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ABSTRACT3

Snow loads in the western United States are largely undefined due to complex geography and4

climates, leaving the individual states to publish detailed studies for their region, usually through5

the local Structural Engineers Association (SEAs). These associations are typically made up of6

engineers not formally trained to develop or evaluate spatial statistical methods for their regions7

and there is little guidance from ASCE 7. Furthermore, little has been written to compare the8

independently developed design ground snow load prediction methods used by various western9

states. This paper addresses this topic by comparing the accuracy of a variety of spatial methods10

for predicting 50 year (i.e. design) ground snow loads in Utah and Idaho. These methods include,11

among others, the current Utah snow load equations, Idaho’s normalized ground snow loads based12

on inverse distance weighting, two forms of Kriging, and the authors’ adaptation of PRISM. The13

accuracy of each method is evaluated by measuring the mean absolute error using ten fold cross14

validation on datasets obtained from Idaho’s 2015 snow load report, Utah’s 1992 snow load report,15

and a new Utah ground snow load dataset. These results show that regression-based Kriging and16

PRISM methods have the lowest cross validated errors across all three datasets. These results also17

show that normalized ground snow loads, which are a common way of accounting for elevation in18

traditional interpolation methods, do not fully account for the effect of elevation on ground snow19
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loads within the considered datasets. Themethodologies and cautions outlined in this paper provide20

a framework for an objective comparison of snow load estimation methods for a given region as21

state SEAs look to improve their future design ground snow predictions. Such comparisons will22

aid states looking to amend or improve their current ground snow load requirements.23

INTRODUCTION24

Heavy snowstorms in the winter of 2017 filled local newspapers across the western United25

States with reports of snow related building collapses and fatalities (Lafferty 2017, Associated26

Press 2017, Mieure 2017, Kato and Florio 2017, Fisicaro 2017, Glover 2017). These snow-related27

failures can be catastrophic to local economies, like the recent $100 million in losses incurred28

by Idaho/Oregon’s onion industry (Ellis 2017). One study of 40 snow-induced building failures29

reported an average cost of $166 per square meter and 122 days of business interruption for repairs30

(Strobel and Liel 2013). Snow-related damages can extend beyond building repairs, as a study of31

1,100 domestic and international snow-induced building failures reported more than 300 fatalities32

(Geis et al. 2011). Few details are made public about the true causes of the above damages, as33

they could be agricultural buildings not designed to code or even suffer from construction error,34

but these reports and articles provide a sample of the serious consequences associated with snow35

load prediction.36

Subtler costs are also associated with overly conservative load designs. As articulated by Nowak37

and Collins (2012): "Conceptually, we can design [a] structure to reduce the probability of failure,38

but increasing the safety... beyond a certain optimum level is not always economical." The following39

two examples demonstrate this point by exploring the relationship between design snow loads and40

roof construction costs. Roof costs are selected for these illustrations as they are likely the aspect41

of a structure most sensitive to snow load design.42

The first example is found in the 2017 Craftsman National Building Cost Manual, which43

includes a table of estimated roof costs for manufactured homes rated for different snow loads.44

In this manual, a doubling of the roof snow load requirement from 1.44 to 2.88 kPa results in an45

approximate threefold increase in the estimated cost per unit meter of roof ($11 to $36) (Moselle46
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2016). While increases in cost outside the selected load range are not quite as drastic, the example47

demonstrates the influence of snow loads on roof costs. The second example comes from roof48

joist costs provided to the authors by Vulcraft Utah (Brigham City, Utah) in January 2018. These49

roof-only designs assume varying snow loads with the constant depths, typical joist spacings and50

a L/240 deflection limit, as indicated in Figure 1. These costs do not include the effects of the51

snow and larger roof components on the remainder of the gravity or seismic systems’ cost. For this52

system, doubling the roof snow load requirement from 1.44 to 2.88 kPa leads to a 40-90% increase53

in the cost of the joists.54

These two examples may represent highly sensitive situations with respect to cost and snow55

load. Other systems and components would likely not experience such dramatic cost increases. Re-56

gardless, the potential economic burdens created by overly conservative requirements likely explain57

recently amended ground snow load requirements in Rich County, Utah, where new requirements58

for major communities in the county (approximately 2.73 kPa) are less than half of those dictated59

previously (6.3-7.2 kPa) (Utah 2016).60

American Society of Civil Engineers (ASCE) design ground snow load requirements have61

historically remained largely unspecified for the topographically complex western states up through62

ASCE 7-10 (ASCE 2013). This had led to the creation of a diverse set of state specific snow63

load estimation methods (Sack 2015). New snow load tables provided for many of the western64

states in ASCE 7-16 are derived from these state snow load reports (ASCE 2017). Design ground65

snow loads are defined in this paper as estimated 50 year ground snow loads. With the exception66

of the reliability-based snow loads in Colorado (Torrents et al. 2016), this definition is consistent67

with ASCE-7 and western state snow load reports. Many of these reports (or portions of them)68

are freely available to the public (NACSE 2012, SEAU 1992, Torrents et al. 2016, Al Hatailah69

et al. 2015, Theisen et al. 2004) and provide a wealth of information on dataset development,70

model predictions, and implications for building design. However, little is written regarding the71

accuracy of the methods used to predict design ground snow loads. While Sack (2015) and Sack72

et al. (2016) discuss differences between state methodologies and acknowledge discrepancies in73
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predictions along state boundaries, no formal comparison of design ground snow load prediction74

methods is found in the literature. A lack of accuracy comparisons makes it difficult to determine75

whether differences in design ground snow load requirements along state boundaries are caused by76

differences in methodology, data, or both.77

This paper begins such comparisons by determining the cross validated accuracies of several78

design ground snow load prediction methods on three independently developed datasets. These79

cross validation results are calculated using the R statistical software environment (R Core Team80

