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Abstract: In this paper, we discuss a novel approach for collaborative retrospective analysis. 
One researcher was directly involved in a classroom teaching experiment, adopting an emergent 
perspective as an interpreter-witness of classroom interactions during a four-week algebra 
instructional unit with sixth-grade students. The other researcher experienced and analyzed the 
data in reverse chronological order. We describe how this re-emergent perspective revealed 
aspects of students’ early algebraic reasoning. 
 

Keywords: early algebra, emergent perspective, constructivism, design research 

 

Introduction 
 

“Hindsight is twenty-twenty” and “eyes in the back of your head” are two phrases that 

are distinct but related in meaning. The former refers to the revealing of prior misapprehension, 

whereas the latter refers to the ability to see what seems imperceptible. In mathematics education 

research, we often video-record teaching sessions so we can attempt to analyze teaching and 

learning with “hindsight in the back of our heads.” We slow down recordings to identify 

previously ambiguous nuance; we analyze and re-analyze to consider changes in what we notice 

transpiring between sessions and retrospectively across sessions.  

Another common phrase relevant to analyses of teaching experiments is “two heads are 

better than one.” This manifests in the need for a witness of the teaching sessions (Steffe & 

Thompson, 2000) to assist with in-the-moment inferences and both on-going and retrospective 
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analyses. There are many approaches to retrospective analyses of teaching experiments in 

mathematics education research. Some researchers focus on describing characteristics of the 

product of analysis, for instance, a stability in a researcher’s model of a students’ mathematics, 

without prescribing the process explicitly (Steffe & Thompson, 2000). Others (e.g., Hackenberg 

& Lee, 2016; Hunt, Tzur, & Westenskow, 2016) reference aspects of grounded theory 

methodology, such as the constant comparative method (Corbin & Strauss, 2008). In this paper, 

we describe a new perspective for retrospective collaborative analysis, what we term a “re-

emergent perspective”.  

One of us (Moss) was directly involved throughout a design experiment (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003) investigating a hypothetical learning trajectory (HLT) for the 

sixth-grade objectives of the “Expressions and Equations” strand of the United States’ Common 

Core State Standards for School Mathematics (Figure 1, NGA/CCSSO, 2010). Moss had adopted 

an emergent perspective as an interpreter-witness of classroom interactions (Cobb & Yackel, 

1996). Moss designed activities and lessons and regularly met with the classroom teacher 

between teaching sessions. The other author (Boyce) was not involved at all with the experiment 

until after data collection was complete. Boyce formed hypothetical models of four students’ 

cognitive activities as classroom activities were revealed in reverse chronological order, via 

video recordings. Boyce was situated in what we term a re-emergent perspective. Boyce formed 

conjectures about relationships between instruction and students’ mathematics, and he revised 

those conjectures as previous sessions were revealed. A value we see in re-emergent analysis is 

that it allows researchers with different but complementary theoretical perspectives to compare 

interpretations of the outcomes of a design experiment. 
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Relationship with the Emergent Perspective  

We were motivated to collaborate when we became aware of one another’s research 

interests in an informal setting. During a mentorship program for junior mathematics education 

faculty (the Association of Mathematics Teacher Educators’ STaR Fellowship Program, 

http://amte.net/star) we learned that we shared an interest in researching sixth-graders algebraic 

reasoning. Boyce had been immersed in research from small-group teaching experiments, 

primarily based in Les Steffe’s work, that suggested relationships between students’ 

understandings of algebraic expressions and their understandings of fractions (e.g., Hackenberg 

& Lee, 2015). Meanwhile, Moss had conducted a classroom teaching experiment from which she 

developed a learning trajectory for sixth-grade students’ reasoning about variables and equations 

(Moss, 2014).  

In relation to Cobb, Stephan, McClain, and Gravemeijer’s (2001) interpretive framework 

(see Figure 1), our shared focus was the last row: relationships between classroom mathematical 

practices and mathematical interpretations and reasoning. We were both interested and immersed 

in literature pertaining to middle grade students’ learning of (early) algebra, and we had research 

experiences and expertise that were complementary. Moss had adopted a social perspective in 

her study, focusing on classroom norms, “taken-as-shared” meanings, and participation in 

mathematical discourse (Cobb, 1999). Boyce adopted a psychological perspective in analyzing 

Moss’ data, focusing on students’ cognitive schemes and analyzing whether their understandings 

were procedural, participatory, or anticipatory (Tzur & Simon, 2004; von Glasersfeld, 1995).  

