
Concurrency and Distribution
in Reactive Programming
vom Fachbereich Informatik der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

Dissertation von Joscha Drechsler

Erstgutachterin: Prof. Dr.-Ing. Mira Mezini
Zweitgutachter: Prof. Dr. Wolfgang De Meuter

Darmstadt 2019

Drechsler, Joscha: Concurrency and Distribution in Reactive Programming
Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2019
URN: urn:nbn:de:tuda-tuprints-52284
Tag der mündlichen Prüfung: 11.02.2019

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

“Whoever said ‘the definition of insanity is do-
ing the same thing over and over again, but
expecting different results’ wasn’t de-bugging
concurrency issues.”

User Arpeggi42 on reddit.com.

1

Abstract
Distributed Reactive Programming is a paradigm for implementing distributed interactive applications
modularly and declaratively. Applications are defined as dynamic distributed dataflow graphs of reac-
tive computations that depend upon each other, similar to formulae in spreadsheets. A runtime library
propagates input changes through the dataflow graph, recomputing the results of affected dependent
computations while adapting the dataflow graph topology to changing dependency relations on the fly.
Reactive Programming has been shown to improve code quality, program comprehension and maintain-
ability over modular interactive application designs based on callbacks. Part of what makes Reactive
Programming easy to use is its synchronous change propagation semantics: Changes are propagated
such that no computation can ever observe an only partially updated state of the dataflow graph, i.e.,
each input change together with all dependent recomputations appears to be instantaneous.

Traditionally, in local single-threaded applications, synchronous semantics are achieved through glitch
freedom consistency: a recomputation may be executed only after all its dependencies have been recom-
puted. In distributed applications though, this established approach breaks in two ways. First, glitch
freedom implies synchronous semantics only if change propagations execute in isolation. Distributed
applications are inherently exposed to concurrency in that multiple threads may propagate different
changes concurrently. Ensuring isolation between concurrent change propagations requires the integra-
tion of additional algorithms for concurrency control. Second, applications’ dataflow graphs are spread
across multiple hosts. Therefore, distributed reactive programming requires algorithms for both glitch
freedom and concurrency control that are decentralized, i.e., function without access to shared memory.
A comprehensive survey of related prior works shows, that none have managed to solve this issue so far.

This dissertation introduces FrameSweep, the first algorithm to provide synchronous propagation se-
mantics for concurrent change propagation over dynamic distributed dataflow graphs. FrameSweep pro-
vides isolation and glitch freedom through a combination of fine-grained concurrency control algorithms
for linearizability and serializability from databases with several aspects of change propagation algo-
rithms from Reactive Programming and Automatic Incrementalization. The correctness of FrameSweep
is formally proven through the application of multiversion concurrency control theory. FrameSweep
decentralizes all its algorithmic components, and can therefore be integrated into any reactive program-
ming library in a syntactically transparent manner: Applications can continue to use the same syntax
for Reactive Programming as before, without requiring any adaptations of their code. FrameSweep
therefore provides the exact same semantics as traditional local single-threaded Reactive Programming
through the exact same syntax. As a result, FrameSweep proves by example that interactive applications
can reap all benefits of Reactive Programming even if they are concurrent or distributed.

A comprehensive empirical evaluation measures through benchmarks, how FrameSweep’s perfor-
mance and scalability are affected by a multitude of factors, e.g., thread contention, dataflow topology,
dataflow topology changes, or distribution topology. It shows that FrameSweep’s performance compares
favorably to alternative scheduling approaches with weaker guarantees in local applications. An exist-
ing Reactive Programming application is migrated to FrameSweep to empirically verify the claims of
semantic and syntactic transparency.

3

Zusammenfassung
Verteilte Reaktive Programmierung ist eine Programmiertechnik zur modularen und zeitgleich deklara-
tiven Implementierung verteilter interaktiver Anwendungen. Diese werden als ein über mehrere Rechner
verteilter dynamischer Datenfluss-Graph aus voneinander abhängenden Berechnungen definiert, ähnlich
zu Formeln in Tabellenkalkulation. Eine Laufzeitbibliothek propagiert eingehende Änderungen durch
diesen Datenfluss-Graphen, indem sie die Ergebnisse betroffener Berechnungen neu berechnet und
zugleich die Topologie des Datenfluss-Graphen an möglicherweise geänderte Abhängigkeitsbeziehun-
gen anpasst. Nutzerstudien haben ergeben, dass Reaktive Programmierung Code-Qualität sowie Ver-
ständlichkeit und Wartbarkeit von Programmen verbessert im Vergleich zu modularen Designs inter-
aktiver Anwendungen basierend auf dem Beobachter-Entwurfsmuster. Ein Teil dieser Verbesserungen
basiert auf synchroner Semantik für die Propagation von Änderungen: keine Neuberechnung können
einen nur teilweise aktualisierten Zustand des Datenfluss-Graphen beobachten. Dies führt dazu, dass
sämtliche Neuberechnungen infolge einer eingehenden Änderung augenscheinlich instantan stattfinden.

Klassischerweise wurde synchrone Semantik in lokalen und nicht nebenläufigen Anwendungen durch
das Sicherstellen der Konsistenzeigenschaft “Glitch-Freiheit” erreicht: jede Neuberechnung darf nur aus-
geführt werden, nachdem alle nötigen Neuberechnungen ihrer Abhängigkeiten zuvor abgeschlossen wur-
den. In verteilten Anwendungen sind existierende Ansätze aufgrund zweierlei Gründe jedoch nicht mehr
anwendbar. Zum einen impliziert Glitch-Freiheit synchrone Semantik nur solange Propagationen von Än-
derungen isoliert voneinander ausgeführt werden. Verteilte Anwendungen sind unweigerlich nebenläu-
fig, was bedeutet, dass mehrere Änderungen zeitgleich durch denselben Datenfluss-Graphen propagiert
werden. Um mehrere nebenläufig Änderungspropagationen voneinander zu isolieren, müssen daher
Algorithmen zur Einschränkung der Nebenläufigkeit in die Laufzeitbibliothek integriert werden. Zum
anderen ist der Datenfluss-Graph in verteilten Anwendungen über mehrere Rechner verteilt, welche
nur über Netzwerkverbindungen miteinander kommunizieren können. Es können daher, sowohl zum
Einhalten von Glitch-Freiheit als auch zur Einschränken von Nebenläufigkeit, ausschließlich Algorith-
men eingesetzt werden, die dezentralisiert sind, was bedeutet dass sie ohne Zugriff auf gemeinsamen
Arbeitsspeicher funktionieren müssen. Eine umfangreiche Studie themenverwandter früherer Arbeiten
zeigt, dass bisher keine Lösung für diese Problemstellung existiert.

Die vorliegende Dissertation präsentiert FrameSweep, den ersten Algorithmus der synchrone Seman-
tik für nebenläufige Propagation von Änderungen auf dynamischen und verteilten Datenfluss-Graphen
sicherstellt. FrameSweep isoliert nebenläufige Propagationen und stellt ihre Glitch-Freiheit sicher, in-
dem es mehrere Algorithmen aus dem Feld der Datenbanken für atomar erscheinende Transaktionen
mit Aspekten von Algorithmen zur Änderungspropagation aus den Gebieten der Reaktiven Program-
mierung und der Automatischen Inkrementalisierung kombiniert. Die Korrektheit von FrameSweep
wird durch Anwendung von establierter Theorie zur Nebenläufigkeitskontrolle durch Multiversionen
formal bewiesen. FrameSweep dezentralisiert all seine algorithmischen Bestandteile und kann dadurch
syntaktisch transparent in jegliche Laufzeitbibliotheken für Reaktive Programmierung integriert werden,
was bedeutet, dass existierende Programme FrameSweep ohne Anpassungen ihres Quelltexts verwenden
können. FrameSweep implementiert somit auf Basis identischer Syntax identische Semantik wie klassis-
che, lokale, nicht-nebenläufige Reaktive Programmierung. Dadurch ist FrameSweep ein beispielhafter
Beweis, dass interaktive Anwendungen alle Vorteile Reaktiver Programmierung genießen können, selbst
wenn sie nebenläufige oder verteilte Systeme sind.

Eine umfangreiche empirische Evaluation misst durch Benchmarks, wie sich die Performanz und
Skalierbarkeit von FrameSweep verhalten unter diversen Faktoren wie mehr oder weniger häufige
Zugriffskonflikte zwischen nebenläufigen Prozessen, Topologie des Datenfluss-Graphen, Änderungen

5

dieser Topologie, oder Topologie der Verteilung des Datenfluss-Graphen über verschiedene nur durch
Netzwerk verbundene Rechner. Die Evaluation zeigt, dass Vergleiche der Performanz lokaler Anwen-
dungen gegen globalen wechselseitigen Ausschluss und transaktionalen Speicher vorteilhaft zugunsten
von FrameSweep ausfallen. Durch Migration einer bestehenden, mittels Reaktiver Programmierung im-
plementierten Anwendung zu FrameSweep werden darüber hinaus die Behauptungen zu unveränderter
Syntax und Semantik empirisch verifiziert.

6 Zusammenfassung

Contents

1 Introduction 11
1.1 Problem Statement . 12
1.2 Contributions . 14
1.3 Structure . 15
1.4 List of Publications . 16

2 Reactive Programming in REScala 17
2.1 The Application Developer’s Perspective . 17

2.1.1 Signals . 17
2.1.2 Dynamic Dependencies . 18
2.1.3 Events and Conversions . 19
2.1.4 Imperative Reactions . 20

2.2 RP Behind the Scenes . 20
2.2.1 Dependency Graph . 21
2.2.2 Synchronous Change Propagation . 22
2.2.3 Liveness and Glitch Freedom . 24

2.3 Anatomy of RP Applications . 26
2.3.1 Operations for Reading Reactives’ Values . 27
2.3.2 Operations for Change Propagation . 27
2.3.3 Operations for Dynamic Dependency Edge Changes 29

3 Introducing Concurrency and Distribution 31
3.1 Implications of Concurrency . 31

3.1.1 Race Conditions between RP Operations . 32
3.1.2 Established Thread-Safety Properties . 34
3.1.3 Thread-Safety Correctness . 35

3.2 Implications of Distribution . 37
3.2.1 Concurrency in Distributed RP . 38
3.2.2 Correctness in Distributed RP . 39

4 A Survey of Reactive Frameworks 41
4.1 Preface: Selective Topological Sorting . 41
4.2 Synchronous Programming Languages. 43

4.2.1 Esterel: Imperative Synchronous Programming . 43
4.2.2 Other Synchronous Imperative Languages . 47
4.2.3 Synchronous Data Flow Languages . 48
4.2.4 Summary . 48

4.3 Reactive Programming . 49
4.3.1 Local, Single-Threaded Reactive Programming . 49
4.3.2 Reactive Programming Libraries with Concurrency . 51
4.3.3 Signal-only Distributed Reactive Programming for Eventual Consistency 53
4.3.4 Other Distributed RP Frameworks . 54

7

4.4 Event-Based Programming . 56
4.4.1 Event-based Distributed Systems . 56

4.5 Automatic Incrementalization . 57

5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming 59
5.1 RP Architecture with an Integrated Scheduler . 59
5.2 Main Building Blocks . 61
5.3 Concurrency of FrameSweep’s Operations . 64
5.4 Framing Phase . 65
5.5 Propagation with Pipeline Parallelism . 68
5.6 Read Operations . 72
5.7 Retrofitting . 76

6 Proving Correctness 83
6.1 A Recap of Multiversion Theory . 83
6.2 Connecting FrameSweep and Multiversion Theory . 84

6.2.1 Multiversion Histories produced by FrameSweep . 84
6.2.2 Stored Serialization Graph Version Order . 85

6.3 Basic Aspects Proofs . 87
6.4 Advanced Aspects Proofs . 89
6.5 Serializability Proofs . 94

7 Distribution Engineering and Optimizations 103
7.1 Distributed Propagation . 103
7.2 Lazy Framing . 105

7.2.1 Framing . 105
7.2.2 Propagation . 107
7.2.3 Retrofitting . 108

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 111
7.3.1 Non-Blocking Version Creation . 111
7.3.2 Non-Blocking Phase Transition . 114
7.3.3 Decentralized Serialization Graph Tracking . 114

7.4 Garbage Collection . 120
7.5 Syntactic Transparency and Explicit Transactions . 121

8 Evaluation 123
8.1 Comparing Local Performance . 123

8.1.1 Cost of User Computations and Impact of Topology . 124
8.1.2 Very Cheap User Computations . 126
8.1.3 Cost of Dynamic Dependency Changes and Retrofitting 129
8.1.4 Summary of Non-Distributed Experiments . 130

8.2 Evaluating Distribution Characteristics . 130
8.2.1 Distributed Propagation . 131
8.2.2 Distributed Synchronization . 132
8.2.3 Summary and Future Work . 136

8.3 Parallelizing Existing Applications . 136

9 Conclusion 139

8 Contents

List of Figures
2.1 Initial Philosophers Dependency Graph . 21
2.2 Change Propagation Visualization Legend . 22
2.3 Elementary Change Propagation . 22
2.4 Two Synchronous Philosopher Instants . 23
2.5 Glitched vs. Glitch-Free Reevaluation Order . 24
2.6 Operations between RP Components . 25
2.7 Composition of Reactives as DG Nodes . 27

3.1 Anatomy of Multi-Threaded RP . 32
3.2 A Glitch from Concurrent Propagations Interacting . 33
3.3 A Deadlock . 34
3.4 Distributed Reactive Philosophers . 37
3.5 Anatomy of Distributed RP . 38

4.1 Depth-Minimal Traversal . 42
4.2 Reverse-Minimal Traversal . 42
4.3 Non-Minimal Traversal . 42
4.4 Breadth-Minimal Traversal . 42
4.5 Deriving Dependency Graphs from Esterel Programs. 46

5.1 MV-RP Architecture Blueprint . 60
5.2 FrameSweep Integrated Architecture . 60
5.3 Node Composition with Node Histories Storing Node Versions 63
5.4 FrameSweep Example Trace: Framing Phase . 67
5.5 FrameSweep Example Trace: Propagation . 72
5.6 FrameSweep Example Trace: Read Operations . 74
5.7 FrameSweep Example Trace: Retrofitting . 80

7.1 FrameSweep’s Fundamental Approach to Distribution . 104
7.2 Lazy Framing Example Trace: Framing and Propagation . 106
7.3 Depth-Minimal Execution Opportunity with Lazy Framing . 108
7.4 Lazy Framing Example Trace: Retrofitting . 109
7.5 Transitive Reachability through Hash-Indexed Spanning Trees 115
7.6 Example SSG . 115
7.7 Pruning and Copying Spanning Subtrees . 116

8.1 Scalability across base topologies of instants with approx. 160 µs user computation time . 125
8.2 Extreme contention . 126
8.3 Throughput for Different Configurations of the Philosophers Application 127
8.4 Effects of Dimensions of RP applications on FrameSweep Scalability 130
8.5 A Scalable Distributed Topology . 131
8.6 Single Thread Scaling . 131
8.7 Multi-Threading Scaling . 131
8.8 Different Conflict Distance Topologies . 133
8.9 Total Running Times . 133

9

8.10 Added Running Times . 133
8.11 Added Running Times Re-Categorized . 134
8.12 Repeat Conflict Distances Topologies . 135
8.13 Total Running Times . 135
8.14 Added Running Times . 135
8.15 Universe Throughput . 137

List of Tables
2.1 User-Facing (Top Half) and Internal (Bottom Half) Operations of Reactive Programming . 26

4.1 Reactive and Related Frameworks and the Features They Support 44
4.2 Reactive and Related Frameworks’ Distributed Properties (Continuation of Table 4.1) . . . 45

List of Listings
2.1 Philosopher Input Vars. 17
2.2 Derived Fork Signals. 17
2.3 Derived Sight Signals with Dynamic Dependencies. 18
2.4 Changed Events: Signal/Event Conversion. 19
2.5 Event Filtering. 19
2.6 Fold Signals: Event/Signal Conversion. 19
2.7 Side-Effects in User Computations. 20
2.8 Driving Thread. 22
2.9 Infrastructure for Reevaluations. 28

5.1 Pseudocode implementations of framing phase routines. 66
5.2 Pseudocode implementations of propagation routines. 69
5.3 Pseudocode implementations of MVCC reading routines. 73
5.4 Pseudocode implementations of dynamic edge change retrofitting routines. 78

6.1 Equivalence of Drop Retrofitting to No-Change Propagation. 89
6.2 Equivalence of Discovery Retrofitting to Framing Phase. 90

7.1 Pseudocode Implementation of Retrofitting under Lazy Framing. 110
7.2 (Almost) Non-Blocking Version Creation. 112
7.3 Pseudocode of Lock-Union-Find. 117
7.4 Pseudocode of “Add Acyclic Edge”. 119
7.5 Multiple Read Transaction. 121
7.6 Thread-Safe Eating Through Read-Update-Read Transactions. 122

10

1 Introduction
Smartphones and other mobile computing devices have become ubiquitous, as has mobile internet. In
this environment of always-connected always-available user devices, distributed interactive applications
have become a wide-spread and important class of software applications.

Interactive applications are applications that execute continuously, updating their internal state and
executing reactions in response to external input stimuli, referred to as activations [Halbwachs and
Mandel, 2006]. Activations can take many forms, e.g., user interface inputs, elapsing system time, or
new sensor readings. It is desirable to implement interactive applications modularly, e.g., have a generic
UI button implementation that is separate from the behavior that any specific instance will execute upon
clicks. In traditional programming, modules can be reused in the form of custom user code calling
generic library functions. In interactive applications though, modularity requires inversion of control,
where this relation is reversed. Activations originate within generic library functions, e.g., a UI button,
which must then pass control flow to custom user code. Implementing this inversion of control requires
the use of callbacks, with the Observer design pattern [Gamma et al., 1995] being the most popular
blueprint.

Direct use of callbacks has significant disadvantages on applications’ code quality. It requires a lot
of boilerplate code that defines, implements and maintains callback interfaces and registries. More
critically though, it obfuscates applications’ control flow. Multiple callbacks may execute following a
single activation, and the order in which they execute is often incidental, particularly if multiple callbacks
are chained together. “Callback hell” [Meyerovich et al., 2009] has been coined as a label for interactive
applications that have grown into a jungle of interconnected callbacks so complex that their reactive
control flow becomes essentially untraceable and developers can only interpret it as non-deterministic.
Such non-deterministic control flow makes it very difficult to prevent inconsistencies while updating
applications’ internal state, as one can never be certain, which parts have already been updated and
which have not.

Distributed applications are applications that execute across a federation of multiple networked com-
puters, i.e., across multiple processors without shared memory. Callbacks readily transfer to the dis-
tributed setting, e.g., through synchronous remote procedure calls or asynchronous message passing to
invoke remote callbacks on other hosts. Therefore, established practices for interactive applications can
also be used to implement distributed interactive applications. But, this amplifies the problem of appar-
ent non-deterministic control flow twofold. In distributed interactive applications, activations may occur
on any host at any time, which can result in multiple callbacks executing concurrently across the entire
application. These executions may overlap and interact with each other on mutually affected state, with
no easy way to consistently resolve race conditions due to the lack of shared memory. Distributed inter-
active applications therefore suffer from more sources of non-determinism in callback execution order
than single-threaded applications. Moreover, beyond the vagueness of which callback will execute next,
distribution also makes it unclear on which host the next callbacks will execute. In addition to more
sources, the non-determinism of control flow between callbacks in distributed interactive applications is
therefore also yet harder to trace and track than in single-host applications.

Reactive Programming (RP) [Bainomugisha et al., 2013] is a paradigm for implementing interactive
applications that solves the problems of callbacks. RP is declarative in that application developers specify
applications’ state as data flows of transformations, combinations, and derivations of values, similar to
formulae in spreadsheets. A runtime library tracks the data flow dependencies between different values
and automates recomputing and executing reactions to their changes. This way, RP absolves the need
for boilerplate code that callbacks usually require. Further, the runtime library implements synchronous

11

semantics for the automatic change propagation. The process of recomputing all affected values and
executing reactions in following an activation is called an instant and executed such that it appears
to be instantaneous. All recomputations of data flow derivations and all executions of reactions are
ordered such that all other state that they observe has always already been completely updated before-
hand. RP thus provides deterministic and easy to understand semantics, which protects applications
from descending into callback hell [Salvaneschi et al., 2014a].

The declarativeness of RP transfers to distributed applications as easily as callbacks. Application devel-
opers can simply specify distributed data flows through transformations, combinations, and derivations
over local state and remote state that is defined on other hosts. The runtime library then automat-
ically executes corresponding reactions and recomputations across the network. The concept of RP’s
synchronous propagation semantics also transfers easily. Equally deterministic and intuitive behavior
is achieved if instants simply appear to be instantaneous across the entire distributed application. All
recomputations of data flow derivations and all executions of reactions, regardless on which host, are
ordered such that all other state that they observe, regardless from which host, has always already been
completely updated beforehand. From application developers’ perspective, distributed RP with syn-
chronous propagation semantics would therefore be as beneficial for distributed interactive applications
as non-distributed RP is for non-distributed interactive applications, or even more beneficial because the
problem it solves is amplified.

1.1 Problem Statement

While several prior works have argued the case of distributed RP [Lombide Carreton et al., 2010, Sal-
vaneschi et al., 2013, Reynders et al., 2014, Drechsler et al., 2014, Proença and Baquero, 2017, Mogk
et al., 2018, Weisenburger et al., 2018], no feasible implementations with distributed synchronous prop-
agation semantics exist yet. This is because synchronous propagation semantics transfer to distributed
applications easily only in concept, but not in implementation. In fact, the opposite is true: providing
synchronous propagation semantics for distributed RP is a difficult challenge. RP systems, regardless
of distribution, must order recomputations and reactions within each instant to achieve synchronous
propagation semantics. In distributed RP systems, this is more difficult though, because the algorithms
that compute this order must be decentralized, i.e., function without access to shared memory. Further,
distributed systems are naturally multi-processor systems, and thus subject to concurrency in the form of
multi-threading, which breaks the established practices of achieving synchronous propagation semantics.

Traditionally, RP systems addressed local-only single-threaded applications and advocated glitch free-
dom [Cooper and Krishnamurthi, 2006] as their central semantic guarantee: Any data flow derivation
or reaction may be recomputed only such that it observes all accessed values with either all or none of
the changes of each instant completed. In other words, no recomputation or reaction must ever witness
effects of an incomplete change propagation, where an instant already has updated some of the accessed
values but will still update others. Glitch freedom is a prohibitive property and thus worthless on its
own: a system that never recomputes any values is trivially glitch-free, but obviously useless. Glitch
freedom implies synchronous propagation semantics for local-only single-threaded applications though,
if it is combined with liveness [Margara and Salvaneschi, 2014]: If any value changes, the results of every
data flow derivation that used this value must be recomputed before the instant ends. In other words,
instants must not complete before having executed all recomputations and reactions that are affected
(including transitively) by the underlying activation. All RP systems implement liveness, but it is only
rarely discussed, simply because it is such a fundamental requirement for reactive applications that one
naturally assumes it. All local-only single-threaded RP systems execute recomputations and reactions
following some topological order of their data flow dependencies, which is sufficient to achieve both
glitch freedom and liveness, and thus synchronous propagation overall.

Some works have transferred the combination of glitch freedom and liveness into distributed ap-
plications [Proença and Baquero, 2017], but do not provide synchronous semantics. This is because

12 1 Introduction

multi-threading breaks the implication between glitch freedom, liveness, and synchronous propagation
semantics. The changes of any number of concurrent instants from multiple activations can be incorpo-
rated into a value all at once, in a single glitch-free recomputation. This violates neither liveness nor
glitch freedom, but does not provide synchronous semantics because the instants observably overlap in
time and thus are clearly not instantaneous. In addition to liveness and glitch freedom, synchronous
semantics require isolation [Drechsler et al., 2018] between concurrent instants: For any two concurrent
instants, all changes and observations made by one instant must proceed all those by the other, or vice
versa. RP systems addressing local-only single-threaded applications can ignore isolation only because
it is free if there are no concurrent instants. To achieve synchronous semantics in multi-threaded RP
though, isolation must be carefully and deliberately ensured through additional algorithms for concur-
rency control. In addition to ordering recomputations and reactions within each instant, concurrency
control must order them and prevent race conditions between multiple concurrent instants. Moreover, it
must do so consistently across all hosts in the entire distributed application, meaning that any additional
algorithms for concurrency control must also be decentralized.

Concurrency control for isolation of RP instants is difficult to solve even before considering decentral-
ization, because instants’ control flow cannot be predicted precisely. The order of recomputations within
every instant follows the data flow of the user-defined derivations, which provides a rough blueprint for
their control flow. But the extent to which each instant affects an application’s state depends dynami-
cally on the results of these recomputations. A new sensor reading may or may not newly cross some
threshold that varies depending on other inputs, meaning even identical activations can result in very
differently unfolding instants. Further, any conditional instructions within derivations can dynamically
change the data flow topology of applications while they are executing, by aggregating different parts
of their application’s state than during previous recomputations. Particularly in distributed applications,
support for such dynamic changes to the data flow topology is crucial to accommodate network topology
changes, e.g., crashing or disconnecting peers.

Concurrency control in the form of coarse-grained mutual exclusion requires very pessimistic assump-
tions to accommodate unpredictable control flow, and would therefore result in very extensive mutual
exclusion. A global lock is the most extreme example, excluding all but a single instant from executing in
any location at all times. Extensive exclusion implies significant overhead in terms of sequential commu-
nications between concurrent instants. E.g., the global lock must await a completion notification from
one instant before sending a start notification to the next. This is particularly costly in distributed appli-
cations because network communication is orders of magnitude slower than local processing. Further,
extensive exclusion hinders scalability, which is also particularly important in distributed applications
because their data flow topologies can grow much larger than local-only applications. Coarse-grained
mutual exclusion is therefore not a feasible approach.

Concurrency control through fine-grained mutual exclusion on the other hand – addressing many
small-scale race conditions and ordering ambiguities individually – becomes highly susceptible to dead-
locks under unpredictable control flow. In transaction systems, e.g., from databases, it has become
common practice to address this problem by detecting deadlocks, and breaking them by aborting some
of the involved transactions, discarding or rolling back their changes, and restarting them [Bernstein
et al., 1986]. For RP though, since instants may execute reactions containing side-effects which cannot
be undone, applying such an approach to RP would turn concurrency control into a leaky abstraction,
where side-effects leave lasting and observable changes that would not be possible under single-threaded
execution. A scheduling algorithm is needed, which executes a sophisticated orchestration of all instants’
individual operations such that deadlocks never occur in the first place, so that aborts are not needed.
In essence, concurrency control should appear semantically transparent, in that user applications cannot
observe any difference between executing in a single-threaded versus a multi-threaded environment.

For generic imperative applications with unpredictable user-influenced control flow, this problem does
not have a general solution. Finding a solution that is specific to RP, but still general for all RP applica-
tions, is therefore a challenging task, even before considering that the solving algorithm also needs to be

1.1 Problem Statement 13

decentralized. Prior work has been able to solve this problem only for applications with static data flow
topologies [Czaplicki and Chong, 2013], which is much easier due to significantly less unpredictability
in instants’ control flow. Even with dynamic data flow topologies though, part of instants’ control flow is
still governed by the propagation algorithm, which reifies some knowledge about the applications’ data
flow dependencies and follows certain restrictions to ensure glitch freedom. Thus, RP applications pose
an environment that offers both unique challenges and unique opportunities for integrating concurrency
control.

This dissertation will show that semantically transparent fine-grained concurrency control, general for
arbitrary RP applications even with dynamic dataflow topology changes, is possible and can be fully
decentralized. As a consequence, synchronous propagation semantics are feasible to achieve for dis-
tributed RP applications. Moreover, the integration of this concurrency control into an RP library is also
syntactically transparent, in that the library remains usable purely through its established syntax, without
requiring any specific adaptations. This means that concurrent and distributed interactive applications
can benefit from the same improvements in code quality that RP has been shown to provide for local and
single-threaded applications. Overall, this implies that distributed RP not only appears appealing concep-
tually, but is actually feasible and can be used to simplify the implementation of distributed interactive
applications.

1.2 Contributions

In detail, this dissertation makes the following contributions.

• An analysis of how concurrency and distribution affect the established model of RP. The analy-
sis breaks down RP starting from the API that applications interact with, and analyzes the problems
that concurrency and distribution introduce. It further breaks down synchronous propagation se-
mantics into its elementary building blocks and re-assembles them into a correctness definition for
synchronous propagation semantics suitable for both concurrent and distributed environments.

• An extensive survey of related work. The survey covers frameworks based on or inspired by
reactive programming, reactive distributed systems, synchronous programming languages, and
event-based programming. It provides an intuition of what application scenarios each framework
is designed for and how they differ from each other. It categorizes the frameworks based on the
features they support (dynamic topologies, concurrency, distribution) and focusses particularly on
the semantic guarantees that they provide and the algorithms they use to implement those.

• FrameSweep, an all-in-one decentralized scheduling algorithm for synchronous propagation
semantics in distributed RP. While the survey shows that several systems and languages with
synchronous semantics exist, FrameSweep is – to the best of our knowledge – the first algorithm to
provide these semantics with support for concurrent instants in face of dynamic data flow topology
changes, and also the first to do so that is suitable for distributed applications. FrameSweep treats
each instant similar to a database transaction, except that any executed operation is immediately
final; there is no explicit commit at the end and roll-backs do not exist. FrameSweep implements
fine-grained isolation for these instant transactions in the form of serializability: Instants execute
highly concurrent, but all reads and writes, including dynamic topology changes, are scheduled
such that they interact with each other equivalently to a serial schedule, where instants execute
always one after the other, single-threaded.

FrameSweep integrates and decentralizes a multitude of algorithms to achieve all of its goals.
FrameSweep provides serializability without deadlocks by integrating the established concurrency
control algorithms conservative two-phase locking and multiversion concurrency control through se-
rialization graph testing, in combination with a custom technique by the name of retrofitting. That
this combination works without deadlocks or roll-backs is enabled by multiple properties that are

14 1 Introduction

specific to RP, such as a having a reified data flow topology available at run-time and the control
flow of instant transactions adhering to its topological order. FrameSweep implements glitch free-
dom and liveness by topologically ordering recomputations within each isolated instant, thereby
achieving synchronous propagation semantics overall. It minimizes the cost of computing said
topological order by computing it through a mark-and-sweep algorithm that reuses the infrastruc-
ture for isolation of each instant as the “mark”. Mark-and-sweep propagation is straight-forward
to decentralize by using the template of diffusing computations. The management of multiver-
sions and locks associated with all individual data flow derivations is naturally decentralized.
Only decentralization of serialization graph testing, which connects the other concurrency algo-
rithms across the data flow topology, is challenging. FrameSweep solves this by further integrating
partially dynamic graph algorithms for reachability in directed and undirected graphs.

• A formal proof that a pseudocode implementation of FrameSweep fulfils the given correct-
ness definition. The proof shows that the serialization graph testing of FrameSweep accurately
represents the multiversion serialization graph as defined by established multiversion theory over
all executed operations. This shows that the premise of the multiversion theorem holds at all times,
which thereby implies that all possible executions that FrameSweep can produce are serializable.

• An implementation of FrameSweep in the REScala ecosystem [Salvaneschi et al., 2014b],
and a detailed performance evaluation thereof. The evaluation uses several microbenchmarks
to measure the effects of different data flow topologies, thread contention, and network topolo-
gies on different aspects of the performance and multi-threading scalability of FrameSweep. It
also evaluates the requirements and effects of integrating FrameSweep into an existing, pre-
viously single-threaded RP application, verifying both its semantic and syntactic transparency.
FrameSweep therefore proves by example, that the benefits of RP can be applied to distributed
interactive applications without incurring prohibitive performance overhead. The source code
of FrameSweep and all benchmarks is included in the REScala code base, publicly available at
https://github.com/guidosalva/REScala.

1.3 Structure

This dissertation is structured into the following chapters:

• Chapter 2 introduces the concepts and features of RP by example from an application developer’s
perspective.

• Chapter 3 analyzes the interactions of RP with concurrency and distribution. It breaks down the
semantic properties of synchronous propagation, providing a formal foundation and a definition of
correctness suitable for concurrent and distributed RP.

• Chapter 4 provides an extensive survey that categorizes related work by the features and consis-
tency guarantees they provide as well as how they provide them, and explains why each falls short
of providing synchronous propagation for distributed RP.

• Chapter 5 presents the FrameSweep scheduling algorithm in a distribution-agnostic pseudocode
implementation and demonstrates it correct function on a running example.

• Chapter 6 formally proves correctness of the pseudocode implementation.

• Chapter 7 explains parallelization optimizations, changes and further engineering concerns neces-
sary for a decentralized implementation of FrameSweep.

• Chapter 8 evaluates the performance characteristics of FrameSweep through empirical bench-
marks.

1.3 Structure 15

https://github.com/guidosalva/REScala

• Chapter 9 summarizes left-open challenges and future work, and concludes.

1.4 List of Publications

In the context of this dissertation, the following research papers have been published:

• Salvaneschi, G., Drechsler, J., and Mezini, M. (2013). Towards distributed reactive programming.
In De Nicola, R. and Julien, C., editors, Coordination Models and Languages, pages 226–235, Berlin,
Heidelberg. Springer Berlin Heidelberg.

• Drechsler, J., Salvaneschi, G., Mogk, R., and Mezini, M. (2014). Distributed REScala: An update
algorithm for distributed reactive programming. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
361–376, New York, NY, USA. ACM.

• Drechsler, J., and Salvaneschi, G. (2014). Optimizing Distributed REScala, presented at the Work-
shop on Reactive and Event-Based Languages and Systems 2014, REBLS ’14.

• Mogk, R., and Drechsler, J. (2017). Reactive Programming with REScala. In Companion to the
First International Conference on the Art, Science and Engineering of Programming, Programming
’17, pages 7:1–7:2, New York, NY, USA. ACM.

• Drechsler, J., Mogk, R., Salvaneschi, G., and Mezini, M. (2018). Thread-safe reactive programming.
Proc. ACM Program. Lang., 2(OOPSLA).

• Drechsler, J., and Mezini, M. (2018). Distributing Thread-Safety for Reactive Programming, pre-
sented at the Workshop on Reactive and Event-Based Languages and Systems 2018, REBLS ’18.

16 1 Introduction

2 Reactive Programming in REScala
The outline of this chapter is as follows. Section 2.1 introduces single-threaded, local-only RP from the
developer’s perspective by implementing an example application in REScala. The design is inspired by
the dining philosophers [Hoare, 1985], with philosophers sharing forks around a table. For flexibility
in later examples and benchmarks, the table’s SIZE (number of philosophers and forks) is parametric.
Section 2.2 then dives into details about the execution properties that RP provides for such programs,
and how it provides them. Finally, Section 2.3 provides a comprehensive account of all the elementary
variables and operations on these variables that RP is built from, which will serve as the foundation for
building the FrameSweep integrated scheduler throughout the remainder of this dissertation.

