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Resumo 

 

A forma esporádica da doença de Alzheimer (DA) é atualmente a causa mais comum de 

demência a nível mundial, estando particularmente associada ao envelhecimento da população. 

Esta caracteriza-se por um declínio cognitivo progressivo, acompanhado por atrofia cerebral 

generalizada. Uma vez que o hipocampo é uma das primeiras estruturas a ser afetadas, notáveis 

défices de memória podem ser observados nas fases iniciais da doença, nomeadamente na 

memória episódica de longo prazo, agravando-se progressivamente até uma completa dependência 

dos respetivos cuidadores. Estas alterações estão normalmente associadas a uma acumulação 

gradual excessiva de depósitos de péptido β amiloide (Aβ) no cérebro dos doentes, bem como à 

deposição de proteína tau hiperfosforilada. 

Mais recentemente, a acumulação de oligómeros solúveis de Aβ em fases pré-clínicas da 

doença algumas décadas antes das primeiras manifestações sintomáticas, tem sido apontada como 

fator iniciador da cascata de eventos subjacente à patofisiologia da DA. Apesar da sua crescente 

incidência, as alternativas para o tratamento da DA são ainda bastante limitadas, e apenas permitem 

minimizar alguns dos sintomas a curto prazo. Desta forma, uma melhor compreensão dos 

mecanismos patofisiológicos será essencial para explorar terapêuticas inovadoras e mais eficientes. 

A neurogénese pós-natal na zona subgranular (ZSG) do giro dentado (GD) do hipocampo 

ocorre através de um processo sequencial relativamente conservado entre mamíferos, no qual 

novos neurónios funcionais são originados a partir de células estaminais/progenitoras neurais 

(CSPNs) indiferenciadas e com capacidade de autorrenovação. Este processo parece contribuir 

significativamente para funções dependentes do hipocampo, como plasticidade sináptica e funções 

cognitivas, particularmente aprendizagem e memória, pelo que tem sido sugerido como um 

potencial alvo terapêutico da DA. No entanto, estudos in vivo e in vitro, referentes à forma como a 

neurogénese poderá ser modulada nesta patologia apresentam resultados altamente controversos, 

provenientes na sua maioria do uso de modelos da forma familiar da doença. Assim, a maioria dos 

estudos indica uma diminuição da proliferação e diferenciação, embora um aumento também seja 

mencionado por alguns autores e, mais raramente, ausência de alterações. Desta forma, o principal 

objetivo do presente projeto consistiu em caracterizar a neurogénese pós-natal no hipocampo, 

utilizando um modelo animal que pretende mimetizar as fases iniciais da forma esporádica da DA. 

Para o estudo da proliferação e diferenciação celular, ratos Wistar jovens-adultos (9-10 

semanas) foram injetados intraperitonealmente com 5-bromo-2’-desoxiuridina (BrdU) (100 mg/kg) 

durante 3 dias consecutivos, no início do protocolo. Seguidamente, com o objetivo de obter o modelo 

de doença proposto, realizaram-se cirurgias para a injeção intracerebroventricular (icv) unilateral de 

uma solução de péptido Aβ1-42 (2.25 mg/ml, 4 µl), ou de uma solução veículo (4 µl), no caso dos 

animais controlo. Duas semanas após esta injeção, foram efetuados testes comportamentais, 

durante a fase noturna e diurna do ciclo circadiano, incluindo o teste do campo aberto (do inglês, 
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open-field), para avaliação da atividade locomotora, e o teste de reconhecimento do novo objeto 

(novel object recognition), para avaliação da memória episódica de longo prazo. Outros paradigmas 

foram avaliados apenas durante o dia, nomeadamente comportamento do tipo ansioso, pelo 

labirinto elevado em cruz (elevated plus maze), memória de curto prazo, pelo labirinto em Y (Y-

maze) de alternância espontânea ou alternância forçada, e aprendizagem e memória espaciais, 

pelo labirinto de Morris (Morris water maze). No final do protocolo, os animais foram sacrificados 

para uma posterior análise celular e molecular, maioritariamente focada no GD. Adicionalmente, o 

efeito de uma solução de Aβ (20 µM) preparada a partir da solução utilizada in vivo foi também 

examinado em culturas primárias de neurónios corticais. 

De acordo com o antecipado, a administração de Aβ1-42 não originou alterações significativas 

da atividade locomotora, no período noturno ou diurno, nem alterações no comportamento do tipo 

ansioso, paradigmas que poderiam influenciar o desempenho cognitivo dos animais. 

Contrariamente à literatura, não foram observados défices de memória a curto prazo, embora no 

caso do Y-Maze de alternância forçada, o desempenho dos ratos controlo parecesse estar 

comprometido. Relativamente à memória episódica de longo prazo, quando o teste foi realizado 

durante a noite, os resultados foram semelhantes aos observados no teste Y-Maze, isto é, não 

foram identificados défices nos ratos injetados com Aβ mas sim nos controlos, sugerindo um 

possível efeito deletério da solução veículo. Por outro lado, quando o teste foi realizado durante o 

dia, ambos os grupos apresentaram um comprometimento no desempenho da memória, 

possivelmente associado a uma menor atividade exploratória, no caso do grupo com Aβ. No que 

respeita à aprendizagem e memória espaciais, funções mais especificamente dependentes do 

hipocampo, não foram detetadas quaisquer alterações. 

A nível molecular, não foi observada qualquer tendência para variações nos níveis de Aβ1-42 

na sua forma solúvel no GD de ratos sacrificados 3 ou 14 dias após as cirurgias, analisado por 

ELISA. Não foi também detetada a presença de depósitos de amiloide no cérebro destes animais, 

após marcação histológica com vermelho do Congo. 

Tem sido demonstrado que a sinalização mediada pelo fator neurotrófico derivado do cérebro 

(BDNF, do inglês brain-derived neurotrophic factor) está comprometida nos neurónios na presença 

de Aβ, devido à clivagem dos seus recetores tirosina cinase B full-length (TrkB-FL), através de um 

processo dependente da ativação de calpaínas. Assim, os níveis destes recetores bem como do 

respetivo domínio intracelular (TrkB-ICD) originado pela clivagem, foram utilizados como medida 

indireta da presença de Aβ. Os resultados obtidos por western-blot indicaram a ausência deste 

mecanismo de neurotoxicidade induzida por Aβ. De facto, não parece haver qualquer tendência 

para alterações nos níveis de TrkB-FL ou TrkB-ICD no GD, mas também na zona sub-ventricular, 

analisada por ser uma região mais próxima do local de injeção, 3 ou 14 dias após a mesma. No 

entanto, o péptido em solução pareceu estar funcionalmente ativo, na medida em que resultados 

preliminares das experiências realizadas in vitro revelaram uma tendência para a clivagem dos 
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recetores TrkB, ou seja, uma diminuição nos níveis de TrkB-FL, acompanhados por um aumento 

de TrkB-ICD e pela ativação de calpaínas. 

Os marcadores de neurogénese foram analisados no final do protocolo, aproximadamente 30 

dias após a primeira injeção de BrdU, com foco apenas na porção dorsal do hipocampo, uma vez 

que esta parece estar mais intimamente relacionada com funções cognitivas, como memória 

espacial e discriminação de padrões. Os resultados obtidos nas duas amostras analisadas (AβI e 

II), embora preliminares, são discrepantes. Ainda que na amostra AβI não tenha sido observada 

uma alteração no volume do GD dorsal, na amostra AβII observou-se uma tendência para a sua 

diminuição, consistente com o observado em modelos animais transgénicos e doentes com DA, 

mesmo em fases pré-clínicas ou iniciais. Relativamente à proliferação celular (BrdU+) e à 

diferenciação em neurónios maturos (BrdU+NeuN+), não parece haver uma tendência para 

alterações em qualquer uma das amostras. Em AβI, observou-se uma tendência para um aumento 

da proliferação de neuroblastos e diferenciação em neurónios imaturos (BrdU+DCX+), embora sem 

diferenças no número total de neuroblastos/neurónios imaturos (DCX+). Contrariamente, em AβII, 

ainda que não parecesse haver uma alteração na proliferação de neuroblastos e diferenciação em 

neurónios imaturos (BrdU+DCX+), o número total de neuroblastos/neurónios imaturos (DCX+) tendeu 

a diminuir. Estes resultados divergem maioritariamente daquilo que tem sido reportado em alguns 

modelos esporádicos da doença, os quais apontam para uma diminuição da proliferação e 

diferenciação, apesar de, até à data, a neurogénese não ter sido avaliada especificamente no 

modelo utilizado no presente trabalho. 

Não obstante a injeção icv de péptido Aβ1-42 tenha sido previamente descrita como uma forma 

de obter um modelo da forma esporádica da DA, nas condições do nosso trabalho não foi possível 

observar o fenótipo esperado. No futuro, para que seja possível extrapolar acerca do potencial papel 

da neurogénese na cognição dependente do hipocampo, torna-se necessário aumentar o tamanho 

da amostra ao nível da análise molecular e celular, assim como proceder à otimização metodológica 

do protocolo utilizado. 

            

 

Palavras-chave | Doença de Alzheimer; péptido beta amiloide; neurogénese pós-natal; hipocampo; 

memória. 
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Abstract 

 

Sporadic late-onset Alzheimer’s disease (AD) is the most common cause of dementia 

worldwide. It is characterized by a progressive cognitive decline, with a noteworthy episodic long-

term memory impairment at early stages that eventually leads to dementia, and is accompanied by 

a gradual excessive accumulation of amyloid β (Aβ) peptide in the brain. Present treatment options 

for AD are very limited, so understanding its pathophysiology is essential for exploring efficient 

disease-modifying therapies. 

Adult hippocampal neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus 

(DG) through a relatively conserved process across mammalian species, that allows the generation 

of new functional granule cells (GCs) from undifferentiated neural stem/progenitor cells (NSPCs). 

This is thought to play a significant role in hippocampus-dependent synaptic plasticity and cognitive 

abilities, namely learning and memory. However, how neurogenesis is modulated in the different 

stages of AD remains unclear, as results from in vitro and in vivo animal studies are controversial, 

and arise mostly from models of the familial form. Therefore, the focal aim of this project was to 

characterize a rat model mimicking the initial stages of sporadic AD regarding adult hippocampal 

neurogenesis. 

To study cell proliferation and differentiation, young-adult male Wistar rats were injected 

intraperitoneally with 5-bromo-2’-deoxyuridine (BrdU) (100 mg/kg) at the beginning of the protocol. 

Next, with the purpose of obtaining our model of disease, intracerebroventricular (icv) injections of 

an Aβ1-42 peptide solution (2.25 mg/ml, 4 µl) were performed. Behaviour tests were carried out two 

weeks after the icv injection, including the open field (OF), the novel object recognition (NOR), the 

elevated plus maze (EPM), the Y-maze spontaneous alternation (SA) and forced alternation (FA), 

and the Morris water maze (MWM) tests. Animals were sacrificed at the end of the protocol for 

cellular and molecular analysis, focusing mainly on the DG. Moreover, the effect of the Aβ peptide 

solution (20 µM) used in the in vivo experiments was parallelly examined in primary cortical neuronal 

cultures. 

Our results showed that changes in locomotor activity and anxious behaviour were absent in 

Aβ1-42 injected rats. However, contrary to our expectations, results showed that Aβ1-42 administration 

did not impair spatial learning, short-term or long-term memory performance. Furthermore, there was 

no tendency for a change in the levels of soluble Aβ1-42 in the DG of rats sacrificed at 3 or 14 days 

post-surgery, and no amyloid deposition was depicted in the brain samples from these animals.  

Brain-derived neurotrophic factor (BDNF) signalling has been shown to be compromised in the 

presence of Aβ due to the cleavage of its tyrosine kinase B full-length (TrkB-FL) receptors, through 

a process dependent on calpain activation. Thus, the levels of these receptors as well as the 

intracellular domain fragment (TrkB-ICD) originated after cleavage were evaluated as an indirect 

measure of the presence of Aβ. Levels of TrkB-FL and TrkB-ICD did not tend to change 3 or 14 days 
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after the injection, indicating absent Aβ-induced neurotoxicity. Importantly, preliminary results from 

in vitro experiments point to TrkB-FL receptor cleavage and calpain activation, suggesting the 

presence of a functionally active peptide in solution. 

Neurogenesis was assessed at the end of the protocol, approximately 30 days after the first 

BrdU injection. Regarding the dorsal DG volume, one of the two samples showed a trend for reduced 

volume. Moreover, there does not appear to be any changes in cell proliferation (BrdU+) or in mature 

neuron differentiation (BrdU+NeuN+). Concerning the total number of neuroblasts and immature 

neurons (DCX+), as well as neuroblast proliferation and immature neuron differentiation 

(BrdU+DCX+), further analyses are needed, since results from the two samples demonstrated very 

distinct trends.   

The icv Aβ1-42 peptide injection, as performed herein, has been previously described as a 

model of sporadic AD, yet the expected phenotype was not observed under the conditions of the 

present work. Increasing the sample size for the cellular and molecular analyses and further 

methodological optimization are sought in the future. 

 

 

Key-words | Alzheimer’s disease; amyloid beta peptide; adult neurogenesis; hippocampus; 

memory. 
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1. Introduction 

 Amyloid β as the basis for Alzheimer’s disease pathophysiology 

1.1.1. Alzheimer’s disease – epidemiology and clinical presentation 

The first case of Alzheimer’s disease (AD) was reported in 1906 by the psychiatrist and 

neuroanatomist Alois Alzheimer, whom described it as a “peculiar disease process of the cerebral 

cortex”. He had observed the condition in a 50-year-old woman in 1901, and followed the progression 

of her symptomatology until 1906, having analysed the brain morphology and histology post-mortem. 

Although AD was known as such around 1910, the disease was very rare at the time, and so the 

term was nearly forgotten for more than 50 years 1.  

Currently, AD is the most prevalent neurodegenerative disorder worldwide, being particularly 

frequent in Western Europe and in the elderly population (≥ 65 years-old). AD is also the most 

common form of dementia, responsible for about 60-80% of all cases 2–4. The last study by the World 

Health Organization in 2015, reported that AD and other dementias were the seventh cause of death 

globally, and the third cause of death in high income countries 5. Furthermore, due to population 

aging, the number of people with AD is estimated to triple by 2050 4,6. Besides the major health care 

costs that have a significant impact on global economy, dementia represents a substantial burden 

for the families of the patients and caregivers 3,4. In fact, as the disease progresses, caregivers in 

the United States were shown to present new and exacerbated health problems, including emotional 

stress and depression 3.  

The early-onset, familial form of the disease (FAD) accounts for only approximately 5% of the 

cases and has been mainly linked to the inheritance of autosomal dominant mutations on the genes 

encoding for amyloid precursor protein (APP) and presenilins 1 and 2 (PS1 and 2), located on 

chromosomes 21, 14 and 1, respectively 7–10. Most of the cases of AD have unknown etiology, 

occurring as the late-onset sporadic form, with onset above the age of 65 years 4,7. Although 

dementia cannot be referred to as a regular part of aging, advanced age is indeed the greatest risk 

factor for AD, with 32% of all people with age 85 or higher being estimated to develop the disease. 

Having a family history of dementia, especially in the first degree, also increases the likelihood of 

having AD early on. Another determinant of the risk for AD is the apolipoprotein E genotype, a protein 

which transports cholesterol and other lipids through the bloodstream. Carrying the APOE-e4 allelic 

form has been associated with increased risk of AD, even though most patients do not carry this 

allele. In contrast, having the e2 or e3 forms relates with a lower predisposition for AD. Other 

variables that associate with increased risk of AD include: stroke, hypertension, diabetes, 

hyperlipidaemia, traumatic brain injury, and having less years of formal education 3,10.  
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Preceding the onset of symptoms, neurodegenerative changes associated with AD are 

proposed to start at a preclinical stage, developing over the course of various decades 3,11. Clinically, 

the disease is characterized by a cognitive, behavioural and functional decline, that slowly 

progresses over an average of 8 years since the time of diagnosis, although substantial variability 

can be observed between patients 10,11. At the initial phases, AD patients usually show short-term 

and semantic memory loss, as well as a noteworthy hippocampal-dependent episodic memory 

impairment regarding more recent events 10–12. During mild to moderate stages of the disease, 

procedural memory, and episodic memory of past years also start to be affected 11–13. As the disease 

progresses, compromised language function becomes more evident, as do deficits in attention, 

logical reasoning, planning and visuospatial orientation. Depression and apathy, delusions and 

aggressiveness may also prevail at this stage. At severe stages of dementia, practically all cognitive 

functions become severely deteriorated, and patients become completely dependent on their 

caregivers, as they lose basic motor functions including walking, speech, swallowing and 

bladder/bowel control 10,11. Because currently available treatments are unable to stop 

neurodegeneration, the disease is eventually fatal, being aspiration pneumonia, myocardial 

infarction and septicaemia the most common causes of death 3,10,11.      

AD is typically associated with generalized cerebral atrophy, predominantly affecting the 

parietal, temporal and frontal cortices, the limbic system and the subcortical nuclei, with subsequent 

ventriculomegaly 9,10. Furthermore, significant neuronal loss is present, and there is a gradual 

accumulation of excess extracellular amyloid β (Aβ) peptide deposits, termed senile or neuritic 

plaques, accompanied by the formation of intracellular neurofibrillary tangles (NFTs), resulting from 

hyperphosphorylation of microtubule-associated protein tau. These are considered the classical 

histopathological hallmarks of AD (Fig. 1) 9,10,14. While the formation of senile plaques usually begins 

in some regions of the neocortex, in the hippocampus, and the entorhinal cortex (EC), NFTs originate 

first in the entorhinal-perirhinal and hippocampal region, only reaching the neocortex at later stages 

of the disease 15–18. Additionally, amyloid deposition in the walls of blood vessels in the central 

nervous system (CNS), termed cerebral amyloid angiopathy, and intracellular formation of 

granulovacuolar degeneration with Hirano bodies, can be denoted in the brain of individuals suffering 

from AD (Fig. 1) 19–22. 
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Fig. 1 – Histopathological hallmarks of AD. The hippocampal formation, namely the cornu ammonis 1 (CA1) region, 

subiculum, and entorhinal cortex, is one of the structures to be primarily affected by the formation of senile plaques, 

neurofibrillary tangles, and neuronal loss (left). Senile plaques are composed of dystrophic neurite processes, Aβ peptide, 

microglial cells and astrocytes, while neurofibrillary tangles contain paired helical filaments (PHFs) of hyperphosphorylated 

tau protein (right). Adapted from Yuval, 2012 10.   

 

1.1.2. Pathophysiology of Alzheimer’s disease – amyloid cascade hypothesis 

Several hypotheses try to clarify the pathophysiology underlying AD, and although none seems 

to individually explain the whole clinical condition, the amyloid cascade hypothesis continues to have 

the most acceptance among researchers, after being proposed for the first time in 1991 23,24. 

According to this hypothesis, the neurodegenerative and functional changes associated with AD are 

thought to be initially triggered by the deposition of Aβ in the brain (Fig. 2) 24,25. More recently, 

discussion regarding this hypothesis points to soluble Aβ oligomers rather than deposits as the 

initiators for the cascade, likely during the preclinical stage of the disease 14,23. 

 

 

Fig. 1 – Histopathological hallmarks of AD at the hippocampus. 
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Fig. 2 – Amyloid cascade hypothesis. Adapted from Cummings, 2004 25. 

