both the discrepancy between the predicted and observed values of

� E-mail: martinelli@lorentz.leidenuniv.nl

the cosmological constant (Weinberg 1989; Adler, Casey & Jacob
1995), and in the tensions that exist between low-redshift probes
of the expansion rate and structure growth and the corresponding
values inferred from CMB measurements (for which a cosmological
model must be assumed) (Macaulay, Wehus & Eriksen 2013;
Bernal, Verde & Riess 2016).

In recent years, the precision of surveys has improved and
these tensions have become more apparent, particularly in
the value of the Hubble parameter today, H0; the most re-
cent CMB measurement, from the Planck satellite, is H0 =
67.4 ± 0.5 km s−1 Mpc−1 (Aghanim et al. 2018), whereas the most
recent local determination, from the Hubble Space Telescope, is H0

= 73.45 ± 1.66 km s−1 Mpc−1 (Riess et al. 2018), a discrepancy of
3.7σ . Other distance ladder-independent probes do not seem to ease
the tension, with the LIGO measurement of 70+12.0

−8.0 km s−1 Mpc−1

(Abbott et al. 2017) and a recent H0LiCOW quadruple lensed quasar
measurement of 72.5+2.1

−2.3 km s−1 Mpc−1 (Birrer et al. 2018) falling
between the CMB and distance ladder results.

The tension in σ 8, the amplitude of the linear matter power
spectrum on a scale of 8 h−1 Mpc, is less severe than that in H0,
but is yet another indicator of problems with �CDM. Once again,
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the discrepancy appears between measurements of σ 8 at large and
small scales, most noticeably the scales probed by the CMB and
the smaller scale indicators of large-scale structure (LSS), such as
galaxy cluster counts, weak-lensing and redshift space distortion
(RSD) measurements (Battye, Charnock & Moss 2015), with LSS
giving a lower value than CMB (Abbott et al. 2018).

It remains to be seen whether these tensions will survive as
the new generation of surveys, satellites, and telescopes begins to
provide us with data and new analysis techniques are developed.
An interesting example of such a novel method has latterly been
described in the literature, with compelling results (Aubourg et al.
2015; Macaulay et al. 2018). These authors invert the distance
ladder, anchoring the Type Ia supernova measurements to BAOs
rather than to the parallax distances of Cepheid variable stars. Using
this method, along with 207 new DES supernovae, Macaulay et al.
(2018) find a value of H0 = 67.77 ± 1.30 km s−1 Mpc−1, which
is in excellent agreement with the derived value from Planck. This
hints at an uncertainty in the measuring of parallax distances which
could be leading to a miscalibration of the distances to the Cepheids.
This uncertainty could be reduced by future data from Gaia (Beaton
et al. 2018) and LSST (Ivezić et al. 2012). However, observational
advances are just one way the H0 and σ 8 tensions could be resolved;
an alternative is to examine new theoretical models of dark energy.

In this work, we explore the phenomenology of a scenario in
which the vacuum energy is free to interact with dark matter. The
idea of a decaying vacuum energy as been afforded a great deal
of study in the literature (see e.g. Bertolami 1986; Pavón 1991;
Al-Rawaf & Taha 1996; Shapiro & Sola 2002; Sola 2011; Wands,
De-Santiago & Wang 2012) and other dynamical and interacting
dark energy models have also been investigated, often with the
conclusion that not only can cosmological tensions be relieved in
such models, but they may even be favoured over �CDM (see e.g.
Salvatelli et al. 2014; Wang et al. 2015; Zhao et al. 2017; Solà,
Gómez-Valent & de Cruz Pérez 2017a; Di Valentino, Melchiorri &
Mena 2017; Kumar & Nunes 2017; Solà, Gómez-Valent & de Cruz
Pérez 2018a; Yang et al. 2018a; Wang et al. 2018, for more details).

The specific scenario we here consider retains general relativity
as the description of gravity, while allowing for a possible exchange
of energy between CDM and the vacuum, i.e. a dark energy with
an equation of state parameter w = −1 (Lemaı̂tre 1931; Lemaı̂tre
1934). This scenario does not introduce any additional dynamical
degrees of freedom with respect to �CDM (Wands et al. 2012). The
interaction allows for the energy density of the vacuum, V, to change,
while CDM can freely cluster under the sole action of gravity i.e.
CDM remains geodesic, as in �CDM. We investigate the possibility
of such an interaction by choosing a simple parametrization and
studying its behaviour as a function of redshift. As we show
in Section 2, the interaction is described – in the synchronous
comoving gauge and under the assumption of geodesic CDM – by
a single background function Q(z) which we model as Q = qVHV,
where qV(z) is a dimensionless function. Based on this, we consider
five different cosmologies, with the general aim of reconstructing
qV(z) with step functions in different redshift bins, using the values
qV has in each bin as parameters. In particular, a four bins case is
essentially model-independent.

The first two cosmologies, which we name Cfix, consider a
physical scenario in which we have a �CDM evolution in the
past up to a fixed transition redshift ztrans. At z lower than ztrans,
the interaction switches on and the vacuum energy starts to evolve.
The two cases differ in the redshift of the transition: in the first we
assume that the interaction starts at high redshift, with ztrans = 3000;
in the other we assume ztrans = 0.9, in order to compare with the

same case considered by Salvatelli et al. (2014). For these two Cfix
cases we sample over the usual cosmological parameters, with the
addition of the single interaction parameter, qV.

The third case, Cvar, is similar to the first two, but we additionally
sample over the transition redshift, ztrans. The fourth case, which we
call seeded vacuum energy or SVE, mimics a physical scenario in
which the coupling causes the vacuum energy to suddenly grow
from zero up to a ‘seed’ value at ztrans. At lower redshifts, the
interaction then behaves as in the previous three cases i.e. with a
constant qV, and the vacuum evolves accordingly. Therefore this
case, like the third, has two free parameters: qV and ztrans. The
fifth case we consider is the model-independent scenario in which
we allow the interaction to evolve in four redshift bins, using four
different values of the interaction strength qV. We call this the
4bins case. We use MCMC techniques to constrain the coupling
and transition redshifts in each case, using the latest observational
data sets.

We draw attention to the previous work of some of the authors,
Salvatelli et al. (2014), and wish to emphasize the differences
between that Letter and the current paper. In this work, we make
use of the new data that is now available, especially the Planck 2015
likelihood, along with new BAO, RSD, and Type Ia supernova data.
We also use a less restrictive prior on the coupling parameter in our
parameter inference, allowing us to investigate the possibility of an
energy transfer both from dark matter to the vacuum and vice versa.
We will discuss this further in Section 7.

The rest of the paper is organized as follows: in Section 2, we
present the theory of the interacting vacuum scenario, including
the equations governing the evolution of the background and
perturbations. In Section 3, we outline the parametrization of the
interaction and the methods of reconstruction studied in this work.
In Section 4, we discuss the data and analysis methods used in our
investigation, and in Section 5, we present our results, followed
by a discussion in Section 6. We make some comments on other
recent works in this area in Section 7, and we finally conclude with
Section 8.

2 C O L D DA R K MATT E R – VAC U U M E N E R G Y
I NTERAC TI ON

In this section, we outline the theoretical framework for the inter-
acting vacuum scenario, beginning with a summary of the general
covariant theory and progressing to the details of the scenario in a
Friedman–Lemaı̂tre–Robertson–Walker (FLRW) background with
perturbations. See Wands et al. (2012) for more details.

2.1 Covariant theory of the interacting vacuum

In �CDM, the cosmological constant � represents the vacuum
energy of the Universe, and in a classical sense, this vacuum energy
can be treated as a non-interacting perfect fluid with an equation
of state parameter w = −1, as was realized by Lemaı̂tre (Lemaı̂tre
1931; Lemaı̂tre 1934).

The energy–momentum tensor of a perfect fluid is

T μ
ν = Pgμ

ν + (ρ + P )uμuν, (1)

where ρ is the energy density, P the pressure, and uμ the four
velocity of the fluid.