2017) and visualized with the ggplot2 (Wickham 2009) and RColorBrewer (Neuwirth 2014) pack-81

age extensions. These results will be preceded by a summary of the datasets and spatial prediction82

methods used in the comparisons and followed by a discussion of the challenges and limitations in83

predicting design ground snow loads. The authors conclude that regression-based spatial estimators84

that model the log-linear relationship between ground snow load and elevation consistently out-85

perform all other methods in terms of minimizing the cross validated mean absolute error (MAE).86

Cross validation also highlights some of the limitations of normalized ground snow loads (NGSL),87

as explained in the "Prediction Comparisons" section of this paper. These results in Utah and88

Idaho provide a framework for a formal comparison of methodologies used by each of the western89

states, an important step for states looking to amend or improve their current ground snow load90

requirements.91

DATA92

The three datasets used in the cross validation comparisons are the authors’ new Utah dataset93

(UT-2017), the 1992 Utah snow load report dataset (UT-1992) and the 2015 Idaho snow load report94

dataset (ID-2015). The variable of interest in each dataset is the design ground snow load. These95

design ground snow loads are calculated by fitting the annual maximum snow water equivalents96

(SWE) at each station location to a probability distribution and extracting the 98th percentile.97

Nearly all low elevation stations do not provide direct measurements of SWE. At locations where98

SWE is not measured, estimates of SWE are made from snow depth measurements using either99

the Rocky Mountain Conversion Density (RMCD) (Sack and Sheikh-Taheri 1986), or an equation100
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developed by Sturm et al. (2010) referred to hereafter as "Sturm’s equation". Table 1 provides an101

overview of the methods used to estimate design ground snow loads within each dataset. These102

readily available datasets were selected to compare the effectiveness of various spatial methods103

in predicting ground snow loads for different climates, terrain, and station coverage. In addition,104

the development of each of considered spatial method is associated with one of these datasets,105

including the current Utah snow load equations (UT-1992), Idaho’s normalized ground snow loads106

based on inverse distance weighting (ID-2015), Kriging (UT-2017) and PRISM (UT-2017). The107

consideration of these three independently developed data sources ensures that the cross validation108

comparisons are not limited to one isolated dataset.109

Each of these datasets use observations from Natural Resources Conservation Service (NRCS)110

Snowpack Telemetry (SNOTEL) and Snow Course (SC) stations, as well as data from the National111

Weather Service (NWS) cooperative observer network (COOP). Many SNOTEL stations were in-112

stalled to replace discontinued SC stations, thus creating situations where two separate stations have113

the same location. Identical decimal degree locations for two distinct stations creates singularity114

issues in many spatial interpolation methods. This problem was resolved by adding an arbitrarily115

small number r, (|r | < .001) to the decimal degree locations to create well defined but negligible116

spatial separation between such stations.117

Figure 2 (a-c) reveals the distinct log-linear relationship between station design ground snow118

load estimates and elevation for each dataset. These scatterplots include lines representing ordinary119

and generalized least squares regression estimates of this log-linear relationship (using elevation as120

the predictor). The development of these regression lines will be discussed further in the "Methods"121

section of this paper. In addition, the histogram of station elevations in Figure 2 (d) show that the122

Idaho dataset contains a larger proportion of high elevation stations than either Utah dataset. Cross123

validated results must be interpreted in the context of station elevation, as higher elevations tend to124

have higher snow loads and consequently more variability in predictive accuracy.125
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The New Utah Dataset (UT-2017)126

This dataset contains 279 (192 COOP, 87 SNOTEL) Utah stations with an additional 136127

stations (103 COOP, 33 SNOTEL), all located within 100km of the Utah border. Log-normal128

distribution parameter estimates were calculated using annual yearly maximums for years 1970 to129

2017 via maximum likelihood estimation. This range focuses on years where SNOTEL station130

measurements are available, as the earliest available measurements from active SNOTEL stations131

in Utah is 1978 (NRCS 2017). Sturm’s equation estimated SWE from snow depth when SWE132

measurements were missing. This equation is defined using the coefficients for a "prairie" and133

"alpine" terrains (Sturm et al. 1995) as134

SWEi =


hi [.3608 ∗ (1 − exp (−.0016hi − .0031di)) + .2332] Elevation < 2113.6m

hi [.3738 ∗ (1 − exp (−.0012hi − .0038di)) + .2237] Elevation >= 2113.6m
(1)135

where hi represents snow depth (in centimeters) and di represents the day of the snow year, ranging136

from -92 (October 1) to 181 (June 30), for any given observation i (2010). See Bean et al. (2018)137

for a copy of this dataset along with further details regarding its creation.138

The 1992 Utah Dataset (UT-1992)139

These data consist of 413 stations (210 SC, 203 COOP), all located in Utah. The method used to140

calculate the Log-Pearson type III parameters is not specified. Estimates of SWE using the RMCD141

were occasionally adjusted when the resulting snow water equivalents exceeded the station’s winter142

cumulative precipitation. Tables of these data can be found in the Utah snow load report (SEAU143