2.1 The Application Developer’s Perspective

This dissertation discusses RP with two kinds of reactives: Events and Signals. This section introduces
both, as well as conversions between them and the imperative interactions they support.

2.1.1 Signals

Philosophers are modelled as Vars (input Signals) of type Phil, i.e., with the two possible values
Thinking or Eating, initially Thinking.

1 cases Phil = { Thinking, Eating }

2 val phils = for (j <- 1 until SIZE) yield
3 Var[Phil](Thinking)

Listing 2.1: Philosopher Input Vars.

A REScala Var is a kind of mutable variable. Like ordinary variables, the value of a Var can be
imperatively read (through now, e.g., phils(1).now reads the current value of the philosopher with
index 1) and imperatively overwritten (through set(...), e.g., phils(1).set(Eating) changes the
value to Eating). Unlike ordinary variables though, changes of Vars are automatically propagated to self-
updating derived Signals that use the Vars in their definition. In the following, forks are also modelled
as derived Signals of type Fork.

4 cases Fork = { Free, Taken(by: Int) }

5 val forks = for (idx <- 0 until SIZE) yield Signal[Fork] {
6 val nIdx = (idx + 1) % SIZE
7 (phils(idx).depend, phils(nIdx).depend) match {
8 case (Thinking, Thinking) => Free
9 case (Eating, Thinking) => Taken(idx)

10 case (Thinking, Eating) => Taken(nIdx)
11 case (Eating, Eating) =>
12 throw new AssertionError()
13 } }

Listing 2.2: Derived Fork Signals.

The Signal keyword instantiates a derived Signal given a user-defined computation, akin to a spread-
sheet formula. Like Vars, derived Signals’ current values can be imperatively read (e.g., forks(0).now),

17

but unlike Vars, not set. Instead, the defining computation can depend on (the depend keyword1) values
of multiple other reactives, its dependencies. The derived Signal’s value is then updated automatically
through reevaluation, i.e., re-execution of the its defining user computation, whenever the value of any
dependencies changed. Concretely, in our example, each fork’s value depends on the values of the
philosopher with the same index and the next circular index (Line 7). If both are Thinking (Line 8),
the fork is Free. If one philosopher is Eating (Lines 9 and 10), the fork is Taken(idx), with the
Eating philosopher’s index. Otherwise (Line 11), the fork raises an error (can’t be used by two philoso-
phers simultaneously). Upon, e.g., phils(1).set(Eating), both forks(0) and forks(1) depend on
phils(1) and will be reevaluated. The re-execution of their user computations will now match the
second, respectively third case (Lines 9 and 10), and thus both will change their value to Taken(1).

2.1.2 Dynamic Dependencies

In the previous example of derived forks Signals, each fork has static dependencies on the same two
philosophers at all times. In general though, derived reactives may have dynamic dependencies.

14 cases Sight = { Ready, Done, Blocked(by: Int) }

15 val sights = for (idx <- 0 until SIZE) yield Signal {
16 val prevIdx = (idx - 1 + SIZE) % SIZE
17 forks(prevIdx).depend match {
18 case Free =>
19 forks(idx).depend match {
20 case Taken(neighbor) => Blocked(neighbor)
21 case Free => Ready
22 }

23 case Taken(‘idx‘) =>
24 assert(forks(idx).depend == Taken(idx))

25 Done

26 case Taken(neighbor) => Blocked(neighbor)
27 } }

Listing 2.3: Derived Sight Signals with Dynamic Dependencies.

Sight (line 14) models philosophers’ possible perceptions of their forks. According sights Signals
are instantiated in line 15. Each sights(i) first depends on the philosopher’s left fork (Line 17) to
distinguish three cases:

• Left fork is Free (Line 18). Then, sight also depends on the right fork (Line 19). If the latter is
Taken (Line 20), sight is Blocked with neighbor’s index; otherwise (Line 21), sight is Ready.

• Left fork is Taken by the philosopher himself (Lines 23 to 25). Then sight is Done (he himself is
eating). In this case, sight also depends on the right fork (Line 24) to assert that it is also taken
by the philosopher himself.

• Left fork is Taken by a neighbor (Line 26). Then sight shows Blocked by that neighbor and does
not depend on the right fork.

Since each sight accesses its right fork in the first and second, but not in the last case, this dependency
is dynamic. We say, a dependency is discovered, when depend is called on a reactive during a reevaluation,
but was not during the previous reevaluation. Conversely, we say a dependency is dropped when depend
on a reactive was not called during a reevaluation, but was during the previous reevaluation. If a reactive
changes, reevaluations are triggered only for those reactives that have dependencies established on that
reactive at that point in time. For each sight, the dependency on its right fork is discovered (respectively

1 In the REScala API, r.depend is abbreviated as r(); we use the explicit .depend notation here for naming consistency.

18 2 Reactive Programming in REScala

dropped) when, a reevaluation switches into (respectively away from) the computation’s last case, in
comparison to the previous reevaluation. If the dependency on its right fork last was dropped, changes
of the right fork’s value will not reevaluate sight until it discovers the dependency again during another
reevaluation (necessarily triggered by a change of its left fork as the only other remaining dependency).

Dynamic dependencies enable important features. One example is the creation and removal of new
Signals at run-time, which must be newly (dis-)connected with their dependencies. Another example
are higher-order Signals, i.e., Signals whose value contains other (inner) Signals. For instance, consider a
live score card of a game. The score card is modeled by a Signal whose value is the current list of Player
objects, sorted by the players’ current score. Each Player object references its current scoremodeled by
a numeric Signal. The score card list Signal is therefore a higher-order Signal, with all players’ scores as
inner Signals. When new players join or leave the game, the player list Signal is changed, which causes
dynamic dependency changes in that it adds (or removes) the additional players’ score Signals to the
sorting computation’s dependencies.

2.1.3 Events and Conversions

Events are the temporal complement to Signals. While Signals model continuously existing values, such
as the current mouse cursor coordinates, Events model instantaneous occurrences of values, such as
the coordinate increments whenever the mouse cursor moved. While no changes are being propagated,
Events therefore have no value, and thus – different from Signals – cannot be read imperatively. Only
if an Event emits a value during the propagation of some changes, this value can be read through
depend calls only by reevaluations of other reactives triggered within the same changes’ propagation.
Analogously to input Vars and derived Signals, there are input Events (not shown), which can be fired
imperatively through evt.fire(value), and derived Events, which depend on other reactives and may
emit values when reevaluated. Events and Signals can also be converted to and derived from each other,
as shown below.

28 val sightChngs: Seq[Event[Sight]] =
29 for (i <- 0 until SIZE) yield
30 sights(i).changed

Listing 2.4: Changed Events: Signal/Event Conversion.

The .changed derivation converts a Signal (sights(i)) into an Event that emits each new value of
the Signal.

31 val successes: Seq[Event[Sight]] =
32 for (i <- 0 until SIZE) yield
33 sightChngs(i).filter(_ == Done)

Listing 2.5: Event Filtering.

The .filter derivation forwards emitted values only if they match a given predicate. Here, successes
Events fire whenever the respective sightChngs emit Done.

34 val counts: Seq[Signal[Int]] =
35 for (i <- 0 until SIZE) yield
36 successes(i).fold(0) { (acc, _) => acc + 1 }

Listing 2.6: Fold Signals: Event/Signal Conversion.

Finally, .fold derivation converts the successes Events back into Signals. Event to Signal conversion
is more complex than the reverse direction, because the resulting Signals always have a value, while the
original Events do not. Folding Signals therefore are not pure transformations of their dependencies’

2.1 The Application Developer’s Perspective 19

values that can be recomputed at any time, but their values are unique autonomous state. For this
reason, .fold takes two parameters: the Signal’s initial autonomous state value, and an accumulator
function. Whenever the underlying Event emits, the accumulator function is invoked to accumulate the
emitted value into the Signal’s own previous state and return the newly updated state. Folding Signals
therefore accumulate Event values with semantics similar to folding over infinite lists. In above code,
each folding counts Signals is initialized with value 0, which is incremented whenever the respective
successes Event fires, i.e., each counts the philosopher’s successful Eating iterations.2

2.1.4 Imperative Reactions

So far we have seen that the imperative environment can fire (evt.fire(value) or set (var.set(value))
input reactives to update all of the application’s derived reactive state. Further, the imperative environ-
ment can “pull” updated values from all Signals through imperative reads (s.now). Naturally, applica-
tions want to execute effects as a consequence of reactive updates, which is possible but very cumbersome
to implement with only these two interactions, and in particular doesn’t work with Events. As a third
interaction between imperative and reactive abstractions, the computations defining derived Events and
Signals may therefore contain side-effects to “push” changes back into the imperative environment.

37 val totalCount = successCounts.reduce(_ + _)

38 val output = totalCount.map{v => println(... v ...)}

Listing 2.7: Side-Effects in User Computations.

To introduce a side-effect reaction in our philosophers example, we first reduce (a method of Scala’s
Seq collection, unrelated to REScala) the collection of all philosophers’ successCounts by adding them
up one by one. This yields the totalCount Signal (Line 37), whose value is the overall sum of all philoso-
phers’ successful Eating iterations. We then map the totalCount Signal using the println function, i.e.,
console output. Normally, s.map(f) is used to create a new derived Signal of all values of s transformed
via the function f (s.map(f) is a shorthand notation Signal{f(s.depend)}). Passing println for f
doesn’t match this intention, since println is a void function that always only returns the Unit value,
meaning the resulting output Signal is unusable because its value can never change. But, output is
still reevaluated whenever totalCount changed, and while all its reevaluations never result in a change,
println still executes the side-effect of printing its parameter (the latest value v of totalCount) to
console.

Segregating side-effects into separate “terminal” reactives, i.e., that are not used in other user com-
putations, makes application’s designs more accessible.3 This segregation is voluntary though, instead
of a hard requirement. In particular for debugging purposes it is often desirable to insert println
statements, break points or other side-effects into any derived reactive’s defining computation. Due
to its synchronous propagation semantics, which we discuss next, RP supports user computations that
arbitrarily mix side-effects and pure value transformations for all derived reactives.

2.2 RP Behind the Scenes

This section discusses the aspects of RP bring life to applications implemented in the programming style
described in the previous section. We introduce the dependency graph as a tool for visualizing and
implementing change propagation, and discuss its life cycle: The bird’s eye view of synchronous instants

2 REScala’s API readily offers a predefined successes(i).count derivation for this exact behavior; we use fold manually
here to visualize otherwise hidden aspects that are relevant for scheduling later.

3 REScala even offers a dedicated observe transformation, which has the same semantics as map transformation, but makes
the reactive’s “side-effect reaction only” intention clearly visible.

20 2 Reactive Programming in REScala

Figure 2.1: Initial Philosophers Dependency Graph

as a whole, and the semantic properties for the execution of individual operations within instants to
achieve this view.

2.2.1 Dependency Graph

The runtime representation of a RP program is its directed acyclic dependency graph DG, built while the
execution of a reactive program unrolls. Figure 2.1 shows the initial state of the dependency graph that
is created when executing the philosophers’ code presented so far with SIZE := 3. Nodes represent
reactives, with input reactives visualized as triangles and derived reactives as circles. The labels on each
node correspond to the respective index, i.e., phils(0), phils(1), phils(2) for the triangular input
Vars.

The dependency graph does not distinguish between Events and Signals, since both fit into the same
common interfaces for input and derived reactives: Input reactives can have new values applied impera-
tively, derived reactives can reevaluate after any dependencies changed, and both these actions result in
the reactive either changing (Events emit a value or Signals change their value) or not changing (Events
do not emit a value, Signals’ values remain unchanged). Still we show Signals’ current values printed
next to their respective nodes, as a visual reference for which values the user application sees when
accessing reactives. E.g., in this initial state, the Signals phils are Thinking, forks are Free, sights
are Ready, counts are 0, and output has the Unit value, whereas all Events have no value.

Edges represent the dependency relations between reactives, pointing in the direction of the reactive
data and control flow. I.e., an edge r −→

DG
d corresponds to the user-defined computation of the derived

reactive d depending on the value of reactive r. The DG topology always corresponds to the current state
of dependency relations, meaning if dependencies are discovered (dropped), corresponding edges are
added (removed). The DG topology therefore changes with dynamic dependency changes. In Figure 2.1,

2.2 RP Behind the Scenes 21

Figure 2.2: Change Propagation Visualization Legend

Figure 2.3: Elementary Change Propagation

all edges between any forks and sights with the same index are dynamic and will be repeatedly
removed/added throughout the application’s lifetime, all others edges are static.

2.2.2 Synchronous Change Propagation

When a RP application starts, it first instantiates all its reactives. All Events have no value, and all Signals
are created with their value up-to-date in terms of their defining computation over all dependencies’ up-
to-date values. The application is said to be quiescent (no changes are being propagated), and the DG in
a consistent resting state.

1 val idx = 1
2 while(System.in.available == 0) {

3 if (sights(idx).now == Ready)
4 phils(idx).set(Eating)

5 if (sights(idx).now == Done)
6 phils(idx).set(Thinking)

7 }

Listing 2.8: Driving Thread.

Once some inputs change from having new values applied
imperatively (set(...) and fire(...) calls), the consis-
tent resting state is broken in that some derived reactives’
values become outdated. E.g., consider an imperative thread
that executes the loop in Listing 2.8, which continuously
tries to switch phils(1) between Thinking and Eating.
Figure 2.2 shows how we use shading and bolding to vi-
sualize change propagation on the dependency graph. Fig-
ure 2.3 (a) shows a section of the dependency graph in Fig-
ure 2.1 after phils(1).set(Eating) has changed phils(1)
to Eating. The respective DG node is shaded gray and has a
bold outline, with the changed value in bold font.

In response to an input change, the RP system reevaluates
each affected derived reactive, in order to get its value up-to-date with respect to the changed input’s
new value. Each reevaluation re-executes the derived reactive’s defining computation, which may or may

22 2 Reactive Programming in REScala

Figure 2.4: Two Synchronous Philosopher Instants

not change both its dependencies and its value. E.g., in Figure 2.3 (b), the input change of phils(1) has
propagated to forks(0), visualized by the bold dependency edge, but not to forks(1) yet. forks(0) in
response reevaluated (shaded gray) and changed its value to Taken(1) (bold outline and bold value),
while its dependencies remained unchanged. If a reevaluated reactive’s value changed, this causes
further derived reactives to become outdated and thereby recursively prompts further reevaluations.
This means, reactives can be transitively affected by the same input change via multiple paths in the DG,
and thus may have multiple causes and possible timings for reevaluation.

To provide deterministic and easy-to-use semantics, RP implements synchronous change propagation.
The process of applying an imperative change to an input reactive together with executing all reevalu-
ations that this change triggers, including transitive ones, is called an instant and appears to instanta-
neous. From the outside perspective of the imperative thread admitting the input change, this means that
any .set(...) or .fire(...) call returns only after all triggered reevaluations have been completed.
More importantly though, from the inside perspective of a user computation that executes because the
reactive that it defines is reevaluated during an instant, any other reactives whose values it reads either
already have been or will not be reevaluated during the instant.

For Events, synchronous instants introduces simultaneity in that all Events that fire during an instant
fire simultaneously. Application developers thus need not worry about event timings when implementing
a reactive that depends on multiple events: There will only be a single reevaluation, during which it will
see for all Events it depends on, if and which value each fires during the instant. This also gives rise to
deterministic for, e.g., a “xor” Event combinator, where a derived Event fires only if one of two but not
both dependency Events fire within the instant of a single imperative input change.

For Signals, an equivalent simultaneity is introduced. Depending on multiple Signals means, that
during a reactives’ single reevaluation in an instant, all dependency Signals’ values are already com-
pletely updated. Application developers thus also need not worry about potentially observing some mix

2.2 RP Behind the Scenes 23

Figure 2.5: Glitched vs. Glitch-Free Reevaluation Order

of partially outdated values. All accessed Signals simply have always been updated already. Repeated
reevaluations of Signals (without folding) thus behave identically as if the respective Signal is newly
instantiated with the rest of the application in a different consistent resting state.

Lastly, synchronous instants provide straight-forward semantics also for Event/Signal conversions
(e.g., changed or fold). A Signal derived from an Event or vice versa is reevaluated in the same in-
stant. Converting a Signal to an Event and back to a Signal yields the same simultaneity as the original
Signal. Events and Signals simply follow the same notion of simultaneity. This also provides well-defined
semantics for derived reactives that combine Event and Signal dependencies.

In summary, synchronous propagation semantics mean that the lifecycle of RP applications can be
thought of as a series of instants, each taking the application from one quiescent consistent resting
state to the next, with updated values and updated DG topology. Figure 2.4 shows the results of two
successive instants, setting phils(1) to Eating and back to Thinking, based on the application’s initial
state from Figure 2.1. Note in particular the dependency edge between forks(2) and sights(2) being
first dropped and then discovered again.

2.2.3 Liveness and Glitch Freedom

The most fundamental property for any reactive system is that once no more input changes are admitted,
i.e., if the application becomes quiescent, then the DG must eventually reach the next consistent resting
state. This property is called liveness: if any reactive’s value changed, all other reactives that depend
on it must be reevaluated before the application becomes quiescent. Achieving synchronous execution
from the outside, i.e., from the perspective of the imperative thread or other instants, is equivalent to
liveness in single-threaded RP. The propagation algorithm can only execute reevaluations while it has
control, i.e., during a set or fire call. To ensure liveness, it must therefore complete all reevaluations
before returning control to the imperative thread. The imperative thread then can only execute now reads
during quiescent consistent resting states, and cannot observe incomplete change propagations. Further,
only a single instant can execute at any point in time, meaning also no instant can observe incomplete
change propagation of another.

Achieving synchronous execution from the inside, i.e., from the perspective of user computations
during reevaluations, is done through glitch freedom consistency, i.e., the absence of glitches. A glitch is
defined as a user computation observing partially updated state of an active change propagation, i.e.,
a user computation that reads the value of two or more dependencies, one of which has already been
changed by an instant, and another that has not but still will be changed later by the same instant.
Figure 2.5 (c) visualizes an exemplary glitch as the next progression step from Figure 2.3 (b). The
change of forks(0) has propagated to and triggered a reevaluation of sights(1). The user computation
of sights(1) then jumps into the case of forks(0) being Taken(1) by the philosopher himself (Line 23
in Section 2.1) and executes the associated assertion (Line 24). This assertion is based on the invariant

24 2 Reactive Programming in REScala

Figure 2.6: Operations between RP Components

that all philosophers always hold either both or neither of their two forks. In all possible consistent
resting states of the application (except those where two neighboring philosophers eat at the same
time and cause the fork to throw an error, which is not the case here), this assertion holds. During
this reevaluation here though, the assertion fails, because the change propagation is incomplete with
forks(1) still having the outdated value Free.

Glitch freedom by itself is a filtering problem: at every potential trigger for a reevaluation, execute a
reevaluation only if no glitch will occur, i.e., only if all dependencies’ current values are part of a single
consistent resting state. With liveness though, a potential reevaluation that is not executed because it
would not be glitch-free must not be discarded, but instead becomes pending to be executed at a later
point in time. Glitch freedom with liveness can thus be interpreted as an ordering problem instead of a
filtering problem: given a set of pending reevaluations, compute an order such that after all preceding
reevaluations were executed, the next one in the order is guaranteed to be glitch-free. Single-threaded
RP systems have traditionally chosen this latter approach. They can always execute only one reevaluation
at a time, even if multiple ones are pending, and therefore must maintain a queue of the remaining
pending reevaluations. Glitch freedom is then achieved by keeping this queue sorted to produce a
glitch-free reevaluation order.

Any topological order of those reactives in the DG that are reachable by a changed input is sufficient to
guarantee both glitch freedom and liveness in single-threaded RP. The glitch in Figure 2.5 (c) occurred
because all visualized reactives are affected by the change of phils(1) and the exemplary reevalua-
tion order is inconsistent with the DG topology: sights(1) depends on both forks(0) and forks(1),
meaning any topological order must order sights(1) after both forks, but it was reevaluated before
forks(1), and thus the glitch occurred. If – instead – the topological order is respected, by first reevalu-
ating forks(1) (Figure 2.5 (c’)) and only then sights(1) (Figure 2.5 (d)), no glitch occurs. Lastly, note
that propagation algorithms must compute reevaluation orders ad-hoc also at run-time. Since dynamic
dependency changes modify the DG topology as part of regular change propagation, any reevaluation
orders pre-computed at compile-time might become incorrect.

2.2 RP Behind the Scenes 25

Available to / Called by API method Description

Imperative Environment

s.now Retrieve the current value of Signal r.
i.set(v), i.fire(v) Shorthand for update(i -> v)
update(i1 -> v1, Synchronously emit/change all values v j from input
i2 -> v2, Event/Signal i j and subsequently reevaluate all
i3 -> v3, ...) dependent (cf. r.depend) Events and Signals.

Signal/Event Computations

s.before
Read the value of Signal s from before the current
update changed it.

r.after

Read the glitch-free value of Event/Signal r, i.e., from
after the current update changed r, or no value/the
value from before if r is unaffected.

r.depend

Depend on the value of Event/Signal r, i.e., read glitch-
free value (cf. r.after) and register to be recomputed
upon the next emission/change of r.

Propagation Algorithm r.reevaluate

Update value of r by re-executing its user computation,
return all derived reactives currently registered on r for
reevaluation together with whether or not r changed.

Derived Reactives d

compd.invoke
Execute the user-defined computation of d to, if Event,
possibly return a value to be emitted by d, or if Signal,
return a new (possibly changed) value for d

r.discover(d)
Register d to be reevaluated upon subsequent changes
of the value of r.

r.drop(d)
Unregister d to no longer be reevaluated upon
subsequent changes of the value of r.

Table 2.1: User-Facing (Top Half) and Internal (Bottom Half) Operations of Reactive Programming

2.3 Anatomy of RP Applications

To systematically study the effects of concurrency and distribution on RP, this section presents in detail the
anatomy of a RP system – all components and all operations through which they interact to implement
reactive change propagation. The anatomy of a RP system is depicted in Figure 2.6, with all components
represented by boxes. The “imperative environment” in the lower-left corner represents user-defined
threads and regular variables of the host programming language (e.g., the loop in Listing 2.8). The
“event/signal computations” in the top-left corner represent the user-defined computations of derived
reactives (e.g., all code from Section 2.1). The DG of all corresponding reactives and their dependency
relations is depicted in the top-right corner. Finally, the propagation algorithm is shown in the lower-right
corner.

The arrows in Figure 2.6 visualize all operations through which the components interact. These oper-
ations are the formal foundation on which concurrency scheduling will later be built. We therefore show
how all RP features discussed so far map to these operations and explain each of them in detail, includ-
ing which data they access and how this data is stored in the DG nodes. For later reference, Table 2.1
provides a brief summary of each operation. We distinguish three categories of operations, which we
visualize through different kinds of arrows:

• reading the values of reactives (solid blue arrows),

• propagating changes (dashed red arrows), and

• performing dynamic dependency changes (dotted green arrows).

26 2 Reactive Programming in REScala

Figure 2.7: Composition of Reactives as DG Nodes

2.3.1 Operations for Reading Reactives’ Values

Operations for Reading Reactives’ Values are now, after, before, and depend, visualized as solid blue
arrows in Figure 2.6. The simplest one is s.now (s is a Signal), which reads and returns the current value
of s. When a derived reactive d reevaluates, its user computation, compd, may also read the value of
other reactives r, which thereby become its parameters. Reading parameters happens through r.before
or r.after, instead of r.now, because r.now is ambiguous in this context. If r is also affected by the
change propagation that reevaluates d and no (transitive) dependency between d and r exists, r may
be reevaluated before or after d, i.e., r.now may return the value of r before or after it is reevaluated.
In most cases, compd reads the glitch-free value of its parameters through r.after – these calls may
possibly suspend until r is glitch-free.

The simplest use of before is in a folding Signal f: To compute the updated value of f, compf must
first read the old value of f through f.before. Folding Signals thus implement self-loops on individual
DG nodes. Calling before on other Signals further down the DG topology generalizes this pattern to
“backwards edges” that close cycles across multiple reactives (cf. last keyword in [Sawada and Watan-
abe, 2016]). But, there are also use cases for before not related to DG cycles. E.g., a submit Event in
a chat GUI reevaluates the text input field to remove the sent text, but simultaneously needs to emit
a message Event to the server with the value of text from before it was cleared. On Events e, only the
e.after operation is available for reading their value. This is because Events only have an emitted value
after they were reevaluated, but not before (before) and not outside of change propagation (now).

Most parameter reads inside any compd are r.depend. E.g., all reads in all compd in Section 2.1 are
r.depend, except for the folding counts(i).before self-call. This includes all internally executed reads
by any changed, filter, map, etc. derivations. The r.depend operation behaves identical to r.after,
but additionally registers d for reevaluation upon changes of r. The choice between r.depend and
r.after thus grants all compd fine-grained control over which d are dependencies or just parameters,
i.e., which values’ changes do or do not trigger the next reevaluation of r.

2.3.2 Operations for Change Propagation

Operations for implementing change propagation through the DG are update, reevaluate, and invoke,
visualized as solid red arrows in Figure 2.6. Change propagation is always initiated by an impera-
tive update(i1 -> v1, i2 -> v2, ...) call. Calls var.set(v) or evt.fire(v) are shorthand for
update(var -> v) or update(evt -> v). update(...) calls do not directly update the values of the
given input reactives, but are dispatched through the propagation algorithm. The latter translates them

2.3 Anatomy of RP Applications 27

1 procedure DerivedReactive.reevaluate(reactive, instant):
2 let (userValue, inc) = shepherdExecution(instant){
3 # shepherding the reactive’s reevaluation means:
4 # a) ensure that any before/after/depend call by the user computation
5 # is executed with the correct instant context parameter,

6 # b) record the set of reactives on which the user computation called
7 # depend, and return it together with the user computation result.

8 invoke compreactive
9 }

10 execute updateDeps(reactive, instant, inc)

11 dispatch control(reactive, instant, userValue)

12 procedure Event.control(event, instant, userValue):

13 # userValue is optional None or Some(value).
14 execute reevOut(event, instant, userValue)

15 procedure Signal.control(signal, instant, userValue):

16 if(userValue == execute before(signal, instant)):

17 execute reevOut(signal, instant, None)

18 else:

19 execute reevOut(signal, instant, Some(userValue))

20 procedure DerivedReactive.updateDeps(reevaluating, instant, inc):

21 foreach dep ∈ (inc \ increactive):
22 execute discover(dep, instant, reactive)

23 foreach dep ∈ (increactive \ inc):
24 execute drop(dep, instant, reactive)

25 update increactive := inc

Listing 2.9: Infrastructure for Reevaluations.

28 2 Reactive Programming in REScala

into a series of reevaluate calls on derived reactives to propagate the input changes glitch-free through
the entire application. The execution of each reevaluate involves the respective DG nodes’ values and
variables, which are depicted as grey boxes (values) and white boxes (variables) in Figure 2.7.

The propagation algorithm treats all reactives through a common interface. Any reactive can be reeval-
uated, and responds by reporting as having either changed or not changed, and returning the set of
derived reactives that that currently depend on it, i.e., the set of reactives that potentially reevaluate
next due to this change or no-change. The only minor difference is that input reactives’ reevaluations
are given a value imperatively, while derived reactives’ reevaluations compute this value themselves. For
concurrency scheduling, though, a thorough understanding also of how Events and Signals process val-
ues behind this common interface is necessary, too. Listing 2.9 shows pseudocode for both the common
and the specific aspects of reactives’ reevaluations.

Input reactives i (depicted on the left of Figure 2.7) consist of variables vi and outi, and control code
ctrli. vi holds the emitted/stored value of i and outi its outgoing dependencies set, i.e., the set of derived
reactives currently registered on i for reevaluations. Initially, the propagation algorithm reevaluates each
input reactive i in update(..., i -> v, ...), by passing the corresponding v to ctrli. For Events, ctrli
(Line 12) stores every given v as the emitted value vi and reports i as changed. For Signals, ctrli
(Line 12) stores v as vi only if it is different from the previous vi (before self-call in Line 16, visualized
in Figure 2.7 by the thin dashed arrow from vi to ctrli). Together with the whether or not i changed,
ctrli returns outi to the propagation algorithm. If i changed, the propagation algorithm must eventually
reevaluate each reactive in outi, once it can guarantee glitch-freedom. If i did not change, reevaluations
of reactives in outi triggered by other changes no longer need to wait for i.

Derived reactives d (depicted on the right of Figure 2.7) consist of the same building blocks as input
reactives, plus the user computation compd and variable incd that stores the incoming dependencies set –
the set of reactives on which d is currently registered for reevaluation.4 Derived reactives and Signals
use the same control codes ctrld as input reactives. However, the value v passed to ctrld is not taken from
the update(...) call’s parameters, but computed by reevaluate as the return value of (re-)executing
compd (Line 1). While compd executes, the set of reactives r on which it calls r.depend is recorded
(called inc throughout Listing 2.9). After compd returns, but before the returned v is passed to ctrld, d
updates its dependency edges in the DG to match inc (Line 10). The edges to add, respectively remove,
are computed as the difference between incd and the newly recorded set of r.depend reactives. If compd
executed r.depend, i.e., r ∈ inc, but r /∈ incd (Line 21), d executes r.discover(d). If r ∈ incd, i.e., r
/∈ inc, but compd did not execute r.depend (Line 23), d executes r.drop(d). Afterwards, inc is written
as the new incd (Line 25). Only then, the execution of reevaluate is finally completed by passing the v
returned by compd to ctrld (Line 11).

2.3.3 Operations for Dynamic Dependency Edge Changes

Operations for dynamic changes of DG edges are r.discover(d) and r.drop(d), visualized as dotted
green arrows in Figure 2.6. They are executed by one reactive on another reactive inside the DG, and are
thus visualized as a loop between DG nodes. The operation r.discover(d) updates outr := outr ∪ { d },
which discovers edge r −→

DG
d, thereby registering d for reevaluation upon changes of vr. The operation

r.drop(d) vice versa updates outr := outr \ { d }, which drops edge r −→
DG
d, thereby un-registering d

to no longer reevaluate upon changes of vr.

4 The sets incd and outr mirror each other in that every edge r −→
DG
d corresponds to d ∈ outr and r ∈ incd.

2.3 Anatomy of RP Applications 29

3 Introducing Concurrency and Distribution
Section 3.1 discusses two ways in which RP interacts with concurrency: concurrent execution of multiple
independent reevaluations within single instants, and concurrent execution of multiple instants. Both
dimensions are orthogonal: both have different challenges and solutions, and RP systems can support
neither, either individually, or both of them together. Section 3.2 discusses, how lack of shared memory
affects RP. In particular, distributed applications require support for both of dimensions of concurrency,
albeit for entirely different reasons. Therefore, having first a detailed understanding and proper handling
of concurrency is indispensable for providing distributed RP.

3.1 Implications of Concurrency

Concurrent execution of multiple independent reevaluations within single instants refers to making each
instant internally a multi-threaded process. If two reactives must reevaluate within the same instant and
do not transitively depend on each other in either direction, they can reevaluate in either order, or even
at the same time, without violating glitch freedom. In the context of using a topological reevaluation
order to achieve synchronous propagation, the opportunities for parallelizing independent reevaluations
appear in the form of ambiguities in the topological order of the DG. For instance, changing one philoso-
pher’s input Var to Eating requires two forks to reevaluate next. All forks are independent of each
other’s values. Single-threaded topological orders can order either fork first, i.e., either fork can reeval-
uate first without causing a glitch. In multi-processor systems, reevaluating both forks at the same time
becomes a third option, that also does not affect cause a glitch, i.e., retains synchronous propagation
semantics.

Concurrent reevaluations per instant is a voluntary feature in the sense that this kind of concurrency
does not appear by itself. Each update(...) call comes from and executes in a single imperative thread
from the user application initially. For independent reevaluations to execute in parallel, the propagation
algorithm must intentionally be implemented to off-load pending reevaluations into a worker thread pool
for multi-threaded processing. The RP anatomy (Figure 2.6) is not affected by this change – the only
difference is that some of the multiple reev calls depicted therein now execute in parallel on different
threads, instead of all sequentially on the same thread.

Parallelization of independent reevaluations is also comparatively easy to implement correctly. The
only race conditions it introduces are multiple reactives that complete reevaluations at the same time.
These may cause a single derived reactive to be assessed for whether or not it is ready for a glitch free
reevaluation by multiple worker threads concurrently. To retain correct semantics, only one of these
threads must actually execute a reevaluation if the reactive is found to be ready. Since reevaluations are
distributed across arbitrary worker threads already though, it does not matter which thread this will be.
These race conditions therefore have commutative solutions, and thus are easily solvable ad-hoc with
localized case-by-case synchronization.

Concurrent instants on the other hand pose a much more complex problem. First, concurrent instants
are not a voluntary feature that RP libraries can choose to implement to some degree that is still easy
to handle. Instead, full support for concurrent instants is mandatory for any RP library to be used in a
multi-threaded application, because such an environment inevitably imposes this concurrency onto the
library. Figure 3.1 depicts the RP anatomy as in Figure 2.6, but in a multi-threaded instead of single-
threaded environment. In general, when a RP system is embedded into a multi-threaded environment,
an arbitrary number of imperative threads can concurrently read Signals (now) and admit input changes

31

Figure 3.1: Anatomy of Multi-Threaded RP

(update(...)). Concurrent input changes result in concurrently executing instants, which execute con-
current reevaluations (reev), which in turn concurrently update and read (before, after, depend)
values and dependency edges (drop, discover), that can depend on each other. Concurrent instants
therefore result in race conditions that involve any of the operations introduced in the previous chapter,
and that generally do not have commutative solutions. Moreover, yet more complex issues arise when
multiple concurrent instants have more than one reactive in common, which they will reevaluate. If they
reach and reevaluate one of these in a different order than the other, it can become impossible to execute
glitch-free reevaluations for yet other reactives later down the DG topology.

To provide a systematic analysis of these race conditions, Section 3.1.1 introduces concurrent in-
stants to the philosophers application from Section 2.1. It will exemplify complex race conditions and
ordering ambiguities between operations of concurrent instants, and derive increasingly complex re-
strictions on their interleaving that are necessary to achieve thread-safety under concurrent instants.
Next, Section 3.1.2 will introduce terminology from concurrency and database communities for formally
describing, discussing and evaluating such thread-safety. Finally, Section 3.1.3 presents a formal correct-
ness definition for synchronous propagation semantics of RP in a multi-threaded environment, i.e., with
concurrent instants.