We define the energy–momentum tensor of the vacuum as

Ť μ
ν = −Vgμ

ν , (2)
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and by comparison with (1) we can identify V = −P̌ = ρ̌, i.e. V
is the vacuum energy density. This means that the equation of state
parameter w = P/ρ is equal to −1, as it is for the cosmological
constant �. Moreover, this form of the vacuum energy–momentum
tensor leaves the vacuum four velocity undefined and any four
vector is an eigenvector of Ť μ

ν . Therefore, all observers measure the
same vacuum energy density V; in other words, the vacuum energy
is boost invariant. In the following, uμ therefore denotes the four
velocity of CDM.

Denoting the energy–momentum tensor of CDM with T μ
ν and its

energy density with ρc,

T μ
ν = ρcu

μuν, (3)

we can introduce an interaction between CDM and the vacuum
energy in the following way:

∇μT μ
ν = −Qν, (4)

∇μŤ μ
ν = −∇νV = Qν, (5)

where the interaction four vector Qν represents the energy–
momentum flow between vacuum and CDM.

If T
μν

tot = T μν + Ť μν is the total energy–momentum tensor, then
the form of the interaction in equations (4) and (5) ensures the total
conservation equation ∇μT

μν
tot = 0, which, in Einsteinian gravity

follows from the Bianchi identity ∇μGμν ≡ 0. We note that this
scenario reduces to the standard �CDM case when Qν = 0, as this
implies V = constant.

We can project the interaction four vector in two parts parallel
and orthogonal to the CDM four velocity:

Qμ = Quμ + f μ, (6)

where, in the frame of observers comoving with CDM, Q represents
the energy flow, and fμ the momentum exchange between CDM and
vacuum; fμ is orthogonal to uμ i.e. fμuμ = 0.

Following Salvatelli et al. (2014) and Wang et al. (2014), we
consider the simplest case of interaction: a pure energy exchange in
the CDM frame wherein fμ = 0, and so Qμ = Quμ. The four force,
fμ, is related to the four acceleration aμ = uα∇αuμ by

f μ = aμρc. (7)

Since we set fμ = 0, it follows that aμ = 0, meaning there is
no acceleration of CDM due to the interaction and hence CDM
remains geodesic. We may call this interacting scenario the geodesic
CDM scenario (see also Wang et al. 2013). It follows from this
geodesic CDM assumption that the effective sound speed of matter
perturbations is zero and hence the Jeans length is also zero,
meaning that there is no damping of matter perturbations on scales
smaller than the Jeans length. However, the interaction will still
affect structure growth, as discussed below in Section 2.3.

A second important consequence of the assumption of pure
energy exchange is that, following (5), the CDM four velocity
uμ consequently defines a potential flow and the CDM fluid is
thus irrotational (Borges & Wands 2017). This is a sufficient
approximation of the behaviour of CDM at early times and on
large scales, in a linear regime where only scalar perturbations are
relevant for structure formation, but at late times, it is expected
that non-linear structure growth will lead to vorticity. At late times,
dark matter haloes are rotationally supported and in this non-linear
regime, a gravitomagnetic frame-dragging vector field is generated
(Bruni, Thomas & Wands 2014). Dark matter composed of a purely

irrotational fluid would have strong observational signatures (in
particular, the rapid formation and growth of supermassive black
holes, Sawicki, Marra & Valkenburg 2013), so our assumption of
the pure energy exchange which allows CDM to remain geodesic
must break down below some length-scale. Further investigation of
this limit is left to a future work.

2.2 Flat FLRW background

In a spatially flat FLRW background, equations (4) and (5) reduce
to the coupled energy conservation equations,

ρ̇c + 3Hρc = −Q, (8)

V̇ = Q, (9)

where H is the Hubble expansion function and Q is the interaction
term.

2.3 Linear perturbations

We now consider the linear, scalar perturbations about the FLRW
metric. With the inclusion of these, the line element in a general
gauge becomes

ds2 = −(1 + 2φ)dt2 + 2a∂iBdxidt

+ a2[(1 − 2ψ)δij + 2∂i∂jE]dxidxj . (10)

The perturbed energy density of CDM is given by ρc + δρc, and
the perturbed four velocity of matter is

uμ = [1 − φ, a−1∂iv], (11)

uμ = [−1 − φ, ∂iθ ], (12)

where

∂iv = a ∂xi

∂t
, (13)

θ = a(v + B). (14)

In the geodesic CDM scenario, where in (6) fμ = 0, the perturbed
energy conservation equations for CDM and the vacuum become

δρ̇c + 3Hδρc − 3ρcψ̇ + ρc
∇2

a2
(θ + a2Ė − aB)

= −δQ − Qφ, (15)

δV̇ = δQ + Qφ, (16)

and the momentum conservation equations become

θ̇ + φ = 0, (17)

−δV = Qθ. (18)

Considering that we are interested in the geodesic CDM scenario,
with the interaction consisting of a pure energy exchange in the
CDM frame, i.e. Qμ = Quμ, the CDM four velocity uμ acquires
a central role, and it is therefore useful to consider a velocity-
orthogonal slicing where uμ coincides with the normal to the
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constant-time hypersurfaces (Kodama & Sasaki 1984; Malik &
Wands 2008).

In this case the spatial components of uμ in equation (12) vanish,
and so θ = 0, which then implies v + B = 0 from equation (14). The
main convenience of this time-slicing with θ = 0 is that the vacuum
is spatially homogeneous on these hypersurfaces, δV = 0, which
follows from equation (18). In this slicing, we can then specify a
gauge.

A convenient choice of gauge for the numerical analysis dis-
cussed later is the synchronous gauge comoving with the four
velocity of CDM, fixed by setting φ = v = B = 0. With this choice,
equation (17) becomes an identity, equation (18) again implies δV =
0, and equation (16) therefore gives δQ = 0: both the interaction and
the vacuum are spatially homogeneous with this gauge choice. The
interaction therefore does not explicitly appear in the perturbation
equations (15) and (16) and it is not necessary to evolve the vacuum
perturbations once this choice of gauge is made.1

However, it is usual to use the density contrast δc = δρc/ρc

to describe matter perturbations. In doing so, the interaction is
reintroduced via the evolution of ρc from (8). We find that δc evolves
as

δ̇c = Q

ρc
δc + 3ψ̇ − ∇2Ė. (19)

This point cannot be stressed enough, as it shows that the interaction
has an effect on the perturbations and not just the background. This
has important implications for cosmological structure growth, as
we will further describe in Section 2.4.

One may feel that the discussion of perturbations in CDM and
the vacuum only is too idealized, especially considering that in
our numerical analysis described in Section 4, we make use of
the Einstein–Boltzmann code CAMB (Lewis, Challinor & Lasenby
2000; Howlett et al. 2012) in which baryons and radiation are
also included. In such a multicomponent case, a common gauge
choice is that of the total-matter gauge, with a four velocity
chosen to be the eigenvector of the total energy–momentum tensor
(Kodama & Sasaki 1984). In such a gauge, the CDM would have a
peculiar velocity and both the vacuum and the interaction would be
inhomogeneous. However, CAMB works in the synchronous gauge
comoving with CDM and therefore the perturbation equations of
the other components remain unchanged when one modifies CAMB

from its basic �CDM version. This greatly simplifies the analysis
of the geodesic CDM scenario we consider in this paper.

2.4 Redshift space distortions in interacting cosmologies

An interacting scenario such as the one described above has a non-
trivial effect on the growth of structure, as we will now explain. The
peculiar velocities of galaxies, v, cause a stretching and squashing in
their shapes when plotted in redshift space. In �CDM, where there
is no interaction, these RSDs constrain structure growth because
the divergence of the peculiar velocity field, ∇ · v, is related to the
time derivative of the density contrast,

δ̇c = − 1

a
∇ · v . (20)

One can write this time derivative in terms of a growth factor f as

δ̇c = −δcHf , (21)

1We wish to emphasize that the vacuum is perturbed in a general space–time
sense; it is only homogeneous in the frame of observers comoving with the
geodesic CDM, where δV = 0.

where f is defined as

f ≡ d ln D

d ln a
, (22)

and where D is the amplitude of the linear growing mode (Hamilton
2001). These distortions therefore allow a constraint to be placed on
the growth rate of structure in the form of fσ 8, where σ 8 is the am-
plitude of the linear matter power spectrum on a scale of 8h−1 Mpc.
Equation (20) can be interpreted in relativistic perturbation theory
as relating δc in the comoving-synchronous gauge of the previous
section to ∇ · v in the Newtonian–Poisson gauge (Kodama & Sasaki
1984; Malik & Wands 2008).