We believe other researchers with compatible interests within the interpretative 

framework might benefit from collaboration using the re-emergent perspective, depending on the 

specificity of their shared interest and expertise. In the next sections, we describe the design 
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experiment and results of analyses from our two perspectives. As we will discuss, a main 

constraint on analyses from the re-emergent perspective are the qualities of data collected for 

unanticipated analyses.  

Social Perspective Psychological Perspective 

Classroom social norms Beliefs about own role, others’ roles, and the 

general nature of mathematical activity in school 

Sociomathematical norms Mathematical beliefs and values 

Classroom mathematical practices Mathematical interpretations and reasoning 

Figure 1. Interpretive Framework for analyzing communal and individual mathematical activity 

and learning (Cobb et al., 2001). 

About the Design Experiment 

Preliminary topics in algebra usually consist of variables, simplification of algebraic 

expressions, equations in one unknown, and equation solving (Kieran, 1989). Although school 

algebra often places emphasis on manipulations of variables and symbols, algebra is more than a 

set of procedures for manipulating symbols (NCTM, 2000). Furthermore, according to Kirshner 

(1993), a drill approach to symbol manipulation is undesirable because it “trains students in non-

reflective competence” (p. 3). Part of the intent of early algebra is to understand and leverage 

ways elementary and middle grade students’ numerical and quantitative reasoning relate to their 

learning of algebraic concepts (Brizuela & Schliemann, 2004; Empson, Levi, & Carpenter, 2011; 

Hackenberg, 2013; Hackenberg & Lee, 2015; Kaput, 1999; NCTM, 2000).  

The United States’ Common Core State Standards for School Mathematics (CCSS-M) 

stipulate that students should begin to develop more formal understandings of variables, 

expressions, and equations in sixth grade (NGA/CCSSO, 2010). Moss (2014) conducted a 
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whole-class design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) in a U. S. 

sixth grade classroom to investigate the teaching and learning of the sixth-grade objectives of the 

“Expressions and Equations” strand of the CCSS-M standards (Figure 2). Moss’ research 

focused on the development of a hypothetical learning trajectory (HLT) (Simon, 1995) for these 

mathematical concepts. An HLT consists of three inter-related components: goals for 

mathematics learning, tasks designed to promote learning, and hypotheses about the process of 

students’ learning. As part of her documenting and analyzing classroom learning, Moss 

participated as an observer and co-teacher in the classroom, which was lead-taught by an 

experienced teacher.  

• Apply and extend previous understandings of arithmetic to algebraic expressions. 

• Reason about and solve one-variable equations and inequalities. 

• Represent and analyze quantitative relationships between dependent and independent 

variables. 

• Use properties of operations to generate equivalent expressions. 

• Solve real-life and mathematical problems using numerical and algebraic expressions 

and equations. 

Figure 2. Sixth grade expressions and equations strand (NGA/CCSSO, 2010) 

There were 22 students in the sixth-grade class, and the teaching experiment consisted of 

20 hour-long sessions over four consecutive weeks at the very beginning of the school year. 

Students sat in groups of three to four and participated in small group and whole class 

discussions. During each discussion, a few students shared their work and mathematical 

reasoning with the whole class. The students used a document camera and the board at the front 

of the classroom to share their thinking. While students presented, their peers in the class asked 



  Boyce & Moss 

questions and compared their reasoning to the presenters’ thinking, which generated whole class 

discussion. The teacher facilitated the lessons and encouraged students to come to a shared 

understanding of the mathematics being discussed in each lesson. Students also engaged in small 

group discussions in which they could share their work with each other and help each other to 

clarify their reasoning. 

Analyses from the Emergent Perspective 

Prospective analyses 

Prospective analyses refer to ongoing, between-session research that is the work of lesson 

planning. In the design experiment, lessons were modified and reorganized daily based on Moss’ 

understandings of relationships between the students’ learning and the teacher’s implementation 

of tasks. Moss logged her observations documenting each teaching session in terms of 

mathematical meanings, errors, activities, discussions, teacher meanings, and justifications for 

modifications in the lessons. Figure 3 shows an example of a lesson log for the teaching session 

on adding and subtracting like terms.  

Date/ 
Activity 

Day 5 
9/13/13 
Adding and Subtracting Like Terms 
Students will develop an understanding of variables in mathematics and will learn 
that like terms can be added and subtracted.  Students will also learn to model 
patterns with algebra.   
 