3.1.1 Race Conditions between RP Operations

To introduce concurrent instants into the philosophers running example, consider one instance of the
imperative driver thread from Listing 2.8 to execute per philosopher on a given table. We first discuss
race conditions between concurrent operations on the same reactive (i.e., same DG node). Consider two
threads, each executing an Eating instant on a philosopher, from the applications initial state (i.e., all
counts are 0). Assume they race such that each increases the value of one of the two dependencies of the
totalCount Signal to 1, and then both simultaneously reevaluate totalCount. Both reevaluations read
both updated inputs, and thus both compute the latest value for totalCount as 2. Both simultaneously
read the previous value of totalCount as 0, and thus both update it to 2 and both report totalCount

32 3 Introducing Concurrency and Distribution

Figure 3.2: A Glitch from Concurrent Propagations Interacting

to have changed. In response, both reevaluate output, and thus the application outputs 2 as the new
total Eating count twice – a result that would not be possible under synchronous execution. This
very scenario can play out this way even if both instants follow a topological reevaluation order in an
attempt to achieve glitch freedom and thereby also synchronous propagation semantics. It shows that
the established single-threaded approach for synchronous propagation semantics is insufficient under
multi-threading.

The cause of the exemplified problem is a race condition between both instants concurrently executing
a compare-then-update on vtotalCount. To prevent this, such compare-then-update operations on nodes’
values must execute mutually exclusively. Note that, e.g., folding Signals generalize this problem, in
that they read the node’s own value (before self-call) already at the very beginning of its reevaluation.
Thus, reevaluations as a whole must execute mutually exclusively on each node. With mutually exclusive
reevaluations, the second instant’s reevaluation of totalCount would always read the previous value as
2, thus determine the node as unchanged, and thus the new value 2 would correctly be printed only
once instead of twice.

Mutually exclusive reevaluations would only resolve half of the problem at hand, though. With syn-
chronous execution, the application would always first output a new totalCount of 1, and not jump
straight to 2. But, in the concurrent example this intermediate step is skipped, because the first instant’s
reevaluation already encompassed both instants’ changes instead of just its own. Some may consider this
issue harmless in this particular instance, but taking into account its more general implications shows
that it is not. If totalCount were an Event instead of a Signal, this same issue would result in the Event
spuriously skipping some values, which is not tolerable. Moreover, in more complex situations even with
only Signals, other instants’ changes may be observed only partially, which may cause glitches even if
all instants by themselves follow a glitch-free reevaluation order. Figure 3.2 demonstrates this, showing
mutually exclusive reevaluations per node with glitch-free reevaluation orders are insufficient to achieve
even only glitch freedom, let alone synchronous execution.

The graph section shown in Figure 3.2 is the same as in Figure 2.5, but with phils(2) included ad-
ditionally. In (a), thread T2 executes phils(2).set(Eating) and reevaluates forks(1) to Taken(2)
(nodes shaded light grey). In (b), thread T1 reads sights(1) as Ready, changes phils(1) to Eating,
and reevaluates forks(0) to Taken(1) (nodes shaded dark grey). T1 has not yet reevaluated forks(1),
hence sights(1) is not ready for a glitch-free reevaluation. In (c), T2 propagates its change of forks(1)
to sights(1). From the local perspective of T2, both predecessors of sights(1) are now glitch-free:
forks(0) is not affected by the propagation of T2, and the reevaluation of forks(1) is already com-
pleted. Thus, unaware of the (partial) changes by T1, T2 deems sights(1) ready for a glitch-free
reevaluation. But this is incorrect, because the changes by T1 are incomplete, and the reevaluation
produces the same glitch we demonstrated in Figure 2.5 (sights(1) fails its assertion).

Given that instants individually executing reevaluation in a glitch-free order is insufficient to achieve
glitch freedom overall, one might attempt a more comprehensive approach that ensures glitch freedom
as a global property shared across concurrent instants. E.g., vector clocks can be used, based on one

3.1 Implications of Concurrency 33

logical clock per input reactive, to defer reevaluations of derived reactives until all their dependencies’
latest values are associated with the same timestamp for all sources that they (transitively) depend
on [Proença and Baquero, 2017]. Doing so prevents the glitched reevaluation shown in Figure 3.2
(c), because forks(0) and forks(1) disagree on the timestamp of the phils(1) input Var. Instead,
sights(1) can reevaluate only after all changes of both T1 and T2 to both forks(0) and forks(1) have
been completed. Such an algorithm ensures glitch freedom across concurrent instants, but this is still
insufficient to ensure synchronous propagation semantics: Every executed reevaluation is glitch-free, but
fewer reevaluations are executed. Namely, in the example, sights(1) is affected by two instants, but
only reevaluated a single time for both of their changes. As a more drastic example, in very “busy” appli-
cations, some reactives may never observe a glitch-free snapshot of all their dependencies, because new
instants keep introducing new timestamp discrepancies before the previous instants progressed enough
to resolve theirs. Reactives may therefore skip any number of reevaluations, i.e., suspend updating for
any length of time. This shows that glitch freedom in a multi-threaded environment no longer implies
synchronous propagation semantics, but yields only a form of eventual consistency where reactives are
only guaranteed to become updated once the application becomes quiescent.

Figure 3.3: A Deadlock

The reason why glitch freedom implies synchronous propagation se-
mantics in single-threaded applications is, that outside synchronous
appearance of instants comes for free in single-threaded applications,
and glitch freedom only completes the picture by filling in inside syn-
chronous appearance. In multi-threaded environments, this impli-
cation breaks down because outside synchronous appearance is lost,
meaning implementing glitch freedom as a shared property of concur-
rent instants is a lost cause when aiming for synchronous propagation
semantics. Instead, traditional approaches for glitch freedom can be
reused, but only after first ensuring outside synchronous appearance
by isolating concurrent instants against each other, i.e., implementing
some form of mutual exclusion between reevaluations across multiple
reactives. Unlike for reevaluations on individual reactives though, ad-
hoc mutual exclusion across multiple reactives is infeasible, because it can result in deadlocks. Figure 3.3
demonstrates this on a table of only (for simplicity) two philosophers and forks. The associated threads
T0 and T1 simultaneously set(Eating) (nodes are shaded light grey for T0 and dark grey for T1), and
propagate this to their respective left fork. Each fork should reevaluate, but each already has one of its
dependencies reevaluated by one instant, but the other by the other instant. Thus it is already too late
to establish any kind of mutual exclusion – the two instants are deadlocked.

It is common practice in, e.g., databases, to work around deadlocks by aborting one of the involved
parties and undo its changes, which then allows some other parties to proceed, and restart the aborted
execution from the beginning. Due to side-effects in reactives’ user computations though, which we
cannot undo, this workaround is also is inapplicable here. Thus the only remaining alternative is to
establish necessary synchronization between reevaluations of different reactives by different threads
pre-emptively, before any are executed, to ensure that deadlocks do not occur in the first place.

3.1.2 Established Thread-Safety Properties

Desiring processes of multiple individual operations to appear as atomic, i.e., as if all their operations
occurred at once at a single point in time, is a common occurrence in concurrent systems. As a result,
several established properties and tools exist, to formally define and verify the correctness of implemen-
tations that provide such atomicity. The most intuitive of these properties is linearizability [Herlihy and
Wing, 1990]. Linearizability means that operations take effect atomically at some linearization point
during their execution. Linearizability is a good fit for describing outside synchronous appearance from

34 3 Introducing Concurrency and Distribution

the perspective of imperative threads: Every n.now and update(...) call should appear to execute
atomically at some linearization point between its call and its return, across the entire application.

But, linearizability addresses only individual operations on singular data structures. It is therefore
not applicable to discuss synchronous appearance of instants that include the execution of multiple user
computations on different reactives. Linearizability matches when considering the entire DG of an RP
application forms one big data structure. With user computations bound to individual reactives though,
users unavoidably are aware that each node in the DG is a separate data structure on its own, and that
each update(...) call involves the execution of mutliple compd, s.before, n.after and n.depend, all
on different reactives. Instead, atomic appearance must be achieved by ensuring that any concurrent
threads can only see the state from before or after the entire execution of an instant, but never any
intermediate, only partially updated state.

Transaction processing [Bernstein et al., 1986] provides such a model. Any number of reads and writes,
which should appear as one atomic unit of work, are grouped into one transaction. Applied in the RP
setting, every s.now call thus is a transaction containing a single read, and every update(...) call is
a transaction that contains all the reads and writes of all reevaluations executed by the corresponding
instant. Transaction processing provides a well-established formal tool set to describe and verify the cor-
rectness of transaction systems. During execution, a transaction system produces a history – a sequence
of all operations of every transaction in the order of their execution. Different levels of correctness of
transaction systems are defined in terms of permutations of these histories that a system can produce.

Serial histories are those where all transactions execute without interleaving of operations. Single-
threaded systems naturally correspond to serial histories, so serial histories are considered the baseline
for correctness. This matches the intention of concurrent RP, where single-threaded applications inher-
ently provide outside synchronous appearance of instants. Serial histories very restrictive though, since
they do not allow any parallelism. To ensure a serial history for RP applications, instants would have to
execute under mutual exclusion, one after the other.

A less restrictive property is built on the notion of view-equivalence. View-equivalence is defined over
reads-from relations of the form “transaction A reads the value of variable x that was written by transac-
tion B”. Two histories from the same set of transactions are called view-equivalent, iff they are permuta-
tions of each other, but still have identical reads-from relations. View-equivalence implies that all reads
of all transactions return the same value, which implies that transactions cannot distinguish between
view-equivalent histories. Therefore, any histories that are view-equivalent to serial histories are equally
acceptable as correct. Such histories are called serializable histories.

Yet, serializability alone is not enough. A s.now transaction tnow could read a value of Signal s that
was written by tpast half an hour earlier, and was already overwritten shortly after by another Tpast′ . This
would conform with serializability, as tnow can formally be ordered between the tpast and tpast′ . Yet, this
would confuse users, as one would naturally expect such a read to return a current, up-to-date value
of s. The foundation for a correctness definition for RP is thus the combination of serializability and
linearizability, known as strict serializability: Transactions must execute their operations in a serializable
fashion, and at the same time must have a linearization point within the actual real-time window of their
execution.

3.1.3 Thread-Safety Correctness

The definition of thread-safety for RP is built the following way: Strict serializability ensures outside
synchronous appearance of instants through the combination of linearizability from the perspective of
imperative threads, and serializability from the perspective of user computations executing inside of
instants. Within this outside synchronous propagation semantics, inside synchronous appearance for
user computations within each instant can be achieved as in single-threaded contexts, i.e., through
glitch freedom and liveness. In particular, this allows reusing existing propagation algorithms, e.g.,
ordering reevaluations topologically is again sufficient to achieve inside synchronous appearance. To

3.1 Implications of Concurrency 35

further increase flexibility without loss of correctness guarantees, we make the following adaptations to
strict serializability, based on various properties of RP.

1. Schedulers usually consider transactions of reads and writes on individual variables. The discussion
in Section 2.3 revealed that all variables ever accessed by the RP system are stored inside DG nodes.
Moreover, all operations presented there (now, reev, before, after, depend, drop and discover)
affect variables of single nodes only, and hence are easily executed linearizable per node, e.g.,
through simple mutual exclusion using Java’s synchronized scope on the node instance. Thus, we
design schedulers in terms of these more complex operations. This allows us to address scheduling
solutions at a higher level of abstraction.

2. We require strict serializability only for user-visible operations, i.e., those whose arrows in Fig-
ure 2.6 have one end on the left-hand side. Other operations (e.g., drop or discover) may be
executed arbitrarily, as long as they add up such that all user-visible operations are executed cor-
rectly. This gives schedulers more freedom to act in order to provide their guarantees, without
changing users’ experience.

3. While a given propagation algorithm may be able to produce only a subset of all correct reevalu-
ation orders, other reevaluation orders still remain correct. We thus accept any glitch-free order
of reevaluations as correct, even if an underlying propagation algorithm is unable to produce this
order in a single-threaded setting. This makes it possible to devise and verify the correctness of
scheduling algorithms independently of concrete propagation algorithms. Further, it also gives
more freedom to schedulers by allowing them to disregard and overrule propagation algorithms’
reevaluation orders, as long as they still preserve glitch freedom.

4. Lastly, recall that transactions of RP instants may contain side-effects, and thus cannot be aborted
to resolve deadlocks. Because such aborts have become a common, widely accepted, and often
even expected practice in transaction systems (e.g., databases, software transactional memory),
we consider it necessary to explicitly state abort-free as an additional criterion for correctness.

Summarizing, we therefore define correctness for the execution of concurrent RP instants as abort-free
strict serializability for user-visible operations (now, update, reev, after, before, depend), with reeval-
uations of every instant being executed in any glitch-free order.

36 3 Introducing Concurrency and Distribution

Figure 3.4: Distributed Reactive Philosophers

3.2 Implications of Distribution

Several reactive systems use distribution as a mostly hands-off feature to provide users with increased
throughput, e.g., to support big data processing. They offload parts of their computations into computing
clusters, and are thereby able to utilize enormous amounts of processing power. For distributed RP
though, we approach distribution not as a feature for scaling performance, but as a necessity instead.
Programs and data originate in many different places, and in order for computations to occur, both
the program and all the data it needs must come together in the same physical location. Application
developers may have reactives on one host, but require their values for computations on different hosts.
As with concurrent instants, this means distributed RP cannot choose to support only a limited amount
of use cases that are easy to handle, but must fully support all its features across arbitrarily distributed
DG topologies.

This is not to say that RP systems cannot exploit the idea of off-loading computations into computing
clusters to increase their throughput. On the contrary, automated tools for off-loading subsections of
the DG to computing clusters can be implemented on top of the support for arbitrarily distributed appli-
cations. Such tools would have to limit the RP model or statically ensure that only user computations
that do not contain side effects are off-loaded, as off-loading side effects would likely break them. Based
on this, they would have to identify suitable cuts through the dependency graph such that they off-load
computations as optimal for performance improvements as possible. This same technique could also be
used to provide automated redundancy for increased fault-tolerance, where one subsection of the DG
is cloned to multiple remote hosts so that a working instance remains alive and available even if some
of these hosts fail or disconnect. But all this is beyond the scope of this dissertation and will be left to
potential future work and not discussed further.

Figure 3.4 shows the overlaid DG and network topology of a distributed implementation of the philoso-
phers, with separate hosts visualized by boxes with a dashed outline. Each philosopher lives on its
own host (grey dashed boxes), containing its “personal” reactives: Its phils input var, sights Signal,

3.2 Implications of Distribution 37

Figure 3.5: Anatomy of Distributed RP

sightChngs and successes Event, and count folding Signal. Two additional dedicated network hosts
(white dashed boxes) are responsible for all forks that the philosophers share amongst each other, and for
keeping track of the sum of all philosophers’ counts. Dependency edges that cross network boundaries
are emphasized as hollow arrows.

Figure 3.5 shows the effects of distribution on the anatomy of RP applications. Every reactive along
with its user-defined computation is placed on some host in the network, visualized through their
nodes/boxes being colored in different shades of grey for different hosts. Imperative threads are also
placed on some host, equally visualized through shading. Instants on the other hand, despite originating
from specific hosts’ imperative threads, are not associated with any specific hosts, but transcend network
boundaries. They may affect reactives on any host, and their semantic guarantees are upheld across the
entire distributed DG as a whole.

3.2.1 Concurrency in Distributed RP

Support for both dimensions of concurrency – concurrent reevaluations of independent reactives within
each single instant and concurrent instants – is essential for distributed RP. To exemplify the need for
parallel reevaluations of independent reactives, consider a phils(1).set(Eating) instant in the dis-
tributed philosophers example. This instant affects sights(0), sights(1) and sights(2). All sights
are independent of each other (no data dependencies between them, topologically unordered) and each
is placed on a different host. If the RP system does not support parallel reevaluations of independent
reactives, the reevaluations of these sights would have to be coordinated in some way. Locally, this
would result only in suboptimal use of available processors (there is at least one processor available for
each of the sights). In this distributed topology though, due to the lack of shared memory between the
philosophers’ hosts, such coordination would require some form of sequential remote communication
where no actual data dependencies exist in the DG topology. Network communication is orders of mag-

38 3 Introducing Concurrency and Distribution

nitude slower than local-only computations, meaning such unnecessary remote communication would
add an immense overhead cost. To avoid overhead cost for synchronizing between reactives that do not
depend on each other, full support for concurrent reevaluations of independent reactives within each
instant is thus crucial.

To exemplify the need for concurrent instants, observe that the distributed philosophers in Figure 3.4
have each philosopher’s input Var placed on the philosopher’s own host. Naturally, each host has its
own imperative environment. In particular, each philosopher’s driving thread from Listing 2.8 executes
in this environment on the philosophers’ host. This shows that not only do concurrent instants occur in
distributed applications, but they may originate arbitrarily from threads on all hosts. While not exem-
plified by the philosophers example, it is also still possible for each host to be multi-threaded in itself.
Concurrent instants therefore interact everywhere throughout distributed RP applications, both within
individual hosts and across multiple ones. Distributed RP therefore also requires a correctness condition
for concurrent instants.

3.2.2 Correctness in Distributed RP

Recall the correctness guarantees to achieve synchronous execution in multi-threaded RP systems are
liveness, glitch freedom and isolation in the form of abort-free strict serializability. Each of these guar-
antees is straight-forward to transfer into a global property across the entire distributed application.

• Liveness: Whenever a reactive changes, all other reactives that depend on it – including those on
other hosts that depend on it remotely – must be reevaluated before the instant completes. In the
distributed philosophers, the phils(1).set(Eating) instant should only complete after all the
same nodes as in the local version have reevaluated, regardless of them being distributed across
multiple hosts.

• Glitch Freedom: A user computation must never read the value of two or more dependencies,
where one has already been changed by an instant but another will still be changed later by the
same instant – regardless of which reactive is placed on which host, and which host the instant
originated from. As an example, the demonstrated glitch from Figure 2.5 can be constructed iden-
tically across the same four reactives in the distributed philosophers application from Figure 3.4,
where these reactives are connected only by network edges.

• Strict Serializability: All reads and writes of instants must be orchestrated such that they are equiv-
alent to those instants having executed serially, one after the other, and this order must correspond
to the real time of their executions – and must be consistent across all hosts in the network.

With these three guarantees together in a distributed RP application, distributed synchronous propa-
gation semantics are achieved: Each instant appears to be instantaneous across the entire distributed
application.

The algorithms that provide these consistency guarantees are affected by the distributed environment
though, in that the DG of distributed RP applications becomes a distributed data structure. The DG is
the foundation for computing liveness and glitch freedom, meaning the propagation algorithms must be
suitable to operate on a distributed DG. Strict Serializability on the other hand requires a consistent order
for instants across all hosts. Since instants can originate from any hosts in distributed RP applications,
this order also creates distributed relations between elements from different hosts. The concurrency
control algorithms for strict serializability must therefore also be able to operate on distributed data.

All of these algorithms, regardless of whether they are used to provide change propagation semantics
or concurrency control, should be decentralized as much as possible, i.e., make as many decisions as
possible locally, without having to communicate with other hosts. The previous section already presented
concurrent reevaluations of independent reactives within each instant as one example to motivate this.
A second possibly even more significant motivation is ease of use. In order for the code quality and

3.2 Implications of Distribution 39

program comprehension benefits of non-distributed reactive programming to apply equally in distributed
applications, distributed RP should ideally require no additional code or configuration in order to work
correctly. In particular, this means that applications should not have to specify some form master or slave
hosts or any kind of hierarchy. Decentralized algorithms, where all hosts are equal and can synchronize
to form any required relations on-the-fly, are essential to facilitate this.

Concluding, the challenges of adding distribution on top of multi-threaded RP can be summarized as
follows. Unlike multi-threading, distribution does not break any assumptions or guarantees on which
synchronous propagation semantics for instants is built. All properties of RP’s synchronous execution
apply the same way they do in local-only applications. Instead, distribution puts restrictions on how the
algorithms that ensure these properties can be implemented. The data structures, which the semantic
guarantees of RP are computed from, become distributed, but still must be assessed wholly by the prop-
agation and concurrency control algorithms. The algorithms for all of these guarantees therefore require
implementations that are decentralized as much as possible.

40 3 Introducing Concurrency and Distribution

4 A Survey of Reactive Frameworks
This chapter provides a comprehensive survey of prior works related to synchronous propagation seman-
tics, reactive programming or just event-based programming in general, as well as automatic incremen-
talization. It classifies prior works by a multitude of different aspects: the programming style that they
facilitate, what programming abstractions they provide, their relation to concurrency and distribution,
the consistencies they provide for their change propagation, and the algorithms they use to provide these
consistencies.

Table 4.1 lists all the prior works considered in the survey. It summarizes, which of the following
features they do (filled dots) or do not (empty dots) support, and which consistency guarantees they
provide, both for their local propagation within each individual host and – if applicable – for their
distributed propagation over the network.

• Dynamic Graphs: This column shows if changes to the dependency graph topology at run-time
are supported, or if applications’ topology is fixed at compile-time.

• Signals, Events: These columns show whether or not Signals and/or Events, or which other pro-
gramming abstractions are supported (local propagation), and can be shared remotely (distributed
propagation).

• Concurrent Reevaluations per Instant, Concurrent Instants: For framework that provide syn-
chronous propagation semantics, these columns show whether or not the framework supports
concurrent reevaluations inside each synchronous instant, and parallel execution of multiple con-
current instants. Frameworks that do not provide synchronous propagation semantics to not have
a concept of instants that separates concurrency into these two separate dimensions. For those,
a single entry fills both columns, indicating whether or not or which kind of concurrency the
frameworks support for their propagation of changes in general.

• Glitch freedom (or Use of Topology): This column shows whether or not each framework pro-
vides glitch freedom or derives other properties from the dependency graph topology.

• Isolation (or Concurrency Consistency): This columns shows whether or not each framework
provides isolation for concurrent instants, or if it provides some other form of consistency in regards
to concurrent change propagation, unrelated to synchronous propagation semantics.

4.1 Preface: Selective Topological Sorting

As discussed in Section 2, a sufficient condition to achieve glitch freedom is executing reevaluations
in a topological order of the DG. This survey will show many variants of propagation algorithms that
implement topological sorting in different ways. We introduce the notion of minimalism, to be able to
classify them in more detail.

The change propagation of each individual instant usually affects only a subset of all reactives in an
application. Figure 4.1 exemplifies the extent of changes on the philosophers application from Section 2
for an instant that updates a philosopher from Eating back to Thinking (cf. Figure 2.3): Black reactives
are reevaluated and change (the philosopher’s input Var, both his forks Signals, his and his direct neigh-
bors’ sights Signals and sightChngs Events). Dark gray reactives are reevaluated but do not change
(filter Events), meaning the change propagation does not progress further. Minimalism classifies the

41

Figure 4.1: Depth-Minimal Traversal

Figure 4.2: Reverse-Minimal Traversal

Figure 4.3: Non-Minimal Traversal

Figure 4.4: Breadth-Minimal Traversal

42 4 A Survey of Reactive Frameworks

capability of propagation algorithms to compute a topological order of only the affected reactives of
each instant, while traversing as few other reactives as possible. Especially in distributed applications,
minimalism is highly desirable, since limiting the scope of change propagation to as few hosts as possible
will avoid significant amounts of slow remote communication. We call propagation algorithms that are
able to propagate a change glitch-free while traversing only those reactives that are actually reevaluated
depth-minimal, because they do not traverse deeper into the DG than actual changes.

Traditionally topological sorting [Kahn, 1962] of a directed acyclic graph can be achieved by repeat-
edly removing a node with no predecessors from the graph until no nodes remain. This implementation
of topological sorting executes in linear time in terms of graph size, which is optimal since the resulting
order includes every node. Using this algorithm for change propagation though would imply that each
instant, regardless of the extent of changes, would traverse every reactive in the entire DG. Figure 4.3
visualizes the same instant as Figure 4.1, but additionally highlights all unaffected reactives with a light
gray background, because the algorithm would traverse them unnecessarily. We call such algorithms as
non-minimal.

Several propagation algorithms achieve a middle ground between non-minimal and depth-minimal
execution: they traverse only over the subset of all reactives that are reached by a forward or backwards
graph traversal from affected reactives.

Figure 4.2 visualizes the extent of unnecessarily traversed reactives for propagation algorithms that
utilize backwards graph traversals to determine glitch freedom for any affected reactive. We call such
algorithms reverse-minimal. Similar to depth-minimal algorithms, they do not traverse the full depth of
the DG topology. They will however always traverse an unnecessarily broad subset of reactives, since the
direction in which they fan is the opposite of change propagation.

Figure 4.4 visualizes the extent of unnecessarily traversed reactives for propagation algorithms that
utilize forwards graph traversals. They always traverse the full depth of the DG topology, but they limit
their breadth as much as possible. Therefore, we call such breadth-minimal. Unlike reverse-minimal algo-
rithms breadth-minimal algorithms can be optimal: For instants, during which every reevaluated reactive
changes, breadth-minimal and depth-minimal traversals are identical. Breadth-minimal change propaga-
tion traverses unnecessary reactives only after some affected reactives did not change after reevaluation.

4.2 Synchronous Programming Languages.

For historic reasons, we discuss synchronous programming languages first. In general, these languages
allow developers to define applications as a composition of many individual concurrent components,
and then compose these components in a way that yields deterministic execution semantics for the
overall program. As such, these programs often do not actually execute with any kind of concurrency at
run-time, but only manage the concurrency of applications’ components at compile-time.

We first discuss ReactiveC [Boussinot, 1991], which serves as a kind of foundation for the other lan-
guages in this group. ReactiveC extends the C programming language, introducing additional keywords
that allow regular imperative programs to use aspects of synchronous execution semantics. Programs
consist of a set of parallel processes that use regular variables and progress synchronously in instants. Re-
activeC introduces the stop keyword, which allows processes to halt until the next instant. It introduces
loop to repeat a process in every instant, and extends this to conditional repeat, every and watching
statements, which repeat processes a fixed number of instants, only at instants where a certain condi-
tion is true, or at each instant until an abort condition is true for the first time. In combination, these
keywords allow concurrent processes to synchronize their processing steps in a well-defined manner.

4.2.1 Esterel: Imperative Synchronous Programming

Esterel [Berry and Gonthier, 1992] is the earliest of the synchronous programming languages. It uses a
similar syntax as ReactiveC, but additionally introduces signals – not to be confused with RP Signals – and

4.2 Synchronous Programming Languages. 43

S
ig

n
a

ls

E
v

en
ts Propagation

 Algorithm

Concur-

rent

Instants

Glitch Free-

dom (or Use

of Topology)

Isolation (or

Concurrency

Consistency)

FrTime ● ● ● ○ ○ ● n/a

REScala ● ● ● ○ ○ ● n/a

Scala.React ● ● ● ○ ○ ● n/a

FlapJax ● ● ● ○ ○ ● n/a

Bacon.js ● ● ● ○ ○ ● n/a

emfrp ○ ● ○ ○ ○ ● n/a

Elm ○ ● ○ ● ● ● ●

MV-RP ● ● ● ○/● **) ● ● ●

SID-UP ● ● ● ● ○ ● n/a

DREAM ○ ● ○ ● ● ○/…/● ○/…/●

FrameSweep (this work) ● ● ● ● ● ● ●

SLf, SLi (Self-Adjusting

Computation)
● ● ○ ○ ○ ● n/a

PAL (Parallel Self-

Adjusting Computation)
● ● ○ ● ○ ● n/a

Incremental Concurrent

Revision Types
● ● ○ ● ○ ● n/a

iThreads ● ● ○ ● ○ ● n/a

ReactiveC n/a ● ○ n/a n/a

Esterel ○ ● ○ ● n/a

SL ○ ● ○ ● n/a

Céu ○ ● ○ ● n/a

SIGNAL ○ ● ○ ● n/a

Lustre ○ ● ○ ● n/a

CoReA ○ ● ○ ● n/a

Distributing Reactive

Systems
○ ● ○ ● n/a

ULM ○ ● ○ ● n/a

Cycle.js ● ○ ● ○ n/a

Knockout.js ● ● ○ ○ n/a

Reactor.js ● ● ○ Obs. Only n/a

Scala.Rx ● ● ○ Obs. Only Single Nodes

Containers, Aggregates,

Mutators, Isolates
● ● ● ○ Single Nodes

Observers/Callbacks man. ○ ●*) ○ n/a

Reactive Extensions man. ○ ●*) ○ Single Nodes

Complex Event

Processing (abstractly)
○ ○ ●

Query

Optimization
Single Nodes

Publish-Subscribe

(abstractly)
man. ○ ● ○

○, FIFO,

Causal, Serial

Actors, Microservices man.

Stream Processing

(Spark, Flink, etc.)
○ ○ ●

Query

Optimization
n/a

Incoop ○ ● ○ ○ n/a

Self-Adjusting

MapReduce
○ ● ○ ○ n/a

Reactive Caching for

Composed Services
○ ● ○ ○ n/a

AmbientTalk/R ● ● ○ ○ ○ ● n/a

Direst ○ ● ○ ○ ○ ● n/a

REScala CRDTs ● ● ● ○ ○ ● n/a

Quarp ● ● ○ ● ○

Multi-Tier FRP ● ● ● ○ ○ ● n/a

ScalaLoci ● ● ● ○ ○ ● n/a

*) "Events" is used synonymously with method calls or (a)synchronous messages here.

**) Concurrent reevaluations per propagation supported, but disabled for performance optimization.

D
is

tr
ib

u
te

d

M
u

lt
i-

C
o

re

abstracted

FSM Compilation

n/a

[Bacon.js]

Height-based PQ

FSM Compilation

hybrid FSM Compilation

N
o

 o
r

L
o

ca
l-

O
n

ly
 S

y
n

ch
ro

n
o

u
s

P
ro

p
ag

at
io

n
 S

em
an

ti
cs

Mark & Sweep

Height-based PQ

Height-based PQ

Height-based PQ

Source Vector Clocks

n/a

[RxJS]

Height-based PQ

n/a

n/a

○

○

○

●

●

B
o

th
,

fo
r

U
sa

b
il

it
y

Quadratic Topsort

Height-based PQ

Height-based PQ

Height-based PQ

DFS + Reverse DFS

List Compilation

Sweep + Queues

Txn CC + abstracted

Mark & Sweep

Source ID Sets

Vector Clocks + Locks

Txn CC Mark & Sweep

Timestamp PQ

Mark & Sweep

Mark & Sweep

hybrid

hybrid

hybrid

FSM Compilation

FSM Compilation

hybrid

n/a

FSM Compilation

FSM Compilation

FSM Compilation

RP(-related) Frameworks

and their Features D
y

n
a

m
ic

G
ra

p
h

s Properties of Local Propagation

 Concurrent

 Reevaluations

 per Instant

S
y

n
ch

ro
n

o
u

s
P

ro
p

ag
at

io
n

 S
em

an
ti

cs

S
in

g
le

-C
o

re
D

is
tr

ib
u

te
d

,

b
u

t
S

er
ia

l

S
y

n
ch

ro
n

o
u

s
L

an
g

u
ag

es
A

u
to

m
.

In
cr

em
en

t.

hybrid

variables

D
is

tr
i-

b
u

te
d

M
u

lt
i-

C
o

re

R
ea

ct
iv

e
P

ro
g

ra
m

m
in

g

D
is

t.
,

b
u

t

S
er

ia
l

M
u

lt
i-

C
o

re

hybrid

hybrid

●

●

●

O
n

ly
 E

v
en

ts
,

fo
r

R
es

p
o

n
si

v
en

es
s

n/a

n/a

n/a

n/a

Mark & Sweep

Mark & Sweep Data Parallelism

R
ea

ct
iv

e
P

ro
g

r.
R

ea
ct

iv
e

P
ro

g
ra

m
m

in
g

S
in

g
le

-

C
o

re
O

n
ly

 S
ig

n
al

s,
 f

o
r

E
v

en
tu

al

●

E
v

en
t-

B
as

ed
 P

ro
g

ra
m

m
in

g
A

u
.

In
c.

Data Parallelism

S
in

g
le

-

C
o

re

●

Data Parallelism

●

Table 4.1: Reactive and Related Frameworks and the Features They Support

44 4 A Survey of Reactive Frameworks

S
ig

n
a

ls

E
v

en
ts Propagation

Algorithm

Concurrent

Reevaluations

per Instant

Concur-

rent

Instants

Glitch Free-

dom (or Use of

Topology)

Isolation (or

Concurrency

Consistency)

FrTime

REScala

Scala.React

FlapJax

Bacon.js

emfrp

Elm

MV-RP

SID-UP ● ● Source ID Sets ● ○ ● n/a

DREAM ● ○ Vector Clocks ● ● ○/…/● ○/…/●

FrameSweep (this work) ● ● Mark & Sweep ● ● ● ●

SLf, SLi (Self-Adjusting

Computation)

PAL (Parallel Self-

Adjusting Computation)

Incremental Concurrent

Revision Types

iThreads

ReactiveC

Esterel

SL

Céu

SIGNAL

Lustre

CoReA Single Tick Delay ● ○ ● n/a

Distributing Reactive

Systems

Resynchronization

Messages
● ○ ● n/a

ULM n/a ● ○ Single Hosts

Cycle.js

Knockout.js

Reactor.js

Scala.Rx

Containers, Aggregates,

Mutators, Isolates

Observers/Callbacks

Reactive Extensions

Complex Event

Processing (abstractly)

Publish-Subscribe

(abstractly)
○ ● n/a ○

○, FIFO,

Causal, Serial

Actors, Microservices ○ ●*) n/a Load Balancing Single Hosts + FIFO

Stream Processing

(Spark, Flink, etc.)
○ ● n/a Load Balancing n/a

Incoop ● ○ Mark & Sweep Load Balancing n/a

Self-Adjusting

MapReduce
● ○ Mark & Sweep Load Balancing n/a

Reactive Caching for

Composed Services
● ○ Mark & Sweep ○ n/a

AmbientTalk/R Peers ○ n/a ○ Single Hosts

Direst CRDT ○ n/a ○ Single Hosts

REScala CRDTs CRDT ○ n/a ○ Single Hosts

Quarp ● ○ Source Vector Clocks ● ○

Multi-Tier FRP ● ● n/a ○ Single Hosts + FIFO

ScalaLoci ● ● n/a ○ Single Hosts + FIFO

*) "Events" is used synonymously with method calls or (a)synchronous messages here.