However, in the interacting vacuum scenario, the interaction
enters into the equation for the evolution of the density contrast
(equation 19). Relating the ∇ · v term with the metric perturbations
in the synchronous comoving gauge gives

∇ · v ≡ −a(3ψ̇ − ∇2Ė), (23)

and so

∇ · v = −aδ̇c + aQδc

ρc
, (24)

∇ · v = −aδcHfi, (25)

where fi is the modified growth rate in the interacting vacuum
cosmology,

fi = f − Q

Hρc
. (26)

This means that in the interacting vacuum scenario, the RSDs that
we observe place a constraint on a new parameter that we may
call fiσ 8. This has been studied in Borges & Wands (2017), and a
similar effect in a cosmology with a scalar field that conformally
and disformally couples to dark matter was noted in Kimura et al.
(2018).

An unmodified version of the code CAMB would compute the
parameter fσ 8 as written in equation (33) of Ade et al. (2016a),

f σ8(z) ≡
[
σ

(vd)
8 (z)

]2

σ
(dd)
8 (z)

, (27)

where σ
(vd)
8 is the smoothed density–velocity correlation and σ

(dd)
8

the smoothed density autocorrelation. The peculiar velocity in
equation (27) is the Newtonian–Poisson gauge velocity of the
baryons and CDM. However, as we will explain in Section 4, we
modify CAMB to include our interacting scenario. It follows that the
modified CAMB actually computes the right-hand side of equation
(27), which we may interpret as the parameter fiσ 8. We can therefore
safely use RSD data when attempting to constrain the interaction
strength. However, this is not a direct constraint on the growth factor,
f.

3 C O U P L I N G FU N C T I O N R E C O N S T RU C T I O N

In order to constrain the interaction with available data, we write
the covariant coupling in equation (6) as

Q = −qV
1

3
V , (28)

where  = ∇μuν is the expansion scalar and qV is a dimensionless
function that represents the strength of the coupling.
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In an FLRW background, equation (28) reduces to

Q(z) = −qV(z)H (z)V (z), (29)

and hence the energy conservation equations (8) and (9) become

ρ̇c + 3Hρc = qV(z)H (z)V (z), (30)

V̇ = −qV(z)H (z)V (z). (31)

Now that we have the differential equations written in terms of
the dimensionless coupling qV(z), we need to model the evolution
of this function in redshift in terms of some numerical parameter
that we will later constrain with cosmological data.

In this paper, however, we are aiming to reconstruct the coupling
rather than test specific models, adopting an agnostic standpoint
regarding qV(z) and letting the data to tell us what this function is
likely to be. The simplest way to proceed is to use step functions,
approximating the coupling function qV(z) with one or more
constant values of qV in a series of redshift bins.2

We focus on two main cases: the first is based on a single-
redshift bin, the second on four. Thus, in the first case we consider
a single step function, with a fixed constant value qV from z =
0 to a transition redshift ztrans, after which qV = 0, the coupling
vanishes and V is constant at higher redshifts. We will elaborate
on four variants of this single step function reconstruction scenario
in Section 5, discussing two cases where ztrans is kept fixed, a case
where we sample over ztrans and a case where we assume V = 0 for
z > ztrans.

Finally, going beyond the single-step function reconstruction, we
want to account for a dynamical interaction qV(z) with no a priori
assumption of any specific model for its time evolution: to this end,
we consider a binned reconstruction of the function qV(z), based on
several step functions.

It is worth stressing here that ztrans is a purely phenomenological
parameter, used to implement the step function reconstruction.
A true physical model producing an interaction between dark
components might indeed imply that such a coupling is active
throughout the whole history of the Universe, which would ef-
fectively correspond to ztrans = ∞. However, given our choice
of Q∝V(z), even if the coupling is active at all times it will be
effectively vanishing when the vacuum energy becomes negligible.
Choosing a ztrans corresponding to an era where V(z) < <ρc(z)
therefore mimics a model in which the coupling is always active
and also allows us save computational time, as it only requires
solving the differential equations presented in Section 2 up to ztrans

(see Section 3.1).
At the same time, the physical model might imply that the

coupling only becomes active when certain conditions are satisfied.
Having a low ztrans can in principle phenomenologically mimic such
a model and obtaining the value of ztrans that is preferred by the data
would allow us to understand if models with a coupling that is not
active at all times are preferred with respect to those in which the
transfer of energy between the components is always active.

In the next three subsections, we describe the three main phys-
ical scenarios and their implementation through a step function

2Notice that adopting a step function reconstruction for qV(z) introduces
discontinuities in ρ̇c and V̇ in equations (30) and (31) at the boundaries of
the redshift bins; however this is not a problem, as the resulting ρc and V(z)
are continuous. In practice, we adopt a smoothed version of the step function
reconstruction, so that even ρ̇c and V̇ are continuous, see Section 3.2.

reconstruction; namely a constant qV up to ztrans followed by V =
constant, a varying qV(z) represented by multiple bins and in which
V = constant after the final bin and finally a constant qV up to the
transition redshift ztrans, after which V = 0. We then illustrate the
effect of the coupling on the cosmological evolution.

3.1 Constant qV interaction

With the reconstruction of qV(z) in mind, we elaborate on the five
different possibilities, all based on assuming that in some redshift
range qV(z) is constant in time, i.e. qV(z) = qV. Then, in each bin
the interaction between dark matter and vacuum energy scales with
redshift as Q(z)∝H(z)V(z). Such an interaction is a sub-case of
the linear couplings considered by Quercellini et al. (2008), and
it greatly simplifies the solutions for ρc and V, which can be now
obtained analytically from equations (30) and (31).

Setting initial conditions at z = 0 gives

ρc(z) = ρ0
c a

−3 + V0
qV

qV − 3

(
a−3 − a−qV

)
, (32)

V (z) = V0a
−qV , (33)

where ρ0
c and V0 are the present values of the energy density of

CDM and vacuum, respectively. Furthermore, the equations for
matter perturbations δc follow equation (19).

Analytical expressions similar to equations (32) and (33) can
be found in different redshift bins, in a way that guarantees the
continuity of ρc and V across bin boundaries.

It is worth noting at this point that the choice of a constant
qV(z) is a strong assumption that has to be taken with a pinch
of salt: it conveniently simplifies the equations but can give an
unphysical model;3 we use it here only to give a phenomenological
representation of a generic interaction in various redshift ranges, up
to z = 0.

Hence, a first step we can take towards a more general description
of the coupling is to consider a single-step function reconstruction
for qV(z), i.e. a qV(z) that remains constant up to a certain redshift
ztrans and vanishes for higher redshifts; this corresponds to a
cosmology equivalent to �CDM in the distant past, undergoing
a transition at ztrans where the coupling is turned on and densities
and perturbations start to scale as in the constant qV case.

3.2 Binned reconstruction

In order to allow for a variation in redshift of the coupling function
qV(z), we reconstruct its evolution using a number of redshift bins
N, with the ith bin being enclosed in the range [zi − 1, zi], with z0 =
0 and i = 1, ..., N. For each of these bins the value at the centre of
the range (z̄i) is qi = qV(z̄i) and we assume the function to take this
constant value within the entire redshift bin. With this choice, we
can generally reconstruct the value of the function at any point as

qV(z) = q1 +
N−1∑
i=1

(qi+1 − q1) [θH(z − zi) − θH(z − zi+1)] (34)

or, equivalently,

qV(z) = q1 +
N−1∑
i=1

(qi+1 − qi) [θH(z − zi)] (35)

3For instance, in an oversimplified model based on a negative constant qV

at all times the CDM density ρc would become negative at some point.
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where θH is the Heaviside function. We choose however to adjust
this reconstruction by introducing a smoothing at the border of
the bins, controlled by the parameter s, substituting the Heaviside
functions with smooth steps based on hyperbolic tangent functions.
This allows us to avoid sharp transitions between values of the
function qV(z), which could lead to numerical problems. Given that
no derivatives of the coupling enter our equations, this should not
be an issue in our case, but even so, we rewrite the reconstructed
function as

qV(z) = q1 +
N−1∑
i=1

qi+1 − qi

2

[
1 + tanh

(
s

z − zi

zi − zi−1

)]
. (36)

Using equation (35) in equations (30) and (31) gives analytic
expressions similar to equations (32) and (33) in each bin, matched
at the bin boundaries; using equation (36) gives a smoothed version
of the same qV(z). With this, we numerically obtain the densities ρc

and V such that their derivatives ρ̇c and V̇ are continuous through the
bin boundaries. We have checked that the numerical and analytical
solutions for ρc and V match extremely well.