Mathematical 
Meaning 

• Simplifying 
• Like Terms 
• Unlike Terms 
• Expression 
• Equation 

Errors/ 
Misconceptions 

• Combining like terms: 3a + 4a + 7b = 14f 
e.g., 3 apples  + 4 apples + 7 bananas = 14 fruits 

• Subtraction of like terms: All like terms are added. 
• Like Terms: Writing the variable in front of the coefficient. 

e.g, R3 +B2 +G7 instead of 3R + 2B + 7G 
• Like term is correct and unlike term is wrong. 
• Like terms have the same coefficient and same variable  

e.g., 20h and 20h are like terms, but 5h and 15h are not like terms. 
Activity that led to • More Practice (Day 5) worksheet. 
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misconception • Identifying the like terms and the unlike terms and then writing an algebraic 

expression for each situation. 
Context of small 
groups 

• Discussion about adding and subtracting like variables. 
• Small groups were able to write the expression, but not simplify the expression. 

Context of whole 
group 

• Discussion about equality and why both sides of an equation have to be the 
same.   

• Simplifying the expression to an equivalent expression.   
• Used an arrow () to show simplification instead of an equal sign (=) 

Role of teacher/ 
teacher 
conceptions 

• The lesson went long (2 hours).   
• Too much information for them. 
• Simplifying is a new idea, so that is why she used the arrow to show simplifying 

first. 
• Teacher thinks it is better to start with simplifying abstract problems and then go 

to context problems. 
• Need more review of equal sign. 
• The teacher led the whole class discussion and helped students come up with the 

equal sign means the same on both sides. 
What did we 
change and why? 

• Simplifying was not originally part of this lesson.  Introduced the idea of 
simplifying.  (I think the arrow is going to confuse them/ need to use equal sign) 

• Did not get to the cost of a soccer ball.   
• Spent more time on simplifying and equality than expected. 

Figure 3. Example of daily log content 

Figure 3 refers to a lesson involving the context of adding and subtracting apples and 

bananas. It is important to note that at this stage in the instructional unit, many students were 

using a letter to label an object instead of a quantity of object, for example, 3a is 3 apples 

Additionally, students wrote the “variable” in front of the coefficient (e.g. R3 instead of 3R). 

Also, during this lesson the teacher began using an arrow to show simplification instead of the 

equal sign. Based on these observations and others (shown in Figure 3), the next lesson began 

with a whole class discussion with the objective of clarifying the misconceptions about 

combining like terms, variables, and coefficients. Some questions to guide student thinking 

included: 

● In your own words, what is a variable? 
● What is an example of two like terms? Why? 
● What is an example of unlike terms? Why? 
● What is a coefficient? 
● Can unlike terms have different coefficients? Explain.  

 
The “big ideas” in this lesson were made explicit and conveyed to the teacher through a 
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discussion before she taught the next lesson and also in writing on the lesson plan. Based on 

what happened in this lesson, the next lesson was subsequently adjusted. This cycle of planning, 

teaching, observing, and debriefing occurred daily during the four weeks of the teaching 

experiment. 

The following transcription is a whole class discussion about how the equal sign means 

“the same on both sides of an equation” or “balanced”.  It exemplifies classroom discourse and 

provides insight into the motivations of the teacher. Moss knew from analyses of prior lessons 

and discussions with the teacher that many students in the class had an arithmetic view of the 

equal sign, where it only meant “to compute”. Thus, the goal of this lesson was to understand 

equivalent expressions and the idea of balancing a scale to solve for the unknown quantity in an 

equation. In this discussion, the students and teacher refer to a picture of a pan scale with 

different colored shapes that represent varying weights. The goal of this task is to balance the 

scale with shapes on either side.  

Teacher:  What is this? 
John:  Scale. 
Teacher:  What do we use scales for? 
Gina:  To measure. 
Teacher:  What is the goal? 
Olivia:  For it to be equal. 
Teacher:  What is another word for that? 
Ian:  Balanced. 
Teacher:  Balanced. Good. I have four shapes up there. A square, circle, triangle, and  

diamond. If I have a red square on this side. How do I make it balanced? 
Class:  Put a red square on the other side. 
Teacher:  If I add a blue circle or two blue circles, what do I have to do to the other side? 
Class:  Two blue circles. 
Teacher:  If I add a yellow diamond and another purple triangle, and another triangle, and a  

circle. 
Class:  Yellow diamond, purple triangle, purple triangle, and circle. 
John:  It's so easy. 
Teacher:  This shows that when we have a scale you want to make sure it is balanced. That  

is going to be the same concept when it comes to this third definition of variable. 
If I am given a problem like 13 =x - 1, according to this rule, what do I have to 
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do? Raise your hands. 
Jason: Solve for the unknown variable. 
Teacher:  Solve for the unknown variable or solve for x. And I wrote x because on the  

standardized test most of the time the variable will be x. When I do this, I want to 
think of the scale and remember that both sides are balanced. 