1992).144

The 1992 Utah report does not provide precise station locations. Since 1979, many of the145

snow course stations used in this report have been discontinued, and precise location information146

is unavailable. Station locations were determined for all but seven stations through a combination147

of station number matching in NRCS and NWS station databases, as well as personal contact148

with Randall Julander at the Utah Snow Survey Office in Salt Lake City. Locations for the149
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seven remaining stations were approximated using Google Earth to determine coordinates given150

approximate station location information from the snow survey office and county information given151

in the 1992 Utah report.152

The 2015 Idaho Dataset (ID-2015)153

These data consist of 394 (246 SC/SNOTEL, 148 COOP) Idaho stations with an additional 257154

(222 SC/SNOTEL, 35 COOP) located near the Idaho border with the most recent measurements155

being taken in 2014. Log-Pearson type III distribution parameter estimates were determined using156

the sample mean, standard deviation skew of annual of yearly maximums at each station location157

(i.e. method of moments). The data and further details regarding the estimation of these 50 year158

events are given in Al Hatailah’s Masters Thesis (2015).159

METHODS160

Each of the following methods predict design ground snow loads at a state level using design161

ground snow loads at surrounding station locations as input. These methods were selected due162

to their ability to be easily applied to datasets of varying size and location, an important pre-163

requisite for calculating the cross validated errors discussed later in this paper. Details of the164

following methods can be found at citations provided in the respective summaries. For comparative165

convenience, the primary methods of consideration are defined using a common set of notation.166

Let pg(u) denote the ground snow load at a location u (with p∗g representing the predicted design167

ground snow load) and let A(u) denote location elevation. Further, let uα represent the location of168

station α (α = 1, · · · , N) and let D(ui,u j) represent the geographic distance between locations ui169

and u j .170

The defining feature of each method is in the way that elevation is accounted for in the design171

ground snow load predictions. With the exception of the ground snow load equations in the 1992172

Utah Snow load report, each of the considered methods use normalized ground snow loads (NGSL)173

or some variant of linear regression. Normalized ground snow loads (NGSL) are calculated as174

design ground snow load divided by elevation
(

p∗g(uα)
A(uα)

)
. They "appear to mask out the effects of175

the environment on the snow-making mechanism" and "reduce the entire area to a common base176

7 Bean, May 20, 2018



elevation" (Sack et al. 2016). NGSL have a long history of use in western state snow load studies,177

including the current snow load reports of Idaho, Montana and Washington (Sack et al. 2016).178

On the other hand, regression based estimators seek to characterize the log-linear relationship179

between design ground snow loads and elevation observed in Figure 2. This relationship can be180

characterized using simple linear regression (LR) defined as181

log(p∗g(u)) = β0 + β1 A(u) (2)182

where β0 and β1 are calculated using ordinary least squares regression. The cross validated results183

in the following section show that differences in method accuracy can be largely attributed to184

differences in the characterization of the elevation/snow load relationship.185

Current Utah Ground Snow Load Equations186

The Structural Engineers Association of Utah (SEAU) predict design ground snow loads from187

elevation using the following equation (referred to hereafter as SNLW):188

p∗g(u) =


(
P2

0 + S2 (A(u) − A0)2
) 1

2
A(u) > A0

P0 A(u) ≤ A0

(3)189

where P0 (base ground snow load), S (change in ground snow load with elevation), and A0 (base190

ground snow elevation) are parameters whose values are uniquely defined for each county. County191

specific parameters were selected to be "an approximate upper bound" to both the design ground192

snow loads and the maximum observed ground snow loads for the set of stations in and near the193

county of interest (SEAU 1992).194

Recently amended snow load requirements for the state replace the equation estimates at select195

locations in Utah (Utah 2016). These updated requirements generally result in a reduction of196

ground snow loads when compared to the original equation estimates (Bean et al. 2017).197
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Inverse Distance Weighting198

In Idaho’s normalized ground snow loads based on inverse distance weighting (IDW), the199

predicted ground snow load at a particular location is aweighted average of theNGSLof surrounding200

stations, multiplied by the location’s elevation. This prediction is expressed as201

p∗g(u) =
A(u)∑N

α=1 D (uα,u)

n∑
α=1

[(
1

D (uα,u)

)c p∗g(uα)
A(uα)

]
. (4)202

The variable c allows for adjustments to the weighting factor, with larger values of c further reducing203

the influence of stations far away from the area of interest. The Idaho snow load report uses c1 = 2204

for locations with elevations below 1,219 m (4,000 ft) and c2 = 6 for locations with elevations205

above l = 1, 219m (Al Hatailah et al. 2015). The cross validation results for all three datasets in206

the following sections use these parameter values. One key difference in this implementation is the207

use of geographic distances rather than euclidean distances from the Idaho Transverse Mercator208

Projection (Al Hatailah 2015). The use of geographic distances eliminates the spatial distortion209

that may occur when applying a euclidean based map projection to a large geographical area.210

Linear Triangulation Interpolation211

In linear triangulation interpolation (TRI), the area of interest is partitioned into a set of non-212

intersecting triangles with vertices at each station location. Predictions use a weighted average213

of the NGSL at the three stations forming the triangle overlaying the point of interest (Akima214

1978). The R implementation of this strategy creates an entire grid of predicted values within215

the convex hull of the given data points (Akima and Gebhardt 2015). There are instances during216

cross validation when the convex hull of the training set does not encompass points in the test set,217

resulting in missing value predictions. These missing values are currently ignored when computing218

cross validated errors. These missing value predictions would need to be addressed prior to any219

serious consideration of this method in future work.220
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PRISM221

PRISM (Parameter-elevation Relationships on Independent Slopes Model) uses weighted least222

squares regression to account for additional climatological factors in response variable predictions223