CRDT: Conflict-Free Replicated Data Type

Process Migration

Properties of Distributed Propagation

Frameworks

(repeated)

hybrid

hybrid

●

●

●

●

●

●

●

●

●

Data Parallelism

Data Parallelism

Data Parallelism

Table 4.2: Reactive and Related Frameworks’ Distributed Properties (Continuation of Table 4.1)

4.2 Synchronous Programming Languages. 45

Figure 4.5: Deriving Dependency Graphs from Esterel Programs.

bases synchronous execution around these signals. A signal is, in essence, a hybrid of an RP input Signal
(Var) and an RP input Event. Like a Var, an Esterel signal holds a value at all times, which processes can
imperatively reassign in each instant. Reassigning the value makes the signal “present” for this instant,
i.e., it emits like an RP input Event. Processes can also set the signal present without changing its
value, similar to RP input Events firing the same value repeatedly in successive instants. Esterel connects
its synchronous semantics to its signals twofold. Conditional statements, similar to those in ReactiveC
above, are all based on signals being present or not present, instead of arbitrary boolean expressions.
Further, signals are exclusively either present or not present and have only a single value associated
throughout each entire instant. To maintain this appearance towards programs’ processes, Esterel must
control the execution of processes such that signals are always written before being read within each
instant.

Esterel and the other synchronous programming languages pre-date the term “glitch freedom”. Yet,
this is precisely what they implement within their synchronous semantics, although particularly in Esterel
applications, this is difficult to see. Viewed abstractly, Esterel programs are a set of processes reading
and writing on a set of signals with no recognizable structure. Nevertheless, Esterel’s description of
semantics itself introduces a method of deriving a dependency graph from Esterel programs, namely by
introducing an edge between any two signals where one is read before the other is written within one
instant of any single process. Figure 4.5 visualizes this transformation. It shows a straight-forwards
bipartite graph visualization of an Esterel Program (a), with reads as edges from signals (circles) to
processes (squares) and writes in the reverse direction. By giving this graph a different layout, the
program’s directed acyclic graph structure becomes apparent (b). The mandated edges for the signal
dependency graph transformation then are a subset of the transitive edges of each pair of incoming and
outgoing edges of every process (c).

Esterel’s execution semantics describe a topological sorting implementation, with minimalism being
irrelevant since every process executes in every instant, even if its only operation is to immediately
pause again until the next instant. At the beginning of every instant, all signals are considered invalid.
Processes can preliminarily make signals present and write new values at any time. Once all processes
can no longer write a given signal, which is inferred by lexical analysis of the concurrent expressions
that still remain to be evaluated, the signal is marked as finalized, with its presence depending on its
preliminary state. Processes can evaluate any statements that read the value or verify the presence of
a signal only after that signal has been marked as finalized. This way, signals in the above described
dependency graph are finalized in topological order, i.e., glitch-free. The actual implementation of

46 4 A Survey of Reactive Frameworks

Esterel’s semantics is not applicable to distributed RP though: In order to maximize efficiency, Esterel
uses a compiler that optimizes and reduces programs into finite state machines that execute on top of
ReactiveC.

4.2.2 Other Synchronous Imperative Languages

The SL Synchronous Language [Boussinot and de Simone, 1996] is closely related to Esterel, following
the same model and differing only in the way it handles reactions to absent signals. In Esterel, programs
are not compositional, because they may produce causality cycles. These may cause programs to be
incorrect, e.g., present S else emit S, where if signal S is not present, it should be made present in
the same instant, which in turn means the statement should not have executed. They may also cause
instants to have more than one possible correct outcome, i.e., an instant’s outcome may have some signal
present or not present, both options being correct outcomes, but the program may behave differently.
The SL Synchronous Language allows the absence of any signals to be determined only at the very end
of an instant, and according reactions execute only during the next instant. This reduces the language
expressiveness, but in turn makes it impossible to define ambiguous or incorrect programs.

Céu [Sant’Anna et al., 2013] is also closely related to Esterel, but is much younger. It differs mainly in
two aspects. First, it provides even more determinism, in that it ensures a consistent order even between
concurrent processes that do not have data dependencies with each other. Second, whereas Esterel
executes one instant after the next, with system inputs polled in every instant, Céu instead hibernates
applications between instants. More similar to RP, the next instant in Céu is started only when any of
the systems’ inputs actually changed. This makes Céu suitable for energy-constrained computing devices,
such as mobile sensors, since hardware components can be turned off during hibernation phases, thereby
reducing power consumption to minimally necessary heights.

CoReA [Boniol and Adelantado, 1993] attempts to bring the synchronous programming of Esterel to
distributed systems. All hosts’ instants are based on the same global clock. It only implements “weak
synchronous” semantics though: Every host in the distributed application runs is a “strong synchronous”
system, equal to, e.g., regular local Esterel applications. Communication between hosts takes place
only between clock ticks though, meaning one host can react to signals from processes on other hosts
only in the next instant. This is intended to find a semantics that is both concurrent and deterministic,
as a middle ground between the multi-threaded imperative programming style and the other “strong
synchronous” languages in this group: The former is concurrent but non-deterministic, while the latter is
considered deterministic but not concurrent, due to an interpretation of “strong synchronous” semantics
as implying that programs must be sequentialized into single-threaded applications. This contrasts the
interpretation taken by this dissertation for FrameSweep, which is that there is well-defined space for
concurrent executions within (“strong”) synchronous semantics.

“Distributing Reactive Systems” [Caspi et al., 1994] also addresses distributing synchronous Esterel
programs. It provides algorithms for distributing values and process steps based on assigning signals to
certain network locations, and then inserting dummy communications into the distributed components
to ensure synchronous semantics. It provides two different options for synchronous semantics, which
it also calls “strong” and “weak”. They relate to either allowing or not allowing different hosts in the
application to diverge in terms of their current instant. “Strong”, as above, equals the semantics of
local applications, meaning every instant occurs simultaneously on all hosts. This work therefore does
implement distributed synchronous semantics, but still without concurrent instants, i.e., still not scalable
in the way that this dissertation intends to achieve. “Weak” on the other hand is defined differently from
CoReA. In this work, “weak” synchronous semantics means that instants across hosts are allowed to
diverge in time, once they do not await further signals from each other, but only so far that they still
overlap, such that an event producer cannot run away from a slower consumer. For every instant, there
must be a moment where either all hosts or every connected pair of hosts (both variants are possible) is
processing that instant at the same time. This weak synchronous semantics does not change the internal

4.2 Synchronous Programming Languages. 47

synchronicity of a given program, but weakens only its outside appearance, in that an external observer
may see one host process a second instant before another host processing the first. As such, this weak
synchronous semantics is the first appearance of concurrent instants as considered in this dissertation,
albeit still in a very narrowly restricted form.

Lastly, there is ULM [Boudol, 2004], which also intends to bring the SL synchronous language to
distributed applications. ULM does not implement any form of distributed synchronization though,
but instead extends processes to agents that can migrate between hosts. Each host individually is a
synchronous system, and an agent that migrates to a given host executes its process synchronously with
all other processes on that host. In order to synchronize with processes on a different host though, the
agent has to migrate to that other host. The process can never synchronize with processes on two hosts
at the same time. As such, ULM also does not bring anything new to the table in regards to implementing
distributed synchronous semantics.

4.2.3 Synchronous Data Flow Languages

Differently from the imperative synchronous style pioneered by Esterel, there are two prominent data
flow synchronous languages, SIGNAL [Gautier et al., 1987] and Lustre [Caspi et al., 1987]. SIGNAL
and Lustre do not have imperative processes. Instead, programs are described as a set of equations
(computations) that each define a variable, like derived Signals of RP. Differently from RP though, which
variables are recomputed at which points in time is not based on their changes, but on clocks, similar
to clocked processors in hardware. In SIGNAL, each input variable comes with its own associated clock,
whereas Lustre initially has only a basic clock that simply ticks every instant. In both languages though,
custom clocks can be defined directly in the programs in the form of boolean variables that tick in every
instant where they are present and true. In order to combine any two variables with any operator, both
variables must either have the same clock, or must be converted to the same clock, and the operator will
then recompute the variable’s value whenever that clock ticks. Converting variables between clocks can
be done, e.g., by reusing variables’ latest values, or re-sampling them at slower clock rates.

SIGNAL and Lustre both provide calculi to compile programs into finite state machines, equally to
the imperative synchronous languages discussed above. The dependency graph of SIGNAL and Lustre
programs is derived from the dependency relations between variables, in particular including boolean
variables that are used as the clocks of other variables, and used to order variable recomputations in each
transition, achieving glitch freedom. Differently from the imperative synchronous languages, minimalism
does play a role in SIGNAL and Lustre since variables are only recomputed in instants where their
associated clocks tick. This minimalism is integrated into the program at compile-time by using the
boolean expressions of clock variables to determine, which recomputations must be executed at which
transitions of the resulting finite state machine. Since all this is still solved by statically at compile-time,
this approach is also not suitable for in the presence of dynamic dependencies.

4.2.4 Summary

Unsurprisingly, all synchronous programming languages share the concept of synchronous instants. They
are all closely related, using nearly identical algorithmic approaches to provide synchronous semantics,
namely compiling their programs into sequentialized finite state machines. This approach is not suitable
to implement distributed RP with fine-grained concurrency control, as envisioned in this dissertation.

More recently, the limitation of processing power of single CPUs has begun to impact synchronous
programming languages as well. As a result, research has started towards getting synchronous programs
to execute in parallel [Yip et al., 2016]. Therein, synchronous programs are no longer sequentialized,
but concurrent execution of independent computations within each instant is introduced. This matches
what is considered concurrent reevaluations within instants in terms of this dissertation. Due to their

48 4 A Survey of Reactive Frameworks

focus on upholding the real-time predictability and constraints however, the implementation of this is
based on real-time scheduling, using computed worst-case execution times of each task, rather than
algorithmic ordering, and thus this is not transferable to RP. Moreover, they retain the restriction that
only a single instant executes globally at a time, and thus support only one of the two dimensions of
concurrency (for good reason, as supporting concurrent instants would make bounded execution time
much more difficult). As such, these recent advancements not applicable to distributed RP either.

4.3 Reactive Programming

The term “Reactive” in relation to programming is overloaded with several partially overlapping mean-
ings. This dissertation derives the term “Reactive Programming” from Functional Reactive Programming.
This section addresses prior works from this area of research. A second meaning, which has recently
gained a lot of popularity, is the notion of “Reactive Distributed Systems”, spearheaded by the Reactive
Manifesto [Bonér et al., 2014]. Therein, “reactive” describes the quality of distributed systems to be
resilient to failures in that they remaining responsive and continue to function even if some parts of the
application fail. The Reactive Manifesto advocates event-based programming as the fundamental design
abstraction, on which all distributed systems should be built to ensure that they are “reactive”. There-
fore, prior works in the category of reactive distributed systems are not addressed here, but as part of
Section 4.4 instead.

Works on Functional Reactive Programming can be separated into two fundamental categories: dis-
crete or continuous. In discrete RP frameworks – which is the model followed in this dissertation – the
values of Events and Signals are recomputed in instants as discrete logical steps. Continuous Functional
Reactive Programming [Elliott and Hudak, 1997] instead defines Signals and Events as mathematical
continuous functions time to values. Syntactically, both categories are similar, in that applications define
Events and Signals declaratively through formulae or functions, and the control flow between them is
added by the runtime library or framework. The semantics behind discrete vs. continuous Functional
Reactive Programming are very different though, and have no relation with synchronous propagation
semantics. As such, works on continuous Functional Reactive Programming are not included in this
survey.

4.3.1 Local, Single-Threaded Reactive Programming

Discrete Functional Reactive Programming has been pioneered by FrTime [Cooper and Krishnamurthi,
2006]. FrTime embeds RP into Scheme as its host language, using a model very similar to the one
described in this dissertation. It provides Events and Signals as first-class entities, with support for
dynamic changes to the dependency graph topology for higher-order reactives. It does not address
any form of concurrency, and thus achieves synchronous propagation semantics through glitch freedom
by executing reevaluations in a topological order. It computes this topological order by labelling all
reactives with their height. Input reactives as height zero, and derived reactives as one height above
the maximum height of all their dependencies. After a reactive changed, all outgoing dependencies are
added into a priority queue, and change propagation is implemented by reevaluating all reactives in this
queue, lowest height first. In essence, heights allow to conclude the absence of transitive reachability,
but without exhaustively traversing the dependency graph. If a first reactive has a smaller height than a
second, then there cannot be path in the DG from the second reactive to the first, hence the first can be
reevaluated without risk of future reevaluations of the second causing a glitch. As a result, height-based
priority queue change propagation is depth-minimal, i.e., optimal. Unfortunately, heights significantly
over-approximate transitive dependencies, which makes this algorithm unsuitable for use in distributed
applications. If any two reactives have different heights, the propagation algorithm must assume that a
path in the DG exists from one to the other, and therefore cannot reevaluate them concurrently even if

4.3 Reactive Programming 49

they do not actually depend on each other. In distributed applications, this unavoidably implies a large
amount of remote synchronization between reactives where no data dependencies actually exist, which
causes a prohibitive performance overhead.

REScala [Salvaneschi et al., 2014b] and Scala.React [Maier and Odersky, 2012] embed RP into Scala.
They also implement a model of RP very similar to this dissertation, and also use the height-based
priority queue. Scala.React acknowledges multi-threading in that it binds applications’ DG to a scheduler.
This scheduler executes all instants’ change propagation on a specific thread (e.g., the UI thread for UI
applications), i.e., it deliberately prevents concurrency. Scala.React additionally implements Reactors
and incremental list reactives inside the RP model of Signals and Events. Reactors are processes similar to
those from imperative synchronous programming languages. Reactors’ execution semantics are closest to
processes in Céu, in that they do not execute in every instant, but only when they are actually affected by
changes. Differently though, Reactors depend on and change regular RP Events and Signals, rather than
using the event/signal hybrid abstractions from imperative synchronous programming languages. Lastly,
an extension to Scala.React describes, how incremental collection reactives can be integrated into an
RP system with Events and Signals [Maier and Odersky, 2013]. Incremental collection reactives [Maier
and Odersky, 2013] are in essence Signals, whose values are collections of elements, and that propagate
incremental changes between each other, rather than propagating an entirely new collection instance for
every change. While it should be feasible to integrate these features into the model of distributed RP of
this dissertation without having to significantly changes, they do not yield insights towards concurrent
or distributed change propagation.

With many interactive applications being browser-based distributed web applications, a plethora of
frameworks inspired by RP has been built in JavaScript. These come in varying shapes and sizes, with
many implementing only a subset of the features of RP presented in this dissertation. Generally though,
they support the implementation of only the user interface in the single-threaded browser environment,
and not the server. Thus, despite being designed for use in distributed applications, they are not imple-
mentations of distributed RP, and do not address any form of concurrency. Since there are far too many
such frameworks to discuss all off them, we only address several examples.

FlapJax [Meyerovich et al., 2009] and Bacon.js [https://baconjs.github.io] are examples that
implement similar model including all the features discussed in this dissertation. Bacon.js on the other
hand uses a two-phased approach. First, a depth-minimal forwards depth-first graph traversal either
directly reevaluates reactives that do not request glitch freedom, or places those that do in a queue. Sec-
ond, for every reactive in this queue, a backwards depth-first traversal is executed. When the traversal
has finished traversing all dependencies of a reactive and returns, this reactive is ready for a glitch-
free reevaluation. If it is in the queue of pending reevaluations, it is reevaluated, and if this results
in it changing, another forwards traversal is executed before the backwards traversal continues. This
forwards traversal also places affected reactives that require glitch freedom in the queue though, so
all reevaluations that are susceptible to glitches are still executed only when the backwards over all
their dependencies has completed. Thus this algorithm achieves topological reevaluation order, and
therefore glitch freedom and synchronous propagation semantics, and is reverse-minimal overall. Due
to the global queue of pending glitch-susceptible reevaluations this algorithm is unsuitable for use in
distributed RP. Even if there was a way to implement it without this queue though, it would likely com-
plicate concurrency control due to introducing the additional requirement for safely executing backwards
graph traversals, on top of inherent requirement for safely executing forwards graph traversal for change
propagation.

Cycle.js [https://cycle.js.org], Knockout.js [https://knockoutjs.com] and Reactor.js [https:
//github.com/fynyky/reactor.js] are examples of JavaScript RP libraries that provide only a subset
of the RP features discussed in this dissertation. Cycle.js supports only Events, not Signals, by re-using
RxJS, the JavaScript implementation of Reactive Extensions (discussed in Section 4.4). Knockout.js and
Reactor.js conversely support only Signals, but not Events. All three do not use a propagation algorithm
for glitch freedom, and thus do not provide synchronous propagation semantics. Reactor.js still attempts

50 4 A Survey of Reactive Frameworks

https://baconjs.github.io
https://cycle.js.org
https://knockoutjs.com
https://github.com/fynyky/reactor.js
https://github.com/fynyky/reactor.js

to support the appearance of synchronous propagation though, by providing a kind of observer-only
glitch freedom. Symmetric to the model of this thesis including dedicated input reactives that do not
have dependencies, Reactor.js supports observers as dedicated output reactives that no other reactives
can depend upon. It expects side-effects to be part of user computations of observers only, while user
computations of regular derived reactives are expected to be functionally pure. Instants are processed
in two phases. First, changes are propagated through derived reactives in an arbitrary order. Affected
derived reactives are reevaluated with glitches, while affected observers are added to a queue instead.
After this first phase, i.e., once all changes have been propagated and all temporarily glitched values
have been overwritten by correct ones, the second phase reevaluates all queued observers. Due to not
having outgoing dependencies, observers cannot depend on each other, i.e., they are all independent of
each other and therefore can be reevaluated in any order without causing glitches. Thus, even though
overall change propagation is not glitch-free, glitches cannot interact with side-effects, and therefore
cannot cause any harm. Restricting side-effects to dedicated observer reactives only does not align with
the model used in this dissertation though, where side-effects are allowed in all user computations, and
therefore is not useful towards the envisioned goal.

Lastly, emfrp [Sawada and Watanabe, 2016] is a standalone RP language designed for use with
resource-constrained embedded devices. It supports only Signals, not Events, and does provide glitch
freedom and thus synchronous propagation semantics. To minimize its computational requirements, it
does not use a propagation algorithm. Instead, it is restricted to static dependency graphs only, and pro-
vides synchronous propagation semantics by computing a glitch-free reevaluation order for every input
change statically at compile-time. This means, it is algorithmically similar to the FSM compilation of
synchronous programming languages, and does not provide any new insights towards distributed RP.

4.3.2 Reactive Programming Libraries with Concurrency

Scala.rx [https://github.com/lihaoyi/scala.rx] is another embedding of RP in Scala. It supports
dynamic DG topologies of only Signals, not Events. Scala.rx uses the same height-based priority queue
change-propagation as REScala, Scala.React and FlapJax described above. On top of that though, it
integrates support for both concurrent reevaluations per instant and concurrent instants. For concurrent
reevaluations per instant, Scala.rx simply reevaluates all reactives of the current lowest height in the pri-
ority queue in parallel, instead of only a single one. Unfortunately, since heights still over-approximate
transitive dependency relations, this support for concurrent reevaluations per instant is far from op-
timal, and does not improve on the requirement for over-extensive remote synchronization between
independent reactives. Without concurrent instants, this introduction of concurrent reevaluations per
instant remains glitch-free, and the algorithm therefore does still provide synchronous propagation se-
mantics. For concurrent instants though, Scala.rx implements only minimal concurrency control that
does not preserve synchronous propagation semantics. Namely, instead of ensuring isolation for en-
tire instants, Scala.rx ensures only mutual exclusion for reevaluations on single reactives. Concurrent
instants can reevaluate different reactives in different orders though, and as such, glitch freedom, syn-
chronous propagation semantics, and the concept of instants is lost as soon as applications admit input
changes concurrent. To compensate for concurrency glitches, Scala.rx implements the same concept of
observer-only glitch freedom as Reactor.js, but – even for observers – this restores only glitch freedom,
but not isolation and therefore also not synchronous propagation semantics. In summary, the propaga-
tion algorithm of Scala.rx is equally infeasible to use for distributed RP as the single-threaded priority
queue, and it provides no new insights towards supporting concurrency.

Containers, Aggregates, Mutators, Isolates [Prokopec et al., 2014] is also another embedding of
RP in Scala. It supports dynamic DG topologies of Events, Signals and incremental collection reactives
similar to Scala.React. It does not use a propagation algorithm though, and therefore does not provide
glitch-freedom and synchronous propagation semantics. It does support parallel propagation of multiple
concurrent changes, and provides two features to support this concurrency. First, it allows reactives to

4.3 Reactive Programming 51

https://github.com/lihaoyi/scala.rx

be bound to specific threads, so that all their reevaluations are executed on that specific thread. Second,
it ensures mutual exclusion for reevaluations of each single reactive, but does not implement a more
sophisticated form of consistency in relation to concurrency.

Elm [Czaplicki and Chong, 2013] is another Reactive Programming framework for JavaScript that
implements only a subset of RP features. Namely, Elm supports only Signals, not Events, and only
static dependency graphs, i.e., no dynamic changes of dependency relations. Despite JavaScript being a
traditionally single-threaded environment and Elm therefore not actually utilizing any multi-threading,
Elm has a propagation algorithm that provides synchronous propagation semantics while fully supporting
fine-grained parallel execution of concurrent instants and concurrent reevaluations within each instant.
Elm’s propagation algorithm uses asynchronous message passing to implement traditional topological
sorting, and adds message queues on all dependency edges. After a reactive changed, it queues its
new value in the message queues of all its outgoing dependency edges. Any reactive that does not
change instead queues a “no change” message into each queue. This particularly includes input reactives,
meaning if a change is admitted to some input reactive, all other input reactives must be iterated to
emit “no change” messages. Every derived reactive can execute a glitch-free reevaluation once it has
a message in the queue of every incoming dependency edge. To execute this reevaluation, it dequeues
the first message from each incoming dependency edge message queue. Newly received values are
used to update the parameters with which the reactive executes its user computation, while it retains
the previous value of a parameter if it receives a “no change” messages. If all queued messages are “no
change” messages, “no change” message is forwarded to all outgoing dependencies immediately, without
executing a reevaluation – we call this process no-change propagation.

Due to several aspects, Elm’s change propagation algorithm is not suitable for distributed RP, but it
still yields several novel insights. First, the algorithm is non-minimal, meaning it would require a lot
of unnecessary slow remote communication. More crucially though, the necessity to starting no-change
propagation from all inputs for every instant would require some form of central coordinator that knows
all input reactives of the entire distributed application. Due to this central coordinator, a decentralized
implementation impossible. Nevertheless, the actual propagation of changes after this initialization sup-
ports concurrent reevaluations per instant in a fully decentralized fashion, sending messages exclusively
along dependency edges in the DG topology with each node capable of determining glitch freedom of
its reevaluations autonomously. Further, the concept of no-change propagation shows, how such de-
centralized message-based propagation can accurately reevaluate only those reactives that are actually
affected by changes, even if its graph traversal is not depth-minimal. Finally, its use of message queues
on DG edges demonstrates that having reactives’ values from different points of time accessible in dif-
ferent locations of the DG makes it possible to simultaneously support fine-grained parallelism between
concurrent instants and provide synchronous propagation semantics. Unfortunately though, retaining
these values in queues bound to DG edges is fundamentally incompatible with dynamically discovering
such edges, because it is not possible to reconstruct correct contents of the associated queue when it is
created.

MV-RP [Drechsler et al., 2018] is one of the stepping stones developed in the context of this dis-
sertation towards distributed RP. MV-RP is a scheduler add-on that creates a thread-safe concurrent RP
implementation when combined with any propagation algorithm for glitch freedom. The scheduler is
built from a combination of concurrency control algorithms from databases that cooperate with the
propagation algorithm. It treats each execution of an instant by that propagation algorithm as a trans-
action, and allows multiple concurrent ones to execute with fine-grained parallelism, while maintaining
isolation in the form of abort-free strict serializability, and thus retaining synchronous propagation se-
mantics. Most crucially, and responsible for its name, one of MV-RP’s concurrency control algorithms is
multiversion concurrency control. Multiversion concurrency control retains the old values of variables
when new values are written, which bears notable similarity to how Elm supports concurrent instants
through having reactives’ values buffered for different lengths of time in different message queues. Dif-
ferently from Elm though, MV-RP stores these multiple values not on DG edges, but on the reactives

52 4 A Survey of Reactive Frameworks

where they originate from, which is what enables it to support dynamic dependency edge changes. A
second difference to Elm is, that MV-RP is breadth-minimal instead of non-minimal, but in turn requires
two DG traversals instead of just one. Since the implementation of FrameSweep includes all the same
algorithms and data structures of MV-RP, we do not go into further detail here on how MV-RP works.
These details are instead explained as part of the description of FrameSweep in Chapter 5.

4.3.3 Signal-only Distributed Reactive Programming for Eventual Consistency

This section surveys a significant number of frameworks under the label of Distributed Reactive Pro-
gramming that build on the insight that Signals without synchronous propagation semantics are a
very natural fit to express eventually consistent values. In their model, a Signal simply represents
the most recent known state or result value of some computation, and may update at arbitrary times
for any reason. This way, they become naturally tolerant towards network delays and partial failures.
On the downside though, the lack of synchronous semantics means that the changes of these Signals
become non-deterministic. Therefore, the model of these frameworks is fundamentally unable to sup-
port Events, because non-deterministically firing Events are not a useful programming abstraction. The
earlier-discussed Scala.rx also fits into this category, with the minor variation that it uses eventually con-
sistency for Signals to tolerate race conditions from concurrency, rather than network delays and partial
failures from distribution. As a result, equal to Scala.rx, none of the frameworks presented here yield
any new insights for the implementation of distributed RP with synchronous propagation semantics.

AmbientTalk/R [Lombide Carreton et al., 2010] provides distributed RP for loosely-coupled peer-to-
peer scenarios. Locally on each host, it uses height-based priority queue change propagation under global
mutual exclusion, i.e., provides synchronous propagation semantics with no support for concurrency. For
distribution, local Signals can be assigned to interfaces that can be published for discovery by remote
peers. Peers can query their environment for specific interfaces, which returns a Signal of a collection
of all instances of this interface published by peers in the proximity. These collections of connected
peers’ publications form the basis for all distributed reactivity. If a peer changes the value of a published
signal, this value changes in all connected peers’ collection. If peers lose or gain connection, their
published values are added or removed from the collection. The distributed DG topology is thus entirely
transient, meaning AmbientTalk/R does support defining fixed dependency relations across a specific
network topology. Correspondingly, it does not address any form of consistency for distributed change
propagation.

Direst [Myter et al., 2016] and the REScala’s CRDT Signals [Mogk et al., 2018] use eventually
consistent Signals for state replication in distributed applications. Locally, equal to AmbientTalk/R,
both use height-based priority queue propagation under global mutual exclusion to support synchronous
propagation semantics with no concurrency for Signals of arbitrary values. They differ only slightly,
with REScala additionally supporting Events, and Direst not supporting dynamic dependency changes.
Distribution on the other hand can be built, for both, only through multiple hosts collaboratively sharing
replicated Signals of certain conflict-free replicated data type (CRDT) values. CRDTs are types whose
values can be updated incrementally, and all possible updates are commutative with each other, e.g., an
integer counter with only increment and decrement operations, but no setter. Due to this commutativity,
these replicated Signals retain their eventual consistency regardless in which order and with which delays
changes are replicated between hosts. Neither Direst nor REScala’s CRDTs implement any consistency
guarantees for their distributed propagation beyond this eventual consistency.

Quarp [Proença and Baquero, 2017] follows the an approach more that is closer to the model used in
this dissertation, with applications defined as a distributed dependency graph of remotely shared Signals
of arbitrary values. Quarp’s propagation algorithm ensures glitch freedom and is fully decentralized. If
other algorithms – such as a decentralized implementation of MV-RP – ensure isolation, Quarp would
be suitable to add glitch freedom and thus achieve decentralized synchronous propagation semantics,
Quarp is thus highly relevant for distributed RP as envisioned by this dissertation. Without such other

4.3 Reactive Programming 53

algorithms, Quarp provides glitch freedom under fully concurrent distributed change propagations, but
does not ensure isolation, and therefore does not provide synchronous propagation semantics. Similar to
the propagation algorithm of Elm, QUARP’s change propagation is message-based and utilizes no-change
propagation. Differently though, its propagation is breadth-minimal, but in turn it adds a vector times-
tamp to every message. These vector timestamps are based on logical clocks on all input reactives that
are individually incremented with every admitted change. The vector timestamps added to the outgoing
messages of a reactive map every transitively reachable input reactive to its latest known timestamp.
Each reactive can autonomously compute whether or not a glitch-free reevaluation is possible by com-
paring the timestamp of each input reactive across all its dependencies. If two dependencies’ values map
the same input reactive to two different timestamps, the reevaluation would combine values associated
with two different points in time, and therefore might produce a glitch. A glitch-free reevaluation is
guaranteed only if, for each input reactive, all dependencies that do associate a timestamp associate the
same timestamp with that input reactive.

4.3.4 Other Distributed RP Frameworks

Multitier Functional Reactive Programming [Reynders et al., 2014] and ScalaLoci [Weisenburger
et al., 2018] are Scala-based languages for the implementation of distributed systems using a combi-
nation of RP and multitier programming, i.e., describing all components of a distributed system as a
single compilation unit with the compiler later separating them. Multitier FRP is focussed purely on dis-
tributed RP, and targets specifically client-server web applications. ScalaLoci on the other hand supports
distributed RP as one of several features for implementing distributed applications, and targets arbitrary
distributed application scenarios (client-server, peer-to-peer, and more). Both support remote sharing of
both Events and Signals of arbitrary types, and dynamic changes to the dependency graph topology. On
each individual host, both use height-based priority queue change propagation under mutual exclusion
and thus provide synchronous propagation semantics with no concurrency. Because both focus on lan-
guage design improvements from the synergy of combining multitier and reactive programming though,
neither implements sophisticated distributed propagation algorithms. They emulate distributed prop-
agation by triggering separate, unconnected instants on the remote hosts when remote dependencies
change, ensuring only FIFO order preservation for remote changes across each individual network link.
Both leave the challenge for providing consistent distributed change propagation semantics to future
work.

SID-UP [Drechsler et al., 2014] is another stepping stone on the path of this dissertation towards
distributed RP. It supports Signals, Events, dynamic dependency changes and concurrent reevaluations
per instant, but not concurrent instants. Equal to Quarp, SID-UP ensures glitch freedom and is fully
decentralized, and if other algorithms – such as a decentralized implementation of MV-RP – ensure
isolation, SID-UP would be suitable to add glitch freedom and thus achieve decentralized synchronous
propagation semantics. SID-UP is therefore also highly relevant for distributed RP as envisioned by this
dissertation. Differently from Quarp though, SID-UP is incompatible with concurrent instants, and thus
not usable without such other algorithms. SID-UP uses an approach similar to Quarp’s vector timestamps,
but with slightly less complex data structures. Due to not supporting concurrent instants, only two
different vector timestamps could exist throughout the entire application at any point in time: those
that corresponds to before and after the currently executing instant. SID-UP thus achieves equivalent
behavior to Quarp’s vector timestamps by storing on each reactive only the set of transitively reachable
input reactives – to determine if a given instant affects the reactive – and whether or not the reactive
was already reevalutated by the current instant. SID-UP therefore does not associate timestamps with
each transitively reachable input reactive, and does not require logical clocks on input reactives. In
summary, SID-UP uses slightly less complex data structures than Quarp, but in turn can not provide glitch
freedom for concurrent instants. Assuming that some external environment provides isolation though –

54 4 A Survey of Reactive Frameworks

such as MV-RP – the latter becomes irrelevant though, meaning SID-UP may be superior to Quarp for
implementing distributed glitch freedom in the context of synchronous propagation semantics.

DREAM [Margara and Salvaneschi, 2018] is an RP implementation designed to compare the cost of
different consistency levels for distributed change propagation. DREAM supports all aspects of concur-
rency during propagation, but only over static distributed DG topologies of only Signals, i.e., it supports
neither Events nor dynamic dependency changes. DREAM allows applications to chose – on top of live-
ness – one of the following consistency levels, which it implements through different combinations of
vector clocks and locks:

• FIFO: If one reactive changes twice in succession, any depending reactive is reevaluated for these
changes in the same order. This is equivalent to the consistency provided by Multitier FRP and
ScalaLoci for their distributed propagation.

• Causal: If a change of a first reactive propagates and causes a second reactive to change, any third
reactive that depends on both of them is reevaluated for the first reactive’s change before it is
reevaluated for the second reactive’s change.

• Single Source Glitch Freedom: This consistency is defined ambiguously. Its name and motivating
example suggest that it provides glitch freedom for applications where updates originate from a
single input reactive only, but does not provide glitch freedom if concurrent updates from different
sources interact. This is equivalent to the consistency provided by Scala.rx, which was discussed
earlier. The formal definition of single source glitch freedom and its implementation however
suggest that it provides glitch freedom even under concurrent instants, but without isolation. This
is equivalent to the consistency provided by Quarp, which was discussed earlier. DREAM assumes
that Signals always change after reevaluations, therefore its implementation of Single Source Glitch
Freedom corresponds to a breadth-minimal DG traversal without no-change propagation.

• Complete Glitch Freedom: Glitch-freedom and isolation, i.e., synchronous propagation semantics,
but only for reevaluations executed during instants. Imperative reads by outside processes may still
observe partial effects of instants (i.e., glitches). In other words, Complete Glitch Freedom ensures
abort-free serializability for transactional instants, but not strict, i.e., without linearizability for
imperative reads. Similar to MV-RP, which was discussed earlier, this consistency is implemented
by preceding the breadth-minimal glitch-free change propagation traversal of each instant by a
breadth-minimal lock acquisition traversal. The way in which DREAM acquires the correct set
of locks for each instant relies on the static nature of the dependency graph though. Moreover,
DREAM relies on a centralized lock manager to avoid deadlocks between instants. As such, this
implementation does is unsuitable for distributed RP as envisioned by this dissertation.

• Atomic: Glitch freedom and isolation, i.e., synchronous propagation semantics, including trans-
actional execution of imperative reads by outside processes. This corresponds to the consistency
envisioned by this dissertation for distributed RP (abort-free strict serializability) and implemented
by MV-RP for local multi-threaded RP. The implementation of Atomic consistency is even more sim-
ilar to MV-RP than Complete Glitch Freedom. On top of Complete Glitch Freedom, it also acquires
locks for imperative reads in a similar fashion. But, this does not change that the implementation
of Complete Glitch Freedom is unsuitable for this dissertations goal.

Lastly, FrameSweep – the contribution of this dissertation – belongs into this category. FrameSweep
supports all of the features discussed by this dissertation: dynamic distributed DG topologies of both
Signals and Events, glitch-free concurrent reevaluations within each instant and fine-grained parallel
execution of multiple concurrent instants in isolation, thus overall still achieving synchronous propaga-
tion semantics. The algorithmic details of how FrameSweep implements its consistency guarantees are
described in Chapter 5, and how it adapts to distribution in Chapter 7.