 
Following this lesson, Moss and the teacher determined that students seemed to understand the 

balancing concept of equations but needed to understand opposite arithmetic operations and 

mathematical symbols to solve for an unknown. Therefore, in the next lesson, students were still 

provided with a picture of a scale, but it had numbers and variables, instead of colored shapes.  

Retrospective analyses  

In addition to the daily lesson logs, the data analyzed retrospectively in the design 

experiment consist of video recordings of classroom discourse and scanned copies of students’ 

written work, including a pretest and posttest. As part of the articulation of an HLT following the 

conclusion of the teaching experiment, Moss developed a progression of the students’ levels of 

thinking about expressions and equations (see Figure 4).  

Label Thinker Used letters to label a category or item (e.g. c is cupcakes) 
Formulaic Thinker Used letters to keep a record of a quantity that has a feel of a known (e.g. 

Given a context where there are 2 girls and 8 boys, then g  + b = 10) 
Substituter Understood that a letter can be substituted for a given value (e.g. g = 2, 

so 2 + b = 10) 
Solver Understood that an equation can be solved for an unknown value (e.g. 2 

+ b = 10, so b = 8) and an expression can be simplified to find an 
unknown value (e.g. 4 + 3 = y, so y = 7) 

Correspondence 
Thinker 

Understood a letter as representing a changing quantity and that a 
relationship exists between inputs and outputs (e.g., in y = x+3) 

Figure 4. Levels of thinking about expressions and equations (Adapted from Moss, 2014) 

The intent of this section is to share examples from student work that demonstrate each level of 

thinking about expressions and equations. 

The task in Figure 5 was on the posttest. In this task, students are asked to find a missing 

number. The student’s work on the task (Figure 5) demonstrates label thinking. She indicated 
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that a letter is a label for a known category, using s for songs. For example, she wrote the 

equation 27s - 18s = 11 and labeled s = songs to find the missing number of songs. 

 
Figure 5. Student’s work that shows label thinking 

The letter s is used to label songs where 27s is interpreted as 27 songs and 18s is interpreted as 

18 songs. The s in the student’s work is not a quantity, but, rather, is labeling 27 songs and 18 

songs.  

The work in Figure 6 demonstrates solver thinking.  The student uses the letter L to 

represent the missing number of songs and wrote the equation 18 + L = 27. In this case, L is a 

yet-to-be-known quantity. In the levels of thinking, the student set up an equation and balanced 

the equation by subtracting 18 from both sides of the equal sign to find the missing quantity 

demonstrating solver level of thinking.   

 

Figure 6. Student work that shows solver thinking 

In another task, given on the first day of the instructional unit, students were asked to 

write in their notebooks an expression that shows the number of adults and the number of kids in 
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their respective families (see Figure 7). 

 

  Figure 7. Student’s work that shows formulaic thinking 

The work in Figure 7 shows the use of the letter S to keep a record of the number of kids, the 

letter I to keep a record of the number of adults, and the letter X to represent the total. The 

quantities in these cases are known and the student wrote an equation S + I = X to begin to 

understand that a letter represents a known quantity. This work is evidence of formulaic thinking 

because the student used letters to keep a record of given, known quantities.  

 On this same task, another student wrote the equation L + 2 = G (Figure 8). She 

substituted the letter L for the quantity 2 and the letter G for the quantity of 4. This student’s 

thinking is an example of substituter thinking.   

 

Figure 8. Student’s work that shows substituter thinking. 

Substituters use letters to make a one-to-one correspondence with a known quantity. This student 
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understood that the letters were assigned specific quantities and could be substituted into the 

equation. She reasoned that the given quantity was a replacement for the letter.  

 Correspondence thinkers begin to understand that a letter can represent a changing 

quantity, as opposed to a yet-to-be-known quantity and realize that there is a relationship 

between inputs and outputs. In Figure 9, a correspondence relationship is described and the 

student represents the relationship with an arrow diagram (table), algebraic equation, and graph.  