3.3 Seeded vacuum energy

In the cosmology described above, there is a standard �CDM
evolution at high redshifts until the coupling switches on at ztrans

and the vacuum and CDM energies can begin to interact. Instead, in
the SVE, we have designed a reconstruction that mimics a physical
scenario in which for z > ztrans we have a pure CDM (Einstein–e
Sitter) evolution, rather than �CDM. In this scenario, the coupling
causes the vacuum energy to suddenly grow from zero up to a ‘seed’
value at ztrans, a kind of fast transition; cf. Piattella et al. (2010) and
Bertacca et al. (2011) for a similar idea for unified dark matter
models. Then, at lower redshifts, the interaction is characterized as
in the previous cases, i.e. with a constant qV, and the vacuum evolves
accordingly. The free parameter, ztrans allows this rapid growth of
vacuum to a non-zero value to occur even at very late times.

In practice, this set-up is achieved by some reverse engineering
in CAMB. Since the coupling function Q is proportional to V, if V
remained practically zero for the entire cosmic history we would
never have any interaction. Instead, we ‘seed’ the growth of vacuum
by inducing a sudden spike in its density at ztrans. The vacuum energy
V can then grow to a finite value and the transfer of energy between
the vacuum and CDM via the coupling can begin.

3.4 Effects of the coupling

As mentioned in the Introduction, we are interested in the ability of
these models to ease the tensions between low- and high-redshift
observations. In particular, we focus on the tension between the local
determination of H0 and that inferred from CMB measurements of
the angular size of the sound horizon at recombination, θMC. In
Fig. 1 we show the H(z) obtained for three different values of qV

and the same value of θMC, also highlighting the resulting value of
H0, while the other cosmological parameters, i.e. the densities �bh2

and �ch2, primordial power spectrum amplitude and tilt As and ns

and the optical depth τ , are fixed to the best fit of Planck 2015 (Ade
et al. 2016a). We find that starting from the Planck value of θMC,
a positive qV leads to higher values of H0 with respect to �CDM,
thus moving in the direction required to ease the tension.

Figs 2–4 illustrate different aspects of the same three cosmolo-
gies. Given the definition of Q in equation (29), a negative value
for qV implies that CDM is decaying into the vacuum, thus with the

Figure 1. The evolution of the Hubble function H(z) for three cosmologies
resulting in the same angular size of the sound horizon at recombination.
Except for qV and H0, whose values are shown in the label, all the other
primary parameters are fixed to the Planck 2015 best fit.

Figure 2. The evolution of the matter (dashed lines) and vacuum density
(solid lines) parameters as a function of redshift, for a small positive and
negative coupling. The �CDM case is shown in blue. Except for qV and
H0, whose values are shown in the label, all the other primary parameters
are fixed to the Planck 2015 best fit.

Figure 3. The CMB TT power spectrum for three cosmologies resulting
in the same angular size of the sound horizon at recombination. Except
for qV and H0, whose values are shown in the label, all the other primary
parameters are fixed to the Planck 2015 best fit. The data points are the TT
observations of Planck 2015.
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Figure 4. The matter power spectrum at z = 0 for three cosmologies
resulting in the same angular size of the sound horizon at recombination.
Except for qV and H0, whose values are shown in the label, all the other
primary parameters are fixed to the Planck 2015 best fit. The �CDM case
is plotted in blue.

values of the density parameters �ch2 and �bh2 fixed at z = 0 we
end up with a higher matter density in the past (see Fig. 2). However,
because the cosmologies shown here have the same present value
of the matter density �ch2, they will have significantly different
matter abundances at early times; this impacts other observables,
e.g. CMB power spectra which are significantly affected by the
amount of matter (see Fig. 3). Therefore if the only free parameters
considered are qV and H0 one would expect a positive correlation
between the two, but it is crucial not to neglect the effect of matter
abundance on predictions for cosmological probes and the resulting
degeneracy of �ch2 with qV and H0.

In Fig. 4, the effect of the coupling on the evolution of perturba-
tions is shown through its effect on the matter power spectrum P(k,
z); we can see that a positive value of qV suppresses the amplitude
of P(k, z), while on the contrary this is increased by a negative qV.
We stress that even though the results we comment on here refer to a
case with constant qV up to z = 1 and vanishing at higher redshifts,
the same qualitative behaviour also holds for different choices of
the redshift evolution of qV.

4 DATA A N D A NA LY S I S M E T H O D

We want to compare the predictions of the interacting vacuum
scenario with recent cosmological data. For this analysis, we
consider the Planck 2015 measurements of the CMB temperature
and polarization (Aghanim et al. 2016; Ade et al. 2016a). For
the Planck likelihood, we also vary the nuisance parameters that
are used to model foregrounds as well as instrumental and beam
uncertainties. We note that at the time of writing, the new Planck
2018 likelihood was not publicly available, but given the similarities
between the Planck 2015 and 2018 results we do not expect that
our results would change significantly were we to use the 2018 data
presented in Aghanim et al. (2018).

In addition to the Planck CMB data, we utilize the BAO
measurement from the 6dF Galaxy Survey (Beutler et al. 2011),
the BAO scale measurement from the SDSS DR7 Main Galaxy
Sample (Ross et al. 2015) and the combined BAO and RSD data
from the SDSS DR12 consensus release (Alam et al. 2017) (data
points listed in Table 1), together with the JLA Type Ia supernovae
sample (Betoule et al. 2014). We refer to the combined data sets

Table 1. This table lists the BAO and fσ 8 data points used in our
analysis. The parameter Dv is a distance scale, defined as Dv(z) =[

(1 + z)2D2
A(z) cz

H0E(z)

]1/3
, DA being the angular diameter distance (Beutler

et al. 2011), and fσ 8 is the value of the linear growth rate f multiplied by σ 8,
the amplitude of the linear matter power spectrum on a scale of 8 h−1 Mpc.

Quantity zeff Measurement Source

Dv 0.106 457 ± 27(rs/rs, fid) Mpc Beutler et al. (2011)
Dv 0.15 (664 ± 25)(rs/rs, fid) Mpc Ross et al. (2015)
Dv 0.32 (1270 ± 14)(rs/rs, fid) Mpc Alam et al. (2017)
Dv 0.57 (2033 ± 21)(rs/rs, fid) Mpc Alam et al. (2017)
fσ 8 0.32 0.392 Alam et al. (2017)
fσ 8 0.57 0.445 Alam et al. (2017)

as Planck + Low-z, with Low-z referring to the combination of all
data set at redshifts lower than recombination.

4.1 Implementation in CAMB

Now that we have chosen our methods of reconstruction, we need
to obtain predictions for the cosmological observables. In order to
do so, we use the Einstein–Boltzmann Code for the Anisotropies
in the Microwave Background (CAMB); we modify the code so that
it uses the ρc(z) and V(z) of our model rather than those computed
internally within the �CDM framework. We therefore add a new
module which solves the differential equations (30) and (31), with
qV(z) computed at each redshift according to the methods described
in Section 3. We use a Runge–Kutta algorithm, starting from the
present day with initial conditions

ρ0
c = 3H 2

0 �c,

V0 = 3H 2
0 ��, (37)

and then evolving the equations backwards in time. To solve the
equations for CDM perturbations we make use of the routines
present in CAMB, modifying the equation for CDM with the extra
source term proportional to qV(z) described in equation (19).

On top of this, we make use of the MCMC sampler COSMOMC

(Lewis & Bridle 2002; Lewis 2013) to sample the parameter space
and compare our predictions with the cosmological data mentioned
above. The six sampled parameters are therefore those of the
minimal �CDM: the baryon and CDM densities at present day,
�b h2 and �ch2; the optical depth, τ ; the primordial power spectrum
amplitude and tilt, As and ns, and the Hubble constant H0.