(Daly et al. 2002, 2008). This leads to an extension of Equation 2 with the form224

log(p∗g(u)) = β0(u,X) + β1(u,X)A(u) (5)225

where β0(u,X) and β1(u,X) are estimated via weighted least squares regression. Final predictions226

exponentiate the log-scale predictions. The regression weights are a function of several factors227

defined in this adaptation of the algorithm as228

W (u,X) =Wc
[
FdW 2

d + FzW
2
z
] 1

2 Wb, (6)229

where X is the matrix containing all station meta-data and230

• Wc - a cluster factor (stations distributed in a tight cluster and similar in elevation receive231

less weight)232

• Wd - distance weighting (stations closer to the area of interest receive more weight)233

• Wz - elevation weighting (stations with altitudes similar to the area of interest receive more234

weight)235

• Wb - basin weighting (stations located in the same water basin as the area of interest receive236

more weight)237

• Fd and Fz - importance factors for distance weighting and elevation respectively238

These weights create a unique linear model fit for each area of interest. For details regarding the239

calculation of these weights, refer to (Bean et al. 2017) with one noted difference. Originally the240

basin weights compared similarities in station watersheds from the United States Geologic Survey241

(USGS) Hydrologic Unit Codes (HUC) 2-12 (USGS 2016). These finest watershed levels (HUC242

10 and 12) proved too small to be relevant in the weighting scheme, as nearly every station had243
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its own HUC 12 designation. This in mind, the basin weighting function now only detects more244

coarse water basin associations in the following manner:245

Wbα =

(
sα + 1

5

)c

, (7)246

where s represents the number of common watersheds (four levels ranging from HUC 2 through247

8) shared by station α and the target grid cell, and c is a user defined weighting factor that changes248

the shape of the weighting function.249

Kriging250

The family of Kriging estimators leverage the spatially dependent correlations between observa-251

tions to make predictions. The gstat package extension of R (Pebesma 2004) provides a numerical252

implementation of many Kriging variations. Details regarding these family of estimators are given253

in Goovaerts (1997), and motivate the notation used in this paper. One Kriging extension of254

Equation 2 is called Simple Kriging with varying Local Means (SKLM) (Goovaerts 2000) defined255

symbolically as256

log(p∗g(u)) = β0 + β1 A(u) +
N∑
α=1

λα(u)r(uα). (8)257

This method proceeds in three steps. First, a linear model is calculated identical to Equation 2.258

Then, simple kriging uses the residuals of the linear model to predict a residual value at the location259

of interest. Finally, this residual value is used to update the original linear model prediction. The260

simple kriging coefficients (λα(u)) are calculated by solving the kriging system261

N∑
α=1

λβ(u)CR
(
D(uα,uβ)

)
= CR (D(uα,u)) β = 1, · · · , n. (9)262

where CR represents the covariance between any two observations and is assumed to be a function263

of distance.264

An alternative method for accounting for elevation in kriging predictions is through universal265

kriging (UK), which calculates the trend implicitly within the kriging system, rather than separately266
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as in SKLM (Goovaerts 1997). When elevation is the only trend coefficient, the universal kriging267

estimates are equivalent to268

log(p∗g(u)) = β∗0 + β
∗
1 A(u) +

N∑
α=1

λα(u)r(uα) (10)269

where β∗0 and β∗1 are calculated using generalized least squares regression. Figure 2 shows the270

difference in the trend lines resulting from SKLM and UK.271

The semivariogram (i.e. variogram) is inversely related to the covariances between observations272

and provides the covariance matrix necessary for generalized least squares regression. A theoretical273

variogram function approximates the empirical variogram defined in this case as274

γ̂(h) = 1
2Nh1

Nh∑
αh=1

[
r(uαh1

) − r(uαh2
)
]2

(11)275

where
[
r(uαh1

), r(uαh2
)
]
represents each pair of regression model residuals located | |h| | distance276

away from each other. Figure 3 provides an example of the empirical and associated theoretical277

variograms for each dataset. It is the theoretical variogram that determines the values of the278

covariance function given in Equation 9.279

Kriging predictions provide theoretical estimates of the prediction error uncertainty (often280

called kriging variance) (Moral 2010). A better understanding of prediction uncertainty could be281

used to make conservative adjustments to snow load predictions in volatile areas. Because error282

uncertainty cannot be compared across all methods, the authors leave the discussion of kriging283

variance as applied to snow load predictions to future work.284

CROSS VALIDATION285

This paper now proceeds with a comparison of the predictive accuracies of the previously286

described methods. Two common ways of measuring method accuracy are with new test data or287

cross validation. Test set error measures model accuracy on new observations not used in model288

fitting, which is often impractical as available observations beyond those used in model fitting are289

scarce. Cross validation seeks to approximate test set error without requiring additional data. This290
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is done by randomly dividing the given observations into groups, using all but one of these groups291

to fit a model that makes predictions for the remaining group. This process is then repeated until292

a prediction is made for each observation in the dataset. In this paper, the data are separated into293

ten groups. Cross validation is a common tool used for model selection and refinement in many294

disciplines (Arlot and Celisse 2010), including structural engineering (Chang et al. 2017) and will295

be used to compare the spatial prediction methods defined in the preceding section.296

The use of cross validation is limited to replicable methods that are separable from the input297

observations. For example, snow load predictions in the Colorado snow load report involve a298

contour map of input parameter values that includes allowed discontinuities along mountain ridges299

(Torrents et al. 2016). These contours and discontinuities are inextricably connected to the station300

observations and thus eliminate the option to use cross validation. In addition, the Montana and301

Oregon snow load reports do not include enough details to replicate their methods on new datasets302