 

Figure 9. Student’s work that depicts correspondence thinking 

In the arrow diagram, the input and output are changing quantities that relate to one another. In 

the algebraic function, the variables d and c represent these changing quantities. The graph of the 

line also shows changing quantities with a representation of how the dollar amount in the piggy 

bank increases over time. The student labeled the input, d, and the output, c, in the equation. 

Functional thinkers continue to think of an equation as balanced and begin to see an equation as 

relating inputs and outputs.  
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 The levels of thinking in Figure 4 are related because students must think of letters as 

known and yet-to-be-known values depending on the given algebraic situation. Figure 10 shows 

a relationship between thinking of a letter as a known value and of thinking of a letter as a yet-to-

be-known value. As students began to think flexibly about the meaning of letters that represent 

numbers, they were able to engage in doing algebra as correspondence thinkers.  

 

Figure 10. The relationship between thinking of letters as known and yet-to-be-known values. 

Analyses from the Re-emergent Perspective 

As part of the design, Moss conducted four individual student interviews during the final 

week of the teaching experiment. The interviews lasted approximately 30 minutes, and they 

consisted of a sequence of written tasks followed by requests for verbal explanations. The four 

students who were interviewed—Cris, Enrique, Gina, and Maria (each pseudonyms)—were 
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seated together in the classroom throughout the teaching experiment and were consistently the 

focus of one of two video-cameras that recorded classroom discourse.  

Analyses of Interview Data 
Boyce’s initial goals centered on forming conjectures involving relationships between 

students’ numerical, quantitative, and algebraic reasoning and the soon-to-be-seen classroom 

mathematical practices. We present the results of analyses from the re-emergent perspective by 

first providing some examples of Boyce’s interpretations from the task-based interviews. We 

relate this to students’ levels of thinking about equations (Figure 4) and then describe how we 

collaborated to retrospectively analyze the other data.  

Cris’ and Maria’s reasoning with missing numbers sentences. Maria and Cris each 

successfully solved Missing Number Tasks (see Figure 11), and their verbal responses to Moss’ 

requests to explain their thinking revealed differences in the ways their written representations 

reflected their thinking. Maria did not write anything to represent her reasoning until after she 

had completed computations mentally. She started with writing ‘-3’ on the right side of the 

equation. She then subvocally said, “set it equal” and, after 10 seconds, wrote “x = 22”. Lastly, 

she indicated addition of 10 and 22 on the left side of her equation. When the interviewer asked 

her to explain, Maria said, “I knew it had to be equal, so I did x equals 22 because 22 plus 10 

equals 32.” Despite further interviewer prompting, Maria was unable to explain how she arrived 

at “x=22” or how subtracting 10 could be related to her procedure.  

What if it was 10 + x = 35 – 3?  How would you solve for x? 
Maria’s Response  Cris’ Response  
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Figure 11. Maria’s and Cris’ responses to missing number tasks 

Cris’ representations of repeated subtractions were in tandem with his obtaining 

intermediate results. Unlike Maria, he represented his process of reversing addition on the other 

side of the ‘=’. But when Cris finished his second subtraction, and the interviewer asked him 

how he could check his work, Cris expressed that he unsure how his final result (22) related to 

the original task. He was able to check that the original number sentence was true by substituting 

the ‘22’ for x, but not until the teacher suggested that activity. The two students thus revealed 

different gaps in their schemes, or ways of assimilating and operating in service of a goal (von 

Glasersfeld, 1995). Maria was able to assimilate the task as an equivalent missing number task: 

10 + __ = 32 without representing this as subtraction. Cris, in the process of representing the 

sequence of subtractions, lost that the goal was to find the value of x.  

Gina’s and Enrique’s reasoning with missing quantities. Unlike Cris and Maria, 

Enrique’s and Gina’s interviews included tasks situated in context (it was later revealed that each 

connected to a World Cup Soccer theme). Gina was initially unsure how to respond to the 

Tickets task, which involves missing rates (see Figure 12).  
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Tickets Task Gina’s Response 

My family has 2 children and 2 adults.  My 
friend, Jake’s, family has 3 children and 1 
adult. We don’t know how much tickets cost 
for adults and how much tickets cost for 
children.   

 

Model this with an algebraic expression. 