Furthermore, we also consider additional parameters depending
on the specific cosmology we investigate:

(i) Cfix: the constant coupling qV with uniform prior [ − 6, 3],
controlling the evolution of the densities up to a fixed ztrans = 3000,
with standard �CDM evolution at higher redshifts. We also consider
a variation on this in which ztrans = 0.9, to compare directly with
Salvatelli et al. (2014).

(ii) Cvar: the constant coupling qV and the varying ztrans with
uniform priors [ − 6, 3] and [0.1, 10] respectively. At redshifts higher
than ztrans, the coupling is turned off and we then have standard
�CDM evolution. In order to test the stability of the results changing
the prior choice, we also explored a logarithmic prior on ztrans,
including also higher values of this parameter, finding no significant
differences in our results. We choose therefore to present in the paper
only the results obtained with the uniform prior.

(iii) SVE: a constant qV and the varying transition redshift ztrans.
At redshifts higher than the transition redshift, CDM evolves in the
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Table 2. Prior ranges on the cosmological pa-
rameters sampled in our analysis. The prior range
on ztrans refers to the Cvar and SVE cases, while
in the rest of the analysis this parameter is fixed.

Parameter Prior range

�bh2 [0.005, 0.1]
�ch2 [0.001, 0.99]
H0 [50, 100]
τ [0.01, 0.8]
log 1010As [2.0, 4.0]
ns [0.8, 1.2]
qi

V [ − 6, 3]
ztrans [0.1, 10]

standard way while V(z) smoothly transitions to zero from its value
at ztrans according to the solution of the differential equations. For
these parameters, we also use the uniform priors [ − 6, 3] and [0.1,
10] respectively.

(iv) 4bins: N = 4 low-redshift bins qi, with uniform priors [ − 6,
3], used to reconstruct the evolution in time of the coupling function
qV(z), with a return to standard �CDM for redshifts higher than the
last bin. The number and redshift of the considered bins (zi ∈ {0.3,
0.9, 2.5, 10}) are chosen in order to compare our results with that
from previous work by Salvatelli et al. (2014).

The choice of the prior range [ − 6, 3] for the qV parameters arises
from the fact that ρc in equation (32) becomes singular when qV

= 3. While higher values of the coupling are theoretically possible,
we choose to limit the parameter space to the non-pathological part,
in order to avoid issues with the sampling. Indeed, we find that this
prior is sufficiently broad as to have no effect on our results.

A summary of the priors used on all parameters can be found in
Table 2.

5 R ESULTS

In this section, we present the results of our investigation, beginning
with the two Cfix cases where the interaction is characterized by a
constant parameter qV up to a transition redshift, moving to the cases
where the transition redshift ztrans is allowed to vary (Cvar and SVE)
and finally the 4bins case. We remark again that any integration is
performed with initial values set today at z = 0. In particular a
non-zero value for the vacuum V0 is set as in equation (37).

In Table 3, we summarize results for the five cases; we report
the marginalized constraints on the primary parameters sampled in
our analysis, adding also the combination of derived parameters
σ8�

1/2
m , useful to assess the status of the tensions between high- and

low-redshift probes.

5.1 Cfix case

As a baseline result, we report the constraints obtained assuming
a constant value qV for the coupling, up to a fixed redshift ztrans =
3000. At higher redshifts, the interaction is turned off (qV(z > ztrans)
= 0) and the vacuum assumes a constant value V = V(z = ztrans).
This choice is made so that the interaction affects the evolution of
CDM and vacuum only after the last scattering surface; however,
given our choice of Q∝V, the interaction is negligible during the
matter-dominated era.

In Fig. 5, we show the 2D joint marginalized contours of qV

with H0, �m, and �c h2. We point out that the constraints placed

by Planck on qV and H0 are strongly degenerate. This effect is
due to the change in the Universe’s expansion history caused
by the interaction: we find that a larger H0 requires a smaller
coupling parameter qV in order to recover the same expansion
history. A similar degeneracy is also present between qV and �m.
In general, the CMB data prefer positive values of qV. Negative
values of qV imply that we would have a smaller CDM density at
late times (see bottom right panel of Fig. 5), which would boost
the amplitude of the acoustic peaks in the CMB temperature–
temperature power spectrum by such an amount that the change
could not be compensated for by equivalent changes in the other
cosmological parameters.

We find that the Planck data alone allow for the coupling qV to be
non-vanishing; however, the �CDM limit of this model is within
the 68 per cent confidence level region. The degeneracies between
qV, H0, and �m are broken when the Low-z data sets are added to
Planck. This is because the data directly probe the redshift range
where the interaction is primarily effective. The combination of the
Planck and Low-z data does not allow qV to greatly deviate from
zero and the cosmology is therefore very similar to �CDM.

5.2 Cfix with low transition redshift

We now consider a Cfix case in which we set the transition redshift
to ztrans = 0.9. This allows us to make a direct comparison with the
so-called q34 case presented in Salvatelli et al. (2014), in which it
was found that a null interaction was excluded at the 99 per cent
confidence level.

This Cfix case should be seen as a simple single-step function
reconstruction of an interaction that is negligible for z > ztrans =
0.9. It is a single-parameter reconstruction where, as in Salvatelli
et al. (2014) and in comparison to our 4bins case of Section 5.5,
the first two bins are grouped together, with no interaction for z

> ztrans = 0.9. Note that in Salvatelli et al. (2014), the ztrans = 0.9
value was also chosen because it was the best-fitting value resulting
from a two parameter analysis, similar to our Cvar case in the next
section.

Our results for this case are similar to that of the Cfix case with
ztrans = 3000. However, in this case, the CMB bound on qV, and
consequently the bound on the degenerate cosmological parameters,
is less broad and more directly centred on qV = 0 with respect to the
ztrans = 3000 case; this is due to the fact that the coupling is active for
less time and therefore values of qV that are significantly different
from zero cannot be compensated by changes in �c h2. This result
differs from that found by Salvatelli et al. (2014) in that we do not
exclude the �CDM limit of qV = 0 at any confidence level. The
marginalized 2D joint distributions for the relevant parameters in
this case are shown in Fig. 6.

5.3 Cvar case

In Fig. 7, we show the results of the case where the transition
redshift ztrans is allowed to vary. In this case, we also find the
�CDM limit to be a good fit to the data, both in the Planck and
Planck + Low-z combinations respectively, as reported in Table 3.
We find an evolution similar to both Cfix cases, with the inclusion
of the Low-z data set breaking the degeneracies between qV and
the cosmological parameters in the Planck result. With both Planck
alone and Planck+Low-z, we find that ztrans is unconstrained, in
contrast to a similar analysis in Salvatelli et al. (2014). For values
of this parameter that correspond to the matter-dominated era,
this Cvar case effectively reduces to the Cfix one, as V(z) and
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Table 3. Marginalized values of the parameters and their 68 per cent confidence level bounds, obtained using
Planck and Planck + Low-z. When only upper or lower bounds are found, we report the 95 per cent confidence
level limit.

Parameter Case Planck Planck + Low-z

Cfix 0.02226 ± 0.00022 0.02235 ± 0.00015
Cfix (ztrans = 0.9) 0.02226+0.00014

−0.00020 0.02235 ± 0.00014

�b h2 Cvar 0.02222 ± 0.00015 0.02234 ± 0.00014
SVE 0.02224 ± 0.00016 0.02235 ± 0.00015
4bins 0.02224 ± 0.00015 0.02226 ± 0.00016

Cfix 0.131 ± 0.040 0.122+0.011
−0.0089

Cfix (ztrans = 0.9) 0.118+0.025
−0.038 0.130 ± 0.015

�c h2 Cvar 0.153+0.047
−0.031 0.124 ± 0.012

SVE 0.150+0.049
−0.024 0.124 ± 0.011

4bins 0.132+0.031
−0.056 0.117+0.020

−0.045

Cfix 0.080+0.021
−0.017 0.077 ± 0.017

Cfix (ztrans = 0.9) 0.080+0.018
−0.015 0.078 ± 0.016

τ Cvar 0.080 ± 0.017 0.077 ± 0.016
SVE 0.079 ± 0.016 0.076 ± 0.017
4bins 0.081 ± 0.017 0.074 ± 0.017