(Theisen et al. 2004, NACSE 2012). Because of these limitations, the accuracy comparisons for303

snow load prediction methods in these states are not included in the following results.304

Cross validated errors are defined as305

E(uα) = P̂g(uα) − Pg(uα) (12)306

where P̂g(uα) and Pg(uα) are the predicted and actual ground snow loads at station location307

uα respectively. Defined in this way, a positive error indicates over-predictions and a negative308

error indicates under-predictions. These errors are heteroskedastic and occasionally very large as309

observed in Figure 4.310

Overall comparisons of method accuracies are measured with mean absolute error (MAE) and311

mean error (ME) defined similarly in Maguire et al. (2014) as312
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MAE =
1
N

N∑
α=1
|E(uα)|

ME =
1
N

N∑
α=1

E(uα)
(13)313

where N represents the total number of weather stations with ground snow load measurements and314

P̂g(uα) represents model predictions for each station location uα.315

Parameter Selection316

Many of the parameters associated with the previously described spatial prediction methods317

must be manually specified. In practice, values of these parameters are selected by cross validation.318

To illustrate such a procedure, Table 2 of Bean et al. (2017) selected PRISM parameters as follows:319

• Create a vector of possible values for each of the eight PRISM parameters using recom-320

mendations from Daly et al. (2002).321

• For every possible combination of the parameters, fit the PRISM model and record the322

prediction error (such as MAE) resulting from cross validation.323

• Select a parameter combination that minimizes the prediction error.324

Each dataset uses the log-PRISM parameters provided in Table 2 of Bean et al. (2017) during cross325

validation.326

In addition, each dataset uses the Kriging variogram developed for UT-2017, rather than the327

dataset-specific variograms shown in Figure 3. Cross validation quantifies the effect of using a328

single variogram for predictions on ID-2015 and UT-1992. The MAE for ID-2015 and UT-1992329

using the dataset-specific variograms in Figure 3 are within 0.01 kPa of theMAE using the UT-2017330

variogram (as averaged over 100 iterations of cross validation). Such results show that the cross331

validated errors are fairly insensitive to modest changes in the theoretical variogram for SKLM and332

UK on the considered datasets.333
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Error and Elevation334

The locally weighted regression (loess) (Cleveland and Devlin 1988) curves in Figure 5 reveal335

the elevation dependent structure of the error scatter-plots previously shown in Figure 4. These336

curves compute local weighted averages of raw and absolute station errors across elevation and337

map these local averages as smooth polynomial curves. The gray tick marks drawn between each338

set of plots represent the elevations of the individual stations locations. These tick marks help to339

visualize station density across elevation. This characterization of density gives context to plotted340

curves, as the loess estimates will be more reliable at elevations with a higher density of stations.341

Figure 5 shows that PRISM, SKLM, and UK are fairly unbiased at low elevations (2000 meters342

or less) and tend to under-predict at higher elevations (2000 - 3000 meters). The errors of all343

methods are very unstable in ID-2015 at high elevations. The sinusoidal shape of the ME curves for344

IDW reveal the tendency of this method to over-predict design ground snow loads at low elevations345

and under-predict at high elevations. This behavior is a result of the relationship between NGSL346

and elevation as discussed in the "Practical Limitations" section of this paper. Finally, Figure 5347

shows the strong tendency of SNLW to over-predict design ground snow loads. In terms of relative348

errors, the Utah equations on average predict design ground snow loads 34% higher than station349

design ground snow load estimates from UT-2017 and 57% higher than estimates from UT-1992350

(with median relative errors of 25% and 41% respectively). Recall that Equation 3 was intentionally351

designed to over-predict design ground snow loads, and it is no surprise that this method would352

have higher cross validated errors when compared to models designed to minimize error. However,353

these accuracy comparisons are still useful as they quantify the magnitude of the over-prediction of354

design ground snow loads using SNLW. Such over-predictions are understandable when considering355

the consequences of under-predictions discussed earlier in this paper. However, reliability-based356

engineering widely holds that snow load estimates should be as accurate and reliable as possible,357

with conservative adjustments being made to load predictions through the selection of load factors358

from a proper reliability analysis (Nowak and Collins 2012).359
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Accuracy Comparisons360

Cross validated error measurements are partially subject to the random separation of obser-361

vations into groups. To account for this randomness, cross validation is performed 100 times,362

recording the MAE and median absolute error (Med-AE) for each method at every iteration. The363

large difference between MAE and Med-AE illustrates the skewness invoked by the exceptionally364

high prediction errors that occasionally occur at high elevation locations. Figure 6 visualizes the365

average MAE and Med-AE of the 100 cross validation iterations. Black whiskers on each bar366

indicate the minimum and maximum MAE and Med-AE for the 100 iterations.367

Figure 6 shows that PRISM, SKLM and UK notably outperform all other methods on both Utah368

datasets, with an MAE approximately 40-45% lower than SNLW and IDW on UT-2017. These369

improvements are not as pronounced for ID-2015, likely due to the less pronounced log-linear370

relationship between ground snow loads and elevation. However, the accuracy UK on ID-2017371

remains notably better than all other methods, highlighting the accuracy improvements associated372

with the universal Kriging paradigm. These results demonstrate the accuracy improvements offered373

by PRISM and Kriging when compared to current snow load estimation methods used in Idaho374

and Utah. More importantly, the methodology used to obtain these results provides a pattern for375

comparing all snow load estimation methods used in the western states. Using cross validation376

in future snow load studies will provide state and federal officials with a universal and defensible377

standard for final model selections. Such a standard will ultimately improve the ground snow load378

estimation methods used across the region.379

PRACTICAL LIMITATIONS380

Figure 7 compares the current ground snow requirements in Utah to the predictions of PRISM,381