4.3 Reactive Programming 55

4.4 Event-Based Programming

The most basic programming paradigm that can be considered event-based is the Observer pat-
tern [Gamma et al., 1995], or callback-based application designs in general When chaining together
multiple observers, a DG topology forms. Since each instance of the observer pattern is often an indi-
vidual implementations with custom interfaces, such topologies are not accessible in a uniform way.
As a result, control flow of Observer-based application designs emerges incidentally, and there are
no overarching control facilities. Observer subscriptions are dynamic, but not automatically inferred
from their computations. Observers subscriptions are established or cancelled only through explicit (un-
)subscription instructions. Graph traversals are depth-minimal, but provide no consistency guarantees.
Applications can choose to fire several observer notifications concurrently, but no consistency is provided
unless manual synchronization is implemented within some individual observers.

Reactive Extensions [Meijer, 2010] are sometimes referred to as “observers on steroids”. They pro-
vide Observables as a uniform model for finite or infinite event streams, with convenient syntax to specify
new Observables as derivations and combinations of others. Ready-to-use implementations exist in many
different languages, most popularly Rx.NET [Liberty and Betts, 2011], RxJava, and RxJS (JavaScript).
Reactive Extensions do determine most required dependency subscriptions automatically, but establish-
ing or cancelling must still be done through explicit (un-)subscription instructions. Change propagation
in Reactive Extensions is again depth-minimal, but does not provide any consistency guarantees. Reactive
Extensions do address multi-threading, not in a way that provides overarching consistency guarantees
such as eventual consistency or isolation. They only ensure that incoming events on each individual Ob-
servable are processed under mutual exclusion. Further, they allow individual Observables to be bound
to a specific thread, e.g., to ensure that the processing of incoming events of an Observable that modifies
an applications’ user interface can be bound to always execute on the UI thread.

Complex Event Processing [Wu et al., 2006, Cugola and Margara, 2012] is a model for processing
event streams almost as if they were database tables. New event streams can be defined as relational
algebra queries over other event streams. Complex Event Processing implementations do not address
consistency guarantees for change propagation, but may analyze the topology of the operator graph of
queries in order to rearrange operators and optimize query execution. They may support concurrent
propagation of changes, but also do not provide any overarching consistency guarantees, ensuring only
that individual queries’ data structures (e.g., join indices) do not get corrupted by race conditions.

4.4.1 Event-based Distributed Systems

Event-based programming has been advocated, most prominently by the Reactive Manifesto [Bonér
et al., 2014], as the fundamental paradigm on which distributed systems should be built. This is because,
similar to eventually consistent Signals in purely Signal-based distributed RP frameworks, event streams
in event-based programming almost naturally integrate handling for network delays or failures. Pull-
based access to remote state may stall in the presence of network delays or failures, thereby making
the application unresponsive. With event-based programming on the other hand, there is no pull-based
access to remote state, only push-based event propagation. In case of delays or failures, some event
streams will not emit new values for a while, but this does not impact the responsiveness of the remaining
application. This section discusses frameworks in this category.

Publish-Subscribe Systems [Eugster et al., 2003] enjoy widespread popularity. They consist of a
central broker, which allows subscribers to subscribe to specific topics or content patterns of events, and
publishers to submit events. The broker ensures that each published event is delivered to all interested
subscribers, thereby decoupling event consumers and produces from another. Any publishers or sub-
scribers can connect or disconnect freely without affecting any others, meaning the event propagation
topology is dynamic. Publish-Subscribe systems are naturally subject to multiple events being published
concurrently, and do provide various forms of consistency guarantees to address this. These include FIFO

56 4 A Survey of Reactive Frameworks

or Causal or Serial delivery order for events, but since the event propagation topology does not form an
acyclic dependency graph, glitch freedom is not applicable.

Actors [Agha, 1986] and microservice architectures in general are essentially distributed and con-
current object-oriented programming models. Each object (actor or microservice) has its own thread
and communicates with others through asynchronous message passing. They are only distant relatives
of event-based programming though, because any object can arbitrarily send a message to any other ob-
ject. There is no concept of subscriptions to form a dependency graph, and therefore there they cannot
implement any topology-based consistency guarantees such as glitch freedom. Each object has a queue
of received messages though, and its thread processes incoming messages one after the other, meaning
there is only unsophisticated consistency in that messages are processed under mutual exclusion per
individual object. The main benefit of actor and microservice architectures lies in their scalability and
fault tolerance models. Each actors or microservices is automatically restarted if it crashes or stalls,
and it can have multiple instances distributed throughout arbitrarily large computing clusters to imple-
ment immensely scalable applications. Some systems even support persistence for individual actors’ and
microservices’ internal state, which is then automatically restored if they are restarted.

Stream processing [Abadi et al., 2005], with recent frameworks such as Spark [Han and Zhang,
2015] and Flink [Carbone et al., 2015], provides big data processing through distributing event process-
ing operator graphs into computing clusters. Implementations mix to varying degrees features similar
to those Reactive Extensions and features from Complex Event Processing. Input data is then streamed
through this distributed operator graph, exploiting data parallelism for concurrency where possible.
Equal to CEP, stream processing frameworks do not provide any consistency guarantees for change prop-
agation bayed on the operator graph topology, but may analyze the topology in order to rearrange
operators and optimize execution. They are also not concerned with complex consistency guarantees in
relation to concurrency either, since concurrency from data parallelism is commutative.

4.5 Automatic Incrementalization

Automatic incrementalization, also called self-adjusting computations, is an area of research that ad-
dresses the challenge of automatically deriving incremental implementations of existing batch algo-
rithms. All works in this area of research take as input a traditional batch algorithm, i.e., a non-reactive
program that execute once on a single set of input data to produce a single set of output data. Given
an initial set of input data, they execute the algorithm normally while recording a trace of thunks of its
execution and memoizing all thunks’ results. Given a second set of input data similar to the first, they
then re-execute the algorithm to compute the updated result, but minimize the number of re-executed
thunks by reusing memoized results of thunks whose input values are unchanged.

While most challenges faced by automatic incrementalization are unrelated to Reactive Programming,
the two topics are still closely related. In essence, automatic incrementalization transform traditional
batch algorithms into reactive applications, which differ from the model considered in this dissertation
only in that their state is persisted and the application terminated after an instant completes, and re-
booted at the start of the next instant. Traditional batch algorithms are usually iterative, using some
form of control flow loops, and are therefore difficult to implement in Reactive Programming, because
they are not easy to model as acyclic dependency graphs. By recording an execution trace of such
iterative algorithms though, automatic incrementalization essentially unrolls such control flow loops
into an acyclic dependency graph, whose nodes are interdependent thunks with memoized results, i.e.,
similar to RP Signals. Reformulating incremental re-runs not as “which thunks’ results can be re-used
because of unchanged inputs”, but as “which thunks’ results must be recomputed because of changed
inputs”, the very close relation to RP change propagation becomes obvious.

For automatically incrementalized algorithms, glitch freedom and support for dynamic DG topology
changes are indispensable. Glitch Freedom is indispensable because the original batch algorithms were
designed, implemented and tested as regular algorithms executed with well-defined control flow. None

4.5 Automatic Incrementalization 57

of their thunks can be expected to tolerate any inconsistencies in their inputs from memoized results
being recomputed in an order that would not be possible under regular non-incremental execution.
Therefore, thunks must be recomputed in a glitch-free order. Support for dynamic DG topology changes
is indispensable due to the DG topology potentially corresponding to unrolled control flow loops whose
iteration count may depend on values from the input data. If changed input data results in an increased
or decreased number of iterations that a given loop will perform, this decreases or increases the depth
of the loop’s unrolled dependency graph. While executing an incremental update, different sections of
the recorded DG may therefore grow and/or shrink.

The original dissertation on self-adjusting computations [Acar, 2005] incrementalizes batch algorithms
defined in the functional language SLf and the imperative language SLi. It implements glitch freedom
for its incremental change propagation by recording a logical timestamp at which each thunk originally
executed. Because these languages are single-threaded, these timestamps yield a total order over all
thunks, and executing recomputations in order of the timestamps therefore achieves glitch freedom.
This change propagation is depth-minimal, but not applicable for distributed RP with concurrency.

Several subsequent works address automatic incrementalization of algorithms written in computing
models that include some form of parallelism. PAL [Hammer et al., 2007] addresses functional programs
with parallel let expressions. Another work other addresses fork-join-parallel programs with concur-
rent revision types [Burckhardt et al., 2011] for merging the changes to shared variables on joins.
iThreads [Bhatotia et al., 2015] is a transparent drop-in replacement for the POSIX threading library
pthreads, and automatically incrementalizes multi-threaded shared memory programs. All of these use
the same mark-sweep change propagation algorithm: Starting from all changed inputs, a first breadth-
minimal traversal marks all transitively affected thunks as dirty. A second breadth-minimal traversal then
removes all dirty marks by recomputing thunks that have no remaining dirty predecessors. No-change
propagation is used where thunks produce unchanged results after recomputations. Any thunks that
executed in parallel in the initial execution of the batch algorithm are also re-executed in parallel dur-
ing incremental change propagation. Mark-sweep change propagation therefore provides glitch freedom
and supports concurrent reevaluations per instant in two breadth-minimal graph traversals per instant.

Lastly, some works address automatic incrementalization for certain distributed programs. In-
coop [Bhatotia et al., 2011] and Self-Adjusting MapReduce [Acar and Chen, 2013] incrementalize
map-reduce [Dean and Ghemawat, 2008] algorithms. Incoop incrementalizes algorithms automatically
by splitting the input data of map and reduce tasks into groups and memoizing each groups’ results.
Self-Adjusting MapReduce on the other hand requires the map and reduce tasks to be implemented
as deliberate self-adjusting computations, and this way even incrementalizes their internal executions.
Both of these works also use mark-sweep change propagation. Reactive Caching for Composed Ser-
vices [Burckhardt and Coppieters, 2018] defines a microservice architecture model with automatic in-
cremental change propagation. Each microservice request is a subscription to the request’s result, which
can change and will result in subscribed microservices recomputing their own results, similar to change
propagation over RP Signals. Differently from other works on self-adjusting computations, this work
provides only eventual consistency instead of glitch freedom, to integrate fault tolerance into its pro-
gramming model with similar reasoning as the purely Signal-based distributed RP frameworks discussed
earlier.

58 4 A Survey of Reactive Frameworks

5 FrameSweep: A Scheduler for Thread-Safe
Reactive Programming

This chapter introduces the FrameSweep integrated scheduling algorithm, which provides glitch free-
dom, liveness and isolation in the form of abort-free strict serializability in a single unified implemen-
tation by controlling the execution of all RP operations introduced in Section 2, specifically Figure 2.6.
Section 5.1 presents, how the architectural integration of FrameSweep into the RP runtime of REScala
is derived from, relates to, and improves over which prior works from Chapter 4. Section 5.2 gives
an overview of the algorithmic building blocks of FrameSweep, and how the remaining sections of this
chapter is structured. The remaining sections present the detailed workings of each building block on
a pseudocode implementation of FrameSweep. The pseudocode implementation is simplified in that it
does it ignores practical requirements for decentralization, but easier to understand and prove correct.
This chapter argues the correctness of this implementation mostly informally though, supported by a
continuous running example of several concurrent instants executing on the reactive philosophers ap-
plication from Chapter 2. Chapter 6 will then provide a thorough formal proof. Finally, Chapter 7 will
address the practical concerns for decentralizing the implementation, by replacing several aspects with
alternative implementations that are more sophisticated, but semantically equivalent.

5.1 RP Architecture with an Integrated Scheduler

The survey in Chapter 4 showed, that Elm [Czaplicki and Chong, 2013] and MV-RP [Drechsler et al.,
2018] provide the only algorithms that support synchronous change propagation for concurrent instants
executing with fine-grained parallelism. It further showed that Elm does this in a way that is fundamen-
tally incompatible with dynamic dependency graphs and unsuitable for decentralization. Therefore,
FrameSweep’s design is an evolution of MV-RP, which we summarize briefly. Figure 5.1 shows the
architectural blueprint for RP systems of MV-RP, including all components and operations from Fig-
ure 2.6. MV-RP adds a concurrency scheduler component into the RP architecture that provides isolation
(abort-free strict serializability) to any propagation algorithm that ensures for glitch-freedom and live-
ness through topological change propagation. The scheduler controls the execution of all interactions
between user-defined code (both imperative and reactive), the propagation algorithm, and the depen-
dency graph that stores all reactives’ state. In terms of the execution profile of instants, MV-RP adds one
breadth-minimal traversal of the dependency graph before the concrete propagation algorithm’s change
propagation, in order to plan out a safe execution schedule for the instants’ reevaluations. In essence,
MV-RP therefore allows RP systems to “buy” support for concurrent instants at the cost of executing one
additional breadth-minimal graph traversal before each instant.

To be usable in distributed applications, FrameSweep must be decentralized. The concurrency schedul-
ing of MV-RP relies on global data structures, and therefore additional effort is necessary to find a decen-
tralized implementation, which will be addressed as part of Chapter 7. Decentralized propagation algo-
rithms to integrate with MV-RP’s concurrency scheduler do exist in prior work though. Assessing these
shows that they are all breadth-minimal, and that providing glitch freedom through breadth-minimal
traversals generally requires a twofold cost:

• Mark-sweep propagation from automatic incrementalization pays the cost of two graph traver-
sals: It first executes a non-topological breadth-minimal graph traversal to mark all reachable
thunks as dirty, and second executes another breadth-minimal traversal that clears the dirty marks
in topological order.

59

Figure 5.1: MV-RP Architecture Blueprint Figure 5.2: FrameSweep Integrated Architecture

• Propagation algorithms from Distributed RP pay the cost of one breadth-minimal graph traversal
plus the cost of tracking, on each reactive, the set or vector clock of all transitively reachable input
reactives.

This is corroborated by the following two examples that both are unsuitable for decentralization because
they provide weaker properties for lower costs, or better properties for higher costs:

• Traditional topological sorting pays the cost of a single graph traversal only, but in turn is non-
minimal, which is weaker than breadth-minimal, and unsuitable for distribution because each
instant must be started through a central entity that is aware of all input reactives in the entire
graph.

• Height-based priority queue change propagation pays the cost of one graph traversal plus the
cost of tracking, on each reactive, the length of the longest path from any transitively reachable
input reactive. While heights are cheaper to compute and store than sets or vector clocks of
transitively reachable inputs, they actually cause a higher cost for instants, because their over-
approximation of transitive reachability between reactives prevents a lot of parallelization unnec-
essarily. The communication required to prevent this parallelization is simultaneously what makes
this algorithm unsuitable for distribution. In return though, its graph traversal is depth-minimal,
which is stronger than breadth-minimal.

Given this observation, a straight-forward integration of any of these algorithms with MV-RP would
imply a threefold cost:

• MV-RP + Pure topological sorting: Two graph traversals plus the loss of breadth-minimalism.

• MV-RP + Mark-Sweep propagation from automatic incrementalization: Three graph traver-
sals.

• MV-RP + Propagation algorithms from Distributed RP: Two graph traversals plus maintaining
the set of transitively reachable input reactives per reactive.

FrameSweep improves over this expectation though. In the original design of MV-RP (Figure 5.1), the
responsibility of scheduling reevaluations is split between propagation algorithm and concurrency sched-
uler, with both implementing different aspects of it. FrameSweep removes the separation between a
propagation algorithm and concurrency scheduler though, and instead uses an integrated design as visu-
alized in Figure 5.2 with a single scheduler for both concurrency and glitch freedom (and liveness). This

60 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

allows FrameSweep to exploit a synergy in that it can avoid redundancies between separately main-
tained infrastructure for glitch freedom and infrastructure for isolation. As a result, FrameSweep
achieves a breadth-minimal implementation that ensures glitch freedom, liveness and isolation in the
form of abort-free strict serializability at only a twofold cost. Specifically, FrameSweep executes each
instant through only two breadth-minimal graph traversals, without any additionally maintained topol-
ogy information per reactive. Both the concurrency planning of MV-RP and the dirty marks of a mark
phase are established by the first graph traversal, and the second traversal then uses this infrastructure
to execute reevaluations in an order that is both serializable and glitch-free.

5.2 Main Building Blocks

Overall, FrameSweep combines intertwines the following building blocks from prior works into a single
algorithm:

• The mark-sweep change propagation algorithm from automatic incrementalization for glitch-
freedom and liveness.

• The counter-based optimizations for the sweep phase developed in the context of the SID-UP dis-
tributed change propagation algorithm [Drechsler and Salvaneschi, 2014].

• The algorithm components of the MV-RP concurrency scheduler for abort-free strict serializability:
several established algorithms for concurrency control from databases and one custom concurrency
control technique.

The following list discusses the origins of each building block, gives a brief overview of its functionality,
and explains, which aspects of FrameSweep’s consistency guarantees it is responsible for. In this list, the
responsibility of glitch freedom is split into the aspects of marking and sweeping. The responsibility of
isolation, i.e., consistently ordering non-commutative interactions between of concurrent instants, is split
into four different aspects, depending on what operations interact on which variables: Interactions of
reads with reads on any variable are irrelevant because they are commutative. Write-write conflicts, i.e.,
ordering writes against other writes of concurrent instants, are addressed as one aspect together for all
variables. Read-write conflicts, i.e., ordering reads against writes of concurrent instants, are addressed
as three aspects, one for each variable: user value, incoming dependencies set or outgoing dependencies
set.

• C2PL/Mark. Conservative two-phase locking (C2PL) [Bernstein et al., 1986] is a pessimistic lock-
based concurrency control technique from databases. C2PL provides abort-free strict serializability
for transactions, by acquiring locks for all variables they will access before starting their execution.
To do so, the set of variables of each transaction must be known before starting their execution.
This is inconvenient to specify manually, because it clutters the syntax for executing transactions,
and is not feasible to determine automatically, if transactions are expressed in a language too
complex for a sound static analysis. In the context of RP though, it can be automated – such that it
does not affect the syntax of executing instants – for all reevaluations of every instant: Given the
input reactives that an instant is about to change, a traversal of the DG starting from there (i.e.,
breadth-minimal) will reach all reactives that the instant may potentially reevaluate. FrameSweep
exploits this traversal for a two-fold purpose.

First, the traversal implements C2PL by locking every reached reactive in advance of the instant
later potentially executing a reevaluation (dashed red arrows in Figure 2.6/5.1/5.2). This allows
ordering ambiguities between reevaluations of concurrent instants to be sorted ahead of their exe-
cution. As the proofs in Section 6 will show, all write-write conflicts on all variables, as well as all
read-write conflicts on incoming dependencies sets occur only between reevaluations of the same

5.2 Main Building Blocks 61

reactive. C2PL therefore pre-solves all these conflicts, such that none will occur during the in-
stants’ following change propagation, and thereby providing abort-free strict serializable execution
for reevaluations. Read-write conflicts on user values and outgoing dependencies sets may occur
between reevaluations of different reactives though, and are therefore not managed by C2PL, but
addressed below.

Second, the traversal locks precisely those reactives that a mark-sweep propagation algorithm
would mark as dirty during its mark phase. By using acquired locks to simultaneously serve as
dirty markers for the respective instant’s glitch freedom scheduling, the C2PL traversal thus also
implements the mark phase at no extra cost.

• Sweep. FrameSweep achieves liveness and glitch freedom by implementing the propagation phase
of instants as only the topological sweep phase (again breadth-minimal), on top of the dirty-
marking locks from C2PL. This is how FrameSweep provides synchronous propagation semantics
(liveness, glitch-freedom and isolation) at the cost of only two breadth-minimal graph traversals,
without maintaining heights or source sets or source vector clocks on all reactives. To imple-
ment the sweep traversal more efficiently and make its visualization more intuitive, FrameSweep
employs the counter-based optimizations developed in the context of the SID-UP propagation
algorithm for distributed RP: Rather than repeatedly determining each reactives’ readiness for
serializable and glitch-free reevaluation by counting their number of locked/dirty and changed de-
pendencies, they track these numbers incrementally in the form of stored pending and changes
counters for each instant. After the reevaluation of a reactive completes, all successor reactives’
pending counters are decremented and changes counters incremented if the reevaluation changed
the reactive. Once a reactive’s pending counter reaches zero, it is ready for a glitch-free reevalua-
tion, because it has no further predecessor that are still marked dirty (locked). If, at that point, the
changes counter is also zero, its reevaluation is skipped as unchanged because none of its depen-
dencies values changed, which in turn decrements all successors reactives’ pending counters, but
does not increment their changes counters. This implements no-change propagation, to ensure
that change propagation behaves as if it was depth-minimal, even though the sweep traversal is
only breadth-minimal.

• MVCC. Unlike reevaluations, read operations (before, after, depend and now, solid blue arrows
in Figure 2.6/5.1/5.2) by user computations and imperative threads may target reactives arbi-
trarily, i.e., cannot be predicted ahead of time. Thus C2PL is inapplicable to prevent read-write
conflicts on reactives’ user values. Instead, FrameSweep employs multiversion concurrency control
(MVCC) [Bernstein et al., 1986], also from databases. MVCC maintains a backlog of past values
(called versions) that were written to every reactive’s user value under the control of C2PL. Because
read operations are idempotent, MVCC can safely execute them “in the past” by returning old ver-
sions from the backlog, if necessary to ensure a serializable return value. MVCC thus consistently
resolves read-write conflicts on reactives’ user values on-the-fly, and thereby provides abort-free se-
rializable execution – and with some additional care also strict – for read operations. Since writes
are not idempotent, they cannot be executed in the past, meaning the combination of C2PL for
reevaluations and MVCC for reads is indispensable for FrameSweep to remain abort-free.

• Retrofitting. Read-write conflicts on outgoing dependencies are caused by dynamic dependency
edge changes (drop and discover, dotted green arrows in Figure 2.6/5.1/5.2). They cannot be
prevented by C2PL, since drop and discover are executed on the same reactives where depend
was executed, and are thus equally impossible to predict ahead of time. These operations can
also not be executed “in the past” through MVCC, because they are write operations and there-
fore not idempotent. Instead, FrameSweep employs retrofitting, a custom technique that provides
abort-free strict serializable execution of dynamic DG edge changes by enabling their execution
“in the past” despite their writes affecting the system’s state (i.e., not idempotent). Retrofitting

62 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

Figure 5.3: Node Composition with Node Histories Storing Node Versions

exploits a synergy of topological propagation for glitch freedom and liveness, and consistent or-
dering of reevaluations between concurrent instants for isolation, provided by the combination of
C2PL/Mark, Sweep and MVCC outlined so far. This synergy allows retrofitting to safely rewrite
the history of affected instants, un- or re-doing effects as necessary, to restore serializability af-
ter executing effectful writes to outgoing dependencies sets “in the past”, while maintaining both
glitch freedom and liveness. Retrofitting therefore forms a symbiotic relation with the other algo-
rithms, in that it is applicable only because of the precise set of properties that they provide, and
then serves to resolve read-write conflicts on reactives’ outgoing dependencies sets which the other
algorithms cannot handle, upholding this very set of properties.

• Serialization Graph Testing. Established database theory states, that if a transaction system
handles different non-commutative interactions between concurrent transactions with different
scheduling algorithms, serializability is achieved as long as all non-commutative conflicts are
handled, and all algorithms apply the same serialization order, i.e., the logical order in which
transactions appear to execute [Bernstein and Goodman, 1981]. Above outline already discussed,
in which classes FrameSweep splits non-commutative conflicts, and which classes are handled by
which algorithms: C2PL handles write-write conflicts on all variables and read-write conflicts on
incoming dependencies sets, MVCC handles read-write conflicts on user values, and Retrofitting
handles read-write conflicts on outgoing dependencies sets. To facilitate the common serializa-
tion order across these algorithms, FrameSweep uses Serialization Graph Testing [Bernstein et al.,
1986], also from databases. Serialization graph testing tracks at run-time a model of the serial-
ization order as formally defined over the transaction system’s execution history, in form of the
directed acyclic stored serialization graph SSG over all transaction as nodes, or instants in the case
of FrameSweep. When a non-commutative conflict between operations of concurrent instants oc-
curs, testing for which paths exist in the SSG between these instants – which is what gives the
technique its name – tells in which order these operations should appear to execute for the sys-
tems’ history to remain serializable. The expression a

∗
−−→
SSG

b denotes a path from instant a to

instant b, which means that operations by a must appear to execute before those of b. When no
such path exists in either direction, the order between a and b has not yet been determined, and
must be chosen and recorded as a new edge a −−→

SSG
b so that subsequent conflicts will be resolved

the same way. The SSG therefore incrementally grows with new edges while FrameSweep executes
instants’ operations.

FrameSweep connects all of its algorithmic components through a single data structure, called node
history. Each reactive has one node history, which replaces the user value variable in the reactives’
composition, as visualized in Figure 5.3 (cf. Figure 2.7). Each node history stores one node version for
each instant that affected the respective reactive through some operation. Node histories interact with

5.2 Main Building Blocks 63

serialization graph testing in that their contained versions are sorted according to the order described
in the SSG. Figure 5.3 visualizes an exemplary SSG of eight instants in the center. Dotted lines connect
each instant to its corresponding node versions in the node histories of input node i and derived node d.
The SSG globally describes only a partial order. In Figure 5.3, e.g., instants 4 and 5 are unordered. But,
the SSG describes a total order over all node versions within each reactive’s node history. In Figure 5.3,
e.g., for the node history (1, 3, 4, 7, 8) on i, the SSG order is total, with existing paths 1

∗
−−→
SSG

3
∗
−−→
SSG

4
∗
−−→
SSG

7
∗
−−→
SSG

8.

The functionalities of every other algorithm component in FrameSweep are implemented as operations
that modify or extract information from reactives’ node histories. After Section 5.3 gives a precursory
overview on how FrameSweep supports or restricts concurrent execution for all its operations, the re-
maining sections discuss these operations in detail: Section 5.4 presents, how C2PL/Mark models locking
queues and marks reactives as dirty by creating placeholder node versions. Section 5.5 discusses, how
the topological sweep propagation uses pending and changes counters stored in these placeholders
to decide when pending reevaluations can be executed glitch-free and serializable, and how resulting
changed values are stored in written versions that replace these placeholders. Section 5.6 explains how
MVCC implements the different read operations’ semantics by selecting, when and which value to return
for each read operations based on the placeholders and written versions that are present within reac-
tives’ node histories. Finally, Section 5.7 shows how retrofitting rewrites applications’ execution history
by rearranging the contents affected reactives’ node histories after non-serializable dynamic DG edge
changes.

5.3 Concurrency of FrameSweep’s Operations

By default, concurrent instants may execute all of FrameSweep’s operations concurrently. To ensure
that this does not result in race conditions that may break the integrity of FrameSweep’s data structures
(node histories and the SSG), this chapter uses the simple solution of placing operations under different
scopes of mutual exclusion. For any given reactive, only a single operation that modifies its node history
is allowed to execute at any given point of time. In the following pseudocode listings, these procedures
are annotated with the keyword locally-exclusive. Some of these operations, for a part of their
execution, must simultaneously interact with the SSG. Of all these operations executing concurrently
on all reactives, only a single one is allowed to do so at any given point of time. These procedures
are annotated with the keyword globally-exclusive. As Section 7.3 will discuss in more detail, this
simpler approach has certain downsides, e.g., global locking is incompatible with decentralization. It
will presents a more elaborate solution that requires less restrictive synchronization and thereby avoids
these downsides.

FrameSweep further increases the amount of concurrency by parallelizing both its graph traversals by
the use of a thread pool. Whenever a graph traversal recurses to the outgoing dependencies of a reactive,
it does so by submitting one task for each connected outgoing dependency to the task pool. Applied to
the propagation phase, this parallelization implements the second dimension of concurrency, concurrent
execution reevaluations within individual instants. The pseudocode presented throughout the remainder
of this chapter interacts with the thread pool through the submit keyword and activeTasks counters. A
submit <call> statement is similar to a execute <call> statement, but adds the specified call as a new
task to the thread pool’s task queue for asynchronous execution, rather than executing it directly. As a
result, the call escapes any mutual exclusion scopes that enclosed the submit statement, as well as the
call hierarchy. Instants instead determine termination of their graph traversals by the help of the thread
pool counting the number of submitted, but not yet completed tasks. Each instant has an activeTasks
counter. In every submit statement, the specified task always has at least two parameters: first the
targeted reactive, and second the instant with which this task is associated. When a task is submitted,
the thread pool increments the activeTasks of the associated instant. When the task’s execution later

64 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

completes, the thread pool afterwards decrements the associated instant’s activeTasks counter again.
This means, all tasks of a given instant’s graph traversal have completed once the instant’s activeTasks
becomes zero again.

5.4 Framing Phase

FrameSweep transparently executes every update(i1 -> v1, i2 -> v2, ...) call as a transactional
instant through procedure update, defined in Listing 5.1 Line 26ff., consisting of the framing phase,
discussed here, followed by the propagation phase, whose various aspects are discussed throughout the
following sections. The goal of the framing phase is to create a placeholder in the node history of every
reactive that the instant may potentially reevaluate. These placeholders serve two purposes. First –
for serializability – all placeholders on a given reactive represent a queue for the reactive’s exclusive
lock. Only the instant that has the first (in terms of instants’ order in the SSG) placeholder on a given
reactive is allowed to reevaluate that reactive, while all other placeholders must wait. When the first
placeholder is eventually removed, this privilege immediately falls to the next placeholder, if further ones
already exist. Second – for glitch freedom – an instant’s placeholder in a node history represents that
the corresponding reactive is currently marked dirty by that instant. Since a planned reevaluation means
that the value of the reactive may change in the future, any reactives that depend on it might produce a
glitch if they were reevaluated while the placeholder still exists.

The entry point for the framing phase is procedure framingPhase, defined in Line 30ff. It is
implemented as a graph traversal over the DG, starting from all declared inputs (Line 32), e.g.,
declaredInputs = { i1, i2 } for an update(i1 -> v1, i2 -> v2...) call. The recursive task, which
executes on every reached reactives to ensure that a placeholder exists, is procedure Reactive.frame,
defined in in Line 38ff. First, it executes procedure Reactive.ensureVersion (Line 44ff), which en-
capsulates the synchronization of creating a new node version reactive[instant] – unless one already
exists(Line 45) – with the necessary updates to the SSG.

The logic to newly create version reactive[instant] carries a certain complexity, but most of it be-
comes relevant only later, and the following simplification suffices for now. First, ensureVersion collects
in set P (Line 46ff.) all concurrent instants conc that already have a node version reactive[conc] on the
parameter reactive, but are not yet ordered in SSG against the parameter instant (set F remains empty
since there no earlier phase than the framing phase exists). If any such conc instants exist (Line 54),
new ordering relations must be added to the SSG to ensure that it still defines a total order over all node
version on the parameter reactive after the a new node version for the parameter instant has been
added. To do so, ensureVersion selects pred as the latest instant in terms of the SSG order from set P
(Line 55). Next, it creates edge pred −−→

SSG
instant (Line 56), which by transitivity with the previously

existing SSG edges orders all conc instants as conc
∗
−−→
SSG

instant, reflecting that the parameter instant

was the last to arrive at the reactive. Lastly, ensureVersion creates the new version reactive[instant]
with initially both the pending and changed counter set to zero and an empty user value (Line 60).

Returning to frame, once reactive[instant] is guaranteed to exist, the framing traversal increments
its pending counter (Line 40). The framing traversal must recurse to successor reactives only the first
time that it reaches the parameter reactive and newly marked it dirty, but not if it reaches it again. This
is ensured by recursing to successor reactives (Line 42f.) only if the increment changed the counter’s
value from 0 to 1 (Line 41). If the counter value changed in any other way, e.g., from 1 to 2, the traversal
does not recurse to all successors again. The incremented pending counter is retained though, because it
reflects that the parameter reactive has an additional dirty predecessor. This way, the framing traversal
not only creates placeholders on all reachable reactives to queue for their lock and mark them as dirty,
but it also directly initializes the pending counters for the following sweep phase to the correct number
of dirty predecessors.

5.4 Framing Phase 65

26 procedure update(inputChanges):
27 let instant = <new>
28 execute framingPhase(instant, inputChanges.keys)
29 execute propagationPhase(instant, inputChanges.keys, inputChanges)

30 procedure framingPhase(instant, declaredInputs)
31 # instant.phase == Framing
32 foreach (input ∈ declaredInputs):
33 submit frame(input, instant)
34 suspend until (globally-exclusive {
35 instant.activeTasks == 0 ∧∀ pred −−→

SSG
instant: pred.phase ≥ Propagating

36 })

37 globally-exclusive { update instant.phase := Propagating }

38 locally-exclusive procedure Reactive.frame(reactive, instant):
39 execute ensureVersion(reactive, instant)
40 increment reactive[instant].pending += 1
41 if (reactive[instant].pending == 1):
42 foreach (derived ∈ reactive.outDeps):
43 submit frame(derived, instant)

44 globally-exclusive procedure Reactive.ensureVersion(reactive, instant):
45 if (> reactive[instant]):
46 let P := { conc | ∃ reactive[conc] ∧
47 > conc ∗

−−→
SSG
instant ∧

48 > instant ∗
−−→
SSG
conc ∧

49 conc.phase >= instant.phase }

50 let F := { conc | ∃ reactive[conc] ∧
51 > conc ∗

−−→
SSG
instant ∧

52 > instant ∗
−−→
SSG
conc ∧

53 conc.phase < instant.phase }

54 if (P 6=∅):
55 let pred := maxSSG(P)

56 add edge pred −−→
SSG
instant.

57 if (F 6=∅):
58 let succ := minSSG(F)

59 add edge instant −−→
SSG
succ.

60 create reactive[instant] := (pending := 0, changed := 0, value := None)

Listing 5.1: Pseudocode implementations of framing phase routines.

66 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

Figure 5.4: FrameSweep Example Trace: Framing Phase

Returning finally to framingPhase, any parameter instant must await two conditions to be fulfilled
before switching to the propagation phase. First, the activeTasks counter must reach zero to indicate
that all submitted tasks of the framing traversal have been completed. Additionally, all instants that were
established as predecessor instants so far, i.e., all pred for which a path pred

∗
−−→
SSG

instant exists, must

have transitioned to their own propagation phases. This second restriction establishes a global invariant
in FrameSweep, that no instant must ever have a predecessor instant that is in an earlier phase, e.g.,
no propagating instant must have a predecessor that is still framing. For the transition from framing to
propagating here, the rationale for this invariant is as follows. Consider a propagating instant executing a
reevaluation for its first placeholder in a reactives’ node history. If a predecessor instant existed that is still
executing its framing traversal, this might still create an earlier placeholder on that same reactive. This
means, that predecessor instant would have reevaluate the reactive before the propagating instant, but
since the propagating instant already started its reevaluation, serializability is lost. Thus, to ensure that
first placeholders are reliable and cannot no longer be challenged, propagating instants must never have
predecessor instants that are still framing. Suspending instants after their framing traversal until after all
predecessor instants have begun propagating establishes this invariant, and since new framing instants
will always only order themselves after other instants through ensureVersion (explained above), it is
subsequently maintained.