Cfix 3.094+0.039
−0.032 3.084 ± 0.033

Cfix (ztrans = 0.9) 3.094+0.029
−0.033 3.087 ± 0.032

log 1010As Cvar 3.094 ± 0.034 3.084 ± 0.031
SVE 3.093 ± 0.032 3.084 ± 0.033
4bins 3.098 ± 0.032 3.082 ± 0.034

Cfix 0.9647+0.0048
−0.0062 0.9681 ± 0.0043

Cfix (ztrans = 0.9) 0.9658+0.0042
−0.0062 0.9684 ± 0.0040

ns Cvar 0.9643 ± 0.0047 0.9679 ± 0.0041
SVE 0.9646 ± 0.0048 0.9682 ± 0.0043
4bins 0.9644 ± 0.0045 0.9655 ± 0.0047

Cfix 62.3+3.2
−6.2 67.54 ± 0.80

Cfix (ztrans = 0.9) 67.05 ± 2.1 67.26 ± 0.86

H0 Cvar 62.2+4.9
−5.5 67.50 ± 0.81

SVE 61.9 ± 5.2 67.46 ± 0.86
4bins 64.0 ± 4.8 67.33 ± 0.80

Cfix 0.4652+0.0075
−0.022 0.452+0.011

−0.014

Cfix (ztrans = 0.9) 0.4752 ± 0.037 0.446 ± 0.017

σ8�
1/2
m Cvar 0.4614+0.0088

−0.021 0.451+0.012
−0.015

SVE 0.461+0.012
−0.025 0.450 ± 0.016

4bins 0.481+0.064
−0.076 0.482 ± 0.055

Cfix 0.52+0.65
−0.77 0.04 ± 0.10

Cfix (ztrans = 0.9) 0.059 ± 0.39 0.14 ± 0.19

qV Cvar 0.59 ± 0.53 0.07+0.11
−0.14

SVE 0.62 ± 0.60 0.06 ± 0.12

q1 4bins 0.0+1.2
−1.5 −0.42+0.51

−1.0

q2 4bins 0.3+1.9
−1.2 0.88+0.82

−0.66

q3 4bins >− 2.7 −0.62+1.3
−0.91

q4 4bins Unconstrained Unconstrained

Cfix − −
Cfix (ztrans = 0.9) − −

ztrans Cvar Unconstrained Unconstrained
SVE >1.7 >1.4
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3432 M. Martinelli et al.

Figure 5. Cfix case with ztrans = 3000: 68 per cent and the 95 per cent
confidence level marginalized contours on H0, qV = qV(z ≤ 3000), and
�m as obtained in the analysis with the Planck (red) and Planck + Low-z
(yellow) data sets.

Figure 6. Cfix case with ztrans = 0.9: 68 per cent and the 95 per cent
confidence level marginalized contours on H0, qV = qV(z ≤ 0.9), �m,
and �c h2 as obtained in the analysis with the Planck (red) and Planck +
Low-z (yellow) data sets.

consequently qV become negligible. For low values of ztrans this
case becomes extremely similar to �CDM, with ztrans = 0 acting as
another �CDM limit of the model for any value the coupling can
take.

Figure 7. Cvar case: 68 per cent and the 95 per cent confidence level
marginalized contours on H0, qV = qV(z ≤ ztrans), ztrans, and �m as obtained
in the analysis with the Planck (red) and Planck + Low-z (yellow) data sets.

Figure 8. SVE case: 68 per cent and the 95 per cent confidence level
marginalized contours on H0, qV = qV(z ≤ ztrans), ztrans, and �m as obtained
in the analysis with the Planck (red) and Planck + Low-z (yellow) data sets.

5.4 SVE case

In Fig. 8, we show the results for the SVE cosmology. The first
thing to notice is that this case is analogous to Cvar when ztrans

takes high values, with both data combinations favouring positive
values of the coupling, i.e. a decay of vacuum energy density into
CDM. This is due to the fact that in Cvar, even though V(z) does
not vanish, it becomes negligible in the past following the �CDM
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Constraints on the interacting vacuum scenario 3433

Figure 9. 4bins case: 68 per cent and the 95 per cent confidence level
marginalized contours on qi , i = 1, ..., 3 and �m as obtained in the analysis
with the Planck (red) and Planck + Low-z (yellow) data sets.

evolution (see Fig. 12) and the difference between the two models
effectively vanishes. The situation is different for low transition
redshifts; while in the Cvar case the model approaches �CDM, in
SVE, low values of this parameter are significantly disfavoured. This
is because for ztrans � 2, a vanishing V(z) affects both the predictions
for Low-z and for CMB, through its impact on CMB lensing and
on the Integrated Sachs-Wolfe (ISW) effect. In the Cvar case, ztrans

was unconstrained, while here we find a lower limit at 95 per cent
confidence level of ztrans = 1.8 (Planck) and ztrans = 1.4 (Planck +
Low-z).

5.5 4bins case

In this case, we aim to update the work of Salvatelli et al. (2014),
in which the coupling consists of N = 4 bins in redshift, with
transitions at z = 0.3, 0.9, 2.5, and 10 and values qi with i = 1, . . . ,
4, thus allowing for a general evolution in redshift of the coupling
function qV(z). In Fig. 9 and Table 3, we show the results obtained
from the cosmological analysis with this 4 bins setup, considering
both the Planck and Planck + Low-z data sets.

The first thing to note is that the high-redshift bin q4 is not
constrained by either data set. This is due to the fact that most of
the Low-z data lie at redshifts lower than those affected by this
parameter and therefore any constraining power would come from
the effect of the coupling in this redshift bin on CMB power spectra
predictions. However, we see that the Planck data are also unable
to place any bounds on the value of q4, nor an upper bound on the
value of q3.

While �CDM is also a good fit to the data in this case, in general
we find that the allowed range for the amplitude of the interaction
in each redshift bin is larger than in the Cfix and Cvar cases. This
is expected, as the values of qi can be compensated for by the
overall evolution of qV(z) and therefore by the qj 	= i parameters.
This induces an anticorrelation between the values of the coupling

Figure 10. The predictions for fσ 8 for �CDM (plotted in black) and the
interacting cosmologies studied in this work. For illustrative purposes, we
plot these together with data from various collaborations (see the text for
details).

in neighbouring bins. Once again, this degeneracy is significantly
reduced when the Low-z data are included, as these data sets are
more efficient in constraining the values of qi in each redshift bin
rather than the average effect of the interaction.

However, while in the Cfix and Cvar cases, the inclusion of Low-z
produces tight posteriors centred on the �CDM limit, in the 4bins
case the first bin posterior is slightly shifted to negative values
(with q1 = 0 still within the 68 per cent confidence interval) and the
second bin posterior is shifted towards positive values: this is due to
the aforementioned anticorrelation. While still in agreement with a
constant qV(z) = 0 cosmology, the Planck+Low-z data set allows
for a model with an oscillatory amplitude of vacuum energy–CDM
interaction at low redshifts (See Section 6.3 for further discussion).
This is in contrast to the results of many similar works. We will
expand on this point in Section 7.

5.6 Evolution of fσ 8

From these results, we can also examine how the interaction in each
case affects the evolution of the fσ 8 parameter as computed by the
modified CAMB, keeping in mind that in our interacting scenario this
parameter does not directly constrain the growth factor, i.e. it rather
represents fiσ 8, as discussed in Section 2.4. In Fig. 10, we plot the
fσ 8 prediction for each case, using the mean posterior values of qV

from the Planck+Low-z runs to obtain its evolution as a function of
redshift. For illustrative purposes, we plot these predictions along
with data points from various collaborations: 2dFGRS (Percival
et al. 2004), 6dFGRS (Beutler et al. 2012), WiggleZ (Blake et al.
2011), SDSS LRG (Samushia, Percival & Raccanelli 2012), BOSS
CMASS (Reid et al. 2012), and VIPERS (de la Torre et al. 2013).

This plot shows how the similar values of qV obtained for Cfix,
Cvar, and SVE lead to similar evolution histories for fσ 8, with the
small positive values of qV in these cases leading to a suppression
of this quantity with respect to �CDM. Growth is suppressed with
a positive coupling because our implementation in CAMB works by
starting with the values of cosmological parameters at z = 0 and
evolving them backwards in time. This means that, with a positive
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Table 4. �DIC values for the different models analysed,
both when using Planck data alone and when combining
them with the Low-z data sets.