 

Aβ is a 38-42 amino acid fragment produced in virtually all neurons, from the sequential 

cleavage of APP 22. This integral membrane glycoprotein possesses a cytoplasmic (C-terminal) and 

an extracellular (N-terminal) domain, and can be processed either by a non-amyloidogenic or an 

amyloidogenic pathway (Fig. 2) 9,25. The non-amyloidogenic pathway begins with the proteolytic 

cleavage of APP by the metalloenzyme α-secretase, releasing the soluble N-terminal domain sAPPα 

22,26. The C-terminal fragment of APP is then cleaved by γ-secretase enzymatic complex, with PS1 

and 2 composing the two active catalytic sites, originating the p3 fragment (Aβ 17-40/42) and 

releasing the APP intracellular domain (AICD) fragment into the cytoplasm 10,22. Following the 

amyloidogenic pathway, APP is first cleaved by β-secretase enzymatic complex, resulting once 

again in the release of a soluble N-terminal domain sAPPβ. Further cleavage of the remaining 

transmembrane fragment by γ-secretase leads to the formation of the Aβ1-38/42 peptide and release 

of the AICD fragment inside the cell. Although the physiological functions of the elements involved 

in these pathways remains largely uncertain, APP seems to play a significant role in neuronal 

Fig. 2 – Amyloid cascade hypothesis. 
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plasticity and formation of synapses, and some neuroprotective and neurotrophic actions have also 

been attributed to sAPPα/β and AICD 22,26. A number of physiological roles have also been 

suggested for α-, β- and γ-secretase enzymes 26,27. 

Both pathways described are present in healthy individuals and AD patients, being Aβ1-40 

peptide the major form of Aβ generated through the amyloidogenic pathway in healthy individuals 

(around 80-90%), followed by Aβ1-42 (about 5-10%) 9,22,28. Therefore, studies suggest that 

pathological changes associated with AD arise from an imbalance between the production and 

clearance of Aβ which favours the amyloidogenic pathway, as well as an increase in the ratio 

between Aβ1-42 and Aβ1-40. This leads to an excessive accumulation of the peptide at an intracellular 

and extracellular level, with distinct physical properties and aggregation states 22,28,29. Aβ1-42 peptide 

is more hydrophobic than Aβ1-40, and therefore tends to aggregate at a higher rate into soluble 

oligomers, which appear to be the most toxic form of Aβ 26,28,29. These oligomers spontaneously 

acquire an anti-parallel β-sheet conformation, folding into insoluble fibrils that accumulate and 

eventually form diffuse and neuritic plaques 10,23,26.  

A series of neurotoxic mechanisms have been shown to be pathologically induced by Aβ 

oligomerization (Fig. 2). These changes include tau hyperphosphorylation with subsequent 

microtubule destabilization and disrupted cytoskeleton structure, culminating in the formation of 

intracellular NFT, with loss of neuronal and synaptic function 10,23,30. Tau phosphorylation has been 

demonstrated to occur downstream of Aβ oligomerization, yet the underlying mechanism is still 

unknown 31,32. It has been hypothesized that oxidative damage plays an important role in NFT 

formation, which is another key component of the amyloid cascade 9,33. When an excessive 

production of toxic Aβ1-42 oligomers occurs, they start being released by neurons and are able to 

bind receptors on neighbouring astrocytes, namely the nicotinic acetylcholine receptor α-7nAChR 23. 

This induces the release of glutamate from astrocytes that can, in turn, activate astrocytic N-methyl-

D-aspartate receptors (NMDARs) and trigger Ca2+-mediated excitotoxicity, mitochondrial dysfunction 

and exacerbated oxidative damage 22,23,30. Notably, signalling by various neurotransmitters has been 

reported to be compromised in AD, with cholinergic function being the first to be blatantly affected. 

Other neuro-chemical systems that appear to be gradually damaged include the serotonergic, 

noradrenergic and γ-aminobutyric acid (GABA)ergic 10,30. Moreover, Aβ deposition has been shown 

to promote a neuroinflammatory response through activation of microglia that produce 

proinflammatory cytokines, further stimulating the Aβ1-42 oligomers in a vicious cycle 23,30. Along with 

disease progression, these pathological changes eventually result in disrupted synaptic 

transmission, cell death and cognitive decline 10,23,31. 
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1.1.3. Diagnosis and management of Alzheimer’s disease 

As for most dementias, a definitive diagnosis of AD can only be achieved post-mortem upon 

confirmation of histopathological features 10. Today, diagnosis still relies mostly on the ability of 

clinicians to perform a cautious and comprehensive assessment 3,34. For this, physicians should 

require a detailed medical and family history, and evaluate the major cognitive domains of the 

patients, as well as their physical and neurological function 3,10. Additionally, analysis of a few 

biomarkers has been implemented in some of nowadays clinical practice 35,36. The pattern and extent 

of cerebral atrophy, as well as vascular changes, including vascular amyloid deposition, can be 

highlighted by magnetic resonance imaging (MRI) or, alternatively, by high-resolution computed 

tomography (CT) 34,35. Concerning Aβ deposition, in vivo detection of fibrillary aggregates may be 

achieved nowadays by Pittsburgh compound B PET (PiB PET) techniques, using high-affinity ligands 

14,35. Notably, identification of biomarkers in the cerebral spinal fluid (CSF) of patients constitutes a 

relevant part of AD diagnosis, allowing evaluation of Aβ1-42, Aβ1-40, total tau (t-tau) and 

phosphorylated tau (p-tau) levels, which correlate with the major hallmarks of the disease 14,35. Lower 

levels of soluble Aβ1-42 as well as a decreased Aβ1-42/Aβ1-40 ratio in the CSF are expected in 

individuals suffering from AD, as the peptide tends to deposit in senile plaques along disease 

progression, contrary to t-tau and p-tau levels, which are expected to increase 35,36. 

Achieving an early diagnosis of AD poses a major challenge due to the absence of 

symptomatic manifestations in preclinical stages of the disease, that only become prominent in later 

stages. In the last years, several efforts have been made in order to find new biomarkers that 

potentially allow an earlier and definitive diagnosis 14,36,37. In this regard, many studies have been 

focusing on finding more sensitive measures for Aβ quantification as its levels seem to be altered 

decades before the onset of symptoms 34,37,38. Recently, the analysis of Aβ plasma levels has gained 

some attention 37–39. An example is the detection of low plasma levels of Aβ1-42 by high-performance 

immunoprecipitation coupled with mass spectrometry, which may provide a novel cost-effective, 

accurate method for routine screening and prediction of dementia onset in preclinical/prodromal 

stages 39. 

Despite the increasing volume of drugs being researched and tested in clinical trials, present 

treatment options for AD are very limited, only providing symptomatic relief and/or modestly and 

temporarily slowing down disease progression. These include acetylcholinesterase inhibitors and 

NMDAR antagonists 3,23,30. Again, a major portion of studies regarding research of new drug 

treatments is being directed at amyloid, namely focusing on modulating Aβ synthesis, transport, 

aggregation and clearance, but also through amyloid based immunotherapy 23,26,40. Other potential 

targets being studied include tau protein, neurotransmitters and their receptors, oxidative stress, 

neurogenesis and inflammation, and a combination of multiple-target ligands 23,30,40. 

 



 

7 
 

1.1.4. Animal models of Alzheimer’s Disease  

Since AD does not spontaneously occur in the most widely used laboratory animal species, as 

mice and rats, a variety of in vivo animal models of the disease have been used and developed for 

preclinical studies in the past two decades, extensively based on the amyloid cascade hypothesis 

41,42. These models have allowed not only to investigate the pathophysiological mechanisms 

underlying AD, but also to unravel novel diagnostic biomarkers, and to develop new therapeutic 

strategies 41. Several model organisms like the Drosophila melanogaster and the zebrafish are 

currently used to study AD, yet rodents are the major tools for preclinical research in AD 43,44.    

Nowadays, transgenic mice constitute the most commonly used models of AD. These mice 

are usually genetically altered to overexpress several mutations that have been associated with FAD, 

specially targeting APP, PS and tau, either individually or in different combinations 41,43. One of the 

advantages of these models is a progressive development of pathophysiological changes that, at 

least in part, resembles what is observed in different stages of human AD 41. Although transgenic rat 

models are less common, mainly due to a reduced availability of genome altering tools, they are also 

used to study AD 45,46. In fact, the physiology and genetic background of rats is more closely related 

to humans when compared to mice. Moreover, rats display more complex and well characterized 

behaviour performance 45,47–49. Plus, some procedures like neurosurgery and brain imaging are more 

easily performed in rats due to a larger body size 45. Notwithstanding, genetic manipulation of an 

organism can lead to compensatory mechanisms, introducing possible confounding variables in 

research studies 41. In addition, while transgenic mice have provided valuable insights into the 

pathophysiological mechanisms of AD, they only represent the familial form of the human disease, 

responsible for approximately 5% of all cases 50.  

Sporadic models of AD have been increasingly described, usually obtained by 

intracerebroventricular (icv) or intrahippocampal administration of Aβ 41. Although these models may 

have a more acute or chronic effect depending on the protocol of injection, they do not mimic the 

gradual disease development that occurs in humans. On the other hand, these models may 

reproduce the initial stages of AD, prior to Aβ plaque deposition. Additionally, advantages of using 

sporadic models include: studying the effects of specific Aβ species with distinct aggregation states, 

and at defined concentrations, on particular pathways promoting the dysfunctions associated with 

AD; and eliminating the confounding consequences of genetic manipulation 41,51.  

Overall, although these models might not thoroughly recapitulate all the clinical changes 

associated with human AD, some key features can be denoted both in transgenic and sporadic 

models, namely histopathological alterations, compromised synaptic transmission and 

neuroplasticity, and notable memory impairments 41. Furthermore, combining the evidences 

obtained both from transgenic and sporadic models may be a way of overthrowing the limitations of 

different models.  
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 Neurogenesis 

1.2.1. Overview 

The process of neurogenesis can be defined altogether as the sequential generation of new 

neurons from specific precursor cells 52,53. During embryonic and postnatal development, 

neurogenesis is crucial for the appropriate and structured formation and maturation of the nervous 

system, through a step-wise process shared across several vertebrate species 54–56. A particular 

parallelism can be noticed between humans and rodents, although the time course of these changes 

are considerably different 54,57. The formation of the CNS begins with the differentiation of the 

ectoderm into a structure called the neural tube 54,58. Neurogenesis per se starts with the formation 

of the neocortex from the neural tube, which latter gives rise to the brain and spinal cord 58,59. During 

prenatal and early postnatal period, neuroepithelial cells originate precursor cells that migrate to 

specific target locations, where they will differentiate and mature into neurons and glial cells. 

Following growth of axons and dendritic branching, synaptogenesis occurs 56,58. Because there is an 

overproduction of neurons throughout these periods, the process is regulated by apoptosis and 

selective elimination of synapses (synaptic pruning), allowing maintenance of only the most relevant 

connections to form a functional neuronal circuitry 57,58. 

Maturation of the human brain continues for 20-25 years after birth, however, and contrary to 

previous scientific beliefs, neurogenesis does not appear to cease after development 60. The first 

evidences of adult neurogenesis were observed in 1965, in a study that found the presence of a 

germinal pool of undifferentiated cells in the dentate gyrus (DG) of the rat hippocampus 61. In fact, it 

has been increasingly shown that adult neurogenesis is maintained throughout the whole lifespan of 

many mammalian species, namely rodents, humans and other primates 62–64. However, the 

controversy regarding human studies remains, as different authors suggest contradictory results, 

showing either maintained or decreased levels of neurogenesis, and even absent neurogenesis 

during adulthood and aging 65–67. This process occurs in brain regions termed neurogenic niches, 

considered to be specialized microenvironments surrounding and sustaining self-renewal of 

multipotent neural stem cells (NSCs), and promoting their migration and differentiation into neurons 

and glial cells 68. Numerous other components make up these niches, including an extracellular 

matrix, progenitor and endothelial cells, astrocytes, microglia, oligodendrocytes, and blood vessels 

69,70. These microenvironments have a dynamic and plastic nature, and are regulated by a variety of 

extrinsic and intrinsic factors or pathways, thought to provide not only maintenance of the pool of 

undifferentiated NSCs, but also to modulate and adjust the production of new cells on demand 52,53,69. 
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The subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the 

DG of the hippocampus constitute the two major neurogenic niches in the adult mammalian brain 71. 

In rodents, progenitor cells from the SVZ largely migrate through the rostral medial stream (RMS) to 

the olfactory bulb (OB) (Fig. 3), where they originate new neurons that have been shown to play a 

substantial role in odour discrimination and establishment of olfactory memories 52. Whether 

migration of neuronal progenitors to the OB occurs in humans remains controversial, although a less 

keen sense of smell might suggest the absence or decrease of this process 72. On the other hand, 

neurogenesis in the human striatum appears to be more prominent than in other mammals, and 

although the origin of these neurons has not yet been clarified, it is hypothesized that they could 

arise from the migration of progenitors from the SVZ to this region (Fig. 3) 69,72. 

 

Fig. 3 – Main neurogenic niches in the rodent (left) and human (right) brain. STR: Striatum. Adapted from Borsini et 

al, 2015 73. 

 

When considering the hippocampus, the extent and basic underlying mechanisms of 

neurogenesis in the DG seem to be comparable to other mammalian species so far, especially 

rodents 72. This supports the use of mice and rats as a good model to study the normal process of 

adult hippocampal neurogenesis, as well as possible changes that may be related with neurological 

and psychiatric disorders. Additionally, less commonly explored neurogenic sites have been 

proposed in structures such as the neocortex, hypothalamus, amygdala, substancia nigra, 

cerebellum and spinal cord, thus suggesting the relevance of these mechanisms of neurogenesis-

based structural plasticity throughout the mammalian CNS 74,75.    

  

 

Fig. 3 – Main neurogenic niches in the rodent (left) and human (right) brain. 
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1.2.2. The dentate gyrus 

The DG is a part of the hippocampal formation, along with the CA1, CA2 and CA3 regions, the 

subicular complex (subiculum, presubiculum and parasubiculum), and the EC 76. Information in the 

hippocampus is processed through a classical trisynaptic network (Fig. 4), where the EC projects to 

the DG and CA1 subfield via the perforant pathway. The axons from granule cells (GCs) of the DG 

in turn connect to the CA3 pyramidal cells, forming the mossy fiber pathway. Next, CA3 neurons 

project to CA1 through the Schaffer collaterals, followed by connection of CA1 pyramidal cells to the 

subiculum and EC, and from the subiculum to the EC. Recurrent connections within the DG and CA3 

can also be observed 76–78. Moreover, the hippocampus connects to most neocortical association 

areas via the EC, as well as to numerous subcortical regions 78. 

The DG constitutes a V-shaped structure around the CA3 subfield, composed of three cell 

layers. The outermost one, termed molecular layer, primarily contains axons from the EC connecting 

with dendrites of GCs, but also GABAergic interneurons and extrinsic input afferent fibers. Cell 

bodies of GCs, the main excitatory neurons of the DG, are densely packed below the molecular 

layer, forming the granule cell layer (GCL), that can be divided into the suprapyramidal and 

infrapyramidal blades, depending on its location above or below the CA3 region, respectively. 

Neurogenesis occurs in the SGZ, located right underneath the GCL, where precursor cells reside. 

The deepest layer is the polymorphic cell layer, or hilus, containing axons of GCs plus glutamatergic 

and GABAergic interneurons 76,77,79.  

 

Fig. 4 – Hippocampal structure and main circuits. Adapted from Toni and Schinder, 2016, Bartsch and Butler, 2013 

77,78. 

Fig. 4 – Hippocampal structure and main circuits. 
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1.2.3. Adult hippocampal neurogenesis  

The formation of highly functional new neurons can be observed in the human DG, with a 

turnover of approximately 0.004% neurons per day, considering that around one third of all 

hippocampal neurons have the ability to be exchanged 80. New adult-born neurons in the DG take  

approximately 7-8 weeks to form and fully mature and, to date, GCs are the only type of neuron that 

has been shown to derive from adult neurogenesis 70,77. Most knowledge of neurogenesis, namely 

the properties of NSCs and progenitors comes from in vitro and ex vivo studies, yet increasing 

evidence from in vivo studies, with the use of new methodologies has allowed the proposition of a 

sequential mechanism underlying adult neurogenesis in the mammalian hippocampus (Fig. 5) 77,81,82.  

Radial glia-like (RGL; type 1) cells appear to be at the starting point of adult neurogenesis in 

the DG 70,82. While their soma is located in the SGZ, processes usually branch through the GCL and 

the molecular layer 83. These cells show properties of NSCs, possessing the ability to self-renew 

through symmetrical divisions, and to differentiate into neurons, astrocytes and oligodendrocytes 

(multipotency), although the latter does not seem to be generated under physiological conditions 82. 

Moreover, whether self-renewal ability is unlimited or restricted to a certain number of cell divisions 

remains unclear 84. Most RGL cells are believed to be arrested in the G0 phase of the cell-cycle, 

remaining in a quiescent state, and hence having a low proliferative rate 52,82. Molecularly, they are 

characterized by expression of intermediate filaments glial acidic fibrillary protein (GFAP) and nestin, 

and transcription factor sox2 70. 

 

Fig. 5 – Putative sequential model of adult neurogenesis in the SGZ of the DG. Different cellular stages express 

distinct molecules that can be labelled by immunohistochemistry. Adapted from Overall et al, 2016 85. 

 

Fig. 5 – Putative sequential model of adult neurogenesis in the SGZ of the DG.  
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Once activated, RGL cells originate fast proliferating nonradial intermediate progenitor cells 

(IPCs; type 2 cells), with short processes oriented parallelly to the GCL, that allow the expansion of 

the pool of undifferentiated cells 70,83. IPCs can be distinguished in type 2a and type 2b cells. While 

the first subtype still expresses glial markers, including nestin and sox2, the latter starts expressing 

early neuronal markers, like microtubule-associate protein doublecortin (DCX) and polysialic acid 

neural cell-adhesion molecule (PSA-NCAM), being therefore hypothesized that cell fate may be 

determined at this transition point 70,77. It is also at this point that these new cells receive their first 

depolarizing (excitatory) GABAergic inputs from diffuse ambient GABA 86. Next, IPCs give rise to 

neuroblasts (type 3 cells), which lack any glial markers, and are fully committed to the neuronal 

lineage, expressing DCX, PSA-NCAM, and transcription factors NeuroD and Prox1 70,83. These cells 

are still proliferating to some extent, and show a heterogenous morphology, with their processes 

gradually changing from a horizontal to a vertical orientation 83.   

Following expansion of the cell pool, neuroblasts differentiate into immature GCs in an early 

survival phase, marking the exit of the cell-cycle 70. As for embryonic development, most new-born 

cells are eliminated by apoptosis at this stage, before any functional maturation occurs 70,83. Early 

GCs selected for long-term survival continue expressing DCX and PSA-NCAM, and start expressing 

post-mitotic markers calcium-binding calretinin and neuronal nuclei (NeuN) 70. During the initial days, 

immature neurons remain in the SGZ. As they start acquiring a polarized shape, bipolar neurites 

begin to extend into the GCL 77. First, axons start to elongate in direction to the CA3 region, where 

they compete to form their first efferent connections, along with dendrite extension through the 

molecular layer, to form afferent connections from the EC. The soma of adult-born GCs migrates to 

the GCL, which will indulge cells to be structurally integrated into the DG network 70,77. 

Later in the post-mitotic maturation phase, calretinin is replaced by calbindin, another calcium-

binding protein 70,83. As expression of voltage-dependent Na+ and K+ channels, as well as GABA and 

glutamate receptors increases, GABAergic inputs become progressively hyperpolarizing (inhibitory), 

corresponding to the onset of functional glutamatergic dendritic spine formation, together allowing 

cell membranes to change from a high input resistance state, to a more regular state resembling 

mature GCs 70,77. New-born cells take several months to become fully mature glutamatergic dentate 

GCs, with continued dendritic branching and increase in spine density 77. During the first weeks of 

this period, immature GCs display unique characteristics of activity-dependent enhanced synaptic 

plasticity, as they have lower activation thresholds and greater amplitudes for long-term potentiation 

(LTP) 70,77,83. These properties might serve as a feedback mechanism that favours the enduring 

integration of new cells, but are also proposed to play a significant role in the proper function of the 

DG, namely regarding learning and memory, as will be further discussed in the next section 70,77.  
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1.2.4. Adult hippocampal neurogenesis – function and dysfunction 

The role of the hippocampal formation has been extensively described in regard to learning 

and memory, playing an important part in acquisition of new memories, consolidation from short-

term to long-term memory, and retrieval of previously consolidated memories 87,88. The main 

contribution of the hippocampus and its connections is related to declarative (or explicit) memory, 

which refers to memories that can be recalled consciously, and can be further divided in episodic 

and semantic. Whereas episodic memory comprehends memory of personal experiences and 

events, along with the associated temporal and spatial context, semantic memory represents the 

knowledge of the external world, independent of context. In contrast, non-declarative (or implicit) 

memory refers to unconscious memory of skills and habits, and correlates better with the function of 

brain structures as the striatum and the cerebellum 78,89. Interestingly, studies from patients with 

amnesia associated to brain lesions indicate that the left and right hippocampal formations could 

have distinct contributions, with the former being more commonly related to episodic memory, and 

the latter to spatial memory processing 90. 