Demonstration
Figure 5.4 (a) shows the first step of a running example that demonstrates FrameSweep’s processing

of concurrent instants on the reactive philosophers application introduced in Section 2. In the center,
it visualizes the relevant section of the DG through bold nodes and edges in the middle of each step.
The DG section consists of input Vars phils(1) through phils(3) (p1, p2, p3), derived Signals forks(1)
through forks(3) (f0, f1, f2), sights(1) and sights(2) (s1, s2), and totalCount (c). Both s1 and s1 are
shown connected to c through squiggly edges, because these connections are not direct edges s1 −→DG

c,

but indirect paths s1
∗
−→
DG

c over other reactives that are omitted. The node histories of all reactives are

visualized as rectangles attached to the respective nodes via a dashed line. Each line of text in these
rectangles visualizes one node version. The lines starting with label “0:” (white background) correspond
to node versions that form the initial state for the running example: Both p0 and p2 are Eating and p1 is
Thinking, all derived reactives’ values are up to date with respect to these inputs, and c has counted up
to a value of 3 so far; as a consequence of s1 having changed to Blocked(1) during its latest reevaluation,
edge f2 −→DG

s1 was dropped and currently does not exist.

5.4 Framing Phase 67

Lines with a grey background correspond to node versions that have been changed or newly created in
each step of the example. In Figure 5.4 (a), these are placeholders created by the framing phase of two
concurrent instants: t1 and t2, which admitted Thinking to p0 and p2 respectively. The framing traversal
of t1 has already visited all reachable reactives: lines “1: p=1”, which stand for “placeholder by t1 with
pending counter at value 1”, exist in the node histories of p0, f0, s1 and c. The changes counters of
placeholders are not visualized on placeholders of framing instants, because they all are at value zero
and not relevant yet. The framing traversal of t2 is still in progress. It already created placeholders “2:
p=1” on p2, f1, s2 and c, but has not visited f2 yet – the corresponding frame task is currently queued in
the thread pool’s task queue. On c, t2 created its placeholder after t1, and hence established the order
t1 −−→SSG

t2. The SSG is not visualized throughout the running example, but as a mnemonic, the example

crafted such that instants order themselves matching their indices, i.e., t1
∗
−−→
SSG

t2
∗
−−→
SSG

t3.

As t1 did not establish any predecessor relations during its execution, it can transition to the prop-
agation phase at this point. In Figure 5.4 (b), t1 has performed this transition, visualized by all its
placeholders now also showing the changes counters, e.g., “c=0”. The framing traversal of t2 has newly
traversed over f2, where it created a new placeholder, to s2, where it incremented the pending counter
to “p=2”. This corresponds to s2 now having two dirty predecessors (f1 and f2). Moreover, it means
that the traversal did not recurse past s2, because it already did so when it visited s2 for the first time in
Figure 5.4 (a). Thus, the framing traversal of t2 is now also complete and t2 is also allowed to begin its
propagation phase, because while it does have t1 as a predecessor, t1 too is already propagating.

5.5 Propagation with Pipeline Parallelism

During the propagation phase, FrameSweep executes a second breadth-minimal topological sweep
traversal of the d g for each instant. The propagation traversal removes all placeholders that the in-
stant created during the framing phase by executing the planned reevaluations in a glitch-free order. If
any reactives’ reevaluation yields a new user value, then the corresponding placeholder is replaced with
a written versions that store this new value.

The entry point for the propagation phase of instants is procedure propagationPhase, defined in
Listing 5.2 Line 61ff. The parameter changedInputs is the map specified by the imperative update(i1
-> v1, ...) call that started the instant, associating each changed input with its new value. Equal to
the framing traversal, the propagation traversal starts from all declaredInputs (Line 63). The propa-
gation traversal is noticeably more complex though, for several reasons. It needs to treat input reactives
differently from derived reactives, because their values are assigned rather than recomputed. Further,
it needs to handle many different cases, e.g., depending on what kind of reactives are reevaluated
and whether or not reevaluations change reactives’ values, and therefore consists of multiple mutually
recursive functions.

Reevaluating Input Reactives
For every input reactive, FrameSweep first executes procedure awaitFirstPlaceholder, defined in

Line 75ff. This suspends execution until the placeholder of the parameter instant has become the
first placeholder in the node history of the parameter reactive, i.e., until the parameter instant is
allowed to reevaluate the reactive. Afterwards, FrameSweep updates the placeholder’s counters from
pending = 1, changed = 0 to pending = 0, changed = 1 (Line 65f.), to ready this placeholder for
reevaluation. Then, FrameSweep passes the newly assigned value1 to the input reactive’s control code

1 The propagation phase tolerates a discrepancy where changedInputs assigns new values to only a subset of the
declaredInputs from the framing phase (Line 69f.). This discrepancy can originate from an API for extended trans-
actions that contain more operations than only a single update(i1 -> v1, ..) calls, which will be introduced later
in Section 7.5. Supporting this discrepancy does not complicate the scheduler beyond this single-line else case though,
and therefore there is no need for a deeper understanding of this use case yet. For input reactives that were included as

68 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

61 procedure propagationPhase(instant, declaredInputs, inputChanges):
62 # instant.phase == Propagating, inputChanges.keys ⊆ declaredInputs
63 foreach (input \in declaredInputs):
64 execute awaitFirstPlaceholder(changedInput, instant)
65 update input[instant].changes := 1
66 update input[instant].pending := 0
67 if (inputChanges.get(input) matches Some(newValue)):
68 submit control(changedInput, instant, newValue)
69 else:
70 submit reevOut(unchangedInput, instant, None)
71 suspend until (globally-exclusive {
72 instant.activeTasks == 0 ∧∀ pred −−→

SSG
instant: pred.phase ≥ Completed

73 })

74 globally-exclusive { update instant.phase := Completed }

75 procedure Reactive.awaitFirstPlaceholder(reactive, instant):

76 suspend until (∀ reactive[pred]: pred
∗
−−→
SSG
instant ⇒

77 reactive[pred].pending == 0 ∧ reactive[pred].changes == 0)

78 locally-exclusive procedure Reactive.reevOut(reactive, instant, maybeNewValue):
79 # maybeNewValue is optional, i.e., either None or Some(newValue)
80 if (maybeNewValue != None):
81 update reactive[instant].value := maybeNewValue
82 update reactive[instant].changes := 0
83 foreach derived ∈ reactive.outDeps:
84 submit notify(derived, instant, Changed)
85 else:
86 update reactive[instant].changes := 0
87 foreach derived ∈ reactive.outDeps:
88 submit notify(derived, instant, Unchanged)
89 let succs = { succ | ∃ reactive[succ] ∧
90 (reactive[succ].pending > 0 ∨ reactive[succ].changes > 0) }
91 if (succs != ∅):
92 let immediateSucc = minSSG(succs)

93 if (reactive[immediateSucc].pending == 0):
94 submit reevaluate(reactive, immediateSucc)

95 locally-exclusive procedure DerivedReactive.notify(reactive, instant, change):
96 # change is boolean Changed or Unchanged
97 execute ensureVersion(reactive, instant)
98 if (change == Changed):
99 increment reactive[instant].changes += 1

100 decrement reactive[instant].pending -= 1
101 if (reactive[instant].pending == 0):

102 if (∃ reactive[pred]: pred
∗
−−→
SSG
instant ∧

103 (reactive[pred].pending > 0 ∨ reactive[pred].changes > 0)):
104 if (reactive[instant].changes == 0):
105 foreach derived ∈ reactive.outDeps:
106 submit notify(derived, instant, Unchanged)
107 else if (reactive[instant].changes == 0):
108 execute reevOut(reactive, instant, None)
109 else:
110 submit reevaluate(reactive, instant)

Listing 5.2: Pseudocode implementations of propagation routines.

5.5 Propagation with Pipeline Parallelism 69

(Line 67). The control code (cf. Listing 2.9) will in turn execute procedure reevOut, defined in List-
ing 5.2 Line 78ff., with the maybeNewValue parameter either defined or not, depending on whether or
not the newly assigned value actually constitutes a change for the specific type of input reactive (e.g.,
reassigning its current value to a Var is not a change).

Propagating Reevaluation Results
With reevOut, the propagation phase enters the mutual recursion that implement the propagation

traversal over derived reactives. If the reevaluation result constitutes a change for the reactive (i.e.,
parameter maybeNewValue is defined, Line 80 ff.), reevOut replaces the placeholder by a written version,
by zeroing the changes counter (pending is already zero) and storing the new user value instead. If the
reevaluation result does not constitute a change for the reactive (parameter maybeNewValue is undefined,
Line 85 ff.), the placeholder is instead replaced by an idempotent version, by only zeroing the changes
counter (again, pending is already zeroed) without storing a user value. Idempotent version are called
such because they have no further user-visible effect on other operations: they neither block other
operations from executing, nor influence the value returned by any read operations. The only purpose
of idempotent versions is to leave a record that an instant affected the reactive in question in some way
and ensure that any instants that later execute further operations on the reactive will order themselves
in the SSG against that instant.

Replacing a placeholder during reevOut has two further effects. First, the parameter reactive is no
longer marked dirty for the parameter instant, but may now be marked changed instead if it was re-
placed by a written version. Consequently, the pending and changes counters on successor reactives’
placeholders must be updated accordingly, which may make them ready for glitch-free reevaluations.
This is done by submitting a notify task for every successor reactive – the inner workings will be dis-
cussed in the next paragraph – with the change parameter set as Changed or Unchanged respectively.
Second, because reevOut removes the first placeholder, the parameter instant simultaneously “un-
locks” the parameter reactive. This eager unlocking allows the next instant to immediately start a
reevaluation of the reactive, assuming it is glitch-free. As a final step, reevOut therefore collects all succ
instants that have further placeholders on the same reactive (Line 89f., a successor relation instant
−−→
SSG

succ is implied because the placeholder of the parameter instant was the first). If any such succ

instants exist (Line 91), reevOut selects the earliest one in terms of the SSG order (Line 92). If this
earliest placeholder is ready for glitch-free reevaluation (Line 93, pending == 0 meaning no more dirty
dependencies), reevOut additionally submits this subsequent reevaluation by succ as a new task to the
thread pool (Line 94). FrameSweep thus enables a very high degree of parallelism, called pipeline paral-
lelism [Czaplicki and Chong, 2013], where concurrent instants can make progress simultaneously even
in mutually affected regions of the DG.

Reevaluating Derived Reactives
The arrival of propagated changes on successor reactives is implemented by procedure notify,

defined in Line 95ff. The first step of notify is to update the counters of the placeholder
reactive[instant]. In the case that the change parameter is set as Changed, notify will increment
the changes counter (Line 98f.) to reflect that the dependency where reevOut replaced a placeholder
with written version is now marked changed for the parameter instant. Further, regardless of whether
Changed or Unchanged, notify always decrements the pending counter (Line 100) to reflect that the
dependency is no longer marked dirty for the parameter instant, regardless of which kind of node ver-
sion the placeholder was replaced with. If reactive[instant] has become glitch-free from the pending
counter update (Line 101, pending == 0 meaning no remaining dirty dependencies for the parameter
instant), further actions may be necessary. This depends on whether or not an earlier placeholders

declaredInputs in the framing phase, but then are not associated with a new value in changedInputs, FrameSweep sim-
ply skips the control code invocation and propagates a no-change by directly executing reevOut with the maybeNewValue
parameter undefined.

70 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

exists on the parameter reactive (Line 102), and whether or not the version has become idempotent,
i.e., if changed == 0 (Line 104 and Line 107) in addition to pending == 0 from above.

• If an earlier placeholder exists and reactive[instant] has become idempotent (Line 105f),
notify submits further notify tasks with the changed parameter set to Unchanged for all suc-
cessor reactives. This process implements no-change propagation of instants on reactives where
they are pipelined behind earlier instants’ placeholders, through recursion of just notify. Note
that this implies that no-change propagation of a later instant can “overtake” the incomplete prop-
agation of earlier instants, i.e., no-change propagation may not adhere to the correct serialization
order. This does not violate FrameSweep’s correctness though, because no-change propagation
does not involve the execution of any user computations, and therefore is not user-visible.

• If no earlier placeholder exists and reactive[instant] has become idempotent (Line 108),
notify executes an reevOutwith no new user value. This will in turn equally submit an Unchanged
notify task for all successor reactives. Additionally though, if another placeholder becomes the
new first placeholder and is ready for glitch-free reevaluation, reevOut will spawn a subsequent
reevaluation. This process implements no-change propagation of instants on reactives where they
are not pipelined behind incomplete propagations of earlier instants, through mutual recursion of
notify and reevOut.

• If no earlier placeholder exists and reactive[instant] has not become idempotent (Line 109f.,
meaning changes > 0), then a reevaluation for the parameter instant itself is submitted. This
executes the user computation and passes the eventually returned result to the reactive’s control
code, using the unchanged implementation of Listing 2.9 introduced in Chapter 2. In particular,
the implementation remains without any mutual exclusion scopes. While the placeholder lock-
ing queue ensures that only a single reevaluation executes at any time, this reevaluation does not
prevent any other operations such as frame, notify, any read operations or dynamic dependency
edge changes from executing concurrently on the same reactive. Only when the reactive’s con-
trol code eventually passes its result to reevOut, this executes mutually exclusively against other
scheduling operations again. Then, reevOut again submits an Unchanged, or in this case poten-
tially also a Changed notify task for all successor reactives, alongside again potentially triggering a
subsequent reevaluation. This process implements regular change propagation of instants through
mutual recursion of notify, reevaluate with its sub-calls, and reevOut.

• In the remaining case, i.e., if reactive[instant] has not become idempotent with changes > 0
but an earlier placeholder still exists (this corresponds to the missing else-case of the if condi-
tion in Line 104), nothing is done. This is because the corresponding reevaluation, while ready
for execution in terms of glitch freedom, is not ready for execution in terms of serialization or-
der with other concurrent instants’ reevaluations. The reevaluation will instead be submitted as
a subsequent reevaluation at a later point, when the instant owning the last preceding place-
holder removed it through its own execution of reevOut. This process implements the case where
the change propagation traversal temporarily becomes dormant on reactives instead of recursing
further, to adhere to the correct serialization order of pipelined placeholders.

Demonstration
For demonstrating the propagation phase, the running example already included first step in Figure 5.4

(b), where the placeholder of t1 on p0 was updated from “p=1, c=0” to “p=0, c=1”. In Figure 5.5 (c),
t1 has now written its new value to p0, i.e., replaced this placeholder by a written version that stores
Thinking. Note that the initial state’s Eating remains accessible for MVCC. To propagate this change,
the reevaluation submitted a Changed notify for f0. This has executed, and thus incremented the
changes and decremented the pending counter of the the placeholder of t1 on f0, i.e., also updated

5.5 Propagation with Pipeline Parallelism 71

Figure 5.5: FrameSweep Example Trace: Propagation

this placeholder from “p=1, c=0” to “p=0, c=1”- With pending at zero, the corresponding reevaluation
of f0 by t1 is now glitch-free and has been submitted. In Figure 5.5 (d), this reevaluation completed
and changed f0 to Free. Correspondingly, a subsequent Changed notification has been submitted for s1,
which there also updated the placeholder of t1 from “p=1, c=0” to “p=0, c=1”. This demonstrates how
the propagation phase recursively progresses through the DG.

Stepping back again to Figure 5.5 (c), t2 has already reevaluated p2 to Thinking and f1 to Free.
This already demonstrates first effects of pipeline parallelism, in that t2 is already making progress de-
spite some of its later reactives still being locked for exclusive access by other instants, e.g., c by t1.
The Changed notify submitted by the reevaluation of f1 for s2 has again incremented the changes and
decremented the pending counter. Differently from before though, this updated the placeholder of t2 on
s2 from “p=2, c=0” to “p=1, c=1”, which demonstrates how FrameSweep ensures glitch freedom. Since
t2 will still reevaluate f2 as a second dependency of s2, s2 is not yet ready for a glitch-free reevaluation
yet. In the node histories, this is reflected by f2 still having a placeholder for t2, i.e., f2 is still dirty,
and accordingly pending counter of the placeholder of t2 on s2 has not reached zero yet. Stepping for-
ward to Figure 5.5 (d), t2 has completed its reevaluation of f2, with the placeholder there also replaced
by a written Free. The subsequent Changed notify again incremented the changes and decremented
the pending counter, meaning the placeholder of t2 on s2 has now been updated to “p=0, c=2”, cor-
responding to zero remaining dirty, but two changed predecessors. Thus t2 is now ready to reevaluate
s2. Stepping forward further to Figure 5.6 (e), this reevaluation has completed, with the placeholder
replaced by a written Ready.

5.6 Read Operations

This section presents, how FrameSweep implements the different semantics of the various read opera-
tions of RP (depend, after, before and now).

Listing 5.3 shows the pseudocode implementations for all read operations. During a reevaluation,
procedure Reactive.depend, defined in Line 111ff., is executed when the user computation of the
reevaluating reactive calls reactive.depend. It first registers the access to reactive with the ex-
ecution shepherding of the ongoing reevaluation (Line 112), so that the according dependency edge
reactive −→

DG
reevaluating will be either retained or created at the end of the reevaluation (cf. Sec-

tion 2.3.1). Next, the execution checks whether edge reactive −→
DG
reevaluating already exists. If it

exists, the read is dispatched through procedure Event.readSynchronized in Line 117 if reactive is

72 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

111 procedure Reactive.depend(reactive, instant, reevaluating):
112 add shepherding.accessedDependencies += reactive
113 if (reactive ∈ increevaluating):
114 dispatch readSynchronized(reactive, instant)
115 else:
116 dispatch after(reactive, instant)

117 locally-exclusive procedure Event.readSynchronized(reactive, instant):
118 if (∃ reactive[instant] ∧ reactive[instant].value != None):
119 return reactive[instant].value
120 else:
121 return None

122 locally-exclusive procedure Signal.readSynchronized(reactive, instant):
123 if (∃ reactive[instant] ∧ reactive[instant].value != None):
124 return reactive[instant].value
125 else:
126 return beforeSynchronized(reactive, instant)

127 locally-exclusive procedure Signal.beforeSynchronized(reactive, instant):
128 let preds = { pred | ∃ reactive[pred] ∧
129 pred

∗
−−→
SSG
instant ∧

130 reactive.value != None }

131 let pred = maxSSG(preds)

132 return reactive[pred].value

133 locally-exclusive procedure Reactive.after(reactive, instant):
134 execute ensureVersion(reactive, instant)
135 execute Reactive.awaitFirstPlaceholder(changedInput, instant)
136 suspend until (reactive[instant].pending == 0 ∧ reactive[instant].changes == 0)
137 dispatch readSynchronized(reactive, instant)

138 locally-exclusive procedure Signal.before(reactive, instant):
139 execute ensureVersion(reactive, instant)
140 execute Reactive.awaitFirstPlaceholder(changedInput, instant)
141 return beforeSynchronized(reactive, instant)

142 procedure Signal.now(signal):
143 let instant = <new>
144 execute framingPhase(instant, declaredInputs = ∅)
145 execute before(signal, instant)
146 execute propagationPhase(instant, declaredInputs = ∅, inputChanges = ∅)

Listing 5.3: Pseudocode implementations of MVCC reading routines.

5.6 Read Operations 73

Figure 5.6: FrameSweep Example Trace: Read Operations

an Event, or procedure Signal.readSynchronized in Line 122 if reactive is a Signal, where the cor-
rect version to read from is determined. For both, if the reading instant has an own written version on
the target reactive, the value of that version is returned (Line 118f. and Line 123f. respectively). Oth-
erwise, the semantics differ for Events and Signals. For Events with no own written version, the correct
result to return is always – regardless of any other versions in the node history – no value (Line 120). For
Signals with no own written version on the other hand, the correct return value is chosen by procedure
Signal.beforeSynchronized, defined in Line 127ff., as the latest (Line 131) of all written versions by
earlier instants (Line 128). This ensures that the read returns a serializable value, even if it is executed
after later instants have already written newer values to the reactive, by ignoring all such newer values.

Reading Without Dependency Edges
If depend is executed, but edge reactive −→

DG
reevaluating does not exist, the read is instead dis-

patched through procedure Reactive.after, defined in Line 133ff. This implements the semantics for
reactive.after reads, i.e., the case where a read is executed deliberately without prompting a depen-
dency edge. For reading without a corresponding dependency edge, the reactive to be read may not yet
be in a state where the reading instant can read its value correctly, because the framing and propaga-
tion traversal ensure serializability and glitch freedom only along existing DG edges. Thus, FrameSweep
executes the following steps to ensure that this state has been reached. First, ensureVersion is executed
2, but without updating pending or changes counters afterwards. This means, if an idempotent version
exists or is newly created, it is not converted into a placeholder or written version, but left as idempotent.

2 Readers interested in understanding the intuition behind FrameSweep’s procedures can safely ignore the following expla-
nation. It does not contribute towards understanding, and only serves to clarify correctness concerns. At this point, the
complexity of ensureVersion for maintaining totality of the SSG order for the node history comes into full effect (cf.
Listing 5.1 Line 44). Equally to the framing traversal, the newly inserted version is ordered as late as possible into the
node history. But now, since the reading instant is already propagating, it must not order itself after other instants that
are still in the framing phase, to maintain FrameSweep’s invariant that instants must never have predecessor instants
still in earlier phases. For this, all conc instants that are not yet ordered against the reading instant are split depending
on whether they are still framing (set F), or already propagating (set P). The reading instant orders itself later than all
conc instants in P, equal to the framing traversal, but earlier than those in F by doing the reverse: It selecting succ as the
earliest instant from F and inserting edge instant −−→

SSG
succ, thereby ordering all conc in F as instant −→

DG
conc by

transitivity. Throughout this process, all conc in Fmust be prevented from concurrently transitioning their phases, as this
would invalidate the split between F and P. Otherwise, the reading instant might initially group a framing conc into
F, but before it establishes the SSG edge, that conc instant could concurrently transition through its propagation phase
all the way to completed. In that case, the SSG edge insertion would order the propagating instant earlier than the
completed conc, despite being in an earlier phase still. The implementation presented here achieves this by executing all

74 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

This is because this version does not represent a planned or completed reevaluation, but only ensures
that the reading instant is ordered in the SSG against all planned or completed reevaluations of the
reactive by other instants. Once ordered, the execution suspends twice. First in Line 135 until the
placeholders of all instants that are then ordered earlier have been removed, to ensure that the read
does not execute too early in terms of serializability. Second in Line 136 until the version of the reading
instant itself no longer is a placeholder, to ensure that the read is not executed too early in terms of
glitch freedom. Afterwards, the reactive is guaranteed to be in a state where the reading instant can
read its value correctly, and the read is dispatched back to readSynchronized.

Reading Past Values
The implementation of s.before reads, implemented by procedure Signal.before in Line 127ff,

is similar to s.after in that it also deliberately does not prompt a dependency edge. It also executes
ensureVersion in Line 139 to ensure that the reading instant is ordered in the SSG against all reeval-
uations by other instants. It also suspends in Line 140 until all placeholders by earlier instants have
been removed, to ensure that the read is not executed too early in terms of serializability. It does not
suspend for glitch freedom until the reading instant itself no longer has a placeholder though, because
the semantics of before deliberately ignore values of the reading instant itself, and thus do not need to
wait for glitch freedom. Instead, after only ensuring serializability, it dispatches to beforeSynchronized
to read the latest value written by earlier instants.

Demonstration
For better illustration of the upcoming examples, Figure 5.6 (e) introduces a third instant to the run-

ning example. Initiated by phils(1).set(Eating), t3 has already executed its entire framing traversal,
with placeholders created on p1, f0, f1, s1, s2 and c. For the demonstration of read operations, con-
sider then Figure 5.6 (f), where t1 has just started its reevaluation of s1, with the corresponding
placeholder highlighted by a striped grey background. The first read executed by this reevaluation is
forks(0).depend (cf. Listing 2.3 Line 17 with prevIdx == 0 from idx == 1 of s1). Because the corre-
sponding edge f0 −→DG

s1 exists, this read dispatches directly to readSynchronized. Since t1 has an own

written version on f1, its value (Free) is returned. The same would be true if f0 was an Event.
Based on that return value, the reevaluation next executes forks(1).depend (cf. Listing 2.3 Line 19

with idx == 1 of s1). Differently from f0, there is no edge f1 −→DG
s1 (grey dependency arrow), and the

read dispatches through after, which creates the idempotent version “1: p=0, c=0” on f1. Since already
no earlier placeholders exist anymore, all suspension conditions are met immediately and the version to
read from is chosen immediately, again by dispatching to readSynchronized. Equal to f0, there are also
three versions on f1, but they differ in that they are associated with instants t0, t2 and t3 instead of
t0, t1 and t3, meaning t1 does not have an own written version. If f1 was an Event, the read would
therefore return no value. Since f1 is a Signal though, the read is forwarded to beforeSynchronized,
which returns Taken(2) from the initial state as the latest written version ordered earlier than t1.

Imperative Reads
To conclude the discussion of read operations, only s.now reads remain to be addressed. These are

not executed within the context of update(...) calls, but are separate individual imperative interac-
tions. Still, FrameSweep implements them as instants, through procedure Reactive.now, defined in
Line 142ff.: An instant for s.now first executes the framing phase with an empty declaredInputs set in
Line 144. This means, it does not create any placeholders, establishes no SSG ordering relations, and
immediately transitions to Propagating. Then, the read is dispatched as s.before, ensuring that the
instant is ordered against other instants’ reevaluations and returning a serializable value from an earlier

phase transitions under the same global mutual exclusion as SSG accesses (Listing 5.1 Line 37 and Listing 5.2 Line 37ff.).
A more sophisticated and alternative, which is compatible with decentralization, is presented in Section 7.3.2.

5.6 Read Operations 75

instant, since the s.now instant itself does not write any own values. Finally, the instant executes a prop-
agation phase with an empty declaredInputs set and an empty inputChanges mapping in Line 146.
This means, it does execute any change or no-change propagation, but only suspends until all preceding
instants have completed before completing itself. This is necessary for linearizability, which the proofs
in Chapter 6 will address in more detail.

5.7 Retrofitting

The latest state of the running example in Figure 5.6 (f) demonstrated the reevaluation of s1 by t1
executing a depend read of f1. In addition to reading a user value from its target reactive, depend reads
prompt corresponding DG edges to be created. In Figure 5.6 (f), the edge f1 −→DG

s1 is visualized in grey

not only to show that the depend read executes while it does not exist, but because it must be created.
To create it, t1 must add s1 to the outgoing dependencies set of f1, i.e., execute a write operation on that
variable on f1. Both t2 and t3 are ordered later than t1 in the SSG though, but already read the outgoing
dependencies set of f1 from the initial state during the graph traversals they have executed so far. If
t1 simply executed its edge insertion in this state, these already executed graph traversals by t2 and t3
would become incorrect, because they then executed on an outdated value of the outgoing dependencies
set from t0 and ignored the actual latest value that was just newly written by t1.

Reasoning
The key insight to reconciling these situations is, that while the execution of ordered-later instants

are no longer correct, they are not arbitrarily incorrect either, but only “over-planned” or incomplete. In
case of edge drops, later instants may have “over-planned” in that they created and updated too many
placeholders. None of the corresponding reevaluations can have executed yet though, and therefore
wrongly created and updated placeholders can still be removed or their updates reverted. In case of
discoveries, inversely, later instants may be incomplete in that they have missed creating and/or updating
some placeholders. No other operations, which would be affected by these placeholders, can have
executed yet though, and therefore affected placeholders can still be added and updated belatedly. The
reasoning for both cases is that the combination of glitch freedom and C2PL for reevaluations forms a
sort of protective shield that prevents any potentially affected user-visible operations from executing. An
instant can drop or discover a dependency edge reactive −→

DG
reevaluating only during an ongoing

reevaluation of reevaluating. This means, the instant has a placeholder on reevaluating that it will
not remove until after the dynamic edge change has been completed. In Figure 5.6 (f), this is the
placeholder of t1 on s1, highlighted with a striped grey background.

From the framing phase for serializability and glitch freedom, every derived reactive d that is reachable
from reevaluating (i.e., some path reevaluating

∗
−→
DG
d exists) also has a placeholder by that instant.

Due to glitch freedom, all reevaluations corresponding to these placeholders cannot start, because they
must (transitively) wait for reevaluating to become glitch-free by completing the ongoing reevaluation.
Figure 5.6 (f) visualizes with the arrow labelled “GF”, how the placeholder by t1 on s1 implies through
glitch freedom that the placeholder by t1 exists on c and cannot be removed while the reevaluation is
still ongoing, and the same also applies for all omitted reactives reachable from s1. Further, due to C2PL
for serializability, on any such d and on reevaluating itself, no read operations or reevaluations by
later instants can have executed yet (all these operations suspend until all earlier instants’ placeholders
have been removed). Figure 5.5 (f) visualizes with the arrows labelled “SR”, how the placeholders of
the “GF” arrow by t1 precede and block all operations by the later instants t2 and t3. In summary, the
protective shield formed by glitch freedom and C2PL for serializability – visualized in Figure 5.5 (f) by
the combination of all “GF” and “SR” arrows – prevents all user-visible operations (reevaluations and
reads) by later instants from executing. It therefore allows all placeholders of such later instants on

76 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

any reevaluating itself and on any transitively reachable derived reactive d to be added, removed or
arbitrarily updated without causing any effects observable by user code.

Implementation
The entry point for dropping a dependency edge reactive −→

DG
reevaluating is procedure

Reactive.drop, defined in Listing 5.4 Line 147ff. It first ensures, that the parameter instant has at
least an idempotent version in the node history of the parameter reactive (Line 149, to guarantee that
future transactions order themselves correctly against the edge-dropping write. Then it executes the
edge write (Line 150) and starts retrofitting as explained below. The entry point for discovering a de-
pendency edge reactive −→

DG
reevaluating is procedure Reactive.discover, defined in Listing 5.4

Line 153ff. Here, a version is guaranteed to exist already, because the discovery is executed in response
to a depend read of the parameter reactive where edge reactive −→

DG
reevaluating did not exist yet.

This means, the condition in Listing 5.3 Line 113 was not met, and the depend read was dispatched in
Line 116 to after, where ensureVersion for the instant was executed in Line 134. The procedure
therefore immediately executes the edge write (Line 156), before also starting retrofitting.

Note that the pseudocode here uses the keyword subsecute instead of submit or execute. This is
because retrofitting as presented here uses a graph traversal that requires a semantics that is a mix of the
two keywords. The retrofitting traversal visits each reactive under local exclusion, equal to the framing
and propagation graph traversal. This means, recursing to successor reactives must escape the mutual
exclusion scope within which the recursive call is made, equal to submit. On the other hand though, the
retrofitting traversal must not execute asynchronously, but must complete within the execution of drop
or discover, equal to execute. FrameSweep’s actual implementation does not use a graph traversal for
retrofitting (and therefore still truly is only a two-phase algorithm). But, the actual approach it uses –
which is described in Section 7.2 – imposes significant increases in complexity for all other operations
presented so far. Thus, in order to keep the explanation and proof of FrameSweep’s correctness as
accessible as possible, this section presents retrofitting as a third recursive graph traversal with this
special recursion/termination semantics.

The first step of retrofitting is to compute, which instants – if any – had their already executed graph
traversals invalidated by the edge write and therefore require fixing. FrameSweep’s node histories are
constructed such that the necessary corrections can be determined based on the contents of the node
history of the parameter reactive whose outgoing edges were changed. Namely, retrofitting must be
performed for every later instant succ (i.e., instant

∗
−−→
SSG

succ) that has a version reactive[succ] that

is not idempotent. This applies equally for both drops and discoveries, they only differ in how they fix
the affected instants’ executions afterwards. The procedure Reactive.computeRetrofit, defined in
Listing 5.4 Line 159ff., computes as retrofitChange the set of all such succ instants that have a written
version reactive[succ], and as retrofitFrame the set of all such succ instants that have a placeholder
reactive[succ]. In Figure 5.6 (f), the idempotent version “p=0, c=0” of t1 on f2 (grey background)
was created for discovering edge f2

∗
−−→
SSG

s1. It is followed by the written Free by t2 and the placeholder

“p=1, c=0” by t3. Therefore, retrofitting is required for retrofitChange = { t2 } and retrofitFrame
= { t3 }.

Performing the computed retrofitting is implemented in procedure Reactive.retrofit, defined in
Listing 5.4 Line 167ff. It is used for retrofitting both drops and discoveries. For retrofitting after drops,
the delta parameter is set to −1 to decrements affected placeholders’ counters. For retrofitting after
discoveries, the delta parameter is set to +1 to increment the counters instead.

• For every placeholder reactive[succ] that prompted retrofitting (Line 169f), procedure
Reactive.reframe is executed, defined in Listing 5.4 Line 178ff. The first step of reframe on ev-
ery reached reactive is to ensure that a version for the parameter succ instant exists (Line 180).
Then, the counters of this version are updated.

5.7 Retrofitting 77

147 locally-exclusive procedure Reactive.drop(reactive, instant, reevaluating):
148 # delete edge: reactive −→

DG
reevaluating

149 execute ensureVersion(reactive, instant)
150 remove reactive.outDeps -= reevaluating
151 let (retrofitChange, retrofitFrame) = computeRetrofit(reactive, instant)
152 subsecute retrofit(reevaluating, retrofitChange, retrofitFrame, -1)

153 locally-exclusive procedure Reactive.discover(reactive, instant, reevaluating):
154 # create edge: reactive −→

DG
reevaluating

155 # version reactive[instant] already exists from preceding readSynchronized(reactive, instant)
156 add reactive.outDeps += reevaluating
157 let (retrofitChange, retrofitFrame) = computeRetrofit(reactive, instant)
158 subsecute retrofit(reevaluating, retrofitChange, retrofitFrame, +1)

159 procedure Reactive.computeRetrofit(reactive, instant):
160 let retrofitChange := { succ | ∃ reactive[succ] ∧
161 ∃ instant −−→

SSG
succ ∧

162 (reactive[succ].value != None) }

163 let retrofitFrame := { succ | ∃ reactive[succ] ∧
164 ∃ instant −−→

SSG
succ ∧

165 (reactive[succ].pending > 0 ∨ reactive[succ].changes > 0) }
166 return (retrofitChange, retrofitFrame)

167 locally-exclusive procedure Reactive.retrofit(reevaluating, retrofitChange, retrofitFrame, delta):
168 # delta is +1 or -1
169 foreach (succ ∈ retrofitFrame):
170 subsecute reframe(reevaluating, succ, delta)

171 foreach (succ ∈ retrofitChange):
172 execute ensureVersion(reevaluating, succ)
173 increment/decrement reevaluating[succ].changes += delta
174 if (reevaluating[succ].pending == 0 ∧ ((delta == +1 ∧ reevaluating[succ].changes == 1) ∨
175 (delta == -1 ∧ reevaluating[succ].changes == 0))):
176 foreach (derived ∈ reevaluating.outDeps):
177 subsecute reframe(derived, succ, delta)

178 locally-exclusive procedure Reactive.reframe(reactive, succ, delta):
179 # delta is +1 or -1
180 execute ensureVersion(reactive, succ)
181 increment/decrement reactive[succ].pending += delta
182 if (reactive[succ].changes == 0 ∧ ((delta == +1 ∧ reactive[succ].pending == 1) ∨
183 (delta == -1 ∧ reactive[succ].pending == 0))):
184 foreach (derived ∈ reactive.outDeps):
185 subsecute reframe(derived, succ, delta)

Listing 5.4: Pseudocode implementations of dynamic edge change retrofitting routines.