Parameter Planck Planck+Low-z

Cfix 1.1 3.8
Cfix (ztrans = 0.9) −1.2 0.4
Cvar −0.5 2.6
SVE −1.3 1.3
4bins −1.6 3.1

qV, we need less matter in the past to reach the correct value of �m

today; in addition, qV > 0 implies a negative contribution of the
coupling to δ̇ in equation (19); the net result is that the growth is
suppressed. The 4bin case instead sees an enhancement of fσ 8 with
respect to �CDM: this is due to the overall negative value of the
coupling across the four redshift bins.

Note that for qV 	= 0, Fig. 10 is effectively a plot of fiσ 8, and fi

> f for qV > 0 (see equation 26). In practice, the suppression of the
growth implies a σ 8 small enough to produce a smaller fiσ 8, and
vice versa for qV < 0.

6 D ISCUSSION

In this section, we discuss our results, presenting a rough model
comparison analysis in order to estimate the statistical preference
of our models with respect to �CDM. Moreover, we focus on the
effects on the tensions in the values of H0 and σ 8 in the different
interacting cases presented above. We also describe how the qV(z)
function can be reconstructed using Gaussian processes.

6.1 Model comparison

In all our results, we find a good agreement between the �CDM
limit of the interacting models investigated and the constraints
obtained through the analysis of cosmological data. We therefore
expect that there is no significant statistical preference for the
extended model over �CDM. However, we will quantify this
preference by making use of the Deviance Information Criterion
(DIC, Spiegelhalter et al. 2014):

DIC ≡ χ2
eff (θ̂) + 2pD , (38)

where χ2
eff (θ̂ ) = −2 lnL(θ̂ ), θ̂ is the parameter vector at the best fit

and pD = χ2
eff (θ ) − χ2

eff (θ̂), where the bar denotes the average taken
over the posterior distribution. This estimator accounts for both the
goodness of fit through χ2

eff (θ̂ ) and for the Bayesian complexity
of the model, pD, which disfavours models with extra parameters.
In order to compare �CDM with the models explored here, we
compute:

�DIC = DICV − DIC�CDM. (39)

From this definition, it follows that a negative �DIC would support
the extended model, while a positive one would support �CDM.

In Table 4, we show the values obtained for this estimator in all
the cases analysed in this paper. We find that when analysing only
CMB data, all the models except for Cfix are slightly preferred with
respect to �CDM. However, all the cases have a �DIC close to zero,
showing that the preference of the extension over the standard model
(or vice versa) is inconclusive in all cases, if we set �DIC = 5 as
the threshold for a moderate preference (Joudaki et al. 2017). When
analysing the Planck+Low-z case, we find that all cases have a small

positive �DIC, indicating that �CDM is marginally preferred over
the extended model. This comes from the fact that adding the Low-
z data sets significantly shrinks the constraints around the �CDM
limit of the model, thus disfavouring the extended case which, at this
point, effectively reproduces a �CDM cosmology with the addition
of extra parameters.

6.2 Effects on cosmological tensions

As we highlighted in Introduction, one of the motivations to explore
the coupling scenarios discussed in this paper is to attempt to
solve the tensions that exist between different observations, i.e.
the discrepancies between low- and high-redshift measurements of
the present-day expansion rate of the Universe and of the clustering
of matter. In Fig. 11, we plot the H0 versus �m and σ 8 versus �m

2D marginalized contours for every case considered, obtained using
the Planck 2015 data set, comparing them with the constraints used
assuming �CDM, in order to examine the effects of the interaction
on the H0 and σ 8 tensions.

We first note that for both of these combinations, the contours
obtained for the Cfix, Cvar, and SVE are very similar, showing that
changing the behaviour of V(z) after ztrans (from standard �CDM
evolution to vanishing V(z)) has no significant effect if ztrans is
already in an epoch where vacuum energy is negligible. In Fig. 12,
we have plotted the ratio of the vacuum to CDM energy densities, for
both a small positive and negative coupling and with two transition
redshifts, ztrans = 0.9 and 10. The sign of the coupling and the
transition redshift value have limited effect, as for each of the four
values shown, the density ratio reaches 1/100 and 1 at very similar
redshifts. The 4bins case instead yields broader constraints with
respect to the other cases, an effect which is due to the higher
number of coupling parameters and their degeneracies with the
standard cosmological ones.

The left-hand panel of Fig. 11 shows how the coupling scenarios
are able to apparently ease the tension between the local measure-
ments of H0 (grey band) and the Planck measurement. However,
this is only due to the extreme degeneracy between H0, �m, and qV

that we highlighted in Section 5; the mean values obtained for H0

are actually lower than those found by Planck assuming �CDM,
and the tension is eased only because of the much larger error
bars. In Poulin et al. (2018), it was proposed that this tension could
be relaxed with an Early Dark Energy component, affecting the
evolution of the Universe at z � 3000; while not explored here, a
high-redshift coupling between CDM and vacuum energy could in
principle be used to mimic the effect of such a component. We leave
the investigation of this possibility for a future work.

In the right-hand panel of Fig. 11, we instead highlight how
reconciling the tension in σ 8 is less feasible in this model. The
errors on the cosmological parameters are once again enlarged by
the degeneracies introduced by the coupling. This leads to lower
values of σ 8 being allowed, but these lower values subsequently
necessitate higher values of �m in compensation, which are then
disfavoured by the Low-z data.

6.3 Gaussian process reconstruction

We can use Gaussian processes to attempt to reconstruct the
qV(z) function for the 4bin case. Gaussian processes have been
widely used in cosmology to reconstruct smooth functions from
observational data, particularly for functions such as H(z) and the
dark energy equation of state w(z) (see e.g. Seikel, Clarkson &
Smith 2012; Shafieloo, Kim & Linder 2012; Yang, Guo & Cai
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Figure 11. 68 per cent and 95 per cent confidence levels on the H0 – �m plane (left-hand panel) and �m – σ 8 plane (right-hand panel) for the four cosmologies
considered: Cfix (yellow contours), Cvar (dark blue contours), 4bins (red contours), and SVE (green contours), with the �CDM Planck alone case plotted in
black. The grey bands in the left-hand panel show the 68 per cent and 95 per cent confidence level on H0 as obtained in Riess et al. (2018). These results are
obtained with the analysis of the full Planck data set.

Figure 12. Ratio of the vacuum to CDM energy density for a small positive and negative coupling with two different transition redshifts. The �CDM case is
plotted in dark blue.

2015; Zhang & Li 2018). Since we do not expect the qV(z) function
to vary rapidly, the GP approach is suitable to use in this case too.
We use the Gaussian process regressor available in the PYTHON

library george.4

The Gaussian process regression works by using a covariance
function, or kernel, to relate the function values at two points, x and
x̃, to each other. The advantage of using Gaussian processes over a
basic spline or parametric fit is that it not only allows us to consider
a much wider range of possible fitting functions for qV(z) but it also
means we can potentially inform our choice of kernel based on the
underlying physical processes at work.

4https://github.com/dfm/george

There has been some debate in the literature about the appropriate
choice of kernel for various problems, with no clear-cut answer yet.
For example, Seikel & Clarkson (2013) found that the Matérn class
of kernels, and especially the Matérn (ν = 9/2) kernel was the most
successful at reconstructing w(z) using supernova data. The Matérn
class of kernels have the following general form

k(x, x̃) = σ 2 21−ν

�(ν)

(√
2ν(x − x̃)2

�

)ν

× Kν

(√
2ν(x − x̃)2

�

)
,

(40)

where �(ν) is the gamma function, Kν is a modified Bessel function,
and ν controls the shape of the covariance function, tending to the
Gaussian limit as v → ∞. The hyperparameters � and σ correspond
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Figure 13. Gaussian process reconstruction of qV(z) using the squared
exponential kernel, with data points as provided by the analysis of the 4bins
cosmology. The grey dashed lines indicate the boundaries of each redshift
bin.