It has been increasingly suggested that the involvement of the DG and formation of new adult-

born neurons is crucial to general hippocampal function 52,70,91. Indeed, attending to the continuous 

formation of highly functional new-born GCs in the DG, it appears that adult hippocampal 

neurogenesis and its role in neuroplasticity in the mammalian brain has been favoured from an 

evolutionary perspective 92. Also, although only a small portion of these cells receives inputs from 

the EC, a noteworthy amplification of neuronal output can be observed through the DG-CA3 

pathway, since a single GC can communicate with twelve CA3 neurons, which in turn connect with 

a substantial number of surrounding pyramidal cells and interneurons 87. This way, spatial and visual 

information coming from several cortical and sensory regions, via distinct layers of the EC, is 

perceived and encoded by the DG, building a full spatial representation 89. 

The dorsal (in rodents, posterior in primates) and ventral (in rodents, anterior in primates), and 

even intermediate zones of the hippocampus can be functionally discriminated. In fact, these areas 

appear to have distinct anatomical, electrophysiological and molecular properties. Concerning 

behaviour, while the dorsal portion seems to be implicated in more cognitive tasks, namely 

contextual and spatial learning and memory, the ventral portion is suggested to be more associated 

with anxious and mood-related behaviours 88,93. A possible segregation between the supra- and 

infrapyramidal layers of the DG is also worth mentioning. Particularly, enhanced plasticity in the 

suprapyramidal layer has been suggested due to a more complex GC morphology in relation to the 

infrapyramidal one, as well as increased adult neurogenesis, at baseline and in response to stimuli, 

like stress 93,94. Additionally, hyperexcitability has been found in the infrapyramidal layer when 

compared with the suprapyramidal layer 95. Notably, it has been recently proposed that these 
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subregional segregations of the hippocampus might be linked to the presence of distinct 

subpopulations of newly-generated neurons, contributing to different functional roles 93.  

The DG has been extensively implicated in pattern separation, which allows processing and 

storing of identical spatial contexts or locations, while avoiding overlapping or interference between 

similar memories. Likewise, this structure is suggested to play an important part in episodic memory, 

granting a way to selectively separate events in time 91,96. Specifically, based mostly on evidence 

from studies using rodents, adult hippocampal neurogenesis seems to be required for contextual 

discrimination, spatial memory and pattern separation 87,89,93. In this context, enhancing hippocampal 

neurogenesis has been shown to improve the performance in novelty recognition and pattern 

separation tasks 89. In addition, the characteristic electrophysiological features of immature GCs was 

demonstrated to be essential for these tasks 89,97. As an example of the contribution of adult 

neurogenesis for spatial learning, reducing neurogenesis by ablation of cells expressing nestin was 

shown to impair rodent performance in the Morris water maze test, and suggested a specific role of 

neurogenesis in allocentric-guided spatial navigation, but not egocentric 89,98. Similarly, studies both 

depleting or promoting neurogenesis revealed, respectively, deficits or improvement in tasks 

evaluating reversal learning, indicating that new neurons are important for executive function through 

retrieval of formerly consolidated memories 89. Of note, a possible role of neurogenesis in encoding 

the temporal factor of episodic memory has also been proposed, yet further studies are needed in 

this regard 89,91.  

Another projected function of adult hippocampal neurogenesis respects to memory clearance. 

Modulating the formation of new GCs is thought to maintain a balance between learning and 

forgetting: while upregulation of neurogenesis would optimize acquisition of new memories without 

interference with previously consolidated ones, downregulation would favour endurance of older 

memories rather than acquisition of new ones 87. 

The remarkable neuroplasticity of the hippocampal circuitry grants the ability to individually 

adapt in response to endogenous and exogenous stimuli, and can be reflected at several levels 88. 

Just as changes in adult hippocampal neurogenesis influence a number of physiological and 

pathological processes and behaviours, the formation of new neurons is also activity-dependent, 

and can be modulated by many intrinsic and extrinsic factors 52,70,81. This interplay is in the basis of 

the contribution of adult neurogenesis to hippocampal plasticity 70. Regulation of neurogenesis at the 

cellular and molecular level includes actions of growth and neurotrophic factors, cytokines, 

hormones, transcription factors, neurotransmitters and epigenetic regulators. Adult neurogenesis is 

also activity and environmentally regulated by physiological stimuli like learning, physical exercise, 

metabolism, environmental enrichment, stress and aging 81,82,99. 
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How adult hippocampal neurogenesis is modulated throughout aging is still a subject of debate 

65,66,100. In the aging rodent brain, an accentuated decrease in the rate of proliferation and in the 

number of progenitors, neuroblasts and immature neurons has been reported 89,100. Concerning 

humans, a recent study suggests undetectable levels of hippocampal neurogenesis in adult and 

aged subjects, when assessing proliferation and immature neuron markers 65. Conversely, different 

authors have described a less pronounced decline in hippocampal neurogenesis throughout 

adulthood and aging, with a recent study indicating that progenitor and immature neuron number is 

maintained, while the pool of quiescent precursor cells is specifically reduced in the anterior DG, 

accompanied by a decrease in angiogenesis and neuroplasticity 66,80,101. Nonetheless, memory 

impairment and cognitive decline preferentially targeting spatial, episodic, and working memory 

occurs during regular aging 89. As the DG appears to be the earliest structure to be affected, this 

cognitive decline is speculated to be associated with changes in neurogenesis 89,100. Interestingly, 

neurogenesis in old age can still be regulated by a few stimuli, namely physical exercise, drugs and 

chronic stress 100. 

On the other hand, a noticeable degree of neuroplasticity conferred, in part, by adult 

neurogenesis, makes the hippocampal formation highly susceptible to detrimental conditions 88. 

Some pathological stimuli demonstrated to inflect neurogenesis include seizures, traumatic brain 

injury, stroke/ischemia, drug abuse, chronic stress and psychological and neurodegenerative 

disorders 81,82. Protein misfolding and abnormal aggregation, gradual loss of neuronal structure 

and/or function, and subsequent neuronal death are some of the features shared among 

neurodegenerative diseases like Alzheimer’s, Parkinson’s and Huntington’s disease 50,102. In recent 

years, compromised adult neurogenesis has also been suggested as a common characteristic in 

these disorders, although results both from animal models and post-mortem human samples have 

inconclusive, and sometimes contradicting, results 50,102,103. 

The extent to which a subject is influenced by a disease affecting cognitive function is thought 

to be dependent on its cognitive reserve. Having a high cognitive reserve can arise from increased 

brain volume, neuronal count, number of synapses or other quantitative features (brain reserve), and 

it is anticipated to correlate with a more efficient adaptability or ability of an individual to compensate 

for disease in the CNS or age-associated changes 104. The concept of neurogenic reserve, first 

proposed by Kempermann in 2009, refers to the contribution of adult hippocampal neurogenesis to   

this process. This way, promoting neurogenesis at a young age would allow hippocampal circuitry 

to better adapt to new experiences and disease processes at old age, helping to build a cognitive 

reserve, and vice-versa 105. Evidence supporting this hypothesis suggests that engagement in social 

and cognitively stimulating activities, a higher level of education and regular physical exercise, which 

are also modulators of adult neurogenesis, delay the onset of dementia symptoms, reduce the risk 

of AD, and promote healthy aging 3,104. 
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1.2.5. Adult hippocampal neurogenesis and Alzheimer’s disease 

Although an impairment in adult hippocampal neurogenesis has been implicated in different 

neurodegenerative disorders, the consequences of AD concerning hippocampal neurogenesis in 

humans are unclear, and results from animal studies remain largely controversial 50,106,107. 

Remarkably, some key molecular players in the formation of Aβ have been shown to regulate 

the process of adult neurogenesis 68,106. As an example, enhancing α-secretase activity in transgenic 

mice was shown to significantly promote proliferation of NPCs and neuronal differentiation, as well 

as the length of dendrites in immature neurons 108. Although sAPPα appears to be physiologically 

involved in the positive regulation of cell proliferation, survival, adhesion and migration, as well as 

synaptogenesis and neurite growth, its role has not yet been well established in the adult rodent or 

human DG 109,110. Similarly, the role of β-secretase in hippocampal neurogenesis remains unknown 

106. On the other hand, increasing the expression of AICD in mice appears to have a negative 

modulatory effect upon adult neurogenesis in the DG, namely by reducing neural stem/progenitor 

cell (NSPC) proliferation and survival in an Aβ-independent manner 109,111.  

In vitro, Aβ1-42 peptide and aggregated forms lead to impaired proliferation and neuronal 

differentiation, but also reduced survival of cultured human and rodent NSPCs, namely mediated by 

disruption of intracellular calcium homeostasis, and calpain and caspase activation 112,113. 

Corroborating these experiments, a recent study disclosed that Aβ1-42 oligomers promote 

senescence of mice NSPCs, and compromise proliferation and differentiation in culture 114. Dissident 

from these evidences, increased neuronal differentiation of cultured rat and mice NSPCs was 

observed in the presence of Aβ1-42 oligomers, while there was no change in proliferation or survival 

115. Notably, the toxic effect of Aβ on neurogenesis has also been described as dependent on its 

aggregation state. Whereas monomeric and fibrillary Aβ1-42 were shown to have a detrimental action 

upon cultured mice  NSPCs, oligomeric forms promoted their proliferation, neuronal differentiation 

and migration 116.  

Most evidence on the role of PS1, full-length APP and Aβ has been provided from the use of 

transgenic mouse models encompassing mutations associated with FAD. Despite the discrepancies, 

most studies reveal a decrease in hippocampal neurogenesis (Table 1) 106,107,117. 

In this regard, impaired survival, proliferation and neuronal differentiation was observed in 

transgenic mice carrying solely PS1 mutations 118,119. Similarly, mice expressing the APP Swedish 

mutation (APPswe), show reduced proliferation and survival, and compromised morphological 

development of the DG 112,120. In transgenic mice models combining APP and PS1 mutations 

(APPswe/PS1ΔE9), a gradual decrease in proliferation, differentiation and maturation has been 

reported along with intracellular and extracellular built-up of Aβ 121,122. Interestingly, potentiating 

hippocampal neurogenesis in this model was shown to improve differentiation and survival of new 

neurons, and simultaneously restore recognition memory performance 123. Moreover, a recent study 
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revealed that ablation of neurogenesis in APP/PS1 transgenic mice correlated with deficits in 

contextual conditioning and pattern separation 124. Another mouse model that has increasingly been 

used to study FAD is the triple transgenic (3xTg-AD) containing APP, PS1 and tau mutations. In this 

model, a significant decrease in proliferation was linked to the progressive deposition of Aβ 125. 

Additional changes in downregulation of proliferation, differentiation, dendritic morphology and 

number of synapses in immature neurons have also been observed when using this model 126. 

Notably, compromised neurogenesis accompanied by Aβ deposition has been suggested in more 

complex models like the 5XFAD, which includes three different APP and two PS1 mutations 127.  

Notwithstanding, studies have also shown an increase in adult neurogenesis. Namely, mice 

expressing APPswe and Indiana (APPswe,ind) mutations reveal enhanced NSPC proliferation and 

neuronal differentiation, pre- and post-Aβ deposition 128,129. Likewise, in APP/PS1 transgenic mice, 

enhanced proliferation and neuronal differentiation was observed, concomitant with aggravation of 

Aβ pathology 130. Moreover, only a few authors report absent changes in neurogenesis in transgenic 

mouse models of AD 107,131,132. 

 

Table 1 – Summary of the main changes in neurogenesis in different models of AD. 

Effect on 

neurogenesis 
Findings Model References 

Decrease 

Survival 

F
a
m

ili
a
l 
A

D
 

PS1P117L 118 

Proliferation; differentiation PS1ΔE9,M146L 119 

Proliferation; survival; maturation APPswe 112,120 

Proliferation; differentiation; 

survival; maturation 
APPswe/PS1ΔE9 121–123 

Proliferation; differentiation; 

maturation 
3xTg-AD 125,126 

Proliferation; differentiation 

S
p
o
ra

d
ic

 A
D

 Icv injection of Aβ25-35 133 

Survival; maturation 
Intrahippocampal 

injection of Aβ25-35 
134 

Proliferation; differentiation 
Intrahippocampal 

injection of Aβ1-42 
135 

Proliferation; differentiation Human AD 136 

Increase 

Proliferation; differentiation 

F
a
m

ili
a
l 
A

D
 

APPswe,ind 128,129 

Proliferation; differentiation APPswe/PS1ΔE9 130 

Proliferation; differentiation Human AD 137,138 
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Further perpetuating the controversy of results, alterations in adult hippocampal neurogenesis 

have been suggested to be stage-dependent, both referring to the stages of GC development and 

of disease progression. In the APPswe,ind mouse model, both morphological unfolding (dendrite 

extension, spine density) and function were enhanced early in GC maturation, yet became impaired 

at later stages, an effect than worsened with age 139. In a PS1/PS2 double knock-out model, 

enhanced proliferation during early neurodegeneration stages was observed, fading at more 

advanced phases due to decreased new-neuron survival 140. In line with these observations, 

significant changes in adult neurogenesis have been shown to occur before the onset of hallmark 

AD lesions. A recent study evaluated how the gradual pattern of Aβ deposition into plaques in the 

hippocampus of two transgenic mouse models (APPswe and APPswe/PS1ΔE9) correlated with the 

levels of adult neurogenesis. Elevated proliferation of neuroblasts exhibiting immature-neuron 

morphology was found specifically before plaque formation in both models, that overlapped with 

decreased survival and neuronal differentiation of new adult-born cells in the case of the APP-PS1 

model 141. 

Studies using post-mortem samples from patients with AD are very limited and have produced 

variable results so far. One study reported that hippocampal neurogenesis was increased in patients 

with AD, as shown by an increase in expression of neuroblast, immature neuron and early 

differentiation markers, as PSA-NCAM and DCX, while expression of mature neuronal markers, like 

NeuN and calbindin, remained unchanged. A tendency for increased expression of some markers 

was found along disease severity, suggesting that the observed changes might be a compensatory 

mechanism in response to neurodegenerative processes 137. Conversely, cell counts have 

demonstrated a decrease in DCX- and Sox2-positive cells in the DG of patients diagnosed with AD 

136. A different report revealed that while progenitor and neuroblast/immature neuron markers appear 

significantly increased along AD progression, this is not enough to compensate for the decrease in 

hippocampal stem cells 138. Recently, hippocampal neurogenesis was also indicated to vary with 

disease aggravation. Whereas immature neurons seem to become gradually reduced, neuroblasts 

appear increased in moderate stages of AD 142. Additionally, expression of proliferation and immature 

neuronal markers has been reported to be unchanged in the DG of presenile AD subjects 143. 

Current animal models only partially reflect AD pathology, and so do not fully correlate with 

human disease 106. Notably, although it has been reported that transgenic mouse models of FAD 

display impaired learning and memory function, a clear link between these changes and 

compromised hippocampal neurogenesis is still lacking 106,144. 

A few recent examples can be listed when referring to the modulation of adult neurogenesis in 

sporadic rodent models of AD, which represent the most prevalent form of the disease. 

Intracerebroventricular injection of aggregated Aβ25-35 in mice was shown to decrease proliferation, 

differentiation, and the number of immature neurons in the DG 133. Moreover, injection of this peptide 

into the CA1 region leads to decreased dendritic length and spine density, as well as total number 
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of mature neurons in the DG of rats, although proliferation and the number of immature neurons was 

unaffected 134. In both models, these changes were suggested to correlate with impaired behaviour 

performance, including in the MWM and Y-Maze spontaneous alternation tasks 133,134. 

Intrahippocampal CA1 injection of oligomeric Aβ1-42 leads to decreased proliferation and immature 

neuron differentiation in the DG of adult mice 135. Interestingly, another study reported that infusion 

of Aβ1-40 and Aβ1-42 fibrils into the dorsal DG of rats originated a decrease in the number of mature 

neurons, while only Aβ1-42 caused a significant reduction in the number of immature neurons 145. 

 

1.2.6. Brain-derived neurotrophic factor and Alzheimer’s disease – relevance for 

neurogenesis  

Aβ has also been reported to impair the neuroprotective actions mediated by brain-derived 

neurotrophic factor (BDNF) signalling. This neurotrophin acts as an important modulator of 

neurogenesis, through activation of its high affinity full-length tyrosine kinase (TrkB-FL) receptors, 

which triggers a series of signalling pathways essential for the regulation of synaptic plasticity, cell 

proliferation, differentiation, survival and dendritic branching 146–150. Cleavage of TrkB-FL receptors 

and subsequent loss of BDNF function has been identified in primary neuronal cultures incubated 

with Aβ1-42 and Aβ25-35, resulting in increased levels of the corresponding truncated isoforms (TrkB-

Tc) and intracellular domain fragment (TrkB-ICD). This cleavage is mediated by activation of 

extrasynaptic NMDARs and calpain activation, a calcium-dependent protease, and prevented in the 

presence of memantine (Fig. 6) 151,152. Interestingly, these changes have been proposed to contribute 

to the cognitive decline observed in AD. In vivo studies suggest that BDNF in the DG has a relevant 

role in pattern discrimination, by a process that requires adult-born neurons 87. Moreover, 

overexpression of TrkB-Tc was demonstrated to exacerbate spatial memory impairment, an effect 

attenuated by overexpression of TrkB-FL 153. In fact, in agreement with what was observed in vitro, 

an imbalance in TrkB receptor isoforms was identified in post-mortem samples from AD patients 

152,154. 
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Fig. 6 – Putative mechanism for the cleavage of TrkB-FL receptors in the presence of Aβ. Extracted from Tanqueiro 

et al, 2018 151. 

 

 

 

Keeping the discrepancies in mind, together, this growing evidence from animal studies 

suggests the potential of modulating adult hippocampal neurogenesis as a therapeutic target for the 

development of disease-modifying treatments for AD. In this regard, studies have focused on 

compounds that enhance neurogenesis, yet not many have used models of AD 23,110. For instance, 

an interesting work recently demonstrated improvement of neuronal differentiation and survival in 

the APPswe,ind mouse model, upon combined action of enhanced neurotrophic support and scyllo-

inositol, a compound previously shown to ameliorate Aβ pathology and cognitive function 155. 

Protecting neurogenesis while improving cognitive deficits by pharmacologically diminishing 

microglial activation in APP/PS1 transgenic mice has also been suggested as a promising target 123. 

Remarkably, drugs currently used in the management of AD, such as galantamine and memantine, 

have been shown to significantly potentiate neurogenesis in vitro and in vivo 156. Nonetheless, 

strategies that directly and specifically modulate neurogenesis at the hippocampus are wanting 23. 
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2. Aims 

The neurotoxic mechanisms associated with AD have been extensively described, yet the 

pathogenesis of this disease remains unclear, as does the order of pathological events that 

characterize the various stages of progression, especially in preclinical and mild stages. Attending 

to the alarming increase in population aging and incidence of AD, understanding its pathophysiology 

and exploring novel efficient therapies represents a major issue worldwide. 