 

Figure 12. Gina’s writing in response to the Tickets Task 

The interviewer (Moss) suggested “just starting with how much adult tickets cost and how much 

children’s tickets cost.” Gina used the letter ‘a’ for adult tickets and the letter ‘c’ for children’s 

tickets in writing two expressions. Boyce noticed that Gina did not indicate understanding these 

letters as representing either unknown rates (dollars per ticket) or quantities (numbers of 

dollars). But after Moss asked Gina to represent “the total cost for both families,” Gina wrote the 

expression, “5c + 3a”, suggesting that for her, the words “total cost” signaled a need to combine 

like terms (i.e., 2c + 3c and 2a + 1a).  

Enrique completed a similar task in which rates were known and quantities were 

unknown. Enrique’s justification for his response to the Equipment Task (Figure 13) was to 

explain “there’s 40 dollars of cleats and 60 dollars of jerseys [emphasis added].” He also claimed 

that “you can put any letter as a variable, it doesn’t matter.” Enrique thus indicated awareness of 

letters symbolizing unknown quantities, rather than labels. But, Enrique’s response indicated he 

was not thinking about unknown unit rates, as he did not express 40 dollars per jersey. Later, 

when Enrique evaluated his expression for given values of the quantities of jerseys and cleats, he 

labeled the total cost with a ‘$’ before performing the computation. Enrique thus used the ‘$’ 

symbol as an abbreviation for a label when combining like terms in the same way Gina used 
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symbols ‘a’ and ‘c’.  

Equipment Task Enrique’s Response 
The price of cleats is $40 and the price of a  
jersey is $60.  I need to buy a certain number of 
cleats and a certain number of jerseys.   
 
 
Write an algebraic expression that shows this  
situation.  

Figure 13. Enrique’s writing in response to the Equipment Task 

Reasoning with whole numbers and fractions. Enrique was the only student who was 

given an interview task involving fractions. He responded to the task, “Solve ½ x = 7” by 

inverting the fraction to write the equation as “2/1 x = 7”.  He next re-wrote the equation as “2x 

= 7”. Moss stopped him, and suggested that he instead divide both sides of the original equation 

by ½. After writing ½ / ½ x = 7/ ½, Enrique crossed out the ½ / ½ on the left side of the equation, 

replacing it first with 1x and then x. On the right side, he said he was stuck because “7 divided 

by ½ would be 3…we can’t cut it in half unless we make it a fraction.”  Moss then guided him 

through the “invert and multiply” procedure for fractions division to yield the result of 14. He 

then reasoned that this was correct by confirming that half of 14 is indeed 7. Enrique knew that 

inverting the fraction was involved in the procedure to solve the equation, but (especially in 

contrast to confident responses in earlier tasks) he demonstrated that he did not how or why. 

Conjectures about students’ participatory or anticipatory schemes. Boyce 

conjectured from the interviews that Gina, Maria, and Cris had each constructed participatory 

schemes for understanding letters as labels and for understanding letters as representations for 

unknown (whole) numbers. The students’ activities were participatory because they were 

connected to their reasoning, but they needed guidance or prompting from the teacher (Tzur, 

2007). In contrast, Enrique’s responses indicated he had interiorized these understandings — 
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they were anticipatory for him and did not require teacher assistance or scaffolding. It was 

striking that Enrique’s responses to the tasks involving fractions were much like the other three 

students’ responses to tasks involving whole numbers: he attempted arithmetic procedures in 

search of a meaningful result and appealed to Moss for guidance. 

Re-emergent Analyses of Classroom Learning Progression 

After Boyce shared and discussed his interpretations of the interviews at the end of the 

teaching experiment with Moss, Moss revealed the unit plan, associated learning trajectory, and 

scope of data sources. In particular, Moss revealed that the class demonstrated growth as they 

moved from thinking of letters as abbreviations for qualities to substituting numbers for variables 

in algebraic expressions, as evidenced by their written work in their notebooks and on pre/post 

assessments. For example, Figure 14 shows the contrast in Maria’s learning to substitute 

numerical values for letters in evaluating expressions between her pretest and posttest. Boyce 

learned that the trajectory Moss described referred to class’ progression as a whole – she had not 

focused her analysis on progressions of individual students’ learning. 