UK, and IDW. This comparison is an extension of a similar comparison provided in Bean et al.382

(2017). Inmany cases, the current predictions lead to a reduction in ground snow load requirements,383

with somemajor reductions occurring in places like Kamas, UT. In other cases, each of the methods384

recommended increased to the ground snow load requirements like Monticello, UT.385

It is critical that these predictions and the previously discussed accuracy comparisons be placed386
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in the context of observational limitations. These predictions rely on accurate estimates of design387

ground snow loads within each dataset and there is no guarantee that predictive accuracy for terrain388

not represented in the input datasets will be comparable to cross validated accuracies reported389

previously. The following subsections discuss some of the inevitable limitations associated with390

predicting design ground snow loads.391

Limitations of Regression-Based Estimators392

There are extrapolation issues for the regression based estimators (PRISM, SKLM, UK, and393

LR) when attempting to predict snow loads at locations with elevations far exceeding all nearby394

station elevations. In Utah, these situations most often occur at mountain peaks lacking station395

measurements. In such cases, these estimators begin to predict unreasonably high snow load values,396

exceeding all observed snow load values in the dataset. This issue is resolved by restricting the397

PRISM, Kriging, and IDW predictions to extend no higher than the largest design ground snow398

load in the input dataset. In addition, the prediction of the global trend (as used in both kriging399

estimators and linear regression) is not allowed to extend beyond the predicted trend for the highest400

elevation station in the dataset. Such constraints are only imposed when predicting at the state level401

and are not imposed for the cross validation results presented in this paper.402

Limitations of NGSL-Based Estimators403

Figure 7 reveals an alarming IDW prediction that is more than double the other method predic-404

tions at Farmington, Utah (elevation 1316 meters). As observed in Table 2, three of the four stations405

nearest to Farmington are all located at elevations above 2000 meters with NGSL several times406

higher than the NGSL of the low elevation station. This results in a likely over-prediction of the407

design ground snow load at Farmington and highlights a key shortcoming of using NGSL to account408

for elevation. This shortcoming is due to the strong positive correlation between elevation and the409

log transform of NGSL at station locations in Utah as observed in Figure 8. This correlation leads to410

the sinusoidal error patterns for IDW observed previously in Figure 5. If NGSL fully accounted for411

the effect of elevation on ground snow loads, then NGSL should be independent of elevation with a412

non-significant correlation coefficient. However, the Pearson correlation coefficient associated with413
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Figure 8 is 0.63, which is highly statistically significant (p value < 0.0001). This correlation can be414

insignificant globally yet significant locally. For example, the overall Pearson correlation between415

elevation and log-NGSL on ID-2015 is only 0.14 (p value = .0004), while the Pearson correlation416

for stations located in 12 counties comprising the south-eastern corner of the state, is 0.71 (p value417

< .0001). The separation of locations into high and low elevation layers partially mitigates this418

effect. For example, the 1219 m separating elevation used in the Idaho report (Al Hatailah et al.419

2015) results in non-significant log-NGSL/Elevation correlations (i.e. p value > .01) of 0.05 and420

0.35 for the low and high elevation layers in the ten counties comprising the Idaho panhandle.421

However, this same separating elevation fails to eliminate the strong 0.71 correlation observed for422

the 12 south-eastern counties, as all stations in this region are located in the upper elevation layer.423

The prediction patterns associated with NGSL observed in Figures 5 and 7 are likely to occur424

in topographically complex regions where the correlation between NGSL and elevation is strong.425

Recalling the cost implications shown in Figure 1, differences in ground snow load prediction426

similar in magnitude to those observed at Farmington, Utah could easily double or triple the cost427

of the roof of a structure at these locations if this issue is not recognized and addressed.428

Limitations of 50 Year Estimates429

When fitting probability distributions to annual SWE maximums to predict 50 year ground430

snow load events, the convergence rate of the estimated parameters via maximum likelihood is431

on the order of Op

(
n−

1
2

)
(Casella and Berger 2002). This means that a fourfold increase in the432

sample size will reduce the estimation error by roughly half. However, the sample size necessary433

to achieve an acceptable level of error will vary for every research project. The minimum number434

of yearly observations required for distribution fitting were twelve in UT-2017, ten in ID-2015435

(Al Hatailah et al. 2015), and seven in UT-1992 (SEAU 1992). These relatively small thresholds436

for the distribution fitting process reflect practical efforts on the part of researchers to produce437

reasonable 50 year estimates at stations with short periods of record. However, distributions fit438

with only ten or so years of record are likely attempting to predict 50 ground snow loads with439

magnitudes larger than all observations in the period of record.440
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Even with an "adequate" sample size, the inherently messy nature of real data (outliers, miss-441

ing values, inaccurate measurements, and poor estimates of snow density from snow depth) adds442

uncertainty to 50 year estimates. In addition, potential violations of two assumptions inherent to443

the distribution fitting process add additional uncertainty to 50 year estimates. The first assumption444

is that the yearly maximums at each station all come from the same distribution, implying that445

the measurement conditions at each station location remain constant over the life of the station.446