Modulation of adult neurogenesis has been proposed as a potential disease-modifying target, 

although, to date, results from animal models have presented substantially variable results, and 

evidence from sporadic, more translatable models of human AD, is extremely limited. Therefore, the 

main objective of the present work was to evaluate adult hippocampal neurogenesis in a model of 

the initial stages of late-onset AD. To this end, three specific aims were considered: i) to obtain the 

model of disease by performing an intracerebroventricular injection of Aβ1-42 peptide in adult male 

Wistar rats, ii) to characterize the behaviour of these rats after the injection, and iii) to investigate 

how cell proliferation and neuronal differentiation in the DG of these animals is modulated after the 

injection. 
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3. Materials & Methods 

 Ethical Concerns 

All experimental procedures were conducted in conformity with the European Community 

legislation (86/609/EEC; Directive 2010/63/EU, 2012/707/EU). These procedures were approved by 

the Ethical Committee of the Faculty of Medicine, University of Lisbon and by the Animal Ethics 

Committee of Instituto de Medicina Molecular (iMM), as well as by the Direção Geral de Alimentação 

e Veterinária (DGAV), the Portuguese competent authority for animal protection. To minimize the 

number of animals used for in vivo procedures, optimal sample size was estimated to be 7 animals 

per group, by performing a power analysis with the G*Power 3.1 software, based on previous 

experiments using the same model. Considering the variability associated with behaviour tests and 

disease manifestation, as well as possible complications arising from surgical procedures, it was 

decided to use 10 animals per group. Animal suffering was minimized to the greatest extent. 

 

 Animals & Housing 

 For in vivo procedures, young-adult male Wistar rats were acquired from Charles River 

(Barcelona, Spain). Animals were housed together in groups of 5 per cage upon arrival, with 

unrestricted access to food and water, and under controlled temperature and light conditions (22ºC; 

lights on between 7 am and 9 pm). A period of at least 5 days for acclimatization at the rodent facility 

of iMM before any experimental procedure was considered. Surgical procedures were performed 

during the light period of the 14/10h light/dark cycle, when the rats were 9-10 weeks-old, weighting 

260-375g. After surgery, animals were kept in groups of 2-3 per cage to facilitate recovery. Rats 

were regularly monitored for general appearance, activity, feeding behaviour and body weight 

throughout the whole protocol, taking a closer attention during post-operative recovery. 

For in vitro analysis, specifically primary neuronal cultures, 18/19-day pregnant Sprague-

Dawley female rats were purchased from Charles River (Barcelona, Spain). 

 

 Timeline for in vivo Experimental Procedures 

Animals were divided in 2 groups: control (vehicle icv injection) and Aβ (Aβ1-42 icv injection). 

Fig. 7 shows a representative timeline for studying the effects mediated by Aβ1-42 icv injection in adult 

hippocampal neurogenesis. BrdU was administrated intraperitoneally for 3 days at the beginning of 

the protocol, followed by Aβ1-42 injection 3 days later. To guarantee that neuronal differentiation 

occurred before sacrifice, a minimum of 28 days from the first BrdU injection was maintained, as well 

as a period of 2 weeks between Aβ1-42 peptide administration and the beginning of behavioural 

testing, as it has been reported that memory deficits become more evident from that point 157. To 
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help minimize stress, handling of the animals was performed for at least 3 days before the first ip 

injections and again before behaviour tests. Rats were sacrificed at the end of behaviour assessment 

and brain tissue was processed for immunohistochemical analysis. Additionally, for histology, 

western blot and ELISA protocols, 3 rats from each group were sacrificed 3 and 14 days after icv 

injection, as these timepoints are reported to allow evaluation, respectively, of the presence and 

absence of Aβ1-42 in the hippocampus 157.  

 

Fig. 7 – Timeline for in vivo experimental procedures. 

 

 BrdU Administration 

To study neuronal differentiation and cell proliferation, a solution of 5-bromo-2’-deoxyuridine 

(BrdU) (Sigma-Aldrich, MO, USA) was prepared in a sterile solution of 0.9% NaCl. BrdU was injected 

intraperitoneally (ip) twice a day, with 8-9h interval, for 3 days at the beginning of the protocol (Fig. 

7), at 100 mg per Kg of body weight. This compound is a synthetic nucleoside thymidine analogue 

widely used in the context of neurogenesis studies, since it is able to incorporate the DNA of cells in 

division, specifically during replication (S-phase of the cell cycle) 62,158. 

 

 Aβ1-42 Peptide Injection 

Aiming at obtaining an in vivo model of the sporadic form of AD, surgeries were performed to 

inject a solution of the 42-amino acid form of the amyloid β peptide intracerebroventricularly (icv), as 

previously described 157,159. The solution was prepared at a concentration of 498 µM by dissolving 

Amyloid β-Protein (1-42) (Bachem, CA, USA) in sterile Milli-Q® water (Merck, Darmstadt, Germany) 

previously set at pH 10. 

 

 

Fig. 7 – Timeline for in vivo experimental procedures. 
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Fig. 8 – Schematic representations of the stereotaxic coordinates used for the icv injection. (a) Cranial sutures, 

anatomical location of bregma, and site of injection (orange dot), from a top view. Adapted from Assi et al, 2012 160. (b) 

Site of injection (orange dot), from a coronal view. Having bregma as a reference, the site of injection was defined as -0.8 

mm anterior-posterior, +1.5 mm medial-lateral, +3.5 mm dorsal-ventral. Adapted from Paxinos and Watson, 1998 161. 

 

For this, animals were anesthetized with isofluorane, containing 2-3% O2, first using a chamber 

with gas scavenging system, and then kept under deep anaesthesia via facial mask, throughout the 

whole surgical procedure. To prevent hypothermia, animals were kept on top of heating pads (37ºC) 

at all times. After shaving the fur of the head, exposed skin was disinfected with Betadine® (Meda 

Pharmaceuticals, NJ, USA), and local anaesthetic emla® cream (AstraZeneca, London, UK) was 

applied inside the ear canal to minimize pain or discomfort once the animal was placed in the 

stereotaxic apparatus with ear bars to stabilize the position of the head. Lacryvisc® ophthalmic gel 

(Alcon, Hünenberg, Switzerland) was also applied to the eyes of the animal to prevent dehydration. 

a 

b 

Fig. 8 – Schematic representations of the stereotaxic coordinates used for the icv injection. 
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General analgesic buprenorphine (0.016 mg/ml, in NaCl) was administrated subcutaneously (0.05 

mg per kg of body weight). Next, animals were transferred to a stereotaxic apparatus (Stoelting, IL, 

USA). Using a scalpel, a longitudinal incision along the midline of the head was done to expose 

cranial sutures. Having bregma as a reference, the following coordinates were used for the site of 

injection: -0.8 mm anterior-posterior (AP), +1.5 mm medial-lateral (ML), +3.5 mm dorsal-ventral (DV) 

(Fig. 8a,b). A small hole was drilled in the skull, and the injection of 4 µL of the Aβ1-42 solution was 

carried out directly inside the right lateral ventricle of the rats, with a 10 µl, 33-gauge Microliter 

Syringe (Hamilton Company, NV, USA) and a Micro4TM MicroSyringe Pump Controller (World 

Precision Instruments, FL, USA), at a constant rate of 400 nl/min for 10 min. For control rats, the 

same volume of vehicle solution (Milli-Q® water, pH 10) was injected. After removing the syringe, the 

skin of the rat was sutured with Silkam® 4/0 silk sutures (Braun, Melsungen, Germany), and 

Bepanthene® Plus (Bayer, Leverkusen, Germany) was applied on top of the sutures. Animals were 

maintained individually on recovery cages until regaining ambulatory ability.  

  

 Behavioural Analysis 

Patients suffering from AD usually present memory deficits at initial stages of the disease, that 

tend to aggravate along the disease progression, namely due to compromised hippocampal function 

12. Thus, evaluation of behavioural paradigms, specifically regarding memory performance, was a 

crucial step at attempting to characterize our model as an in vivo model of sporadic AD. For this, 

different test batteries were carried out using three distinct animal batches (Table 2). First, the open 

field (OF) and the novel object recognition (NOR) were performed during the dark period of the 

light/dark cycle, under red light, which is believed to be perceived by the rats as darkness 162. Next, 

two new test batteries were implemented during daytime under dim light conditions, to see if changes 

in circadian rhythms could be influencing the paradigms tested. These included the OF and NOR, 

already performed in the first batch, but also the elevated plus maze (EPM), Y-Maze spontaneous 

alternation (SA), Y-maze forced alternation (FA) and Morris water maze (MWM) tests. The tests in 

Table 2 are listed in the same order in which they have been performed for each batch of animals. 

In each day, rats were habituated to the test room for at least 30 min before starting any 

behaviour assessment. To erase any olfactory clues, for every test and between each trial, the arena 

and/or objects were carefully cleaned with a 30% ethanol solution. In every test, except for the Morris 

water maze test, the experimenter moved from the test room to an independent room immediately 

after placing the animal in the corresponding apparatus. Parameters assessed in the EPM, OF and 

MWM tests were recorded using the SMART V2.5 video-tracking software (Barcelona, Spain). In 

contrast, the NOR and Y-maze SA and FA tests were video recorded and posteriorly analysed by 

an observer blind to the experimental conditions, as is described ahead. 
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Table 2 - Behaviour tests performed for each batch of rats and corresponding time of day. 

Batch number Test battery Time of day 

1 
I.  Open Field 

II.  Novel Object Recognition 

Dark period of the light/dark cycle; 

Red light  

2 

I.  Elevated Plus Maze 

II.  Y-Maze Forced Alternation 

III.  Morris Water Maze 

Light period of the light/dark cycle; 

Dim light (approximately 15 lux) 

3 

I.  Elevated Plus Maze 

II.  Y-Maze Spontaneous Alternation 

III.  Open Field 

IV.  Novel Object Recognition 

Light period of the light/dark cycle; 

Dim light (approximately 15 lux) 

 

 

3.6.1. Open Field (OF) 

The OF test grants the opportunity to appraise rat locomotor activity 163, which was tested since 

it can represent an important paradigm influencing learning and memory performance. The 

apparatus consists of an empty square box (60x60x40 cm), virtually divided in three concentric 

squares at a similar distance from each other (Fig. 9). Each animal was placed individually in the 

centre of the box and allowed to freely explore it for 5 min, without prior habituation. Results are 

presented as mean velocity (cm/s), total distance travelled (cm) and number of transitions between 

the peripheral, intermediate and central zones (PZ, IZ and CZ) (Fig. 9). In addition, this test was also 

used as part of the first day of the habituation phase for the NOR test. 

 

Fig. 9 – Schematic representation the OF arena. The arena was divided in three virtual concentric squares. PZ – 

Peripheral zone; IZ – Intermediate zone; CZ – Central zone. 

 

 

 

 

PZ 
 IZ 

 CZ 
 

Fig. 9 – Schematic representation of the OF arena. 
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3.6.2. Elevated Plus Maze (EPM) 

Being one of the most commonly used tests for evaluation of anxiety-related behaviour in 

rodents 164, the EPM test was performed to assess if changes in this paradigm could be influencing 

the cognitive performance of the animals. The maze consists of a plus-shaped structure elevated 50 

cm above the ground, that is made up of four arms perpendicular to each other: two arms with no 

walls (open arms, 50x10 cm), alternated with two closed arms (50x10x30 cm) (Fig. 10). Without prior 

habituation, each animal was placed at the intersection of the maze, with the head facing one of the 

open arms, and allowed to move freely for 5 min. In this context, anxious-like behaviour can be 

studied due to the natural preference of rats for dark and enclosed spaces, and avoidance of open 

spaces where they feel unprotected 164. Therefore, the time spent inside the open arms (%) and the 

number of entries in the open arms were measured, with more time spent in the open arms 

corresponding to a lower anxiety-related behaviour.  

 

Fig. 10 – Schematic representation of the EPM apparatus. The structure is composed of two open arms (O), with no 

walls, alternated with two closed arms (C), at a 90-degree angle from each other. 

 

3.6.3. Y-Maze Spontaneous Alternation (SA) 

This test was implemented in order to evaluate spatial working memory performance, as it 

involves different parts of the brain, namely the hippocampus 165–167. The Y-shaped maze is 

composed by three identical arms (50x10x30 cm), converging to an equal angle. Visual cues were 

placed on the walls at the end of each arm of the maze, to aid the animals in remembering which 

arms had already been visited (Fig. 11). Without prior habituation, each rat was positioned at the 

end of one arm, facing away from the centre, and allowed to move freely during 8 min. As healthy 

rodents tend to alternate between the arms, not visiting the same arm twice in a row, the sequence 

of arm entries was recorded, manually 166,168. An arm entry was considered whenever the two 

forelimbs were completely inside that arm, and an alternation was denoted as consecutive entries in 

all three arms. Spontaneous alternations (%) for each animal was calculated as the number of actual 

C 

O 

Fig. 10 – Schematic representation of the EPM apparatus. 
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alternations, divided by the number of maximum alternations, where the maximum alternations 

possible is the total number of arm entries minus 2. 

 

 

Fig. 11 – Schematic representation of the apparatus used in the Y-Maze. The structure consists of three identical arms 

that converge to an equal angle, with visual cues placed on the walls at the end of each arm.  

 

3.6.4.  Y-Maze Forced Alternation (FA) 

Short-term memory performance and exploratory behaviour can be assessed by performing 

the Y-Maze FA test 169,170. The same apparatus with the same visual cues as for the Y-Maze SA was 

used (Fig. 11), and the test was divided in two phases. On the learning phase, one of the three arms 

(novel arm) was blocked by a removable door, while the other two remained open (start arm and 

other arm). A rat was placed at the end of the start arm, facing away from the centre, and explored 

the maze for 10 min. On the test phase, the blocking door was removed after an inter-trial interval 

(ITI) of 3 h, and the animal was returned to the start arm, from which it was possible to explore the 

whole maze for 5 min, with the novel arm now available. The start arm, as well as the novel one, 

were changed between animals to avoid any preference for one of the arms. The time spent 

exploring each arm (s) and the total number of arm entries in both phases were recorded manually. 

The total number of arm entries was used to evaluate exploratory behaviour. Memory performance 

was expressed as presence time (%) inside each of the three arms during the test phase. 

 

3.6.5. Novel Object Recognition (NOR) 

The NOR test is divided in three phases, being particularly useful for evaluating memory 

performance, namely long-term memory 171. In the habituation phase (3 consecutive days), each rat 

freely explored the empty OF arena for 15 min, followed by the familiarization phase (in the fourth 

day), where the animal was presented with the two to-be-familiarized objects (familiar objects) for 5 

min. The animal then returned to its cage for 24 h. After this ITI, the rat returned to the arena for the 

test phase, where he was presented with one previously experienced object and a novel object, for 

Fig. 11 – Schematic representation of the apparatus used in the Y-Maze. 
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5 min. The objects consisted of two brown and two transparent glass bottles (base of 5 cm in 

diameter, 22 cm in height) filled with water, that were attached to the bottom of the box with velcro 

tape as represented in Fig. 12. These bottles were used interchangeably as familiar and novel 

objects. Data were obtained by manually recording the time (s) that a rat spent exploring the objects 

individually. Exploration was scored whenever the animal touched an object with its forepaws and/or 

bit, sniffed or reared towards the object. Running around the object, standing next to it with its head 

facing away or climbing it was excluded. 

 

Fig. 12 – Examples of the objects used in the NOR test as familiar and novel. The bottles were attached to the bottom 

of the box, at 15 cm from the walls on one side, and approximately 16.7 cm from each other. 

 

Total exploration time (s) of both objects in the familiarization or test phase was used as a 

measure of exploratory drive. Regarding long-term memory performance, results are presented as 

exploration time (%) for each object, and for each phase, being the time spent exploring that object 

divided by the total time spent exploring both objects. The novelty discrimination index, assessed in 

the test phase, was defined as the time spent exploring the novel object minus the time spent 

exploring the familiar object, divided by the total time spent exploring both objects.  

 

3.6.6.  Morris Water Maze (MWM) 

The MWM test is widely described as a way of evaluating hippocampal-dependent spatial 

learning and reference memory performance 169,172. For this test, a circular pool with 180 cm in 

diameter and 60 cm in height was filled with water at a temperature of 24±1 ºC, until it reached 

approximately 46 cm in height. The water was then made opaque by adding nontoxic water-based 

black paint. Visual reference cues were positioned on the walls of the room. The pool was virtually 

divided into 4 quadrants, and a black platform of 10 cm in diameter was placed at the centre of one 

of the quadrants, hidden 1 cm below water level (Fig. 13). The placing of the platform was changed 

between animals to avoid preference of the rats for any side of the room and/or pool. The test 

comprised two phases. First the learning, or acquisition phase, consisting of four days, with four trials 

per day for each animal. In every trial, a rat was placed inside the pool, near the wall and facing it. 

Fig. 12 – Examples of the objects used in the NOR test as familiar and novel 

15cm 
 

16.7cm 
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The starting point was randomized between trials and was never on the same quadrant of the 

platform, neither on its intersections with neighbour quadrants. For instance, if the platform was 

placed on the first quadrant (Q1), the starting point was not 1, 1/2 or 4/1 (Fig. 13). A trial was finished 

if the animal found the platform within 60 s and remained on top of it for 10 s. If the animal could not 

find the platform and/or stand on it within 60 s, it was manually guided to the platform and allowed 

to remain there for 20 s. Trials were separated by an interval of at least 30 min. During this period, 

animals were towel-dried and remained on their home cages under heat lamps, to prevent 

hypothermia. The probe test was performed on the fifth day, consisting of a single trial in which the 

platform was removed, and the rat swam freely for 60 s.  

 

Fig. 13 – Schematic representation of the MWM pool. Virtual quadrants (Q1-4) and starting sites (1-4/1) are depicted. 

The platform (white circle) is illustrated in the centre of the first quadrant as an example. 

 

 Mean velocity (cm/s) was used as a measure of locomotor activity during acquisition phase. 

Results concerning learning and memory performance during this phase are presented as time to 

platform (s), being the mean time of the four trials in each day. For the probe test, these results are 

expressed as: time to platform, being the time that the rats took to reach the virtual area where the 

platform was previously located; time in Qp (%), defined as the percentage of time that the rats spent 

in the virtual platform area; rats that first visited the virtual platform area (%); and total number of 

platform crossings. 

 

 Animal Sacrifice and Tissue Processing 

At the end of the protocol, animals were sacrificed for immunohistochemical examination by 

whole animal perfusion. After reaching the deep anaesthesia state with isoflurane, rats were 

perfused transcardially with phosphate-buffered saline (PBS) (NaCl 137mM, KCl 2.1mM, KH2PO4 

1.8mM and Na2HPO4.2H2O 10mM, pH 7.4), followed by 4% paraformaldehyde (PFA) in PBS (pH 

6.8-7.4) 173. After decapitation, the brains were removed, post-fixed in 4% PFA (24 h, 4ºC), and 

Fig. 13 – Schematic representation of the MWM pool. 
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subsequently submerged with 15% and 30% sucrose in PBS (4ºC). Brains were then gelatine-

embedded and coronally sectioned at a thickness of 40 µm using a cryostat Leica CM3050 S (Leica 

Biosystems, Wetzlar, Germany). Only coronal sections of the hippocampus from the left-brain 

hemisphere were collected, in ten series, each one comprising an anterior-posterior reconstruction 

of the hippocampus where sections are separated by 400 µm. Sections were collected to anti-

freezing medium (30% glycerol, 30% ethylene glycol, phosphate buffer 0.1 M (8.9% Na2HPO4.2H2O, 

7.8% NaH2PO4.2H2O, pH 7.3-7.4)), in 24-well plates and stored at -20ºC. 