78 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

– For drops (delta == -1), reframe decrements the pending counter of reactive[succ]
(Line 181), reflecting that the removal of the dependency edge disconnected a dirty de-
pendency. If this turns reactive[succ] from a placeholder into an idempotent version (all
counters zero, checked in Line 182f.), reframe recurses to all successor reactives. This process
undoes the part of the framing traversal of succ, that succ executed superfluously because
it observed the dependency edge that should have been dropped before its execution (in
serializability time), but was only dropped now (in real time).

– For discoveries (delta == +1), these changes are reversed. The pending counter is incre-
mented (Line 180), reflecting that the newly added edge connected an additional dirty
dependency. If this turns reactive[succ] from an idempotent version into a placeholder
(changed is zero while pending was updated from 0 to 1, checked in Line 182f.), reframe
recurses to all successor reactives. This process belatedly executes the part of the framing
traversal, that succ previously missed because it did not observe the dependency edge that
should have been discovered before its execution (in serializability time), but was only dis-
covered now (in real time).

• For every written reactive[succ] that prompted retrofitting (Line 171ff), retrofitting differs only
in that it updates placeholders’ changed instead of pending counters on the reevaluating reactive.
This corresponds to the dropped or discovered incoming dependency edge having disconnected
or connected an additional dependency that is changed because of the written version, instead
of dirty because of the placeholder. The remaining recursive graph traversal of all transitively
reached reactives is identical to above: If the update of changes turned reevaluating[succ]
from a placeholder into an idempotent version after drop, or from an idempotent version into a
placeholder after discovery (Line 174f), a reframe task is submitted for all successor reactives
(Line 176), which will recursively update pending counters. In summary, retrofitting prompted
by written reactive[succ] not only undoes the superfluously executed – or belatedly executes
the missed – part of the framing traversal of the parameter succ instant, but also undoes the
superfluously executed – or belatedly executes the missed – Changed notify task by succ over the
added/removed reactive −→

DG
reevaluating edge.

Demonstration
Figure 5.7 (g) shows the updated state of the running example after retrofitting has been executed

for the newly discovered edge f1 −→DG
s1. For t3, the placeholder on f1 prompted retrofitting to belatedly

execute a missed part of its framing traversal. In Figure 5.6 (f), a placeholder by t3 on s1 already ex-
isted, meaning the original framing traversal already traversed over all successor reactives. In Figure 5.6
(g), the reframe traversal thus updated this placeholders’ pending counter to “p=2”, but then did not
traverse to its successor reactives a second time. This counter value of 2 also shows, how retrofitting
interacts with the mark-sweep change propagation for glitch freedom. The framing phase of t3 originally
set up the placeholder of s1 in Figure 5.6 (f) with a value of 1, reflecting that the corresponding reevalu-
ation must only wait for f0 to become glitch-free. After retrofitting, in Figure 5.7 (g), the counter value
of 2 correctly reflects that the reevaluation now must wait for two predecessors – f0 and f1 – to become
glitch free, instead of just one.

The written Free by t2 on f1 prompted retrofitting to belatedly execute a missed part of the framing
phase and change propagation of t2. In Figure 5.6 (f), t2 did not have a version on s1, yet. In Figure 5.7
(g), retrofitting therefore created this version and retrofit the missed change propagation by updating
its changed counter to “c=1”, instead of its pending counter. Since this placeholder was newly created,
recursive reframe tasks were submitted for all omitted reactives that depend on s1. Some of these were
already framed by t2 via s2 though, so this reframe traversal stopped somewhere on the path from s1
to c, and the placeholder on c remains unaffected. With retrofitting complete, the discovery of edge

5.7 Retrofitting 79

Figure 5.7: FrameSweep Example Trace: Retrofitting

80 5 FrameSweep: A Scheduler for Thread-Safe Reactive Programming

f1 −→DG
s1 is also complete, and the still ongoing reevaluation of s1 by t1 can now continue and complete,

too. Retrofitting has successfully corrected the applications’ execution into the same state that could
have been reached without retrofitting if t2 and t3 had executed – as the SSG order intends – only after
t1 discovered the edge.

Figure 5.7 (h) shows a further progressed state of the applications. The reevaluation of s1 by t1
has completed, which spawned the subsequent reevaluation for the placeholder of t2 that was newly
created during retrofitting. Further, t3 has started its propagation phase, with reevaluations of p1 and f1
already completed. Subsequently, t3 updated its previously retrofitted placeholder on s1 to “p=1, c=1”,
reflecting that f1 is now changed instead of dirty, but f0 is still dirty. The reevaluation of f0 by t3 is
ongoing, simultaneously with the reevaluation of s2 also by t3, demonstrating an example of concurrent
reevaluations per instant. Given the new value of f1, the reevaluation of s2 (striped grey background)
has computed Blocked(1) as its result without executing a depend read of f2 (cf. Listing 2.3 Line 26).
This means, the existing dependency edge f2 −→DG

s2 (grey bold edge) was not used, and therefore t3 has

created an idempotent version on f2 in order to drop it. Since this idempotent version is not followed by
any versions by later instants, the edge change does not prompt any retrofitting. The protective shield,
which prevents any user-visible operations by successive transactions from executing on any reactives
that retrofitting could affect, exists regardless, and is visualized again through “GF” and “SR” arrows.

In Figure 5.7 (i), the application has progressed further again. The reevaluation of s2 by t3 has com-
pleted without any retrofitting, and converted the placeholder into a written Blocked(1). All instants –
t1, t2, and t3 – have reevaluated all reactives except for c. The final notify task of t1 has not executed on
c yet, which therefore still has a placeholder with the pending counter at 1. The no-change propagation
by t2 (no-change because an update of p2 to Thinking does not result in any changes past the filter
Events) has overtaken the propagation by t1, and replaced the placeholder of t2 on c with an idempotent
version. The change propagation by t3 (the update of p1 to Eating does propagate changes all the way
up to incrementing the overall Eating counter) has also overtaken t1, and converted the placeholder of
t1 on c into one that is ready for reevaluation. The latter reevaluation is not yet allowed to start though,
because it is pipelined behind the earlier placeholder by t1. Both t2 and t3 are dormant at this point,
with no further queued or executing tasks, but may not complete yet because their predecessor t1 is still
propagating.

Finally, in Figure 5.7 (h), the no-change propagation by t1 (again, an update of p0 to Thinking does
not result in any changes past the filter Events) has reached c and skipped its reevaluation, turning
the placeholder of t1 into an idempotent version directly. At that point, t1 can complete, and then also
t2. For t3 though, t1 submitted another reevaluation of c, demonstrating the reason for why t3 was
not allowed to transition to completed before the ordered-earlier t1 did. That reevaluation has also
already completed and recomputed the folding Signal, incrementing its counter value to 4. To conclude
the introduction of FrameSweep, observe that the overall picture of Figure 5.7 (h) shows an end result
that is indeed equivalent to a sequential execution following the serialization order that was decided
on-the-fly: The exact same result would have been achieved, if – starting from the initial state t0 –
first t1 executed all by itself, then t2, and finally t3. FrameSweep achieved this result without aborting
any instant or otherwise reverting or rolling back any user-visible operation, and all reevaluations were
executed without any glitches having occurred, despite non-commutative operations on reactives having
executed in a different order than the serialization order on multiple occasions.

5.7 Retrofitting 81

6 Proving Correctness
This section formally proves the correctness of FrameSweep’s pseudocode implementation from Chap-
ter 5 through the application of established multiversion theory [Bernstein et al., 1986]. Multiversion
theory defines how to compute a multiversion serialization graph (MVSG) from a history of reads
and writes executed by a transaction system. The definition of MVSG is accompanied by a proven the-
orem, stating that if the MVSG of a given history is acyclic, then this history is serializable. The proofs
of FrameSweep’s correctness cover all possible histories that FrameSweep can produce by induction,
starting with an empty history as the induction base and covering as induction steps, case by case, the
execution of every read and write operation from the pseudocode routines defined in Listing 2.9 and
Listings 5.1 through 5.4. They show that the SSG is acyclic, and that for every possible history, the
SSG tracked by FrameSweep at runtime is a correct representation of the formally defined MVSG. This
implies that the corresponding MVSG is acyclic, and therefore all histories produced by FrameSweep are
correct.

The proofs are structured as follows. Section 6.1 gives a summary of the relevant formal tools from
established multiversion theory. Section 6.2 describes, how FrameSweep connects with these tools. Sec-
tion 6.3 proofs several basic internal properties of FrameSweep. Section 6.4 proofs more complex and
advanced properties, such as equivalences between FrameSweep’s framing, propagation, and retrofitting
graph traversals. Section 6.5 finally presents the induction proof that FrameSweep’s pseudocode imple-
mentation is correct.

6.1 A Recap of Multiversion Theory

FrameSweep’s proof is built relating the pseudocode implementation presented in this chapter to estab-
lished multiversion theory from databases. The following definitions provide a minimal summary of the
tools provided by multiversion theory.

Definition 1 (Multiversion History). A multiversion history H is the set of all reads and writes executed by
a transaction system. When a transaction t i writes a variable x , this is denoted as writei(x i) ∈ H. When a
transaction t j reads the value x that was written by t i, this is denoted read j(x i) ∈ H.

Note that read j(x i) a direct representation of a reads-from relation where t j read a value from t i.

Definition 2 (Version Order). A version order� is a non-reflexive order that defines, for every variable x ,
a total order over all versions writei(x i).

Definition 3 (Multiversion Serialization Graph). Given a multiversion history H, and a version order�,
the multiversion serialization graph MVSG(H,�) = (T, E) is a directed graph over all transactions T = {t i}
and the following edges. For every read j(x i) ∈ H, with i 6= j there is an edge t i → t j ∈ E. Further, for every
pair of read j(x i) ∈ H and writek(x k) ∈ H, with i, j and k pairwise distinct, there is an edge:

t j → tk, if writei(x i)� writek(x k)

tk→ t i, if writek(x k)� writei(x i)

�

∈ E

In essence, MVSG(H,�) is the collection of all deductions that can be drawn in relation to each
reads-from relation, i.e., each read j(x i), when asking “Assuming that H was produced by a sequential
application without multiversions, in which order must the contained transactions have executed to

83

produce H”: Each read j(x i) implies that t i was the last transaction to write x before t j read x . This
means first that t i executed before t j, hence t i → t j ∈ E, and second that every other tk that also wrote
x , i.e., every writek(x k), must have executed either before t i, hence tk → t i, or after t j, hence t j → tk.
The version order� is the mechanism by which this latter ambiguity is modelled.

Theorem 1 (Multiversion Serializability). A multiversion history H is serializable if a version order �
exists such that the multiversion serialization graph MVSG(H,�) is acyclic.

The Multiversion Serializability theorem has been proven in literature [Bernstein et al., 1986]. In
terms of above mental model, it essentially states that any history H is correct (view-equivalent to a serial
history without multiversions) if there is some combination of choices for ordering all writes before or
after all reads-from relations such that the entire collection of deductions does not imply any temporal
loops.

6.2 Connecting FrameSweep and Multiversion Theory

FrameSweep connects to multiversion theory in two ways: through the multiversion history it produces
and through the version order it defines.

6.2.1 Multiversion Histories produced by FrameSweep

The operations that are relevant to the following proofs are all reads and writes on reactives’ user values
as well as all reads and writes on reactives’ incoming and outgoing dependency sets. Reads and writes
of reactives’ user values are obviously user-visible operations, and thus relevant for FrameSweep’s cor-
rectness. Reads and writes on reactives’ incoming and outgoing dependency sets on the other hand are
not user-visible operations and thus not directly relevant to FrameSweep’s correctness. But, showing
serializability also for them proves that FrameSweep provides its isolation in a way that retains instants’
internal execution semantics from single-threaded execution. This in turn implies that each instant cor-
rectly executes mark-sweep propagation, which means that liveness and glitch freedom are ensured,
which are relevant to FrameSweep’s correctness.

For simplification, the proofs will use different models for operations on reactives’ user values and
incoming dependencies sets versus their outgoing dependencies sets. The user values and incoming
dependencies set of a reactive r are modelled as single variables vr and incr with immutable values that
are always read and written in their entirety. The outgoing dependencies set of a reactive r on the other
hand is modelled through a collection of one boolean variable outr,d one for every derived reactive d in
the entire application. If outr,d is false, then d is currently not in the set of outgoing dependencies of r;
all outr,d are initially false If outr,d is true, then d currently is in the set of the outgoing dependencies
of r. Adding or removing d to or from the outgoing dependencies of r during discoveries or drops in
FrameSweep’s pseudocode means, performing a single write operation that updates outr,d to true or
false respectively. Reading the outgoing dependencies set of r during graph traversals on the other
hand means performing multiple read operations to collect all d with outr,d == true, i.e., performing
one read operation of outr,d for every derived reactive d in the entire application. This model of outgoing
dependencies sets is not feasible to actually implement in practice, but it is semantically equivalent in
theory to any other representation of sets and therefore feasible to use in the proofs.

Definition 4 (FrameSweep History). A multiversion history produced by FrameSweep consists of reads and
writes over the following variables of every reactive r:

• user value vr per reactive r, with recorded operations writei(vi
r) and read j(vi

r).

• incoming dependencies set incr per reactive r, with recorded operations writei(inci
r) and read j(inci

r).

84 6 Proving Correctness

• individual outgoing dependency connection flags outr,d per combination of every of reactive r with
every derived reactive d, with recorded operations writei(outi

r,d) and readi(out j
r,d).

6.2.2 Stored Serialization Graph Version Order

FrameSweep defines a version order�SSG based on the SSG. All writei(x i) of each variable x are simply
ordered according to how the associated instants t i are ordered in the SSG. The remainder of this chapter
will use MVSG as shorthand notation for MVSG(H,�SSG).

Definition 5 (Version Order of FrameSweep). The version order of FrameSweep, �SSG, orders
writei(x i)�SSG write j(x j) iff t i

∗
−−→
SSG

t j exists.

The definition of �SSG is susceptible to describing an ill-defined version order. If for any variable x ,
a pair of writei(x i) ∈ H and write j(x j) ∈ H exists such that both t i

∗
−−→
SSG

t j and t j
∗
−−→
SSG

t i exist, then

�SSG describes an order that contains some reflexive relations. Alternatively, if for any such pair neither
t i

∗
−−→
SSG

t j nor t j
∗
−−→
SSG

t i exists, then�SSG describes an incomplete order that is not total over all versions

of x . The remainder of this section will prove that neither of these cases can occur.

Lemma 1 (Representation of Writes). For every writei(vi
r) ∈ H, writei(inci

r) ∈ H and writei(outi
r,d) ∈ H,

ensureVersion was executed to create a node version for t i in the node history of r, which represents this
write.

Proof. The only place where an instant t i can write inci
r is Listing 2.9 Line 25 of updateDeps. This is

called only in Line 10 of reevaluate for t i, which in turn is called in two locations:

• in Listing 5.2 Line 109 of notify for t i. In this case, ensureVersion is called for t i at the very
beginning of notify in Line 97.

• in Line 94 of reevOut for a different instant t j. In this case, reevaluate for t i is submitted only
on the condition that a node version by t i exists, verified in Line 91. Since ensureVersion is the
only place where node versions are created, it must have executed for t i on r beforehand from
somewhere.

An instant t i may write the user value vr in FrameSweep’s pseudocode only in Listing 5.2 Line 81 of
reevOut, which is in turn called in three locations:

• in Listing 5.2 Line 70, at the beginning of the propagation phase of t i on some input reactive that is
part of the declaredReactives of t i. Here, ensureVersion was previously executed in Listing 5.1
Line 39 of frame, which t i executed for all of its declaredReactives at the beginning of its framing
phase in Line 32f.

• in Listing 2.9 Line 14 of Event.control, and Line 17 and Line 19 of Signal.control. In turn,
there are two locations where control is called:

– in Listing 5.2 Line 68, also at the beginning of the propagation phase of t i on some input
reactive that is part of the declaredReactives of t i. The same reasoning as above applies.

– in Listing 2.9 Line 11 of reevaluate for t i. The reasoning following reevaluate was already
presented in the context of inci

r above.

• in Listing 5.2 Line 108 of notify for t i. This reasoning was also addressed above, in the first case
of reevaluate.

An instant t i may write the outgoing dependency outr,d in FrameSweep’s pseudocode in two locations.

6.2 Connecting FrameSweep and Multiversion Theory 85

• in Listing 5.4 Line 150 of drop. Here, ensureVersion is executed for t i in the preceding Line 149.

• in Listing 5.4 Line 150 of discover. Any execution of discover happens after a reevaluation by t i
of a derived reactive d executed a depend read on some reactive r for which a corresponding edge
r −→

DG
d does not exist yet. This means, during the execution of depend, the condition in Listing 5.3

Line 113 was not met. As a result, the read was dispatched through Line 116 to after, wherein
ensureVersion for t i was executed in Line 134.

Lemma 2 (SSG is Acyclic). The SSG tracked by FrameSweep is acyclic at all times, and thus describes a
non-reflexive partial order.

Proof. We prove Lemma 2 by induction. The induction base is all applications’ initial state, where no
instants have executed any operations yet. In this case, the SSG does not contain any edges yet, and
therefore is trivially acyclic. The induction steps are all insertions of new edges in FrameSweep’s pseu-
docode procedures. FrameSweep’s pseudocode procedures create new edges in the SSG in two locations,
both inside of ensureVersion in Listing 5.1 Line 44ff.:

• In Line 56, edge pred −−→
SSG

instant is created. For this edge to close a cycle, path instant
∗
−−→
SSG

pred must already exist in the SSG. However, pred is selected in Line 55 from set P defined in
Line 46ff., with was constructed to contain only instants for which path instant

∗
−−→
SSG

pred does

not exist. Thus this edge insertion cannot create a cycle.

• In Line 59, edge instant −−→
SSG

succ is created. For this edge to close a cycle, path succ
∗
−−→
SSG

instant must already exist in the SSG. However, succ is selected in Line 58 from set F defined in
Line 50ff., with was constructed to contain only instants for which path succ

∗
−−→
SSG

instant does

not exist. Thus this edge insertion cannot create a cycle either.

Lemma 3 (Total Order of SSG). For every node history, the SSG describes a total order over all contained
node versions.

Proof. All node versions are created through ensureVersion, defined in Listing 5.1 Line 44ff. Aside
from creating a node version for t i on a reactive r, ensureVersion adds edges to the SSG such that t i is
ordered against every other instant t j that also has a node version in the same node history. In Line 46ff.,

every instant conc that has a node version in the history of r, but is ordered neither conc
∗
−−→
SSG

instant

nor instant
∗
−−→
SSG

conc, is placed either in set P or F. In Line 55, pred is selected as the latest instant

of all those in P, i.e., for every conc ∈ P, there is a path conc
∗
−−→
SSG

pred. By adding edge pred −−→
SSG

instant, all conc ∈ P are ordered conc
∗
−−→
SSG

instant by transitivity. In Line 58, succ is selected as

the earliest instant of all those in F, i.e., for every conc ∈ F, there is a path succ
∗
−−→
SSG

conc. By adding

edge instant −−→
SSG

succ, all conc ∈ F are ordered instant
∗
−−→
SSG

conc by transitivity. Thus, afterwards,

either conc
∗
−−→
SSG

instant or instant
∗
−−→
SSG

conc is established for all other instants conc that also have

a node version in the node history of r. The order described by the SSG is therefore always total over all
node versions in the node history of r.

Theorem 2 (The Version Order of FrameSweep is Well-Defined). The Version order of FrameSweep,�SSG,
is well-defined in that for any pair of writei(x i) ∈ H and write j(x j) ∈ H, i 6= j, it is either writei(x i)�SSG

write j(x j) nor write j(x j)�SSG writei(x i).

86 6 Proving Correctness

Proof. Consider any pair of writei(vi
r) and write j(v j

r), writei(inci
r) and write j(inc j

r), or writei(outi
r,d) and

writei(outi
r,d), i 6= j. Lemma 1 implies, a corresponding pair of node versions for t i and t j exists in the

node history of r. Lemma 2 together with Lemma 3 implies, that the SSG describes a total non-reflexive
order over the node history of r, meaning either t i

∗
−−→
SSG

t j or t j
∗
−−→
SSG

t i exists. Applying Definition 5

for �SSG, it follows that either writei(x i) �SSG write j(x j) or write j(x j) �SSG writei(x i) is the case.
Thus, �SSG correctly defines a non-reflexive total order over all writes of each variable, meaning it is a
well-defined version order overall.

6.3 Basic Aspects Proofs

The lemmas in this section prove various comparatively simple aspects of FrameSweep, e.g., that reevalu-
ations are executed only for first placeholders, or that reevaluations that are queued behind earlier place-
holders are guaranteed to be submitted once these placeholders are cleared. The proof of FrameSweep’s
correctness relies on these lemmas, but they do not provide any insight into how FrameSweep ensures
serializability.

Lemma 4 (reevaluate Preconditions). An instant t i executes reevaluate for a reactive r only if t i has
the first placeholder on r, the placeholder’s pending counter is zero, and placeholders’ changes counter is
non-zero.

Proof. Consider all locations where reevaluate is executed.

• In Listing 5.2 Line 94 of reevOut. Here, reevOut is executed for some other instant t j with which
the previous first placeholder was associated that was just removed. t i is selected in Line 89ff. as
the earliest of all instants that have a following placeholder, i.e., its placeholder is the new first
placeholder. The condition pending == 0 is checked in the previous Line 93, while changes > 0
can be shown by contradiction: If changes == 0 were the case, then together with pending == 0,
the version by t i would not have been a placeholder, and therefore t i could not have been part of
the set from Line 89f.

• In Line 109. The absence of an earlier placeholder is given since this execution is part of the else
case of the condition in Line 102f, which explicitly checks for the existence of an earlier placeholder.
The condition pending == 0 is explicitly checked in the preceding Line 101, while changes > 0 is
given since this is the else case to the condition of changes == 0 in Line 107.

Lemma 5 (reevOut Preconditions). An instant t i executes reevOut for a reactive r only if t i has the first
placeholder on r and the placeholder’s pending counter is zero.

Proof. We consider all locations, where reevOut is executed.

• In Listing 2.9 Line 14, Line 17 and Line 19, reevOut is executed as as part of control. control in
turn is executed in two places:

– in Line 11 of reevaluate, for which both conditions were are precondition from Lemma 4.

– On input reactives at the beginning of the propagation phase in Listing 5.2 Line 68. Here,
the preceding Line 64 ensures that all preceding placeholders were removed first, and the
preceding Line 66 explicitly sets pending := 0.

• In Listing 5.2 Line 70. Here too, the preceding Line 64 ensures that all preceding placeholders
were removed first, and the preceding Line 66 explicitly sets pending := 0.

6.3 Basic Aspects Proofs 87

• In Line 108. The absence of an earlier placeholder is given since this execution is part of the else
case of the condition in Line 102f, which explicitly checks for the existence of an earlier placeholder.
The condition pending == 0 is explicitly checked in the preceding Line 101.

Lemma 6 (Subsequent Reevaluations). Reevaluations that are queued on preceding placeholders are guar-
anteed to be submitted when the last preceding placeholder is removed.

Proof. An execution of reevOut always submits a subsequent reevaluation that is ready in terms of glitch
freedom in Listing 5.2 Line 89ff. We show that every location where a placeholder may be removed
will execute reevOut if such a subsequent reevaluation is queued. This then implies that no placeholder
can become the first placeholder on a reactive without the queued reevaluation that it represents being
submitted. A placeholders may be removed wherever pending or changes is decremented or updated to
0.

• Update of pending to 0 for each input reactive at the beginning of the propagation phase in List-
ing 5.2 Line 66. This update is accompanied by a second update of changes to 1, and thus never
removes a placeholder.

• The update of changes to 0 in Line 82 and Line 86. These lines are themselves part of ongoing
executions of reevOut.

• The decrement of pending in Line 100 of notify. Here, reevOut is executed in Line 108 precisely
when the first placeholder is removed:

– when pending has become 0, checked in Line 101

– when no preceding placeholders exist, which is the else case in Line 107 of the condition in
Line 102 that checks if a preceding placeholder does exist,

– and when changes is also 0, checked in Line 107.

• The decrement of changes or pending during drop retrofitting in Listing 5.4 Line 173 and Line 163.
Here, a preceding placeholder by the instant that is dropping the edge exists, which forms the base
of the protective shield for retrofitting. Therefore, this case can only remove placeholders that are
not the first on their reactive.

Lemma 7 (Phase Ordering). Instants in the propagation phase cannot have any predecessor instants that
are still in the framing phase. Instants that are completed cannot have any predecessors that are still in the
propagation or framing phase. Expressed generically, for any t i −−→SSG

t j, t i must always be in a greater or

equal phase than t j, for the order of phases Framing < propagating < Completed.

Proof. By induction, with Lemma 7 as the induction hypothesis. As induction base, in their initial state of
all applications, the SSG does not have any edges, and the hypothesis is trivially fulfilled because every
instant has no predecessor instants. Induction steps are all parts of the code that change edges in the
SSG or change instants’ phase. There are four such steps:

• An instant t j can establish an instant t i as its predecessor, i.e., create edge t i −−→SSG
t j in Listing 5.1

Line 56. Here, t i is selected from set P that explicitly contains only instants whose phase is greater
than or equal to that of t j, due to the condition in Line 49.

• An instant t j can establish an instant t i as its successor, i.e., create edge t j −−→SSG
t i in Line 59. Here,

t i is selected from set F that explicitly contains only instants whose phase is smaller than that of t j,
due to the condition in Line 49.

88 6 Proving Correctness

1 locally-exclusive procedure Reactive.reframe(reactive, succ, delta):
2 execute ensureVersion(reactive, succ)
3 increment/decrement reactive[succ].pending += delta -= 1
4 if (reactive[succ].changes == 0 ∧ ((delta == +1 ∧ reactive[succ].pending == 1) ∨
5 (delta == -1 ∧ reactive[succ].pending == 0))):
6 foreach (derived ∈ reactive.outDeps):
7 subsecute reframe(derived, succ, delta)

8 locally-exclusive procedure DerivedReactive.notify(reactive, instant, change):
9 execute ensureVersion(reactive, instant)

10 if (change == Changed):

11 increment reactive[instant].changes += 1

12 decrement reactive[instant].pending -= 1
13 if (reactive[instant].pending == 0):

14 if (∃ reactive[pred]: pred
∗
−−→
SSG
instant ∧

15 (reactive[pred].pending > 0 ∨ reactive[pred].changes > 0)):
16 if (reactive[instant].changes == 0):
17 foreach derived ∈ reactive.outDeps:
18 submit notify(derived, instant, Unchanged)
19 else if (reactive[instant].changes == 0):

20 execute reevOut(reactive, instant, None)

21 else:

22 submit reevaluate(reactive, instant)

Listing 6.1: Equivalence of Drop Retrofitting to No-Change Propagation.

• An instant t j in the framing phase can transition to the propagation phase in Line 37. Here, the
suspension in the preceding Line 34 ensures that all predecessor instants t i, i.e., with t i −−→SSG

t j,

have transitioned to propagating, before t j does so itself. For all tk with t j −−→SSG
tk, increasing the

phase of t j when – by the induction hypothesis – it was already greater or equal than that of tk has
no effect.

• An instant t j in the propagation phase can transition to completed in Line 74. Here, the suspension
in the preceding Line 71 ensures that all predecessor instants t i, i.e., with t i −−→SSG

t j, have transi-

tioned to completed, before t j does so itself. For all tk with t j −−→SSG
tk, increasing the phase of t j

when – by the induction hypothesis – it was already greater or equal than that of tk has no effect.

Seeing as Lemma 7 holds for the initial state of all applications, and does not get broken through all steps
in FrameSweep’s pseudocode that could affect it, it follows that the Lemma 7 is true at all times.

6.4 Advanced Aspects Proofs

The lemmas in this section prove more complex aspects of FrameSweep, e.g., equivalences between
retrofit, framing and propagation traversals, that placeholders exist precisely in the time frame between
an instants’ framing and propagation phase, or that framing and propagation phase affect all the same
reactives – even in face of dynamic edge changes. They provide some insights into the foundations and
effects on which FrameSweep’s serializability – and especially retrofitting – is built.

Lemma 8 (Drop Retrofitting Equivalence). The retrofitting traversal of reframe, if executed after a dy-
namic edge drop with delta == -1, is equivalent to a no-change propagation traversal.

Proof. Listing 6.1 shows two copies of previous pseudocode procedures. They have been specialized and
partially evaluated for certain parameters, with decidable conditions and resulting unreachable branches

6.4 Advanced Aspects Proofs 89

1 locally-exclusive procedure Reactive.frame(reactive, instant):
2 execute ensureVersion(reactive, instant)
3 increment reactive[instant].pending += 1
4 if (reactive[instant].pending == 1):
5 foreach (derived ∈ reactive.outDeps):
6 submit frame(derived, instant)

7 locally-exclusive procedure Reactive.reframe(reactive, succ, delta):
8 execute ensureVersion(reactive, succ)
9 increment/decrement reactive[succ].pending += delta += 1

10 if (reactive[succ].changes == 0 ∧ ((delta == +1 ∧ reactive[succ].pending == 1) ∨
11 (delta == -1 ∧ reactive[succ].pending == 0))):
12 foreach (derived ∈ reactive.outDeps):
13 subsecute reframe(derived, succ, delta)

Listing 6.2: Equivalence of Discovery Retrofitting to Framing Phase.

crossed out in light gray. First, reframe (originally defined in Listing 5.4 Line 178ff.) is specialized for the
fixed parameter delta == -1. Second, notify (originally defined in Listing 5.2 Line 95ff.) is specialized
for fixed parameter changed == Unchanged and for the assumption, that the affected version is preceded
by an earlier placeholder, corresponding to the placeholder on which the protective shield for retrofitting
is founded. Except for the checks of pending == 0 and changes == 0 being verified in different orders,
the remaining code of both procedures is identical.

Lemma 9 (Discover Retrofitting Equivalence). The retrofitting traversal of reframe, if executed after a
dynamic edge discovery with delta == +1, is equivalent to a framing traversal.

Proof. Listing 6.2 shows two copies of previous pseudocode procedures. First, frame (originally de-
fined in Listing 5.1 Line 38) as originally defined. Second, reframe (originally defined in Listing 5.4
Line 178ff.), but specialized and partially evaluated for certain parameters, with decidable conditions
and resulting unreachable branches crossed out in light gray. Specifically, reframe is specialized for the
fixed parameter delta == +1, and for the assumption that – like frame – it executes for an instant in the
framing phase. The latter implies, that the changes counters on all versions associated with the instant
must still be at zero, because the changes counter can be incremented only two places, both of which
are unreachable for framing transactions:

• In Listing 5.2 Line 99 of notify, which can only be executed during the propagation phase.
Calls to notify are in Line 105f of notify, which is recursive, and in reevout-recurse1 and
reevout-recurse2 of reevOut. Calls to reevOut can originate from Line 70 at the beginning of
the propagation phase, from notify-reevout which is again recursive, and from control in List-
ing 2.9 Line 14, Line 17 or Line 19. Calls to control can originate from reevaluate, which is
exclusively called recursively either in Listing 5.2 Line 94 or in Line 110 of notify, or in Line 68
again at the beginning of the propagation phase.

• In Listing 5.4 Line 173, but only on the condition that a written version was found for the instant
to which retrofitting is applied. Changed versions are created exclusively in Listing 5.2 Line 81 of
reevOut, which was shown in the previous point to be reachable only in the propagation phase.

The remaining code of both procedures is identical.

Lemma 10 (Placeholders Correspond to Traversal Discrepancies). An instant t i having a placeholder on
a reactive r is equivalent to a temporary discrepancy where the framing traversal of t i has recursed to the
outgoing dependencies of r, but the propagation traversal has not yet.

90 6 Proving Correctness

Proof. Every recursion to outgoing dependencies of the framing traversal and propagation traversal is
accompanied by the creation – respectively removal – of a placeholder. Conversely, every creation or
removal of a placeholder is accompanied by a recursion of the framing – respectively propagation –
traversal. We address all four cases separately.

The framing traversal recurses to all outgoing dependencies of a reactive in the following locations.

• In Listing 5.1 Line 42f. of frame. This is done only on the condition that incrementing the pending
counter in Line 40 changed its value from 0 to 1 (condition in Line 41. This implies that the
respective version newly became a placeholder (changes counters are all 0 during the framing
phase).

• In Listing 5.4 Line 176 and Line 184, if retrofitting is executed after a discovery, which following
Lemma 9 is equivalent to a framing traversal. This is done on the condition that a placeholder
was created, explicitly checked in Line 174f. and Line 182f. respectively, after incrementing the
changes counter in Line 173 and the pending counter in Line 181 respectively.

The propagation traversal recurses to all outgoing dependencies of a reactive in the following locations.

• In Listing 5.2 Line 83f. or Line 87f. of reevOut Here, changes := 0 is explicitly set by the re-
spective preceding Line 82 or Line 86, while from Lemma 5, pending == 0 is a precondition for
reevOut to be executed.

• In Line 105f. of notify. Here, the preceding Line 104 and Line 101 ensure that the version has be-
come idempotent (pending == 0 ∧ changes == 0) after the pending counter was decremented
in Line 100.

• In Listing 5.4 Line 176 and Line 184, if retrofitting is executed after a drop, which following
Lemma 8 is equivalent to a propagation traversal. This is done on the condition that a placeholder
was removed, explicitly checked in Line 174f. and Line 182f. respectively, after decrementing the
changes counter in Line 173 and the pending counter in Line 181 respectively.

A placeholder may be created wherever pending or changes is incremented or set to 1.

• The increment of the pending counter in Listing 5.1 Line 40 of frame. The condition in Line 40
explicitly checks, if this turned the version into a placeholder. If so, the framing traversal recurses
to all outgoing dependencies in Line 42f.