Documented changes in measurement tools, sampling site conditions, and human influence (Julan-447

der and Bricco 2006) bring this assumption into doubt. The second assumption is that the yearly448

maximums are statistically independent, implying that snow measurements at each station location449

are uncorrelated across time. However, there is a wealth of evidence that suggests that time cannot450

be ignored when measuring climatic events. Researchers claim that the proportion of precipitation451

falling as snow in Utah has declined by nine percent in the last half century, accompanied by452

long term decreases in overall snow cover (Gillies et al. 2012). This agrees with multiple sources453

indicating that yearly snow packs are declining across the Pacific Northwest (Mote 2006, Scott454

and Kaiser 2004). These sources indicate that the assumption of independence between yearly455

maximums is most likely violated. These unaccounted sources of uncertainty are important to456

acknowledge but difficult to quantify. The effect of such uncertainties will inevitably become more457

prevalent when trying to predict recurrence intervals beyond 50 years, such as those explored in458

Debock et al. (2017). Further work is required to determine precise influence these assumption459

violations have on station ground snow load estimates.460

One way to illustrate the effect of these uncertainties is through a comparison of estimated 50461

year ground snow loads for COOP station USC00109638 in Weiser, Idaho (NOAA 2017). This462

station was selected due to the series of snow related collapses occurring in Weiser during the463

winter of 2017, where ground snow loads were estimated to be as high as 1.89 kpa (Arcement464

2017). The reader should be cautioned that the reported collapses could be due to any number of465

factors (design, construction, etc.), not just snow load prediction. The authors can not comment466

on the safety of those structures, only to illustrate the uncertainty in 50 year ground snow load467

19 Bean, May 20, 2018



based on the distribution and SWE prediction. Station records at this location extend as far back468

as 1912. Data from this station were processed using the same procedures and filters used in the469

creation of UT-2017, resulting in a sample size of 73 yearly maximum snow loads. The normal,470

log-normal, gumbel and generalized extreme value (GEV) distributions each predict the 50 year471

ground snow load estimate at this location, the latter two distributions being fit using the extRemes472

package (Gilleland and Katz 2016). Efforts to fit a log-Pearson type III distribution via maximum473

likelihood estimation were non-convergent and thus were excluded from the comparison. Each474

distribution was fit twice: once using Sturm’s equation to convert snow depths to SWE and again475

using the RMCD. Table 3 compares each of the resulting 50 year estimates to the 0.81 kPa 50 year476

ground snow load estimate in the Idaho snow load report.477

Table 3 shows that different distributions can provide notably different estimates of 50 year478

events. The differences in distribution estimates shown in Table 3 are relatively larger than479

distribution comparisons at the Denver-Stapleton, Colorado snow site provided in DeBock et al.480

(2017). Perhaps more important, however, is the difference in 50 year predictions resulting from481

changes to the snow depth to SWE conversion method. Table 3 shows that, using the same482

distribution, SWE estimates using Sturm’s equation results are more than 50% higher than design483

ground snow loads using RMCD. Differences of this magnitude are not unique to this particular484

station, but are most pronounced at low elevation locations such as Weiser. Table 4 shows the485

median absolute relative difference of 50 year estimates for 261 stations on UT-2017 relative to486

the original log-normal distribution estimates. Of the 415 stations, 120 stations were excluded as487

they did not require any SWE conversions and 21 stations were excluded for not having stable GEV488

50 year estimates. These results confirm that differences in SWE conversion method are more489

influential on design ground snow loads than differences in distribution selection. These large490

differences reinforce the need for increased scrutiny in the process used to estimate design ground491

snow loads.492

CONCLUSION493

Great care has been taken by each of the western states to develop ground snow load prediction494
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methods. However, little work has been done to formally compare the accuracy of these methods.495

This paper began a formal comparison of methods using cross validation to compare a variety of496

snow load prediction methods on three independently developed datasets for Utah and Idaho. The497

cross validation results show that both Kriging methods and PRISM were the most accurate (in498

terms of cross validated error) across all three datasets. For UT-2017, these methods had a 40-45%499

lower mean absolute error the current method used in Utah and Idaho. Further, the cross validation500

results show that UK performed the same as PRISM on the Utah datasets, but noticeably better than501

PRISM on the ID-2015, suggesting that Universal Kriging may be the best method for predicting502

ground snow loads across varying datasets. The relative ease of implementation for SKLM, UK,503

and PRISM demonstrate the feasibility of using these methods on a consolidated dataset to make504

predictions for multi-state regions. In addition, these prediction methods readily lend themselves505

to other SWE-based topics, especially when making predictions across time. For example, the506

authors have used PRISM to visualize changes in the water content of Utah’s April 1st snow-pack507

from 1930-2015.508

This paper also discussed the limitations underlying the current distribution based methods for509

estimating 50 year ground snow loads (or similar variants) at station locations. Comparisons of510

various distributions and snow load conversion methods in Tables 3 and 4 show that estimated511

design ground snow loads are very sensitive to changes in the SWE conversion method.512

This in mind, the following conclusions can be made:513

• SWE and distribution fitting assumptions provide differing design ground snow load station514

predictions by up to a factor of nearly 290% based on the case study in Weiser, Idaho and515

more than 40% on average when comparing stations from UT-2017.516

• The top three considered methods (in terms of low cross validated MAE) account for log-517

linear relationship between ground snow loads and elevation. The improvements in cross518

validated accuracy using these methods was as much as 45% on UT-2017 when compared519

to the current prediction methods used in Idaho and Utah.520

• Normalized ground snow loads (NGSL) do not fully remove the effect of elevation in spatial521
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interpolation methods, with a Pearson correlation of 0.63 on UT-2017. This correlation,522

when present, leads to a tendency for IDW to over-predict snow loads at low elevations, and523

under-predict at high elevations.524

• UKwas similar in accuracy to PRISM on UT-2017 (MAE ≈ 0.9kPa) and UT-1992 (MAE ≈525