The group of animals sacrificed on day 3 and 14 after icv injection were perfused transcardially 

only with PBS, so that the left hemisphere was used for histological analysis and the right hemisphere 

for molecular analysis. For histological analysis, left brain hemispheres were post-fixed in 4% PFA 

(72 h, 4ºC), submerged in 15% and 30% sucrose (4ºC), and then paraffin-embedded and sectioned 

at a thickness of 4 µm using a microtome Leica RM2245 (Leica Biosystems). One series of sixteen 

coronal sections of the hippocampus from left brain hemispheres were collected, beginning at -3.5 

mm anterior-posterior from bregma. Sections were collected to microscope slides (SuperfrostTM Plus, 

ThermoFisher Scientific, MA, USA) and stored at room temperature (RT). For western-blot and 

ELISA protocols, right brain hemispheres were sectioned at a thickness of 450 µm using a 

McIlwainTM Tissue Chopper (Campden Instruments, Loughborough, UK). DG, CA1-CA3 and SVZ 

regions were dissected individually and stored at -80ºC.  

 

 Primary Neuronal Cultures  

Primary neuronal cultures were performed to appraise the effects of the same Aβ1-42 peptide 

solution that was injected in vivo on TrkB receptor isoforms and cell death. First, foetuses from 18/19-

day pregnant Sprague-Dawley rats were collected in Hank’s balanced salt solution (HBSS), followed 

by brain dissection, cerebral cortex isolation and meninge removal. After being mechanically 

fragmented, the tissue was digested with a solution of 0.025% trypsin in HBSS (15 min, 37ºC), and 

centrifuged at 1200 rpm to precipitate cells. Supernatant was discarded, and 20% Foetal Bovine 

Serum (FBS) in HBSS was added to the pellet. Cells were once more precipitated by centrifugation, 

the supernatant was removed and 2 ml of HBSS were added to the pellet. This was repeated four 

times to neutralize trypsin. To dissociate cells, resuspension by pipette aspiration was required 

between centrifugations. Next, cells were resuspended in Neurobasal medium supplemented with 

0.5 mM L-glutamine, 25 mM glutamic acid, 2% B-27, and 25 U/mL penicillin/streptomycin, and then 

filtered using a BD FalconTM Cell Strainer 70 µm (ThermoFisher Scientific) nylon filter, to obtain single 

cells and avoid cell clusters or tissue fragments. Cells were plated at 6 x 104 cells/cm2 on coverslips, 

previously sterilized under UV light, coated with 10 μg/mL of poly-D-lysine (Sigma-Aldrich) overnight 

to improve cell adhesion, and washed with sterile Milli-Q® water. Cells were maintained at 37°C in a 

humidified atmosphere of 5% CO2 for 14 days in vitro (DIV). 
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At 14 DIV, primary neuronal cultures were incubated with 20 µM of Aβ1-42 prepared from the 

solution previously injected in vivo (24h, 37ºC). These conditions were selected based on the 

literature and previous work done at our laboratory 152,153. 

Cell cultures were performed by João Gomes, Rita Belo and Sara Tanqueiro. 

 

 Cellular & Molecular Analysis 

3.9.1.  Immunohistochemistry (IHC) 

Free-floating IHC was performed to assess neuronal differentiation and cell proliferation in 

brain samples of rats injected with BrdU at the beginning of experiments (differentiation protocol). 

Details on primary antibodies used for this technique are listed in Table 3. A complete series of slices 

from each animal, using a specific antibody combination was considered n=1. Slices were 

degelatinized in PBS (3 x 10 min, 37ºC), and treated with HCl 1M (10 min, 4ºC), followed by HCl 2M 

(30 min, 37ºC), to expose BrdU epitopes. Next, borate buffer 0.1M (pH 8.5) was applied (2 x 5 min, 

RT), and slices were washed with PBS (3 x 10 min). A blocking solution containing 3% bovine serum 

albumin (BSA) and 0.2% TritonTM X-100 in PBS was then added (1 h, RT). Slices were incubated 

with primary antibodies mouse anti-BrdU (1:500) and goat anti-DCX (1:500), prepared in the same 

blocking solution, for 22-24 h (4ºC). After this period, slices were washed in PBS (3 x 10 min) and 

incubated with secondary antibodies anti-mouse Alexa Fluor 488 (1:500) and anti-goat Alexa Fluor 

568 (1:500), and DAPI (4’,6’-diamidino-2-phenylindole) (1:1000) (2 h, RT). After washing in PBS (3 

x 10 min), slices were mounted on microscope slides (SuperfrostTM Plus, ThermoFisher Scientific) 

with Mowiol, and glass coverslips on top. For NeuN staining, a similar protocol was followed, with a 

few exceptions. A blocking solution of 6% BSA and 0.2% TritonTM X-100 was used, and incubation 

with primary antibodies mouse anti-BrdU (1:500) and rabbit anti-NeuN (1:500) lasted two overnights 

(4ºC). Secondary antibodies anti-mouse Alexa Fluor® 488 (1:500) and anti-rabbit Alexa Fluor® 568 

(1:500) (Life Technologies) were used. 

 

Table 3 – Primary antibodies used to study neurogenesis by immunohistochemistry. 

 

 

 

 

Antibody Host Supplier Reference Dilution 

Anti-BrdU Mouse Dako, CA, USA M0744 1:500 

Anti-DCX Goat Santa Cruz Biotechnology, TX, USA sc-8066 1:500 

Anti-NeuN Rabbit Cell Signalling Technology, MA, USA 12943S 1:500 
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3.9.1.1. Image Acquisition and Analysis 

Because the dorsal hippocampus has been shown to be more related to cognition, namely 

spatial memory and pattern separation 174,175, only the dorsal sections of the DG were analysed 

herein. Dorsal DG was defined as the totality of the coronal sections that went from the first section 

of the most anterior region, until approximately -4.16 mm from bregma (Fig. 14).   

 

Fig. 14 – Schematic representation of the dorsal-ventral DG interface (coronal view). Adapted from Paxinos and 

Watson, 1998 161.  

 

 Images of the DG were captured using a Zeiss LSM 880 with Airyscan (Carl Zeiss, 

Oberkochen, Germany) confocal point-scanning microscope, with a 40x objective, throughout the 

entire thickness of each coronal section (40 µm). Quantification of BrdU-, DCX-, and NeuN-immuno-

positive cells was achieved by manually counting these cells within the DG layer, using the ZEN 2.3 

software (Carl Zeiss). The area (mm2) of the DG of each section was measured by drawing a line 

around the whole DG cell layer, using the same software. The total volume (mm3) of dorsal DG for 

each animal was extrapolated by multiplying the sum of the areas by the distance between slices 

(400 µm). Results are presented as the number of immuno-positive cells per volume (mm-3) of DG 

of each section.  

 

 

 

Fig. 14 – Schematic representation of the dorsal-ventral DG interface (coronal view). 
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3.9.2.  Histology 

To assess the presence of Aβ, brain slices from rats sacrificed at 3 and 14 days post-surgery 

were stained with Congo red. Although this staining is able to bind several Aβ species, from 

monomers to mature fibrils, a yellow-green birefringence is highlighted under crossed polarizers due 

to the spatial orientation of Congo red molecules along the axis of the fibrils, making it particularly 

useful for specific detection of amyloid deposition (protofibrils and fibrils) 176. For this, the Bennhold’s 

Congo red staining protocol was used, as previously described 177. Briefly, sections were 

deparaffinized, hydrated in distilled water and stained with Congo red solution (1% Congo red 

(Sigma-Aldrich) in distilled water) for 30-60 min. After rinsing in distilled water, sections were rapidly 

differentiated (5-10 dips) in alkaline alcohol solution (0.01% sodium hydroxide, 50% ethanol), 

followed by rinsing in tap water (5 min) and counterstaining with Gill’s haematoxylin (30 min). 

Sections were rinsed again in tap water (1 min), dipped in ammonia water until they turned blue, and 

rinsed once more in tap water (5 min). Finally, slices were dehydrated through 95% ethanol and 

100% ethanol, cleared in xylene and mounted with resinous mount medium.  

A sample from human kidney tissue with known amyloidosis content was used as a positive 

control. Slides were observed under polarized light using a Leica DM2500 microscope (Leica 

Microsystems). Representative pictures were taken with a 20x objective. 

Congo red staining protocol was performed by the histology service of iMM.  

 

3.9.3.  Western Blot (WB) 

3.9.3.1. Tissue Samples 

This technique was used to assess the levels of TrkB-FL receptors, and corresponding TrkB-

ICD originated from its cleavage, in the DG, CA1-CA3 and SVZ regions of rats sacrificed at 3 and 

14 days post-surgery. For this, tissue samples were homogenized under sonication with Radio 

Immuno Precipitation Assay (RIPA) lysis buffer (4% Nonidet® P40 Substitute (NP40), 1 mM 

ethylenediamine tetraacetic acid (EDTA), 150 mM NaCl, 50 mM Tris base), containing one 

cOmpleteTM Mini, protease inhibitor cocktail tablet (Roche, Penzberg, Germany) for each 10 ml. 

Absorbance was read at 750 nm (Infinite M200 multimode microplate reader, Tecan), and total 

protein quantification was performed using the Bradford assay and DCTM Protein Assay kit (Bio-Rad 

Laboratories, CA, USA), with BSA as standard. After adding 6x sample buffer (36% glycerol, 12% 

SDS, 0.015% bromophenol blue, 720 mM dithiothreitol, 420 mM Tris, pH 6.8), samples were 

denatured (10 min, 95ºC). 

Proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE), in running buffer (0.1% SDS, 192 mM glycine, 25 mM Tris pH 8.3), at constant voltage 

(80-120 V), using 10% acrylamide/bis-acrylamide resolving gels (0.1% SDS, 0.1% ammonium 
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persulfate (APS), 0.04% N,N,N',N'-tetramethylethane-1,2-diamine (TEMED), 375 mM Tris pH 8.8), 

and 5% acrylamide/bis-acrylamide stacking gels (0.1% SDS, 0.1% APS, 0.1% TEMED, 125 mM Tris 

pH 6.8), with 1.5 mm thickness. NZYColour Protein Marker II (NZYTech, Lisbon, Portugal) was used 

as a protein molecular weight marker. Proteins were transferred to polyvinylidene difluoride (PVDF) 

membranes, previously soaked with methanol, in transfer buffer (10% methanol, 192 mM glycine, 

25 mM Tris pH 8.3), at constant amperage (350 mA, 1h15), and blocked with 3% BSA in Tris buffered 

saline with Tween® 20 (TBS-T) (200 nM Tris, 1.5 M NaCl, 0.1% Tween® 20, pH 7.6) (1h, RT). All 

primary and secondary antibodies were prepared in the blocking solution. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as loading control. Membranes were washed in TBS-

T (3 x 5 min), followed by incubation with primary antibodies rabbit anti-Trk (C14) (1:1000) and 

mouse anti-GAPDH (1:5000), overnight (4ºC). Information on primary antibodies is presented in 

Table 4. Next, membranes were again washed and incubated with secondary antibodies conjugated 

to horseradish peroxidase (HRP), IgG anti-rabbit (1:10 000) and IgG anti-mouse (1:10 000) (Santa 

Cruz Biotechnology), for 1h (RT). After washing, proteins were revealed with ClarityTM Western ECL 

Substrate (Bio-Rad Laboratories), using ChemiDocTM XRS+ imaging system with Image LabTM 

software (Bio-Rad Laboratories). Resulting images were processed and analysed using Fiji 1.51s 

software (MD, USA) 178. Results are expressed as protein levels (% CTL). 

 

3.9.3.2. Samples from Primary Neuronal Cultures 

The levels of TrkB-FL/TrkB-ICD isoforms, as well as the levels of α-II Spectrin and 

corresponding breakdown product (SBDP150), which reflect calpain activity, were assessed in the 

samples from primary neuronal cultures incubated with Aβ1-42 at 14 DIV. Samples were washed in 

ice-cold PBS and lysed with RIPA buffer with protease inhibitor. Adherent cells were scraped off the 

dish using a plastic cell scraper and the cell suspension was centrifugated for 10 min at 13 000 g 

and 4°C. The pellet was discarded, and the supernatant was kept for analysis. The following steps 

from total protein quantification to detection and analysis were performed as described for tissue 

samples, with the exception that proteins were separated by SDS-PAGE using 12% acrylamide/bis-

acrylamide resolving gels. Primary antibodies used were rabbit anti-Trk (C14) (1:1000), mouse anti-

spectrin α-II (1:1000) and mouse anti-GAPDH (1:5000). Results are expressed as protein levels (% 

CTL). 

Whenever the antibody host species was the same, membranes were stripped between 

incubations, by placing them in a stripping solution (200 mM glycine, 0.1% SDS, 1% Tween® 20, 

50% acetic acid glacial, pH 2.2) for 30 min (RT), and washing them once in distilled water and twice 

for 15 min in TBS-T. 
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Table 4 - Primary antibodies used to assess TrkB receptor and α-II Spectrin levels by western blot. 

 

 

3.9.4.  Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA was used to determine the levels of soluble Aβ1-42 in samples of DG of rats sacrificed 3 

and 14 days post-icv injection. Sample preparation and quantification of total protein was performed 

as described for western blot (see 3.3.3.). A commercial Human Amyloid β42 Brain ELISA kit 96-

Well Plate (Cat. #EZBRAIN42, Merck) was used. This kit provides a polystyrene microtiter plate pre-

coated with a monoclonal capture antibody highly specific for the human Aβ1-42 peptide (antigen). 

Because low levels of Aβ were expected, a pre-incubation step was applied. For this, DG 

homogenate samples were added to the wells, incubated on a micro plate shaker for 5 min at RT, 

and then for 1h at 4ºC, without shaking. After removing the samples, Antibody Conjugate Solution 

(detection antibody) was added to the wells, followed by standard solutions and samples. Since 

standard solutions from the kit were no longer available, standards were prepared, using an aliquot 

of the Aβ1-42 solution injected in vivo as stock (2.25 mg/ml), in the Standard/Sample Diluent of the 

kit, with the following concentrations: 0, 16, 62.5, 250 and 500 pg/ml. No duplicates of the standards 

or samples were analysed due to the limited number of wells available. The contents of the wells 

were thoroughly mixed on an orbital shaker (5 min, 500 rpm/min), and incubated overnight (18 h, 

4ºC). On the next day, solutions were removed from the wells and washed 5x with Washing Solution. 

Samples were incubated with Enzyme Conjugate Solution (streptavidin-peroxidase-conjugate) on 

an orbital plate shaker (30 min, 500 rpm/min), leading to the formation of an antibody-amyloid-

antibody sandwich structure with the peroxidase linked over a streptavidin-biotin bridge. Solutions 

were removed from the wells and washed 5 more times before adding the Substrate Solution, 

resulting in the catalysis of an enzymatic reaction with a coloured product. This reaction was stopped 

approximately 25 min after by adding the Stop Solution. Absorbance was read at 450 nm and 590 

nm using an Infinite M200 multimode microplate reader (Tecan, Männedorf, Switzerland). Because 

some of the samples had absorbance measurements above the values obtained for the standards, 

results are presented as the difference in absorbance units (% CTL) for all samples, and as protein 

levels (pg/ml) for the samples that were within the standard curve range (all except 1 control and 1 

Aβ injected rat, at 14 days post-injection). For this, protein levels were extrapolated from the 

difference in absorbance by performing a four parameter logistic (4PL) curve, using the MyAssays® 

online data analysis tool (Brighton, UK) 179. 

Antibody Host Supplier Reference Dilution 

Anti-Trk (C-14) Rabbit Santa Cruz Biotechnology sc-11 1:1000 

Anti-Spectrin α II (C-3) Mouse Santa Cruz Biotechnology sc-48382 1:1000 

Anti-GAPDH Mouse Ambion, CA, USA AM4300 1:5000 
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  Statistical Analysis 

Gathered data is presented as the mean ± standard error of the mean (SEM) for each animal 

group of animals. All statistical analyses were performed using the software Graphpad Prism 6 (CA, 

USA) for Windows. Unpaired two-tailed Student’s t-test, Mann-Whitney test or one-way analyses of 

variance (ANOVA) followed by Bonferroni’s multiple comparisons test were used to evaluate the 

significance of differences between means of two or more conditions. Evaluation of the significance 

of differences within the same group, was assessed by paired two-tailed Student’s t-test or repeated-

measures one-way ANOVA followed by Bonferroni’s multiple comparisons test. Differences were 

considered statistically significant at p<0.05. Significant outliers were calculated using the Grubbs’ 

test (α=0.05) 180. 
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4. Results 

 Behaviour characterization 

Based on the literature as well as on previous work done at our group, the icv administration 

of Aβ1-42 peptide was expected to compromise learning and memory performance two weeks after 

icv injection, attempting to mimic some of the symptoms of the initial stages of sporadic AD 157,181,182. 

Therefore, several behavioural paradigms were assessed, aiming at characterizing the cognitive 

performance of rats injected with Aβ1-42, and thus validating it as a model of disease. 

 

4.1.1. Aβ1-42 peptide icv injection did not impact locomotor activity or anxiety-

related behaviour 

It has been reported that changes in locomotor activity, exploratory drive and anxiety-related 

behaviour can significantly influence rodent cognitive abilities 168,183,184. These paradigms were 

therefore tested prior to evaluation of cognitive performance. 

The OF test was used to assess locomotor and exploratory activity in two separate animal 

batches, one of them evaluated during the dark period of the light/dark rat cycle (night) (Fig. 15a), 

and the other one evaluated during the light period of the cycle (day) (Fig. 15b). In both cases, the 

test was performed during the first 5 min of the habituation phase of the NOR test. The mean velocity 

and distance travelled by the rats while they freely explored the OF arena were first quantified to 

assess locomotion. There were no significant differences in mean velocity between the control group 

(CTL) and the group of rats injected with Aβ1-42 peptide (Aβ), neither at night (CTL: 18.67±0.6708 

cm/s; Aβ: 19.83±0.6321 cm/s; p>0.05, n=9-10; Fig. 15a-I) nor during the day (CTL: 18.44±1.822 

cm/s; Aβ: 16.30±0.9189 cm/s; p>0.05, n=6; Fig. 15b-I). Likewise, no differences were observed 

between groups when looking at the distance travelled when the test was performed at night (CTL: 

5600±201.2 cm; Aβ: 5949±189.5 cm; p>0.05, n=9-10; Fig. 15a-II), or during the day (CTL: 

18.44±1.822 cm/s; Aβ: 16.30±0.9189 cm/s; p>0.05, n=6; Fig. 15b-II). Furthermore, the number of 

times that the rats entered the areas virtually delimiting a peripheral, an intermediate and a central 

zone was quantified as a way of appraising their exploratory drive. Similarly, there was no change 

for this parameter at night (CTL: 47.56±3.898; Aβ: 62.22±5.916; p>0.05, n=9-10; Fig. 15a-III), or 

during the day (CTL: 76.83±4.757; Aβ: 68.00±7.607; p>0.05, n=6; Fig. 15b-III). 
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Fig. 15 – Locomotor and exploratory activity remained unchanged two weeks after Aβ1-42 peptide injection, as 

assessed by the OF test. The OF test was performed during the first 5 minutes of the first day of the NOR habituation 

phase, both at night, under red light (a) and during the day, under dim light (b). Mean velocity (I), distance travelled (II) and 

number of crossings (III) between three virtual concentric squares, delimiting the periphery, the centre and an intermediate 

zone, were quantified. No significant differences were observed for any of the parameters when the test was performed at 

night or during the day (p>0.05 for all comparisons, unpaired Student’s t-test). Data are expressed as mean ± SEM (n=6-

10).        : the test was performed during the dark period of the light/dark rat cycle;        : the test was carried out during the 

light period of the light/dark rat cycle.  