Figure 14. Maria’s evaluating expressions on the pretest (left) and posttest (right) 

We reviewed transcriptions and video-recordings of classroom activities and students’ 

written work to understand the relationships between students’ participation in classroom 

activities and their interview responses. Moss searched through her transcriptions of the 

classroom recordings and prior analyses to identify potentially important segments (e.g., those 



  TME, vol. 16, nos.1, 2&3, p. 427 
 

with the word “fractions” or when expressions were first introduced) for Boyce to examine. We 

focused particularly on small-group interactions between Cris, Enrique, Gina, and Maria and 

their teacher to potentially corroborate or refute inferences from the interviews. Boyce watched 

these segments in reverse chronological order, meeting with Moss weekly to discuss and plan for 

the next (chronologically previous) video segments, to repeatedly form and test conjectures 

about how the students’ activities suggested they had constructed (procedural, participatory or 

anticipatory) schemes for reasoning algebraically.  

Classroom discourse. The culturally relevant context of World Cup soccer had 

connected topics throughout the instructional unit. A typical lesson began with the teacher 

leading a whole-class discussion, proceeded to cooperative learning in small groups, and closed 

with another whole-class discussion. In the beginning of a lesson, the teacher would re-voice and 

represent students’ verbal contributions in response to open-ended questions about previous class 

activities or teacher-introduced concepts and definitions. Whole-class discussions at the close of 

sessions were student-centered, as the teacher would either call on students or ask for volunteers 

to come to the front of the room to present their work orally and visually. Enrique volunteered 

most often for this closing segment, and Gina also often volunteered during the whole-class 

discussion at the beginning of class. Cris and Maria were more likely to be called on than 

volunteer. 

Of the four focus-group students, Enrique was the only student who verbalized 

understanding variables as unknown quantities during classroom discussion. That he was 

constructing participatory schemes for reasoning with unknown quantities when the others were 

constructing procedural schemes was evident in his leading small-group discussions. The other 

three students had needed guidance from the interviewer on how their arithmetic activity related 
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to solving or simplifying tasks in the interviews. In the classroom activities, this guidance had 

come from the teacher or from Enrique.    

Units coordination. Boyce attended in particular to the students’ units coordination 

(Norton, Boyce, Ulrich, & Phillips, 2015, see Figure 15) throughout his analysis. Units 

coordination has been implicated for students’ understanding of fractions, integer arithmetic, and 

linear equations (Hackenberg & Lee, 2015; Ulrich, 2015; 2016).  

Stage Units Coordination Description 

1 Children require activity to form a numerical composite (pre-fractional) 

2 Children can assimilate with a unit composed of other units and further 
(de)compose units in activity (can reason with proper fractions). 

3 Children can assimilate with units within units within units (can reason 
with improper fractions as numbers). 

Figure 15. Stages of units coordinating development (Adapted from Norton et al., 2015) 

Boyce’s inferences regarding Enrique’s reasoning with fractions during the interview were 

corroborated by Enrique’s indicating similar perturbation during the whole-class and small-group 

sessions involving fractions. In the classroom activities, none of the four students demonstrated 

understanding of (improper) fractions as numbers1 (Hackenberg, 2010). The other three students 

did not verbalize reasoning with fractions in whole-class discussion at all. The data suggests that 

Enrique was at Stage 2 of units coordination, as reasoning with unknown rates and improper 

fractions are both in the purview of Stage 3 students (Hackenberg, & Lee, 2015), and that the 

other three students were at Stage 1 of units coordination. However, there was limited data to 

support these inferences because the students were not specifically tasked with communicating 

their arithmetic reasoning. 

Comparisons of students’ written work. Each student was responsible for keeping a 

                                                 
1 One of the 22 students in the class demonstrated this understanding, but he was not part of 

the interview study. 
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notebook with his or her work on class activities and a copy of what had been written on the 

board by the teacher. For example, the three meanings of variables written in Cris’ notebook 

were written, essentially verbatim, in each of the students’ notebooks (see Figure 9). These 

meanings had been introduced over the course of weeks and had successively become “taken-as-

shared.” The four students’ work in response to other prompts, such as, “write an expression for 

the number of sides of hexagon and a pentagon” included differences suggesting individuals’ 

autonomy, but the videos indicated that the other students often turned to Enrique to verbally 

explain his response before completing or revising their own work. 