1.2kPa) and more accurate on ID-2015 (MAE ≈ 1.4kPa vs MAE ≈ 1.7kPa). Given its526

relative simplicity, well defined prediction variance, and robustness to differences in input527

data, the authors recommend Universal Kriging as the optimal method for predicting ground528

snow loads in Utah and Idaho.529

The framework for cross validation outlined in this paper can be readily adapted for larger scale530

comparisons of snow load estimation methods across the country. Such a framework owes its531

existence to the individual efforts of many of the western states, which have provided numerous532

state-level ground snow load datasets for comparison. Leveraging these datasets for formal cross533

comparisons of methods will accelerate the development of new and better models as well as the534

improvement of existing ones. Consolidating the advancements made by each of the western states535

will continue to improve the consistency and reliability in design ground snow load estimates across536

the region.537
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Fig. 1. Cost to snow load comparison for five different roof joist types.
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Fig. 2. Station elevation plotted against design ground snow loads (log scale) for (a) UT-2017, (b)
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in each case. In addition, (d) shows histograms of station elevations for each dataset.

30 Bean, May 20, 2018



0.0

0.1

0.2

0.3

0.4

0 100 200 300
Distance (km)

Se
m

iv
ar

io
gr

am

Dataset
ID−2015
UT−1992
UT−2017

Fig. 3. Empirical (points) and theoretical (lines) semivariograms for each of the three datasets.

31 Bean, May 20, 2018



(a)

−10

−5

0

5

10

Er
ro

r (
kP

a)

(b)

(c)

−10

−5

0

5

10

1000 2000 3000
Elevation (Meters)

Er
ro

r (
kP

a)

(d)

1000 2000 3000
Elevation (Meters)

Fig. 4. Scatter plot of cross validated errors for (a) PRISM, (b) SKLM, (c) SNLW, and (d) IDW on
UT-2017.

32 Bean, May 20, 2018



(a)

−2

0

2

4

Er
ro

r (
kP

a)

(b) (c)

0

1

2

3

4

5

500 1500 2500 3500
Elevation (Meters)

Ab
so

lu
te

 E
rro

r (
kP

a)

Method
PRISM
SKLM
UK
IDW
SNLW

500 1500 2500 3500
Elevation (Meters)

500 1500 2500 3500
Elevation (Meters)

Fig. 5. Smoothed errors and absolute errors for (a) UT-2017, (b) UT-1992, and (c) ID-2015. The
gray tick marks plotted along the x-axis of the three upper figures denote the individual station
elevations.

33 Bean, May 20, 2018



(a)

0

1

2

3

PRISMSKLM UK IDW TRI SNLW LR

M
AE

 (k
Pa

)

Med−AE
MAE

(b)

PRISMSKLM UK IDW TRI SNLW LR

(c)

PRISM SKLM UK IDW TRI LR

Fig. 6. Barchart of mean absolute errors (MAE) and median absolute errors (Med-AE) of spatial
prediction methods for (a) UT-2017, (b) UT-1992, and (c) ID-2015.

34 Bean, May 20, 2018



Kamas Laketown Monticello Farmington Orem

PRISMUK IDW PRISMUK IDW PRISMUK IDW PRISMUK IDW PRISMUK IDW
1

2

3

4

5

6

Method

Sn
ow

 L
oa

d 
(k

Pa
)

Law
Amended
Equation

Fig. 7. Comparisons of spatial prediction methods to the 1992 Equations and recent 2016 amend-
ments at select cities in Utah.

35 Bean, May 20, 2018



0.0003

0.0006

0.0012

0.0024

0.0085

1000 2000 3000
Elevation (meters)

N
G

SL
 (k

Pa
) −

 lo
g 

sc
al

e

Fig. 8. Station elevation plotted against NGSL (log scale), showing that there is still a clear (and
unaccounted for) log-linear relationship between NGSL and elevation.

36 Bean, May 20, 2018



List of Tables684

1 Summary of the three design ground snow load datasets used in method comparisons. 38685

2 NGSL at four nearest locations to Farmington, UT (111.884 W, 40.981 N). . . . . . 39686

3 50 year ground snow load estimates for Weiser, Idaho using a variety of distributions. 40687

4 Median absolute relative difference in 50 year estimates as compared to original688

log-normal distribution estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . 41689

37 Bean, May 20, 2018



TABLE 1. Summary of the three design ground snow load datasets used in method comparisons.

Dataset Stations SWE Conversions Distribution
UT-2017 415 Sturm’s Equation Log-Normal
UT-1992 413 RMCD Log-Pearson Type III
ID-2015 651 RMCD Log-Pearson Type III
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TABLE 2. NGSL at four nearest locations to Farmington, UT (111.884 W, 40.981 N).

Station Elevation Distance to Location NGSL
(m) (km) (kPa/m)

USC00422726 1335 5.4 0.0013
USS0011J11S 2438 5.5 0.0070
USS0011J12S 2066 6.4 0.0050
USS0011J68S 2359 8.4 0.0047
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TABLE 3. 50 year ground snow load estimates for Weiser, Idaho using a variety of distributions.

50 year estimate (kPa)
Method Sturm RMCD
Log-Normal 1.64 1.04
Normal 1.54 1.07
Gumbel 1.55 0.99
GEV 2.34 1.25
Idaho Report 0.81
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TABLE 4. Median absolute relative difference in 50 year estimates as compared to original
log-normal distribution estimates.

Absolute Relative difference (%)
Method Sturm RMCD
log-Normal 35%
Normal 13% 42%
Gumbel 8% 40%
GEV 21% 29%
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