 

Locomotor activity of the rats was also evaluated during the four days of the acquisition phase 

of the MWM test (Fig. 16). For this, mean velocity was calculated as the average of four trials for 

each day, measured during the time in which the rats were trying to reach a hidden platform inside 

a pool previously filled with water. This parameter did not differ between the groups in any of the 

timepoints (CTL, day 1: 24.59±1.025, day 2: 21.08±1.131, day 3: 19.51±1.660, day 4: 18.34±1.244 

cm/s; Aβ, day 1: 24.86±1.161, day 2: 25.16±1.302, day 3: 21.11±1.762, day 4: 20.58±2.076 cm/s; 

p>0.05, n=7; Fig. 16), showing no changes in locomotor activity after Aβ1-42 peptide injection.  

a-II a-III a-I 

b-I b-II b-III 

Fig. 15 – Locomotor and exploratory activity remained unchanged two weeks after Aβ1-42 peptide 

injection, as assessed by the OF test. 
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Fig. 16 – The Aβ1-42 peptide injection did not affect locomotor activity during the acquisition phase of the MWM 

test. The acquisition phase of the MWM test comprises the first four days of the test. Mean velocity at each day was 

calculated as the mean of four trials. No significant differences were observed when comparing the Aβ with the controls at 

the different timepoints (p>0.05, ordinary one-way ANOVA followed by a Bonferroni’s multiple comparison test). Data are 

expressed as mean ± SEM (n=7).        : the test was carried out during the light period of the light/dark rat cycle. 

 

The EPM test was used for evaluation of anxiety-related behaviour (Fig. 17). This test relies 

on the notion that rodents tend to prefer dark enclosed spaces, avoiding heights and/or open spaces 

164,185. Thus, the time spent in the open arms of the maze during the 5 min of the test, as well as the 

number of times that the animals entered these arms were quantified as an inverse measure of 

anxious-related behaviour. There were no differences in the time in the open arms (CTL: 29.17±3.34 

%; Aβ: 32.53±3.513 %; p>0.05, n=13-14; Fig. 17a), or in the number of open arm entries (CTL: 

43.99±3.736 %; Aβ: 47.03±3.562 %; p>0.05, n=13-14; Fig. 17b). The absence of changes in these 

parameters indicate that the Aβ1-42 peptide injection did not cause any noticeable sings of anxiety, 

when compared with control animals.  

 

Fig. 17 – Anxiety-related behaviour was not influenced by the Aβ1-42 peptide injection. Anxious-related behaviour 

was evaluated by the EPM test two weeks after surgeries, on the day prior to evaluation of cognitive performance. The % 

of time that the rats spent in the open arms of the structure (a) and the % of entries in these arms (b) were quantified. No 

significant differences were observed for any of these measures (p>0.05, unpaired Student’s t-test). Data are expressed 

as mean ± SEM (n=13-14).        : the test was carried out during the light period of the light/dark rat cycle. 

Fig. 16 – The Aβ1-42 peptide injection did not affect locomotor activity during the acquisition phase 

of the MWM test. 

a b 

Fig. 17 – Anxiety-related behaviour was not influenced by the Aβ1-42 peptide injection. 
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No differences were observed regarding general locomotor and exploratory activity or anxiety-

related behaviour two weeks after the animals were icv injected with Aβ1-42 peptide. Taken together, 

these results suggest that differences in cognitive performance should not be attributed to impaired 

locomotion or to changes in exploratory drive or anxious-like behaviour. 

 

4.1.2. Aβ1-42 peptide icv injection did not impair spatial working and short-term 

memory performance 

Many behavioural tests used to examine cognitive function, including memory performance, 

rely on the proclivity of rodents to actively explore novel objects and environments, without the need 

to introduce exogenous reinforcements that might lead, for instance, to increased stress levels 183,186. 

Taking advantage of this feature, the Y-Maze SA and FA tests were performed in order to evaluate 

spatial working memory (Fig. 18) and short-term reference memory (Fig. 19) performance, 

respectively. In the Y-Maze SA test, the number of spontaneous alternations between the 3 arms of 

the maze was quantified while the animals freely explored the structure for 8 min. Here, a difference 

in spontaneous alternations was not observed (CTL: 71±2.0 %; Aβ: 76±3.8 %; p>0.05, n=6; Fig. 18), 

indicating that the rats injected with Aβ present no working memory impairment. 

 

Fig. 18 – Spatial working memory performance did not change after the Aβ1-42 peptide injection. Working memory 

performance was evaluated by the Y-Maze SA test by measuring the % of spontaneous alternations between the 3 arms 

of the structure. No significant differences were observed for this parameter (p>0.05, unpaired Student’s t-test). Data are 

expressed as mean ± SEM (n=6).        : the test was carried out during the light period of the light/dark rat cycle. 

 

 

 

 

 

 

Fig. 18 – Spatial working memory performance did not change after the Aβ1-42 peptide injection. 
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The Y-Maze FA test was divided in two tasks. During training, only two of the arms were 

available for exploration by the rats: the arm where the animals begun testing, designated as start 

arm (S), and a second one, designated as other arm (O). The test phase begun after an ITI of 3 h, 

when the third arm, designated as novel arm (N), became accessible for exploration. The total 

number of times that the animals entered the available arms was used as a measure of exploratory 

drive in both tasks. No significant differences were observed for this parameter during training (CTL: 

37±1.6 %; Aβ: 35±2.8 %; p>0.05, n=7-8; Fig. 19a-I) or during the test phase (CTL: 22±2.6 %; Aβ: 

25±1.4 %; p>0.05, n=7-8; Fig. 19b-I). Likewise, no differences were seen when comparing the time 

that the rats spent exploring either the start or the other arm during training, within the control group 

(S: 41±2.9 %; O: 41±2.6 %; p>0.05, n=7-8; Fig. 19a-II), nor within the Aβ group (S: 43±2.0 %; O: 

38±1.7 %; p>0.05, n=7-8; Fig. 19a-II), showing that the rats had no preference for any of the arms. 

When looking at the test phase, it is expected that control animals spend more time exploring 

the novel arm, as they should be able to distinguish it from the other two, while rats that present 

short-term memory deficits should not be able to distinguish this novel arm 170. When comparing the 

time spent exploring the novel arm with the time spent in the other two arms, no significant 

differences were observed within the control group (S: 33±4.2 %; O: 25±2.8 %; N: 42±4.4 %; p>0.05, 

n=7-8; Fig. 19b-II), although a tendency for an increase in the time spent in the novel arm when 

compared to the other arm (p=0.0787) is observed. On the other hand, when looking at this 

parameter within the Aβ group, it was seen that these rats spent a significant greater amount of time 

exploring the novel arm when compared to the other two (S: 31±1.4 %; O: 25±2.0 %; N: 44±1.6 %; 

**p<0.01, n=7-8; Fig. 19b-II). Despite these differences, the number of rats that visited the novel arm 

when they were first placed in the maze for the test phase did not differ significantly between the two 

groups (CTL: 85.7±14.3 %; Aβ: 87.5±12.5 %; p>0.05, n=7-8; Fig. 19b-III). Hence, the Aβ injection 

did not cause short-term memory deficits, when evaluated two weeks after the procedure, as these 

rats were able to recognize the novelty item. 
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Fig. 19 – Rats injected with Aβ1-42 peptide showed no impairment in short-term reference memory performance, 

as assessed by the Y-Maze FA test. The Y-Maze FA test was divided in two phases: a training phase (a) and a test 

phase (b). The total number of arm entries (I) was quantified during both phases as a measure of exploratory behaviour. 

No significant differences were observed for this parameter (p>0.05, unpaired Student’s t-test). During training, there were 

no differences in the % of presence time (a-II) within the arm where the rats were first placed (start arm, S) and a second 

arm (other arm, O), showing that the rats had no preference for any of the two arms available (p>0.05, paired Student’s t-

test). During the test phase, the ability of the rats to distinguish the novel arm (N) was assessed by quantifying the % of 

presence time in this arm when compared to the other two (b-II). While there were no differences in this measure for control 

rats, animals injected with Aβ spent a significant greater amount of time exploring the novel arm (CTL: p>0.05; Aβ: 

**p<0.01, repeated-measures one-way ANOVA followed by a Bonferroni’s multiple comparison test), showing that short-

term memory performance was not impaired in these rats. Notwithstanding, the % of rats that first visited the novel arm (b-

III) after being placed in the maze on the test phase showed no differences (p>0.05, Mann-Whitney test). Data are 

expressed as mean ± SEM (n=7-8).        : the test was carried out during the light period of the light/dark rat cycle. 

 

 

a  Training 

a-I a-II 

b  Test 

b-I b-II b-III 

Fig. 19 – Rats injected with Aβ1-42 peptide showed no impairment in short-term reference memory performance, as 

assessed by the Y-Maze SA test. 

p=0.0787 
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4.1.3. Aβ1-42 peptide injected rats showed distinct episodic long-term memory 

performance when evaluated during the dark and the light phases of the 

light/dark cycle 

As for the Y-Maze tests, appraisal of episodic long-term memory performance by the NOR 

test, stands on the principal of rodent predisposition to explore novelty, in this case using objects 

with specific characteristics that can be discriminated by the animals. For this test, which was 

performed at night as well as during daytime, the rats were first habituated to the OF arena, and then 

familiarized with two identical objects during a training phase designated as A and A’. Next, for the 

test phase, after an ITI of 24 h, one of these objects was replaced with a novel one, designated as 

B. 

The total exploration time of the two objects served as a measure of exploratory drive in both 

phases of the test. No significant differences were observed for this parameter when the test was 

performed at night, neither during training (CTL: 75±6.5 s; Aβ: 81±5.0 s; p>0.05, n=9-10; Fig. 20a-

I), nor during the test phase (CTL: 71±8.1 s; Aβ: 62±4.6 s; p>0.05, n=9-10; Fig. 20b-I). During 

training, the animals showed no preference for either of the identical objects that they were being 

familiarized with, as seen by the absence of differences in the time that the animals spent exploring 

these objects within the control group (A: 45±2.8 %; A’: 55±2.7 %; p>0.05, n=9-10; Fig. 20a-II), and 

within the Aβ group (A: 53±2.8 %; A’: 47±2.8 %; p>0.05, n=9-10; Fig. 20a-II). It is anticipated that 

animals with impaired long-term memory performance should not be able to recognize the novel 

object as such, spending a similar amount of time exploring the novel object and the familiar one 187. 

When referring to the control group during the test phase, there were no significant differences in 

the time exploring these objects (A: 46±3.7 %; B: 54±3.7 %; p>0.05, n=9-10; Fig. 20b-II). However, 

the rats injected with Aβ spent a significantly greater amount of time exploring the novel object 

compared to the familiar one (A: 44±1.9 %; B: 56±1.9 %; *p<0.05, n=9-10; Fig. 20b-II). Nonetheless, 

quantification of the novelty discrimination index demonstrates no differences between the groups 

(CTL: 0.074±0.073; Aβ: 0.12±0.037; p>0.05, n=9-10; Fig. 20b-III). Therefore, the results obtained 

during the night suggest that the control group had compromised memory performance. Moreover, 

the Aβ1-42 peptide injection did not lead to a long-term memory impairment when assessed by the 

NOR test during the night. 
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Fig. 20 – Aβ1-42 peptide injected rats showed no impairment in episodic long-term memory performance at night. 

The NOR test was first used to assess long-term memory performance during the dark period of the light/dark cycle, under 

red light. Total exploration time (I) of the two objects (A+A’) and (A+B) was quantified during the training phase (a) and the 

test phase (b), respectively, where A and A’ correspond to the time spent exploring the familiar objects and B to the time 

spent exploring the novel object. No differences in this parameter were observed between groups in either of the phases 

(p>0.05 for all comparisons, unpaired Student’s t-test). No differences in the % of exploration time of the familiar objects 

were observed during the training phase (a-II) (p>0.05, paired Student’s t-test), showing that the rats had no preference 

for any of the two identical objects. When comparing the % of exploration time of the familiar and the novel objects during 

the test phase (b-II), no differences were observed for control rats (p>0.05, paired Student’s t-test), however the rats 

injected with Aβ spent a significant greater amount of time exploring the novel object than the familiar one (**p<0.01, paired 

Student’s t-test), exhibiting no impairment in long-term memory performance. The novelty discrimination index (b-III) in the 

test phase was calculated as (B-A)/(B+A). There were no significant differences between groups for this parameter (p>0.05, 

unpaired Student’s t-test). Data are expressed as mean ± SEM (n=9-10).        : the test was performed during the dark 

period of the light/dark rat cycle. 

 

 

a-I a-II 

a  Training 

b-I b-II b-III 

b  Test 

Fig. 20 – Aβ1-42 peptide injected rats showed no impairment in episodic long-term memory performance at night. 
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When the NOR was performed during the day, no significant changes in exploratory activity 

were observed between the groups during the training phase (CTL: 97±5.6 s; Aβ: 66±15 s; p>0.05, 

n=6; Fig. 21a-I), yet during the test phase, the animals injected with Aβ spent a significantly lower 

amount of time exploring the objects (CTL: 89±7.2 s; Aβ: 56±10 s; *p<0.05, n=6; Fig. 21b-I), 

indicative of less exploratory drive. Regarding the time spent exploring the objects during training, 

results were comparable to the ones obtained at night, as the rats showed no preference for any of 

the identical objects within the controls (A: 56±5.5 %; A’: 45±5.5 %; p>0.05, n=6; Fig. 21a-II), or 

within the Aβ group (A: 54±6.9 %; A’: 47±6.9 %; p>0.05, n=6; Fig. 21a-II). In the test phase, the time 

that the rats spent exploring the novel object comparing with the familiar one was similar, both for 

the control group (A: 48±2.3 %; B: 52±2.3 %; p>0.05, n=6; Fig. 21b-II), and for the Aβ group (A: 

50±5.7 %; B: 50±5.8 %; p>0.05, n=6; Fig. 21b-II). Consistently, there were no differences between 

the groups when examining the novelty discrimination index (CTL: 0.040±0.045; Aβ: 0.0017±0.11; 

p>0.05, n=6; Fig. 21b-III). Taken together, these results appear to indicate that during the day, long-

term memory performance was compromised in both experimental groups (control and Aβ). 

 

b-I b-II b-III 

b  Test 

Fig. 21 – Aβ1-42 peptide injected rats showed impaired episodic long-term memory performance when evaluated 

during the day. 

a-I a-II 

a  Training 
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Fig. 21 – Aβ1-42 peptide injected rats showed impaired episodic long-term memory performance when evaluated 

during the day. The NOR test was used to assess long-term memory performance during the light period of the rats’ cycle, 

under dim light. Total exploration time (I) of the two objects (A+A’) and (A+B) was quantified during the training phase (a) 

and test phase (b), respectively. No differences in this parameter were observed between groups during training (p>0.05, 

unpaired Student’s t-test), yet the Aβ rats spent a significant lower amount of time exploring the objects during the test 

phase when compared to controls (*p<0.05, unpaired Student’s t-test). No differences in the % of exploration time of the 

familiar objects where observed during the training phase (a-II) (p>0.05, paired Student’s t-test), showing that the rats had 

no preference for any of the two identical objects. During the test phase, neither the control rats nor the ones injected with 

Aβ were able to recognize the novel object (b-II), as they spent a similar amount of time exploring both objects (p>0.05, 

paired Student’s t-test). There were no significant differences between the groups for the novelty discrimination index (b-

III), (B-A)/(B+A), in the test phase (p>0.05, unpaired Student’s t-test). Data are expressed as mean ± SEM (n=6). A, A’: 

familiar objects; B: novel object.        : the test was carried out during the light period of the light/dark rat cycle. 

 

4.1.4. No changes in spatial learning and memory performance were observed 

after Aβ1-42 peptide injection 

The MWM test provides a way of examining hippocampal-dependent spatial learning and 

reference memory in rats, taking advantage of their noteworthy swimming skills 183,188. This test 

comprises a four-day acquisition phase, where the ability of the animals to learn the location of a 

hidden platform is evaluated, followed by a probe test on the fifth day, where the platform is removed 

and the ability of the animals to recall its previous location is appraised. 

For each day of acquisition, the time that the rats spent to reach the platform was calculated 

as the mean of four trials. No significant differences were observed for any of the timepoints when 

comparing the control group with the Aβ1-42 (CTL, day 1: 45±4.1, day 2: 24±5.3, day 3: 14±2.3, day 

4: 15±3.0 s; Aβ, day 1: 35±3.4, day 2: 15±4.6, day 3: 11±2.2, day 4: 12±3.2 s; p>0.05, n=7; Fig. 22a). 

During the probe test, there was also no change in the time that the rats spent to reach the area 

where the platform had been removed from (CTL: 5.7±0.68 s; Aβ: 6.7±0.78 s; p>0.05, n=7; Fig. 22b-

I), or in the number of times that the animals crossed this area (CTL: 4.7±0.78; Aβ: 4.3±0.61; p>0.05, 

n=7; Fig. 22b-II). Additionally, no significant differences were observed between the groups when 

looking at the time that the rats spent in the quadrant were the platform had been previously located 

(Qp) (CTL: 54.33±4.740 %; Aβ: 47.75±3.738 %; p>0.05, n=7; Fig. 22b-III), or in the number of 

animals that first visited the platform area when they were placed in the pool (CTL: 71.4±18.4 %; Aβ: 

71.4±18.4 %; p>0.05, n=7; Fig. 22b-IV). These results point out that hippocampal-dependent spatial 

learning and memory performance was not compromised two weeks after the rats were injected with 

Aβ1-42 peptide. 
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Fig. 22 – Spatial learning and memory performance was not changed after Aβ1-42 peptide injection, as evaluated 

by the MWM test. The MWM test was performed in two phases: a four-day acquisition phase (a) and a probe test (b) on 

the fifth day. During acquisition, the time that the rats spent to reach the hidden platform was quantified for each day as 

the mean of four trials, allowing the representation of a learning curve for the location of the platform along the four days. 

No significant differences were observed when comparing the Aβ with the controls at the different timepoints (p>0.05, 

ordinary one-way ANOVA followed by a Bonferroni’s multiple comparison test). During the probe test, the time spent to 

reach the area where the platform had previously been located (b-I), the number of times that the rats crossed this area 

(b-II) and the time spent in the quadrant where the platform had been located (Qp) (b-III) were quantified. No significant 

b-I b-II 

b  Probe test 

b-III b-IV 

Fig. 22 – Spatial learning and memory performance was not changed after the Aβ1-42 peptide injection, 

as evaluated by the MWM test. 

a  Acquisition phase 
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differences were observed for any of these parameters (p>0.05 for all comparisons, unpaired Student’s t-test), indicating 

that the animals from both groups were able to memorize the previous platform location, showing no impairment in spatial 

learning and memory performance. Accordingly, there were no changes in the % of rats that first visited the platform area 

(b-III) after being placed in the maze (p>0.05, Mann-Whitney test). Data are expressed as mean ± SEM (n=7).       : the 

test was carried out during the light period of the light/dark rat cycle. 

 

 Cellular and molecular analysis 

Although no major differences were found regarding the phenotype of the rats following Aβ1-42 

peptide injection, cellular and molecular analyses, mainly of the DG, were performed in order to 

search for a putative Aβ-mediated effect on neurogenesis. 

 

4.2.1. Changes in soluble Aβ1-42 or Aβ1-42 deposits were not observed 3 or 14 

days after icv injection 

The levels of soluble Aβ1-42, which include monomeric and oligomeric forms, were examined 

by ELISA in DG samples of rats sacrificed 3 and 14 days after icv injection with Aβ1-42 peptide at 

2.25 mg/ml. Absorbance measured in these samples did not change between the groups, when 

quantified 3 days after the injection (CTL: 100.0 %; Aβ: 80.33 %; n=2; Fig. 23a), or 14 days after 

(CTL: 99.99 %; Aβ: 107.8 %; n=2; Fig. 23a). Moreover, protein levels were also similar between 

groups, at 3 days (CTL: 554 pg/ml; Aβ: 400 pg/ml; n=2; Fig. 23b) and 14 days (CTL: 386 pg/ml; Aβ: 

345 pg/ml; n=1; Fig. 23b) post icv injection.      

 

Fig. 23 – Soluble Aβ1-42 levels in the DG did not change at 3 or 14 days post Aβ1-42 injection. Absorbance levels were 

read at 450 and 590 nm, and the difference in absorbance units was quantified and normalized (100%) for control (a). 