 

Figure 16. Cris’ writing of class’ taken-as-shared meanings of variables 

The differences between Enrique’s reasoning with variables as unknowns and the other three 

students’ were particularly evident from one question on the post-test. The students were asked, 

“How many pairs of numbers can you find that add to 10?  Express the number 10 as a sum of 

two numbers using variables.”  Figure 17 displays the four students’ responses. Each of the 

students’ interpretations involved writing arithmetic expressions, but only Enrique represented 

his arithmetic reasoning using variables as unknown numbers. This nuance was not noted prior 
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to the retrospective analysis, as Moss had noted that Cris’ and Maria’s responses were not 

appropriate but had given full credit for Gina’s response. 

 

 Post-test response to “How many pairs of numbers can you find that add 

to 10?  Express the number 10 as a sum of two numbers using variables.” 

Cris 

 

Enrique 

 

Gina 

 

Maria 

 

Figure 17. Contrasting students’ use of variables on the post-test 

Another question on the post-test exemplifies how the four students’ understanding of 

procedures for solving algebraic equations followed a different pattern. Though all four students 

arrived at the correct solution ‘x=2’ for the equation ‘2x + 10 = 14’, only Gina represented 

inverting both addition and multiplication to arrive at the solution (see Figure 18). Cris had 

started writing subtraction of 10, but then paradoxically indicated dividing the ‘10’ by 2. He 
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crossed this out and then responded similarly to Maria, who included only an evaluation at x=2. 

Thus, neither Cris nor Maria indicated reasoning with reversing arithmetic operations to solve 

the equation. Enrique’s representing inverting addition but not multiplication suggests his 

justification of the solution was participatory, rather than procedural, whereas Gina’s 

representation precisely mirrored the teacher-demonstrated procedure for solving two-step 

equations.  

 

Figure 18. Gina’s (left) and Enrique’s (right) post-test equation-solving 

Discussion 

Our collaborative analysis revealed individual-level differences in the classroom-level 

learning trajectory that had not been apparent during the emergent analysis. Differences in 

students’ ways of participating in classroom activities and their reasoning about variables as 

unknown quantities in the interviews were associated with their mental (units coordinating) 

structures. But because students’ arithmetic and quantitative reasoning were not a focus of 

analysis until after data collection was complete, the data from which students’ units 

coordination could be analyzed was limited. With that caveat, the findings are consistent with 

research that suggests that many U.S. students entering sixth-grade coordinate fewer than three 

levels of units (Boyce & Norton, 2016), and that such differences affect the types of schemes 
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students might construct to reason about algebraic expressions and equations (Hackenberg & 

Lee, 2015). In addition to difficulties with fractions concepts, the class was unfamiliar with 

arithmetic operations involving negative integers – the teacher realized this and adjusted the 

class activities to exclude equations with negative integers; hence they had not appeared in the 

student interviews. These results suggest it may be better to integrate early algebra objectives 

with other sixth-grade learning goals to support students’ development of participatory, rather 

than procedural, early algebraic understandings, or to continue to revisit algebraic goals 

throughout the school year.  

Conclusions 

In this paper, we introduced the notion of re-emergent perspective to characterize a 

collaborative approach to retrospective analysis. Moss’ analyses of students’ reasoning during 

the design experiment were focused on how students’ understandings were (or were not) 

compatible with the taken-as-shared understandings about variables underlying the emerging 

hypothetical learning trajectory. Boyce’s focusing first on four students’ development at the 

conclusion of the teaching experiment without prior knowledge of the hypothetical trajectory 

was powerful for distinguishing what was procedural and what was participatory about that 

shared understanding. Moreover, the re-emergent analyses helped to provide additional causal 

mechanisms for differences in learning outcomes within the hypothetical learning trajectory. Our 

results thus exemplify how retrospective analyses from researchers adopting different 

perspectives might inform our practice as mathematics education researchers. 

 As the researcher situated in a re-emergent perspective begins with limited exposure to 

the context of a design experiment, the relationships between his or her theoretical perspective, 

experiences, and goals and those of the researcher immersed in the data are paramount. We have 
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discussed our approach focusing on connections between classroom mathematical practices and 

individuals’ mathematical reasoning, in which individual interviews at the end of a classroom 

design experiment were a starting point for re-emergent analysis. Although a weakness of our 

approach to retrospective analysis is the appropriateness of analyzing data for an unanticipated 

purpose, the independence of data collection and data analysis was also a strength. Researchers 

might also conduct re-emergent analyses focused on other aspects within the interpretative 

framework, such as connections between students’ beliefs and socio-mathematical norms, that 

could lend themselves to similar approaches to continue to develop and refine mathematics 

learning trajectories in design research. 
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