Figure 14. Gaussian process reconstruction of qV(z) using three different
kernels, with data points as provided by the analysis of the 4bins cosmology.
The grey dashed lines indicate the boundaries of each redshift bin and
the shaded regions denote the 68 per cent confidence intervals of the GP
reconstruction.

to the approximate length-scale over which the function varies and
the magnitude of these variations, respectively.

In the course of our analysis, we investigated the results given by
all the basic kernels provided by george, none of which resulted
in a function that excludes �CDM at any confidence level, but as
kernels can be added or multiplied in almost any combination, we
did not test every possibility exhaustively. We therefore present the
reconstruction given by the squared exponential kernel, the simplest
of the Matérn class kernels, recovered from equation (40) when ν

→ ∞,

k(x, x̃) = σ 2 exp

(
− (x − x̃)

2�2

)
. (41)

This reconstruction is shown in Fig. 13. For comparison, we
also show the reconstruction using the second- and third-order
polynomial kernels provided by george in Fig. 14. The data points
in both cases come from the Planck + Low-z runs, in which we can

clearly see the oscillatory behaviour of the coupling mentioned
earlier.

The hyperparameters � and σ that appear in the kernels described
above can be optimized by maximizing the log-likelihood of the
functions they produce. However, with this optimization imple-
mented, our GP regressions all collapsed to be exactly equal to zero
for all redshifts. This is because we have very little data with which
to inform the Gaussian process and the GP always returns to its
baseline of zero when it has insufficient information. We therefore
conclude that the GP will be better suited to reconstructing a case
with many more redshift bins, which we intend to investigate in a
future work.

7 C O M M E N T O N OTH E R R E S U LT S

Finally, we note that there has been an extensive treatment in the
literature of a similar interacting vacuum scenario to that studied in
this work (Kumar & Nunes 2017; Solà, Gómez-Valent & de Cruz
Pérez 2017b; Solà, de Cruz Pérez & Gómez-Valent 2018b; Tsiapi
& Basilakos 2018; Kumar, Nunes & Yadav 2019), upon which we
would like to comment.

First, all of the aforementioned works appear to use a single
bin case, akin to what we call Cfix, which implies the interaction
parameter qV has been constant throughout the entire cosmic history.
This is sufficient for a basic analysis, but carries some important
physical implications. If the interaction remains constant for the
entire cosmic history (and is found to favour a decay of CDM into the
vacuum) it implies that eventually the energy density of CDM must
become negative, as we have pointed out at the end of Section 3.1.
While the phenomenology of such a scenario may still be interesting
when studying the Universe’s history, the unphysicality of the model
is motivation enough to instead consider the effects of a dynamical
interaction, as we have done in this work.

Secondly, in Tsiapi & Basilakos (2018), the effect of the inter-
action on perturbations in the matter energy density are not clearly
taken in to account. As we have shown, the interaction enters into the
equation for the density contrast (19) and it is necessary to modify
CAMB accordingly. The presence of the coupling in this equation
means that the interaction will have some effect on cosmological
structure growth, which is also clear from the matter power spectrum
for the Cfix case, as shown in Fig. 4. While an analysis of the
background cosmology is instructive, we consider our current work
an improvement, as we also take into account the effect of the
coupling at the level of the perturbations.

Furthermore, Solà et al. (2017b, 2018b) forgo a complete MCMC
parameter inference with the full Planck CMB likelihood, choosing
instead to use only the compressed likelihood. We believe our full
analysis that takes the complete, uncompressed data into account
has produced a more reliable result. However, we note that the novel
use of the bispectrum as a potential tracer of the dynamics of dark
energy was investigated in Solà et al. (2018b) and subsequently
expanded on in Solà et al. (2018a) using the well-known XCDM,
CPL, and φCDM parametrizations (in this work the authors also
used the full Planck likelihood). Such an idea was also proposed by
Borges & Wands (2017), but we emphasize that the original arXiv
version of Solà et al. (2018b) preceded Borges & Wands (2017). It
was indeed found in Solà et al. (2018a) that the bispectrum enhances
the dynamical dark energy signal, so an interesting avenue of future
investigation would be to use the bispectrum data when constraining
the interacting vacuum scenario. A careful consideration of the
effect of the interaction on the bispectrum measurements would be
needed, however.
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The work of Kumar & Nunes (2017) also examined the same
interacting scenario, but in addition to varying the interaction
strength along with the six standard cosmological parameters in
�CDM, they also varied the sum of the neutrino masses,

∑
mν ,

and the effective number of relativistic degrees of freedom, Neff.
It was found in that work that the use of the combination of
Planck+BAO+JLA data (exactly equivalent to the Planck+Low-z
combination used in this work) resulted in finding no suggestion of
an interaction. However, the inclusion of galaxy cluster count data
from Planck (Ade et al. 2016b) and CFHTLenS (Heymans et al.
2013) resulted in finding a non-zero interaction at the 99 per cent
confidence level.

In Kumar et al. (2019), the authors again tested the same interact-
ing scenario, but with yet another combination of data sets: Planck
2015 with the KiDS weak-lensing survey (Köhlinger et al. 2017)
and the 2016 Hubble Space Telescope measurement of H0 (Riess
et al. 2016). In this work, the authors found compelling statistical
evidence for an interaction and were also able to simultaneously
relax the H0 and σ 8 tensions. This again indicates the strong effects
that different data sets can have and demonstrates the need for
awareness of possible systematics when choosing and combining
data sets. In particular, when using weak-lensing data, it important
to make a conservative cut of the non-linear scales in these data
sets, unless the non-linear theory for perturbations is known.

Finally, we would like to address some differences between
this work and the previous work of some of the current authors
(Salvatelli et al. 2014). The current work was partly designed
to make a comparison with the work presented in that Letter,
confronting the same interacting scenario with the latest available
data sets. In Salvatelli et al. (2014), it was found that a late-time
interaction in a single low-redshift bin of z ≤ 0.9 was favoured over
the null interaction case, with �CDM being excluded at 99 per cent
confidence level. As described in Section 5.2, we replicated this
case, Cfix with ztrans = 0.9, albeit using more up-to-date data sets
(the Planck 2015 likelihood and newer BAO, RSD, and Type Ia
supernovae data), as well as a broader prior on the parameter qV

that includes positive values, but found no significant deviation from
�CDM at all.

Similarly, when replicating the 4bin case, also analysed by
Salvatelli et al. (2014), we found no significant deviation from
�CDM at low redshift, in contrast to the 95 per cent confidence
level difference reported in that work. We can possibly attribute
this to the simple lack of evidence for an interaction in the newer
observational data sets used in the current work. Our finding that
the null interaction scenario (i.e. �CDM) is always well within the
95 per cent confidence region for qV is in agreement with the recent
work by Yang et al. (2018b).

8 C O N C L U S I O N S

In this work, we have considered the possibility of an interaction
in the dark sector, represented as a pure energy exchange between
vacuum and CDM. We have investigated constraints on this sce-
nario, by making a simple binned parametrization of the coupling
function in redshift, using the latest cosmological data sets to place
constraints on the coupling in each bin.

We investigated a number of different cases under the umbrella
scenario of the interacting vacuum, namely the cases with a single
bin and either a fixed or varying transition redshift (Cfix and Cvar); a
case in which the vacuum energy is zero at early times, only growing
after the interaction switches on, and lastly, in a model-independent
way, a four bin case to replicate the work of Salvatelli et al. (2014).

In all the cases we studied, we found that the �CDM case, cor-
responding to no interaction in our scenario, is always well within
the 95 per cent confidence regions of our parameter estimation. At
the same time, the interacting scenario remains a viable alternative
to �CDM, and only future data will be able to settle the case. We
also note that our analysis is restricted to linear scales, while it is
entirely possible that in extending the interacting vacuum scenario
to non-linear scales more stringent constraints will be found, cf.
He et al. (2018). Our findings are in contrast to a number of recent
works mentioned in the previous section, but we have described the
differences in our approach and contest that these are sufficient to
explain the different results.

Finally, we note that the observational literature is being continu-
ally updated, with ever-larger surveys and telescopes planned for the
near future. With these surveys will come an unprecedented level of
precision in the measurement of cosmological observables that will
in turn demand the utmost rigor from models designed to predict
their values. The careful consideration of every implication a model
may carry is therefore of paramount importance, and models that
take into account the background cosmology only will no longer be
satisfactory explanations of our observational data.
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