Protein levels were calculated from this difference in absorbance by a 4PL analysis (b). Preliminary data are expressed as 

the mean (n=2) or presented as individual values (n=1).   

 

a b 

Fig. 23 – Soluble Aβ1-42 levels in the DG do not tend to change at 3 or 14 days post Aβ1-42 injection. 
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The formation of Aβ deposits was also assessed in three samples from animals of each group 

sacrificed 3 and 14 days after the injection, using a Congo red staining. Human kidney samples were 

used as positive controls for amyloidosis, when observed under bright-field microscopy (Fig. 24a-I) 

and under polarized light (Fig. 24a-II). The latter denotes a clear formation of Aβ aggregates, 

highlighted by the presence of intense yellow-green birefringence. On the other hand, Aβ1-42 injected 

rats did not exhibit any birefringence, showing that Aβ aggregates were absent in these animals (Fig. 

24b-II). Therefore, no differences were noticeable in any of the samples tested, in any of the 

timepoints or between the groups (representative images from the DG of one Aβ1-42 injected rat, 

sacrificed at 3 days post-injection, Fig. 24b). Moreover, the presence of Aβ deposits was also not 

observed in other brain regions, such as the SVZ (close to the injection site). 

Fig. 24 – Aβ aggregates were absent at 3 or 14 days post Aβ1-42 injection. Representative pictures were obtained from 

human kidney tissue samples (a), serving as positive controls, and from DG samples (b) of an animal sacrificed 3 days 

after Aβ injection. These samples were observed under bright field (I) and polarized light (II), illustrating the absence of Aβ 

deposition in the samples of the rats injected with Aβ1-42 peptide (absent yellow-green birefringence in b-II), opposed to 

the substantial amounts of deposits observed for the positive controls (intense yellow-green birefringence in a-II). Scale 

bar = 100 µm.  

Fig. 24 – Aβ aggregates were absent at 3 or 14 days post Aβ1-42 injection. 

a-I a-II 

b-I b-II 
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4.2.2. Levels of TrkB receptor isoforms in the DG and SVZ did not seem to 

change 3 or 14 days after Aβ1-42 icv injection 

Signalling mediated by BDNF has been shown to be compromised in the presence of Aβ, due 

to the cleavage of its TrkB-FL receptors, in a process that is dependent on calpain activation 151,152. 

Therefore, the levels of these receptors, as well as the corresponding TrkB-ICD originated from its 

cleavage, were used as an indirect measure of the presence of Aβ in the DG (Fig. 25) and in the 

SVZ (Fig. 26). For this, samples from rats sacrificed 3 and 14 days after the Aβ1-42 peptide or vehicle 

(VEH CTL) injection were analysed by WB, as well as samples from age-matched rats in which no 

injection had been performed, to serve as negative controls (Neg CTL). 

No significant differences between the three groups were observed in the levels of TrkB-FL 

receptors in DG samples of rats sacrificed 3 days (Neg CTL: 99.98±14.44 %; VEH CTL: 93.75±6.753 

%; Aβ: 94.90±17.92 %; p>0.05, n=3; Fig. 25b-I) and 14 days (Neg CTL: 100.0±22.36 %; VEH CTL: 

110.1±23.17 %; Aβ: 101.2±6.992 %; p>0.05, n=3; Fig. 25b-I) after the icv injection. Accordingly, no 

significant changes were seen when comparing the levels of TrkB-ICD in the same samples, neither 

at 3 days (Neg CTL: 99.99±31.15 %; VEH CTL: 72.10±12.60 %; Aβ: 65.10±20.24 %; p>0.05, n=3; 

Fig. 25b-II), nor at 14 days (Neg CTL: 99.98±35.50 %; VEH CTL: 102.3±35.09 %; Aβ: 117.0±45.71 

%; p>0.05, n=3; Fig. 25b-II) post Aβ1-42 injection. 

 

DG a 

b-II b-I TrkB-FL TrkB-ICD 

Fig. 25 – Levels of TrkB receptor isoforms in DG were not changed at 3 and 14 days after Aβ1-42 peptide injection. 
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Fig. 25 – Levels of TrkB receptor isoforms in the DG were not changed at 3 and 14 days after Aβ1-42 peptide 

injection. Representative western-blots in (a) depict immunoreactive bands for TrkB-FL (~140 kDa), TrkB-ICD (~32 kDa) 

and GAPDH (loading control; ~37 kDa) obtained from DG samples at the timepoints corresponding to 3 and 14 days after 

the Aβ1-42 peptide injection. Protein levels were quantified and normalized (100%) for the corresponding negative controls 

at 3 and 14 days. TrkB-FL (b-I) and TrkB-ICD (b-II) levels show no change at any of the timepoints, when comparing 

between the groups (p>0.05 for all comparisons, ordinary one-way ANOVA followed by a Bonferroni’s multiple comparison 

test). Data are expressed as mean ± SEM (n=3). Neg CTL: age-matched control rats to which no icv injection was 

performed; VEH CTL: control rats injected with vehicle solution. 

 

When looking at the samples from the SVZ, preliminary results show an identical pattern to the 

one observed for the DG regarding the levels of TrkB receptor isoforms. Although the number of 

samples is too small to take any clear conclusions, no differences seem to be present between the 

three groups in the levels of TrkB-FL receptors in SVZ samples from rats sacrificed at 3 days (Neg 

CTL: 99.99 %; VEH CTL: 110.3 %; Aβ: 102.4 %; n=2; Fig. 26b-I) and 14 days (Neg CTL: 99.99 %; 

VEH CTL: 105.9 %; Aβ: 118.5 %; n=2; Fig. 26b-I) after the icv injection. Similarly, no changes seem 

to be observed when comparing the levels of TrkB-ICD in the same samples at the 3 days timepoint 

(Neg CTL: 99.97 %; VEH CTL: 125.1 %; Aβ: 108.3 %; n=2; Fig. 26b-II), or at the 14 days timepoint 

(Neg CTL: 100.0 %; VEH CTL: 127.1 %; Aβ: 110.4 %; n=2; Fig. 26b-II). 

 

SVZ a 

b-II b-I TrkB-FL TrkB-ICD 

Fig. 26 – Levels of TrkB receptor isoforms in SVZ did not change 3 and 14 days after Aβ1-42 peptide injection. 
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Fig. 26 – Levels of TrkB receptor isoforms in the SVZ did not change at 3 and 14 days after Aβ1-42 peptide injection. 

Representative western-blots in (a) depict immunoreactive bands for TrkB-FL (~140 kDa), TrkB-ICD (~32 kDa) and GAPDH 

(loading control; ~37 kDa) obtained from SVZ samples at the timepoints corresponding to 3 and 14 days after the Aβ1-42 

peptide injection. Protein levels were quantified and normalized (100%) for the corresponding negative controls at 3 and 

14 days. TrkB-FL (b-I) and TrkB-ICD (b-II) levels do not tend to differ at any of the timepoints, when comparing between 

the groups. Preliminary data are expressed as mean (n=2). Neg CTL: age-matched control rats to which no icv injection 

was performed; VEH CTL: control rats injected with vehicle solution.  

 

4.2.3. Primary cortical neuronal cultures incubated with Aβ1-42 show a tendency 

for an increase in TrkB receptor cleavage and calpain activity 

Given the unexpected results that were obtained in the in vivo experiments, we decided to 

examine the viability of the Aβ1-42 peptide in vitro, using a well-established protocol in our institute. 

To do this, TrkB receptor cleavage as well as calpain activity were assessed in primary cortical 

neuronal culture samples incubated for 24 h with an Aβ1-42 peptide solution (20 µM) prepared from 

the solution used for icv injection. Preliminary data revealed an approximately 30% decrease in the 

levels of TrkB-FL receptor (CTL: 100.0 %; Aβ: 69.88 %; n=1; Fig. 27b-I), when comparing the sample 

incubated with vehicle with the one incubated with Aβ, accompanied by an approximately 19% 

increase in the levels of TrkB-ICD (CTL: 100.0 %; Aβ: 118.9 %; n=1; Fig. 21b-II). These results are 

emphasised by the tendency for an increase of about 70% in the ratio between the levels of TrkB-

ICD and TrkB-FL in the sample incubated with Aβ (CTL: 100.0 %; Aβ: 170.1 %; n=1; Fig. 27b-III). 

 

a 

b-I b-II b-III TrkB-FL TrkB-ICD TrkB-ICD/ 
TrkB-FL 

Fig. 27 – TrkB receptor cleavage tends to be increased in primary neuronal cultures after incubation 

with Aβ1-42 peptide. 
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Fig. 27 – TrkB receptor cleavage tends to be increased in primary neuronal cultures after incubation with Aβ1-42 

peptide. Representative western-blots in (a) depict immunoreactive bands for TrkB-FL (~140 kDa), TrkB-ICD (~32 kDa) 

and GAPDH (loading control; ~37 kDa) obtained from primary cortical neuronal culture samples incubated with an Aβ1-42 

peptide solution (20 µM, 24 h) at 14 DIV. Protein levels were quantified and normalized (100%) for control. Levels of TrkB-

FL (b-I) tend to decrease, while levels of TrkB-ICD (b-II) tend to increase, in the sample incubated with Aβ when comparing 

with the sample incubated with vehicle (CTL). This is emphasised by the tendency for an increase in the ratio TrkB-

ICD/TrkB-FL (b-III) in the sample incubated with Aβ. Preliminary data are presented as individual values (n=1). 

 

Besides TrkB receptors, another protein that has been shown to be cleaved by calpains is α-

II Spectrin, giving rise to two spectrin breakdown products (SBDP) with 145 and 150 kDa. Detection 

of these fragments by WB can therefore be used as a measure of calpain activity 152,189. The term 

SBDP150 was used herein when referring to both fragments, since sometimes it is not possible to 

obtain them in separate bands. Corroborating the tendency observed for increased TrkB-FL receptor 

cleavage, preliminary results showed an approximately 39% decrease in the levels of α-II Spectrin 

in the Aβ1-42 treated culture (CTL: 100.0 %; Aβ: 60.78 %; n=1; Fig. 28b-I), accompanied by an 

approximately 92% increase in the levels of SBDP150 (CTL: 100.0 %; Aβ: 191.8 %; n=1; Fig. 28b-

II). As for TrkB, these evidences were emphasised by the tendency for an increase of about 216% 

in the ratio between the levels of SBDP150 and α-II Spectrin in the sample incubated with Aβ (CTL: 

100.0 %; Aβ: 315.6 %; n=1; Fig. 28b-III). 

 

 

a 

b-I b-II b-III α-II Spectrin SBDP150 SBDP150/ 
α-II Spectrin 

Fig. 28 – α-II Spectrin cleavage tends to be increased in primary neuronal cultures incubated with Aβ1-

42 peptide, indicating increased calpain activity. 
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Fig. 28 – α-II Spectrin cleavage tends to be increased in primary neuronal cultures incubated with Aβ1-42 peptide, 

indicating increased calpain activity. Representative western-blots in (a) depict immunoreactive bands for α-II Spectrin 

(~250 kDa), SBDP150 (~150-145 kDa) and GAPDH (loading control; ~37 kDa) obtained from primary cortical neuronal 

culture samples incubated with an Aβ1-42 peptide solution (20 µM, 24 h) at 14 DIV. Protein levels were quantified and 

normalized (100%) for control. Levels of α-II Spectrin (b-I) tend to decrease, while levels of SBDP150 (b-II) tend to increase, 

in the Aβ treated sample when comparing with the sample incubated with vehicle (CTL). As for TrkB, this is emphasised 

by the tendency for an increase in the ratio between the levels of SBDP150 and α-II Spectrin (b-III) in the sample incubated 

with Aβ. Preliminary data are presented as individual values (n=1). SBDP150: Spectrin breakdown products at 150-145 

kDa. 

 

4.2.4. Cell proliferation and neuronal differentiation in the DG after Aβ1-42 icv 

injection 

Regarding the effect mediated by Aβ in DG neurogenesis, two animal samples were analysed 

with discrepant results. Thus, in this section, results for each Aβ rat were individually described. To 

facilitate the interpretation of results, one animal was identified as AβI (black dot on the graphs), and 

the other as AβII (white dot on the graphs).  

 

4.2.4.1. Dorsal DG volume 

To determine if eventual changes in cell proliferation might be due to changes in the volume 

of the DG caused by the Aβ injection, the total dorsal DG volume was estimated from representative 

coronal sections (Fig. 29). While the volume estimated for AβI was similar to what was observed for 

controls, AβII showed a lower volume (CTL: 0.8023 mm3; AβI: 0.8094 mm3, AβII: 0.5266 mm3; Aβ 

(mean): 0.6680 mm3; n=2; Fig. 29b). 
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Fig. 29 – Dorsal DG volume estimated from representative coronal sections. Representative confocal images (a) 

show whole sections of the DG of control and Aβ injected rats, where nuclei were immunostained with DAPI (light grey). 

Dorsal DG volume was estimated (b) by multiplying the sum of the areas by the distance between slices (400 µm).  

Preliminary data are expressed as mean (n=2). Scale bar = 200 µm. AβI: black dot; AβII: white dot. 

 

4.2.4.2. Cell proliferation 

Since BrdU incorporates the DNA of dividing cells, quantification of BrdU-immuno-positive 

(BrdU+) cells within the layers of the dorsal DG was used as a measure of cell proliferation for the 

rats sacrificed at the end of the protocol, around 30 days after they were intraperitoneally injected 

with BrdU. The number of BrdU+ cells appears to be identical when comparing the rats injected with 

vehicle with the ones injected with Aβ (CTL: 101.3; AβI: 107.5, AβII: 104.0; Aβ (mean): 105.8; n=2; 

Fig. 30b-I). Yet when we look at the cell density, that is, the number of BrdU+ cells per volume, AβI 

and AβII show distinct results. Once again, cell density for AβI and controls appears coincident, but 

when accounting for the lower volume of AβII, cell density seems to be greater than for controls and 

AβI (CTL: 1269 mm-3; AβI: 1328 mm-3, AβII: 1975 mm-3; Aβ (mean): 1652 mm-3; n=2; Fig. 30b-II).  

b 

Fig. 29 – Dorsal DG volume estimated from representative coronal sections does not show a tendency to 

a 

Aβ CTL 

DAPI BrdU 
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Fig. 30 – Cell proliferation in the dorsal DG following Aβ icv injection. Representative confocal images (a) of the DG 

for control and Aβ injected rats show nuclei immunostained with DAPI (blue), and BrdU (green). BrdU-immuno-positive 

cells (b-I) and BrdU-immuno-positive cells per volume of DG (b-II) were quantified. Preliminary data are expressed as 

mean (n=2). Scale bar = 100 µm. AβI: black dot; AβII: white dot. 

 

4.2.4.3. Neuronal differentiation 

DCX is a microtubule-associated protein specifically expressed in the cytoplasm of neuroblasts 

and immature neurons during adult hippocampal neurogenesis 190. Hence, quantification of DCX+ 

cells in the dorsal DG was used to examine the presence of these types of cells at the end of the 

protocol, when the animals were sacrificed. Controls and AβI show comparable results regarding the 

total number of DCX+ cells, whereas AβII seems to have a decrease in this parameter (CTL: 542.0; 

AβI: 563.0, AβII: 374.0; Aβ (mean): 469.0; n=2; Fig. 31b-I). When comparing cell density, that is, the 

number of DCX+ cells per volume, we can see that it does not tend to change between the control 

animals and the Aβ (CTL: 6949 mm-3; AβI: 7103, AβII: 7122; Aβ (mean): 7113 mm-3; n=2; Fig. 31b-

II), since contrary to BrdU density, the number of DCX+ cells and volume decrease in AβII. 

Cells that incorporated BrdU in the beginning of the protocol can be followed to evaluate 

immature neuron differentiation in rats that were injected with Aβ1-42 when compared to controls. In 

fact, cells that differentiated into immature neurons can be denoted by looking at cells that are 

double-positive for BrdU and DCX (BrdU+DCX+). Preliminary data shows that the number of 

BrdU+DCX+ cells for AβI tends to be greater than what was observed for controls, while AβII appears 

to be similar when comparing with controls (CTL: 7.00; AβI: 27.0, AβII: 10.0; Aβ (mean): 18.5; n=2; 

Fig. 31c-I). Considering the number of BrdU+DCX+ cells per volume, a tendency for an increase in 

AβI and AβII can be noticed, although for AβI this increase is greater (CTL: 93.3 mm-3; AβI: 341 mm-

3, AβII: 190 mm-3; Aβ (mean): 266 mm-3; n=2; Fig. 31c-II). The same trend as for the number of 

BrdU+DCX+ cells is observed when we express it as the percentage from the total number of BrdU+ 

cells (CTL: 7.08 %; AβI: 25.5 %, AβII: 9.09 %; Aβ (mean): 17.3 %; n=2; Fig. 31c-III). 

b-I b-II 

Fig. 30 – Cell proliferation in the dorsal DG following Aβ icv injection. 
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Fig. 31 – Immature neuron differentiation after Aβ injection. 
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Fig. 31 – Immature neuron differentiation after Aβ injection. Representative confocal images (a) of the dorsal DG for 

control and Aβ injected rats show nuclei immunostained with DAPI (blue), nuclei stained with BrdU (green), and immature 

neurons immunostained for DCX (red). Quantitative analysis of DCX-immuno-positive cells (b-I), DCX-immuno-positive 

cells per volume (b-II), DCX/BrdU double-positive cells (c-I), DCX/BrdU double-positive cells per volume (c-II) and the 

percentage of DCX/BrdU double-positive cells from the total BrdU positive cells (c-III) were evaluated. Preliminary data 

are expressed as mean (n=2). Scale bar = 100 µm. AβI: black dot; AβII: white dot; DCX: doublecortin. 

 

To further analyse neuronal differentiation, cells where stained for NeuN, a neuronal nuclei 

protein marker expressed in mature neurons in the later stages of differentiation during adult 

hippocampal neurogenesis, alongside the fading of DCX expression 191,192. Consequently, 

quantification of NeuN+BrdU+ cells in the dorsal DG was used to assess mature neuron differentiation 

after Aβ1-42 peptide injection, showing similar results when comparing with the controls (CTL: 89.00; 

AβI: 102, AβII: 88; Aβ (mean): 95.00; n=2; Fig. 32b-I). On the other hand, the number of NeuN+BrdU+ 

cells per volume seems to be greater for AβII than for controls, while for AβI appears to be 

unchanged (CTL: 1092 mm-3; AβI: 1235, AβII: 1666; Aβ (mean): 1451 mm-3; n=2; Fig. 32b-II). 

Moreover, the percentage of NeuN+BrdU+ cells per total BrdU+ cells revealed no tendency to change 

for any of the rats injected with Aβ, as compared with control rats (CTL: 86.4 %; AβI: 93.6, AβII: 89.8; 

Aβ (mean): 91.7 %; n=2; Fig. 32b-III). 

 

 

 

 

 

 

 

a 

Aβ CTL 

DAPI BrdU NeuN 



 

61 
 

Fig. 32 – Mature neuron differentiation in the dorsal DG after Aβ icv injection. Representative confocal images (a) of 

the DG for control and Aβ injected rats show nuclei immunostained with DAPI (blue), with BrdU (green), and mature 

neurons immunostained for NeuN (red). Quantitative analysis of NeuN/BrdU double-positive cells (b-I), NeuN/BrdU double-

positive cells per volume (b-II) and the percentage of NeuN/BrdU double-positive cells from the total BrdU positive cells 

(b-III) was assessed. Preliminary data are expressed as mean (n=2). Scale bar = 100 µm. AβI: black dot; AβII: white dot; 

NeuN: neuronal nuclei. 
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Fig. 32 – Mature neuron differentiation in the dorsal DG after Aβ icv injection. 
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5. Discussion 

The SGZ represents one of the main neurogenic niches in the adult brain, that has been 

increasingly revealed as a major player in learning and memory function. Yet how this process is 

modulated in association with neurodegenerative diseases like AD remains largely unclear, as do its 

consequences on cognitive function, especially in the sporadic form of the pathology. In the present 

work, potential alterations in neurogenesis in the DG of male Wistar rats were examined in a model 

of the sporadic form of AD.   

According to previous studies, as well as previous work done at our institute using the same 

animal model, no significant differences were observed regarding locomotor and exploratory activity 

of the rats two weeks after they were injected with Aβ 157,181,182. Additionally, no changes in mean 

swimming velocity were observed during the acquisition phase of the MWM test. In fact, several 

studies using both rats and mice, report that impaired performance in cognitive tasks, including the 

MWM, was not associated with changes in locomotion or exploratory drive 159,193. Importantly, the 

absence of alterations in motor function parallels the early stages of human sporadic AD, since these 

usually manifest only in more advanced stages of the disease 10. 

No changes in anxiety-related behaviour were expected, based on former experiments 

performed at our institute. However, this type of behaviour was assessed in the OF test, by 

measuring the time that the rats spent at the centre of the arena, where the lighting is more intense, 

and so tends to be avoided when the animals show increased anxiety 182,194. Here, a more specific 

test for this kind of behaviour, the EPM, was used. We found no differences in the time spent in the 

open arms of the maze or in the number of entries in these arms, thus corroborating the previous 

results obtained with a distinct task. In line with this evidence, Colaianna and colleagues (2010), 

showed that soluble Aβ1-42 icv administration 7 days prior to testing, did not lead to significant 

changes in the EPM 195. Notwithstanding, some studies report impaired performance in this test, 

namely in Wistar rats tested 20 days after the injection of soluble Aβ1-42, and in Swiss albino mice 

tested 7 days after they were injected with aggregated forms of the peptide 196,197. Nevertheless, 

differences in animal species used, in the timepoint for behaviour testing or in the preparation of the 

peptide solution might help explain the dissonant results. 

Regarding the cognitive function tasks, the Y-Maze SA and FA tests were performed, aiming 

at evaluating short-term memory performance, since this type of memory is compromised in human 

AD, typically manifesting from early stages 10. Contrary to what was expected, there were no changes 

in spontaneous alternation behaviour, indicating that the Aβ injection did not affect spatial working 

memory performance. These results contradict what has been reported in previous studies following 

the same protocol as ours, in which impaired performance in the Y-Maze SA was observed 157,181,182. 

Furthermore, comparable impairments have been demonstrated in albino mice injected with soluble 

Aβ, and F344 rats injected with aggregated Aβ, when tested after 4 and 16 days, respectively 198,199. 
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Concerning the Y-Maze FA task, no differences were detected in the total number of arm 

entries in the training and test phases, or in the time spent inside the two identical arms available 

during training, suggesting that changes in cognitive performance could not be attributed to altered 

exploratory behaviour or preference for one of the identical arms. Curiously, Aβ-injected rats were 

able to distinguish the novel arm in the test phase after an ITI of 3h, demonstrating no short-term 

reference memory impairment. Surprisingly, control rats were unable to distinguish the novel arm, 

despite showing a tendency, possibly suggesting a deleterious effect of the vehicle solution. 

Nonetheless, the high percentage of animals that first visited the novel arm, which was identical in 

the two experimental groups, might support the absence of cognitive impairment. To my knowledge, 

short-term memory performance using this test has not yet been evaluated in a model of sporadic 

AD induced by icv infusion of Aβ1-42 peptide. However, the results obtained were unexpected, since 

this type of memory is impaired when assessed by different tasks in other models of AD. The injection 

of soluble or aggregated forms of Aβ to either Wistar rats or albino mice, was shown to compromise 

short-term memory performance in the NOR test, even though with ITIs distinct from ours (30 and 

90 min, respectively) 157,197. In transgenic mice overexpressing APP, short-term memory impairment 

was observed using the Y-Maze FA task with an ITI of 5 or 30 min, yet this was not tested in early 

stages of the pathology, before plaque deposition 169,200. 

One of the most prominent features of human AD at early and mild stages is episodic memory 

impairment, with the inability to retain memory of recent events in a long-term fashion 12. Hence, to 

further characterize our model, this type of memory was assessed in the NOR test with an ITI of 24h. 

The task was performed in two separate batches, one during the dark phase (night) of the light/dark 

cycle, under red light, and another during the light phase (day) under low intensity illumination. 

Similar to what was observed for the Y-Maze FA, when the NOR was performed at night, the rats 

injected with Aβ were able to distinguish the novelty item, whereas the control ones were not, 

implying once again that the vehicle may have negatively influenced cognitive performance. 

Importantly, the novelty discrimination index did not significantly differ between the groups at night, 

thus supporting a comparable long-term memory impairment. On the other hand, long-term memory 

performance in both groups appears to be impaired, since neither the Aβ-injected animals nor the 

control ones were able to recognize the novel object. Despite this, the novelty discrimination index 

was unchanged during daytime. In both phases of the light/dark cycle, the animals did not show 

alterations in exploratory drive or preference for any of the two identical objects during the training 

phase. Nonetheless, the fact that exploratory drive was compromised during the test phase, when it 

was performed during the day but not at night, might explain, at least in part, the differences in 

behaviour observed between the phases of the cycle. Another aspect that may have contributed to 

these differences is the fact that rodents are naturally more active at night, and so the differences 

between the groups may have become less evident during the day 186,201. Previous reports using this 

model were mainly performed during the light phase of the cycle. In this regard, former work from 
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our group has demonstrated compromised long-term memory performance in the NOR, without any 

changes in exploratory activity 182. Also using Wistar rats, other authors have reported memory 

impairment in the NOR (24 h ITI), when evaluated 2 h or 7 days after the infusion of soluble Aβ, 

although the concentration used was lower (0.02 nmol), than the one used in the present work (2 

nmol) 202,203. Of note, a previous study showed a decrease in exploratory drive associated with no 

differences in cognitive performance, when assessing working memory in the NOR (3 min ITI) 7 days 

after icv injection 195. 

Due to the absence of cognitive impairments in the previously analysed tasks, it was 

hypothesized that diffusion of the peptide could specifically induce hippocampal-dependent spatial 

learning/memory impairment. Therefore, this type of memory was examined using the MWM test, 

since adequate performance in this task has been shown to be highly dependent, although not 

exclusively, on the integrity of the hippocampus 183,204. Contrary to the literature, our results show no 

change in any of the parameters tested, revealing preserved spatial learning during the 4-day 

acquisition phase, as well as absent memory impairment in the probe test. Several studies focusing 

on analogous models of sporadic AD have addressed changes in performance in the MWM. Cheng 

and colleagues (2017), have recently described impaired learning throughout a 4-day acquisition 

phase, starting two weeks after the icv administration of soluble Aβ in Wistar rats, but also decreased 

time and distance travelled in Qp during the probe test 205. Likewise, F344 and Sprague-Dawley rats 

injected with aggregated forms of the peptide (2.2 nmol), that were evaluated 12 and 5 days 

afterwards, respectively, presented impaired learning during acquisition and compromised memory 

performance in the probe test, including increased time to reach the platform area, decreased 

number of crossings in this area, and decreased time in Qp 159,199.  

Different effects on cognition caused by distinct aggregation states of the peptide have been 

suggested, yet most studies do not assess the exact composition of the injected solutions, nor the 

amyloid burden in brain samples caused by this injection. As an example, a study using C57BL/6J 

mice has demonstrated that icv administration of Aβ1-42 in its monomeric, oligomeric or fibrillary form, 

leads to an impairment in long-term memory performance in the NOR, specifically triggered by 

oligomers, and not by other forms, supporting the notion that oligomeric Aβ1-42 constitutes the most 

neurotoxic form of the peptide 26,206. In addition, although the amount of peptide injected was low 

(7.5 pmol/injection, one 2 h before training and another 2 h before the test phase), the impairment 

was observed sole in the day after the first injection, yet it was lost after 10 days, suggesting an 

acute effect of the peptide in this case 206. Considering that no changes in cognitive function were 

observed two weeks after the Aβ1-42 icv injection using various tasks to assess different behavioural 

paradigms, we decided to investigate the presence of the peptide in different aggregation states. 

In the case of our work, the peptide was prepared in an alkaline solution providing conditions 

for it to remain in its soluble, mostly monomeric, state 207,208. After the injection, the peptide is 

expected to spontaneously form oligomers, as this is reported to occur at physiological pH 209,210. 
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Moreover, previous studies have shown the presence of the peptide in the hippocampus of mice and 

rats after being icv-infused 157,210,211. Canas and colleagues (2009) demonstrated the presence of 

Aβ1-42 monomers and oligomers by WB, as well as increased levels, by ELISA, in the hippocampus 

of Wistar rats 2 days after the injection (2 nmol) 157. Although our results are still preliminary due to 

the reduced sample size and methodological limitations, contrary to what was anticipated, the levels 

of soluble Aβ1-42 in the DG do not tend to be changed at 3 or 14 days after the injection, as revealed 

by ELISA. 

Furthermore, no deposition of insoluble amyloid was anticipated to occur in our samples, since 

Aβ aggregates were absent in brain sections stained with Congo red and Thioflavin S, when using 

an identical of AD 157. Indeed, no deposits were denoted in brain sections from rats sacrificed at 3 or 

14 days after the injection, as assessed by Congo red staining. Despite these results, increased Aβ 

deposits have been demonstrated in the hippocampus by IHC, namely in Sprague-Dawley rats, 12 

days after the injection of oligomeric Aβ1-42, even though the concentration used was considerably 

higher (1 µmol) 210. 

Considering the hypothesis that the properties of the peptide, or peptide solution, could be 

altered, possibly due to unexpected degradation, we decided to examine one of the canonical 

mechanisms of Aβ-induced toxicity associated with loss of BDNF neuroprotective actions, that has 

been well described in our group, both in vivo and in vitro 151,152,212. Thus, the levels of TrkB-FL and 

TrkB-ICD receptors were measured, aiming at identifying whether the Aβ was indeed functionally 

active. The levels of TrkB receptor isoforms remained unaltered in rats sacrificed at 3 and 14 days 

post- administration of Aβ1-42, indicating that the cleavage of TrkB-FL receptors did not occur, 

contrary to what was expected if the Aβ was functional. This was evidenced in the DG, but also in 

the SVZ, which is closer to the site of injection. In contrast, and in line with previous results, a likely 

increase in the cleavage of TrkB-FL receptors was revealed in the presence of Aβ1-42, when 

incubating primary cortical neurons with the peptide solution prepared for injection 151,152. Moreover, 

a probable increase in the cleavage of α-II Spectrin and, consequently, calpain activation was 

observed, further corroborating what was obtained for TrkB receptors, as it was previously published 

151,152. Albeit the sample size for these measures needs to be increased, together, these results 

suggest that the function of the Aβ peptide used in the icv injection seems to be intact, yet absent in 

brain samples.  

Adult hippocampal neurogenesis is proposed to play a significant role in supporting 

hippocampal plasticity mechanisms and, subsequently, cognitive function dependent on this 

structure 52,70,106. To evaluate if the Aβ injection could have induced changes in neurogenesis, 

proliferation and differentiation in the DG were evaluated at the end of the protocol. Our findings 

regarding the dorsal DG volume of the two samples differ, being that AβI seems to have no change 

in volume, while AβII appears to show decreased volume. Although to my current knowledge, 

changes in the volume of the DG have not yet been assessed in this model, a decrease may be 
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expected, since hippocampal atrophy is present in preclinical stages of human AD, despite being 

more prominent in later stages 213,214. Similar alterations can be observed in transgenic AD mouse 

models 215. In fact, a causal link between Aβ in the CSF and hippocampal atrophy leading to memory 

loss has been identified in patients with mild cognitive impairment 216. Nonetheless, the possible 

contribution of experimenter’s error to our results when obtaining the brain slices cannot be excluded 

at this point. 

Regarding cell proliferation, although there seems to be a trend for an increase in AβII when 

looking at cell density, the actual number of BrdU+ cells is unaltered. Therefore, the tendency in both 

samples appears coincidental, showing no change in this parameter. On one hand, these findings 

go in line with the absence of molecular and behavioural changes, yet most published reports in 

animal models of AD and also in human samples indicate a reduction in proliferation 106,107,117. 

Specifically using sporadic rodent models, it was shown that cell proliferation was decreased at the 

end of the protocol, approximately 20 days after bilateral intrahippocampal (CA region) infusion of 

soluble Aβ1-42 (0.9 or 1.8 nmol) in mice 135,217. In these studies, proliferation was quantified either as 

cell density, using the minichromosome maintenance protein 2 (MCM2) proliferation marker, or as 

the number of BrdU+ cells, yet neither referred to possible DG volume changes. Even though 

increased or unaltered proliferation has not yet been demonstrated in sporadic AD models, several 

transgenic models using a variety of protocols to assess neurogenesis have shown decreased, 

increased and even unchanged proliferation 119,130–132. Notably, absent changes in cell proliferation 

in mice models harbouring APP, PS1 or both mutations, have been reported either before or after 

amyloid deposition occurred, when accounting for the number of cells or cell density (BrdU and Ki67 

labelling) 131,132. Again, eventual changes in volume were not considered in these works.  

Distinct results were also observed between the two samples when referring to cell 

differentiation. While a tendency for an increase in neuroblast proliferation and immature neuron 

differentiation (BrdU+DCX+) can be denoted for AβI, this was not associated with changes in the total 

number of neuroblasts and immature neurons (DCX+). Furthermore, the number of cells that 

differentiated into mature GCs (BrdU+NeuN+) from the beginning of the protocol appears unaltered 

in AβI. These results may indicate that the new immature neurons did not survive on a long-term 

basis. Conversely, whereas there does not seem to be a change in neuroblast proliferation and 

immature neuron differentiation (BrdU+DCX+) for AβII, a trend for a decrease in the total number of 

neuroblasts and immature neurons (DCX+), proportional to the decrease in volume was observed. 

Interestingly, as for AβI, AβII showed no tendency for a change in the number of cells that 

differentiated into mature GCs (BrdU+NeuN+). Although the total number of mature GCs alone was 

not quantified, a decrease in new neuron survival might be present. Similar to what is observed for 

proliferation, most authors point to a reduction in neuronal differentiation using various models of AD 

106,107,117. Contrary to our observations, reports using sporadic AD models show a decrease in 

neuroblasts/immature neurons, expressed as DCX+ cell density, as well as a decrease in neuroblast 
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proliferation/immature neuron differentiation, expressed as BrdU+DCX+ cell number, observed after 

soluble Aβ1-42 intrahippocampal injection 135,217. In accordance with AβI, but not AβII, Jin et al (2004) 

showed an increase in BrdU+DCX+ cells, although this was shown qualitatively and not by 

stereological analysis 128. Curiously, co-expression of BrdU and NeuN has not only been shown to 

be increased and decreased, namely in APP/PS1 and APP/PS1/tau mice, respectively, but also 

unaltered in PS1 transgenic mice 126,130,218.  

Significantly, unaltered proliferation accompanied by impaired long-term survival of new 

neurons has been suggested in APP/PS1 mice with Aβ deposition, even though no specific markers 

for neuronal death were used in this study 132. Notwithstanding, it is important to mention that our 

results are only preliminary, and the number of samples analysed needs to be increased to 

determine whether some or all the observed tendencies would be further perpetuated or, on the 

contrary, dissipated. In addition, as published studies show a high variability of results and also 

methods, it is suggested that clearer conclusions on how neurogenesis is modulated in AD could be 

achieved by thoroughly comparing distinct rodent models using the same age, gender, genetic 

background, and identical methods of evaluating neurogenesis. Moreover, considering that changes 

in neurogenesis may be stage-dependent, characterization according to neuropathology stage is still 

necessary 102,106. 

Some methodological limitations must be taken into account when hypothesizing about the 

lack of behavioural and molecular/cellular changes. The possibility that precipitation of at least some 

amount of the Aβ peptide may have occurred in the syringe before the injection cannot be ruled out. 

In fact, a white precipitate was present, on occasion, on the tip of the syringe, despite the use of two 

needles with different gauge size. If this is the case, a much lower and most likely variable amount 

of peptide would actually be administered to the ventricle of the rats, and reach target locations like 

the hippocampus, possibly in different aggregation states. Of note, low levels of soluble Aβ1-42 adding 

to the physiological concentrations, may be undetectable by ELISA. Besides these aspects, some 

degree of imprecision regarding the injection site can be associated with the method employed, and 

therefore may also contribute to a high variability in the presently described model.  

Importantly, if the vehicle has a negative impact on cognition, then, uncompromised 

performance in Aβ animals may have resulted from a balanced effect of the infusion of low amyloid 

amounts. Indeed, neuroprotective effects of Aβ, especially in its nonfibrillar form, and in low 

concentrations, ranging mainly from pM to nM values that resemble basal levels of the peptide, have 

been described in vitro and in vivo, including noteworthy beneficial effects upon short- and long-term 

memory 22,219. Furthermore, these Aβ-related improvements can potentially be paralleled with 

increased neurogenesis denoted in studies using low concentrations of Aβ 115,116. 
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6. Conclusions and Future Perspectives 

In the present work, the Aβ1-42 peptide icv injection did not impair spatial learning, nor short-

term and long-term memory performance, evaluated two weeks after the injection. Additionally, we 

failed to identify the presence of soluble or deposited Aβ1-42 peptide in the brain samples from rats 

sacrificed at 3 and 14 days after the injection, either directly or indirectly. Despite this, preliminary 

results revealed the presence of an active peptide in the solution prepared for injection. Examination 

of cell proliferation and neuronal differentiation at the end of the protocol revealed a discrepancy 

between the two samples analysed. 

Overall, albeit the injection of Aβ described herein has been previously referred to as a feasible 

way of obtaining a model of sporadic AD, in the conditions of the present work, we were not able to 

observe the expected behavioural phenotype, or any associated cellular and molecular changes. 

Further experimental optimization is therefore required in the future, to obtain a model that thoroughly 

represents the initial stages of AD pathology.  

The solubility of the Aβ peptide in the vehicle solution should be assessed, as well as the 

structural composition of the amyloid species in solution, in terms of aggregation state. Moreover, 

preparation of a more uniform solution, made up mostly of oligomeric Aβ1-42, may be considered for 

future studies, as previously described 206. Characterization of the amyloid deposition pattern along 

several timepoints and on different brain structures could also be helpful for a better interpretation of 

eventual cognitive outcomes. Accordingly, behaviour tests may be performed at distinct timepoints 

after the injection, since transient changes in cognition could be occurring more acutely or later in 

the protocol. 

To reduce the potential variability conferred by imprecision of the injection site, only the animals 

in which the desired coordinates of injection are verified upon brain dissection, should be included 

in upcoming studies. Importantly, to test the hypothesis of a deleterious effect of the vehicle solution, 

the behaviour tests should be repeated using vehicle controls plus negative controls, in which no 

solution would be injected. 

Regarding both the molecular and cellular analyses, increasing the sample size will be 

essential to extract clearer conclusions pertaining to the validity of our model. Following 

methodological optimization, a correlation between eventual changes in neurogenesis and cognitive 

function, induced by the Aβ injection, will hopefully be achievable. Of interest, cell proliferation should 

be further investigated using a more specific protocol of BrdU administration, only at the end of the 

protocol, and/or by resorting to other proliferation markers. In addition, although the consequences 

of icv administration of soluble or aggregated Aβ1-42 peptide on neurogenesis have not yet been 

characterized, previous reports have depicted alterations on hippocampal synaptic plasticity, namely 

associated with compromised function of dentate GCs, possibly due to Aβ-induced morphological 

changes 220,221. As these types of changes have been described in other models of AD like the 
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APPswe,ind and triple transgenic, examining possible changes in morphology in the presently 

described model, would be invaluable to fully characterize putative shifts in the process of 

neurogenesis 126,139.  
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