• The update of changes to 1 in Listing 5.2 Line 65 at the beginning of the propagation phase.
This is executed for input reactives in declaredReactives, replacing their pending == 1 from the
framing phase with changes == 1. Therefore, this does not create a placeholder, but just change
the counters of a version that already is a placeholder.

• The increment of changes in Line 99 in notify. This is executed in response to a predecessor
turning from dirty to changed, meaning it also replaces one pending count with one changes
count. Therefore, this also does not create a placeholder, but just change the counters of a version
that already is a placeholder.

• The increment of changes or pending during drop retrofitting in Listing 5.4 Line 173 and Line 163.
Both are immediately followed by conditions that check if a placeholder was created in Line 174f.
and Line 182f. respectively. If so, a discovery retrofit traversal is executed recursively for all
outgoing dependencies, which following Lemma 9 is equivalent to a framing traversal.

A placeholders may be removed wherever pending or changes is decremented or updated to 0.

• Update of pending to 0 for each input reactive at the beginning of the propagation phase in List-
ing 5.2 Line 66. This update is accompanied by a second update of changes to 1, and thus never
removes a placeholder.

6.4 Advanced Aspects Proofs 91

• The update of changes to 0 in Line 82 and Line 86 in reevOut. These lines are immediately
followed by the propagation phase recursing to all outgoing dependencies in Line 83 and Line 87
respectively.

• The decrement of pending in Line 100 of notify. If this removed a placeholder, this is detected
by Line 101 for pending == 0, and either Line 104 or Line 107 for changes == 0. In the former
case, the propagation phase recurses to all outgoing dependencies immediately in Line 105f. In the
latter case, reevOut is executed in Line 108, which in turn recurses to all outgoing dependencies
in either Line 83 or Line 87.

• The decrement of changes or pending during drop retrofitting in Listing 5.4 Line 173 and Line 163.
Both are immediately followed by conditions that check if a placeholder was removed in Line 174f.
and Line 182f. respectively. If so, a drop retrofit traversal is executed recursively for all outgoing
dependencies, which following Lemma 8 is equivalent to a (no-change) propagation traversal.

Lemma 11 (Framing Phase and Propagation Phase Match). The framing traversal and the propagation
traversal of any instant t i, after accounting for any applied retrofitting, visit every reactive equally often.

Proof. Both traversals start from the same set of input reactives (declaredReactives). For the framing
traversal, this is Listing 5.1 Line 32. For the propagation traversal, this is Listing 5.2 Line 63. Input
reactives are unaffected by retrofitting.

Both traversals recurse to derived reactives through the same outgoing dependencies set variables
on the same conditions on each reactive. The framing traversal increments the pending counter on
every reached node (Listing 5.1 Line 40). On the condition that this increment changed the counter’s
value from 0 to 1 (Line 41), it recurses to all outgoing dependencies of the node in Line 42f. For the
propagation traversal, there are multiple places where it recurses to successor reactives. In all these
locations, both the pending update and the recursion condition are reversed. The propagation traversal
decrements the pending counter on every reached node. On the condition that this decrement changed
the counter’s value from 1 to 0, it traverses to all outgoing dependencies of the node eventually. These
locations are:

• On each initial input reactives, the pending counter is explicitly updated to 0 in Listing 5.2 Line 66.
The condition that this decrement changed the counter’s value from 1 to 0 is not checked, because
it is always true: the framing phase visits each of these input reactive precisely once, so their
pending counter is guaranteed to be 1 when the propagation phase starts, so this update is always
equivalent to decrementing the counter from 1 to 0. As a consequence, unconditionally, either
control is called in Line 68, which then calls reevOut in Listing 2.9 Line 14, Line 17 or Line 19, or
reevOut is called directly in Listing 5.2 Line 70. Therein, the propagation traversal then recurses
to all outgoing dependencies in either Line 83f. or Line 87f.

• On each reached derived reactive, pending is decremented in Line 100. The condition that this
decrement changed the value from 1 to 0 is checked in Line 101. Afterwards, it recurses to all
outgoing dependencies over four possible paths.

– Directly in Line 105f.

– Indirectly in Line 108 through reevOut as above.

– Indirectly in Line 109 through reevaluate, which in Listing 2.9 Line 11 calls again control
as above.

– Delayed, where reevaluate is ready to execute in terms of glitch freedom but not yet in
terms of serializability because a preceding placeholder still exists. The condition in Line 102f.
ensures the existence of said placeholder. By Lemma 6, the reevaluate task is guaranteed

92 6 Proving Correctness

to be executed when all preceding placeholders were removed. The reasoning following the
execution of reevaluate was given in the previous point.

Given that both traversals start on the same reactives, and recurse over the same outgoing dependen-
cies set variables under equivalent conditions, both traversals traverse the same set of nodes, as long as
the outgoing dependencies set variables do not change between two traversals. Given the possibility of
dynamic dependency edge drops or discoveries though, this is not necessarily the case. A discrepancy
between framing and propagation traversal of t i arises, if an edge r −→

DG
d is dropped or discovered after

the framing traversal of t i recursed to the outgoing dependencies of d, but before its propagation traver-
sal did. Applying Lemma 10, this can be rephrased as a discrepancy between framing and propagation
traversal of t i arises, if an edge r −→

DG
d is dropped or discovered while t i has a placeholder on d. We

distinguish three cases.

• t i itself drops edge r −→
DG

d. In this case, a discrepancy is impossible. Recall that t i must be actively

reevaluating r during its propagation phase to execute this drop. Because r −→
DG

d still exists, glitch

freedom implies that t i must have already completed its reevaluation of r. Thus t i can execute such
a drop only after both its framing and propagation phase recursed to the outgoing dependencies of
r.

• t i itself discovers edge r −→
DG

d. In this case, a discrepancy is avoided. Such a discovery is executed

in response to the reevaluation of d having executed a depend read of r while r −→
DG

d did not

exist yet. The existence of this edge is verified during the execution of depend in Listing 5.3
Line 113. If it does not exist, the read was dispatched through Line 116 to after. Therein, the
read’s execution is suspended in Line 135f until all placeholders by t i and earlier transactions
have been removed. Thus the execution of such a discovery by t i is actively delayed until both its
framing and propagation phase recursed to the outgoing dependencies of r.

• A different transaction t j drops or discovers r −→
DG

d. In this case, both t i and t j must have a version

on r, meaning by Lemma 3, it must be either t i −−→SSG
t j or t j −−→SSG

t i.

– For t j with t i −−→SSG
t j executing a drop of r −→

DG
d, such a discrepancy is impossible. Because

r −→
DG

d existed beforehand, a placeholder by t i on r would imply that t i also has a placeholder

on d. This placeholder would precede that of t j, thus t j could not be reevaluating d, and thus
t j could not execute this drop. Thus, a drop of r −→

DG
d by such a later t j cannot execute while

t i has a placeholder on r.

– For t j with t j −−→SSG
t i executing a discovery of r −→

DG
d, such a discrepancy is impossible, too. As

stated above, such a discovery is executed after read dispatched through after in Listing 5.3
Line 133ff., which suspended in Line 135f until all placeholders of t j and earlier transactions
have been removed. Thus, a discovery of r −→

DG
d by such a later t j can also not execute while

t i still has a placeholder on r.

– A t j with t i −−→SSG
tJ , a discrepancy is possible. But, retrofitting by t j will detect this discrepancy

in computeRetrofity, where it t i matches the criteria from which set retrofitFrame is built
in Listing 5.4 Line 163. In case of a drop, retrofitting by t j will execute a reframe traversal
to undo the previously executed part of the framing traversal of t i. Lemma 8 has shown this
to be equivalent to a (no-change) propagation traversal. This resolves the discrepancy that
would otherwise remain when from the propagation traversal of t i later would not recurse
from r to d due to the now dropped edge, while the original framing traversal did. In case of
a discovery, retrofitting by t j will execute a reframe traversal to belatedly execute the missing
part of the framing traversal of t i. Lemma 9 has shown the equality of this traversal to the

6.4 Advanced Aspects Proofs 93

regular framing traversal. This means, the propagation traversal of t i will not introduce a
discrepancy, when it later naturally recurses from r to d over the newly discovered edge,
while the original framing traversal did not.

6.5 Serializability Proofs

This section contains proofs related to serializability, the key aspect of FrameSweep’s correctness.

Lemma 12 (Prefix Placeholder Freedom is Final). Once a node version of a propagating instant has no
preceding placeholders, it will never have any preceding placeholders again.

Proof. Consider an instant t i in the propagation phase with a node version on some reactive r, and an
earlier node versions on r, i.e., by some instant t j with t j

∗
−−→
SSG

t i, are not placeholders. We show that any

creations of placeholders can only occur for instants tk that are ordered later than t i. A placeholder may
be created wherever pending or changes is incremented or set to 1.

• The increment of the pending counter in Listing 5.1 Line 40 of frame. An instant tk executing
this increment must be in the framing phase, and must already have some version on r. Since t i
also has a version on r, tk must be ordered against t i. With tk in the framing phase and t i in the
propagation phase, Lemma 7 implies that tk must be ordered later than t i.

• The update of changes to 1 in Listing 5.2 Line 65 at the beginning of the propagation phase.
This is executed for input reactives in declaredReactives, replacing their pending == 1 from the
framing phase with changes == 1. Therefore, this does not create a placeholder, but just change
the counters of a version that already is a placeholder.

• The increment of changes in Line 99 in notify. This is executed in response to a predecessor
turning from dirty to changed, meaning it also replaces one pending count with one changes
count. Therefore, this also does not create a placeholder, but just change the counters of a version
that already is a placeholder.

• The increment of changes or pending during drop retrofitting in Listing 5.4 Line 173 and Line 163.
Here, a preceding placeholder by the instant that is dropping the edge exists, which forms the base
of the protective shield for retrofitting. Since the node version of t i does not have any preceding
placeholders, this can only create placeholders for tk that are ordered later than t i.

Corollary 1 (Propagating First Placeholder Ages Monotonously). From Lemma 12, it follows that once a
placeholder of a propagating instant t i has become the first placeholder on any reactive r, it will remain the
first placeholder on r until it is removed. Once it is removed, neither t i itself nor any earlier instant can have
a placeholder again. Thus, the next propagating instant t j to have a first placeholder on r must be ordered

later than t i, i.e., has t i
∗
−−→
SSG

t j. Therefore, the first placeholder on each reactive r belongs to propagating

instants in monotonously increasing order of the SSG.

Corollary 2 (reevOut Execute in Order of SSG). From Lemma 5, any execution of reevOut by an instant
t i on a reactive r occurs only if t i has the first placeholder on r. From Lemma 12, the first placeholder on
each reactive r belongs to propagating instants in monotonously increasing order of the SSG. Hence, for any
reactive r, the order in which instants execute reevOut corresponds to the order of these instants in the SSG.

94 6 Proving Correctness

Corollary 3 (Reevaluations Execute in Order of SSG). From Lemma 4, any execution of reevaluate by
an instant t i on a reactive r occurs only if t i has the first placeholder on r. From Lemma 12, the first
placeholder on each reactive r belongs to propagating instants in monotonously increasing order of the SSG.
Hence, for any reactive r, the order in which instants execute reevaluations corresponds to the order of these
instants in the SSG.

Lemma 13 (User Value Read Order). An instant t i executing any read operation of the user value vr of a
reactive r is ordered in SSG against all other placeholders and written versions on r, and execute the read
only once no more placeholders by earlier instants can exist.

Proof. An instant t i can read the user value vr in the following locations:

• In Listing 5.3 Line 119 of Event.readSynchronized and Line 124 of Signal.readSynchronized.
These are in turn called in two locations:

– In Line 113 of depend, under the condition that an edge r −→
DG

d exists for some derived

reactive d that t i is currently reevaluating. Following Lemma 4, t i must have a placeholder
on d for this reevaluation. Any placeholder or written version on r by any t j implies that
the framing traversal and maybe also the propagation traversal of t j recursed to all outgoing
dependencies of r, which includes d because of the edge r −→

DG
d. Hence, t j must have create

a placeholder on d, and may have replaced it with a written or idempotent version. In either
case, both t j and t i have a version on d, and following Lemma 3 are thus ordered against
each other. Further, again following Lemma 4, the placeholder by t i is the first placeholder
on d, i.e., no placeholders by any earlier t j can exist. This implies that these t j cannot have
a placeholder on r either, because any such placeholder would imply that the propagation
traversal of t j could not have recursed to d yet, and thus t j would still have a placeholder
on d ordered earlier than that of t i. Further, Lemma 12 applies on d, implying that no
placeholders can be created by any earlier instant, which transfers to r for the same reason.

– In Line 137 of after. Here, the preceding Line 134 ensures that t i has a node version on
r. By Lemma 3, t i is therefore ordered against all instants that also have a node version on
r. Subsequently, Line 135 explicitly suspends the read’s execution until all earlier instants’
placeholders have been removed. At that point, Lemma 12 applies, ensuring that no new
placeholders can be created by earlier instants.

• In Line 132 of Signal.beforeSynchronized. Here, the preceding Line 139 ensures that t i has
a node version on r. By Lemma 3, t i is therefore ordered against all instants that also have a
node version on r. Subsequently, Line 140 explicitly suspends the read’s execution until all earlier
instants’ placeholders have been removed. At that point, Lemma 12 applies, ensuring that no new
placeholders can be created by earlier instants.

Lemma 14 (Properties of Outgoing Dependencies Reads). Any read of the outgoing dependencies sets
of a reactive r (a) is done in the context of some graph traversal of an instant t i recursing to all outgoing
dependencies of r, (b) t i has a node version on r, and (c) occurs either before or while t i is in the propagation
phase and has the first placeholder on r.

Proof. The outgoing dependencies set is read in the following locations:

• In Listing 5.1 Line 42f. of frame. For (a), this occurs when the framing traversal of t i recurses to
all outgoing dependencies of r. For (b), the preceding Line 39 ensures that t i has a node version
on r. For (c), frame executes during in the framing phase, before t i even reaches its propagation
phase.

6.5 Serializability Proofs 95

• In Listing 5.2 Line 83f. or Line 87f. of reevOut. For (a), this occurs when the propagation traversal
of t i recurses to all outgoing dependencies of r. Lemma 5 implies that t i must the first placeholder
on r to execute reevOut, which fulfils both (b) and (c).

• In Line 105f. of notify. For (a), this occurs when no-change propagation of t i recurses to all
outgoing dependencies of r. For (b), the preceding Line 97 ensures that t i has a node version on
r. For (c), the condition in the in preceding Line 102f explicitly checks, that a placeholder by an
earlier instant still exists.

• In Listing 5.4 Line 176 and Line 184. For (a), this occurs when a retrofit traversal for t i recurses
to all outgoing dependencies of r. For (b), the preceding Line 172 or Line 180 respectively ensures
that a version exists. For (c), since retrofitting can affect only non-first placeholders (first place-
holders are held by the instant whose dynamic dependency edge change necessitated retrofitting,
forming the protective shield for its rewrites), this occurs before t i can have the first placeholder
on r.

Theorem 3 (SSG Correctly Represents MVSG). The SSG is a correct representation of the MVSG, in that
for every edge t i −−−→MVSG

t j there is a path t i
∗
−−→
SSG

t j.

Proof. Proof by induction, with Theorem 3 as the induction hypothesis. Recall from Definition 3 the
construction rules for MVSG edges: Every read j(x i) implies edge t i −−−→MVSG

t j, and every pair of read j(x i)

and writek(x k) implies either tk −−−→MVSG
t i if xk �SSG x i, or t j −−−→MVSG

tk if x i �SSG xk instead. As induction

base, consider the initial state of any application, where no operations have been executed, i.e., H = ∅.
In that case, none of these construction rules apply, meaning the MVSG contains no edges, so the hypoth-
esis is trivially fulfilled. As induction steps, consider every read operation and every write operation on
variables vr, incr and outr,d from FrameSweep’s pseudocode. Every execution of such an operation adds
additional writek(x k) and read j(x i) elements to H, which creates additional cases for these construction
rules to apply, meaning it adds new edges to the MVSG. It thus remains to prove that for every induction
step, i.e., for every such read and write operation, that the SSG contains a path t i

∗
−−→
SSG

t j for every edge

t i −−−→MVSG
t j that is newly added to the MVSG.

First, consider all read operations. Every execution by an instant t j of a read operation on variable x
adds a read j(x i) to H. From Definition 3, this adds the following edges to the MVSG:

• t i −−−→MVSG
t j for the instant t i that wrote the value returned by the read. For each individual read

operation, the proofs will show that the returned value is selected such that an path t i
∗
−−→
SSG

t j exists

in the SSG.

• tk −−−→MVSG
t i for every writek(x k) ∈ H with writek(x k) � writei(x i). Following Definition 5,

writek(x k)� writei(x i) is derived from tk
∗
−−→
SSG

t i, which corresponds to the required edge. Thus,

these MVSG edges are always covered by SSG paths, and need not be addressed individually for
each read.

• t j −−−→MVSG
tk for every writek(x k) ∈ H with writei(x i)� writek(x k). For each individual read opera-

tion, the proofs will show that either – in the case of vr – a corresponding path t j −−→SSG
tk exists, or

– in the case of incr and outr,d – no such writek(x k) can exist.

FrameSweep’s pseudocode contains the following read operations:

96 6 Proving Correctness

• read j(inci
r) executed in Listing 2.9 Line 21 and Line 23 of updateDeps: Since updateDeps is exe-

cuted only in Line 10 of reevaluate, t j is currently executing a reevaluation of r.

– t i −−−→MVSG
t j for the instant t i that wrote the value inci

r returned by the read. Since FrameSweep

stores only a single version of incr on each r, t i is the last instant – in real time – that wrote
incr. The only write of incr is in Line 20 of reevaluate, so t i is the last instant – in real
time – that reevaluated r before t j. Corollary 3 has shown that the real time order in which

reevaluations execute matches the SSG order. Thus t i
∗
−−→
SSG

t j must exist, covering the MVSG

edge.

– t j −−−→MVSG
tk for every writek(inck

r) ∈ H with writei(inci
r)� writek(inck

r). Following Definition 5,

writei(inci
r) � writek(inck

r) requires t i
∗
−−→
SSG

tk, i.e., that tk is ordered later than t i. Since

FrameSweep stores only a single version of each incr,d on each r, a read j(inci
r,d) implies that

t i was the latest instant – in real time – to write incr,d. The only write of incr,d is in Listing 2.9
Line 25 of updateDeps, which in turn is executed only in Line 10 of reevaluate. Since,
following Corollary 3, real time order of reevaluations matches SSG order, t i must also be the
latest instant in SSG order that wrote incr,d. Thus, any tk ordered later than t i in the SSG
cannot have executed a writek(inck

r) yet, thus this construction rule never applies.

• read j(v j
r) in Listing 5.3 Line 118f. of Event.readSynchronized and Line 123f. of Signal.after:

These reads correspond to t j reading v j
r from write j(v j

r) written by itself. The MVSG construction
rules apply only to instants reading values of other instants, so they do not apply in these cases.

• read j(vi
r) executed in Listing 5.3 Line 132 of Signal.beforeSynchronized:

– t i −−−→MVSG
t j for the instant t i that wrote the value vi

r returned by the read. The value vi
r is

chosen from an instant t i in the set preds computed in Line 128ff. This set is constructed
such that it contains only instants t i with t i

∗
−−→
SSG

t j, hence the MVSG edge is covered.

– t j −−−→MVSG
tk for every writek(vk

r) ∈ H with writei(vi
r) � writek(vk

r). The only write of vr is in

Listing 5.2 Line 81 of reevOut. Following Lemma 5, any such tk must therefore have had
a placeholder in the node history of r, which has been replaced by a written version by the
writek(vk

r). We show that, as a result, either t j
∗
−−→
SSG

tk or tk
∗
−−→
SSG

t j, for every location where

Signal.beforeSynchronized is executed:

* In Line 141 of before, the preceding Line 139 created a node version for t j on r. Thus,

both tk and t j have a node version on r, and thus Lemma 3 implies that either t j
∗
−−→
SSG

tk

or tk
∗
−−→
SSG

t j.

* In Line 126 of Signal.readSynchronized called from Line 137 of after, the preceding
Line 134 created a node version for t j on r. Thus, both tk and t j have a node version on

r, and thus Lemma 3 implies that either t j
∗
−−→
SSG

tk or tk
∗
−−→
SSG

t j.

* In Line 126 of Signal.readSynchronized called from Line 114 of depend, t j may not
have a version on r. To execute depend, t j must be reevaluating some derived reactive
d, meaning Lemma 4 implies that t j has a version on d. Further, this branch is executed
only on the condition that edge r −→

DG
d exists, discovered by some instant t x . Because

t x can have discovered r −→
DG

d only during its own reevaluation of d, but t j is currently

reevaluating d, Corollary 3 implies that t x
∗
−−→
SSG

t j. Further, following Lemma 1, t x must

have a version on r from executing this discovery, so following Lemma 3, it is either

6.5 Serializability Proofs 97

t x
∗
−−→
SSG

tk or tk
∗
−−→
SSG

t x . In the case of t x
∗
−−→
SSG

tk, tk must also have had a placeholder on d,

created by either own framing traversal or a retrofitting traversal by t x . Thus, both tk and
t j have a node version on d, and thus Lemma 3 implies that either t j

∗
−−→
SSG

tk or tk
∗
−−→
SSG

t j.

In the case of tk
∗
−−→
SSG

t x , tk
∗
−−→
SSG

t j follows by transitivity with t x
∗
−−→
SSG

t j.

We show by contradiction, that tk
∗
−−→
SSG

t j is impossible, meaning t j
∗
−−→
SSG

tk must be true, which

covers the MVSG edge. If tk
∗
−−→
SSG

t j was true, then tk would have been included in set preds

from Line 128ff. From this set, t i was selected as the latest instant in Line 131, implying that
all other tk must be ordered tk

∗
−−→
SSG

t i. Following Definition 5, writei(vi
r)� writek(vk

r) requires

t i
∗
−−→
SSG

tk in the reverse direction though. Following Lemma 2, tk
∗
−−→
SSG

t i thus cannot be the

case, as it would close a cycle in the SSG in combination with t i
∗
−−→
SSG

tk.

• read j(outi
r,d) executed whenever a graph traversal recurses to all outgoing dependencies of r.

Following Lemma 14, (a) t j has a version on r for any such read, and (b) it occurs either before
or while t j is propagating and has the first placeholder on r. Since in all of these cases, either an
earlier instant or t j itself has not completed its propagation traversal over r, glitch freedom implies
that this earlier instant or t j itself cannot have completed its propagation traversal over d either.

This in turn means, that no instant tk ordered t j
∗
−−→
SSG

tk can have started a reevaluation of d yet.

– t i −−−→MVSG
t j for the instant t i that wrote the value outi

r,d returned by the read. The only writes

of outr,d are in Listing 5.4 Line 150 of drop and Line 156 of discover. Following Lemma 1,
both drop and discovery imply that t i has a version on r, meaning both t i and t j have a

version on r. Following Lemma 3, this implies that it is either t i
∗
−−→
SSG

t j or t j
∗
−−→
SSG

t i. We

show that t j
∗
−−→
SSG

t i cannot be true for both drop and discovery by contradiction, thus instead

t i
∗
−−→
SSG

t j must be true, which covers the MVSG edge.

Consider t i with t j
∗
−−→
SSG

t i to have executed a drop of edge r −→
DG

d. Drop and discovery of

an edge r −→
DG

d can be executed by t i only while reevaluating d, and therefore only after

having reached the propagation phase. Following Lemma 7, this means that t j must also have
reached the propagation phase, and must be executing one of the propagation traversals.
This means the framing phase of t j executed while edge r −→

DG
d still existed, and thus must

have created a placeholder for t j on d. This in turn means, that t i cannot have had the first
placeholder on d yet, and by Lemma 4 thus cannot have started a reevaluation of d and thus
cannot have executed a drop of edge r −→

DG
d.

Consider t i with t j
∗
−−→
SSG

t i to have executed a discovery of edge r −→
DG

d. Such a discovery

is always executed in response to a depend read of r during a reevaluation of d while edge
r −→

DG
d did not exist, i.e., the depend read was dispatched in Listing 5.3 Line 116 through

after, defined in Listing 5.3 Line 133ff. Therein, in Line 135, such reads are suspended
until all earlier placeholders have been cleared. Seeing as t j executing its read of outr,d can
only happen when either itself or an even earlier instant still has the first placeholder on r,
this suspension would not have completed yet, and therefore such a discovery cannot have
executed yet.

98 6 Proving Correctness

– t j −−−→MVSG
tk for every writek(outk

r) ∈ H with writei(outi
r)� writek(outk

r). Following Definition 5,

writei(outi
r) � writek(outk

r) requires t i
∗
−−→
SSG

tk, i.e., that tk is ordered later than t i. Since

FrameSweep stores only a single version of each outr,d on each r, a read j(outi
r,d) implies

that t i was the latest instant – in real time – to write outr,d. The only writes of outr,d are in
Listing 5.4 Line 150 of drop and Line 156 of discover. Drop and discovery of an edge r −→

DG
d

can be executed by tk only while reevaluating d. Since, following Corollary 3, real time order
of reevaluations matches SSG order, t i must also be the latest instant in SSG order that wrote
outr,d. Thus, any tk ordered later than t i in the SSG cannot have executed a writek(outk

r) yet,
thus this construction rule never applies.

•

Every execution by instant tk of a write operation on variable x adds a writek(x k) to H. From Defini-
tion 3, this adds the following edges to the MVSG:

• tk −−−→MVSG
t j for every read j(x k) ∈ H. Since no instant can read x k before it was written, no such

reads can exist yet at the time where writek(x k) is executed. Thus this rule never applies.

• tk −−−→MVSG
t i for every read j(x i) ∈ H with writek(x k) � writei(x i). Following Definition 5,

writek(x k) � writei(x i) is derived from tk
∗
−−→
SSG

t i, which corresponds to the required MVSG

edge. Thus, these MVSG edges are always covered by SSG paths, and need not be addressed
individually for each read.

• t j −−−→MVSG
tk for every read j(x i) ∈ H with writei(x i)� writek(x k). For each individual write opera-

tion, the proofs will show that a corresponding path t j −−−→MVSG
tk exists.

FrameSweep’s pseudocode contains the following read operations:

• writek(inck
r), executed in Listing 2.9 Line 25 of updateDeps:

– Edges t j −−−→MVSG
tk for every previously executed read j(inci

r) with writei(inci
r) � writek(inck

r).
This write is executed as part of reevaluate, meaning tk is currently reevaluating r. Follow-
ing Corollary 3, all reevaluations of r are executed in order of the SSG. The only reads of incr
are in Line 21 and Line 23 of updateDeps, also part of reevaluate. Hence any read j(inci

r)

must come from an earlier reevaluation, and is thus ordered t j
∗
−−→
SSG

tk, which covers the

requried MVSG edge.

• writek(vk
r), executed in Listing 5.2 Line 81 of reevOut.

– Edges t j −−−→MVSG
tk for every previously executed read j(vi

r) with writei(vi
r) � writek(vk

r). Fol-

lowing Lemma 5, to execute reevOut, tk must have the first placeholder on r. Following
Lemma 13, any t j must be ordered against tk, i.e., either t j

∗
−−→
SSG

tk or tk
∗
−−→
SSG

t j. Further

following Lemma 13, the latter cannot be the case, since such reads would be suspended,
waiting for the placeholder by tk to be removed first. Hence, it must be t j

∗
−−→
SSG

tk, which

covers the required MVSG edge.

• writek(outk
r), executed in Listing 5.4 Line 150 of drop and Line 156 of discover.

– Edges t j −−−→MVSG
tk for every previously executed read j(outi

r,d) with writei(outi
r,d) �

writek(outk
r,d). Following Lemma 14, t j must have a version on r, as does tk from Lemma 1.

Hence, t j and tk must be ordered in the SSG, i.e., it is either t j
∗
−−→
SSG

tk – which covers the

6.5 Serializability Proofs 99

required MVSG edge – or tk
∗
−−→
SSG

t j. The latter case is possible, and would close a cycle in

combination with the required MVSG edge, meaning these edges are not covered by the SSG.
We distinguish the following cases, depending on what kind of version t j has on r:

* t j has an idempotent version on r. In this case, t j may have traversed r with a framing
traversal (or an equivalent discovery retrofitting traversal, cf. Lemma 9) and a subse-
quent no-change propagation traversal (or an equivalent drop retrofitting traversal, cf.
Lemma 8). A framing traversal followed by a no-change propagation traversal is by de-
sign not user-visible. Therefore, in terms of user-visible operations, the non-serializable
read j(outi

r,d) is equivalent to a serializable read j(outk
r,d) without any modifications.

* t j has a placeholder on r. In this case, t j has traversed r with a framing traversal (or an
equivalent discovery retrofitting traversal, cf. Lemma 9). This t j is collected by tk in the
set retrofitFrame in Listing 5.4 Line 163ff. of computeRetrofit. If tk is dropping edge
r −→

DG
d, it submits a drop retrofitting traversal for t j in Line 169, which following Lemma 8

is equivalent to a no-change propagation traversal of t j. This no-change propagation
traversal negates the previously executed framing (or equivalent discovery retrofitting)
traversal in that their combined effects are not user-visible. If tk is discovering edge
r −→

DG
d, it submits a discovery retrofitting traversal for t j in Line 169 instead, which

following Lemma 9 is equivalent to the normal framing traversal of t j over d. In both
cases, the non-serializable read j(outi

r,d) is rewritten into a serializable read j(outk
r,d).

* t j has a written version on r. In this case, t j has traversed r with a framing traversal (or an
equivalent discovery retrofitting traversal, cf. Lemma 9) and a change propagation traver-
sal, i.e., at least two instances of read j(outi

r,d) were executed. This t j is collected by tk in
the set retrofitChange in Listing 5.4 Line 160ff. of computeRetrofit. If tk is dropping
edge r −→

DG
d, it undoes in Line 173 the effects of the previously received Changed notify

in Listing 5.2 Line 99, thereby turning the previously executed change propagation into
no-change propagation. Further, as necessary, tk submits a drop retrofitting traversal for
t j to all successors of d, which following Lemma 8 is equivalent to a no-change propa-
gation traversal of t j. Again, this no-change propagation traversal negates the previously
executed framing (or equivalent discovery retrofitting) traversal in that their combined
effects are not user-visible. If tk is discovering edge r −→

DG
d, it applies in Listing 5.4

Line 173 only the effects of Listing 5.2 Line 99, since this is the only remainder after the
combination of a framing traversal (pending += 1) and a Changed notify (pending -=
1 and changes += 1). Further, as necessary. tk submits a discovery retrofitting traversal
for t j instead, which following Lemma 9 is equivalent to the normal framing traversal of
t j over d. In both cases, all non-serializable read j(outi

r,d) are rewritten into serializable
read j(outk

r,d).

To show that the replaced read j(outk
r,d) are indeed serializable, we show that all their required

MVSG edges are covered by SSG edegs:

* tk −−−→MVSG
t j is covered by tk

∗
−−→
SSG

t j from the precondition above.

* t j −−−→MVSG
t l for every writel(outl

r) ∈ H with writek(outk
r)� writel(outl

r). Following Defini-

tion 5, writek(outk
r)� writel(outl

r) is derived from tk
∗
−−→
SSG

t l , i.e., t l is ordered later than

tk. The only writes of outr,d are in Listing 5.4 Line 150 of drop and Line 156 of discover.
Both are executed by t l only while reevaluating d. Since, following Corollary 3, reeval-
uations execute in order of the SSG order, and tk is currently reevaluating d, no such t l
can have executed a writel(outl

r) yet, thus this construction rule never applies.

100 6 Proving Correctness

Theorem 4 (Correctness of FrameSweep). FrameSweep produces only abort-free strict serializable histo-
ries.

Proof. Following Lemma 2, the SSG is acyclic. Following Theorem 3, the SSG correctly represents the
MVSG for all histories H that FrameSweep can produce, which is therefore also acyclic. Following
Theorem 1 with�SSG thus implies that all such H are therefore serializable.

Consider as the linearization point for any instant t i Listing 5.2 Line 74. This line is executed after
instants were started, but before they complete. The previous suspension condition in Line 71ff. ensures
that this line is executed for all instants in an order matching the SSG. Therefore, FrameSweep ensures
linearizability for instants, with their linearization order matching their serialization order, thus strict
serializability overall.

Lastly, FrameSweep’s pseudocode implementation does not contain any abort or roll-back mechanisms
for reevaluations. Since aborts or roll-backs do not occur naturally in programs, FrameSweep’s execution
is therefore also abort-free. In conclusion, FrameSweep thus provides isolation in the form of abort-
free strict serializability for all instants, including their mark-sweep propagation for glitch freedom and
liveness.

6.5 Serializability Proofs 101

7 Distribution Engineering and Optimizations
This chapter addresses modifications, additional engineering and optimizations for devising a decen-
tralized – and therefore suitable for distributed applications – implementation of FrameSweep. First,
Section 7.1 discusses how FrameSweep extends the way it does graph traversal from Chapter 5 to sup-
port traversals over distributed DG topologies. Next, Section 7.2 discusses lazy framing, an optimization
that removes the need for retrofitting to execute additional graph traversals beyond the framing and
propagation phase, and reduces the amount of interactions between concurrent instants in general. Sec-
tion 7.3 presents FrameSweep’s decentralized implementation of the SSG functionality, and how node
histories from different hosts safely interact with it through more fine-grained synchronization than
global mutual exclusion. Section 7.4 discusses garbage collection of obsolete node versions from reac-
tives’ node histories and completed instants from the decentralized SSG. Finally, Section 7.5 presents
FrameSweep’s support for extended transactions, which allow imperative threads to execute multiple
s.now reads atomically together with the execution of an update(...) instant.

7.1 Distributed Propagation

This section discusses, how FrameSweep adapts the way it executes instants’ graph traversals to dis-
tributed applications. Figure 7.1 illustrates how interactions between reactives and thread pools differ
in the distributed setting. At its core, the figure shows a distributed DG topology consisting of two hosts.
Its dependency graph is visualized through reactives connected by solid bold edges for local dependency
edges, and a hollow bold edge for a remote dependency crossing the network between the two hosts.
For a summary of FrameSweep’s local implementation, consider for now only the interactions inside the
left host A.

Locally, the execution of graph traversals is implemented by reactives pushing frame and notify tasks
during the framing and propagation phase respectively upon each other along their dependency edges
indirectly through the thread pool. The dotted arrows between thread pool and reactive a visualize the
resulting cycle of direct interactions between thread pool and reactives. The thread pool runs (“run”)
a submitted task by dispatching a worker thread to the affected reactive. During the task’s execution,
the reactive submits (“submit”) new tasks to the thread pool, which increment the associated instants’
activeTasks counter. Once the task is done (“done”), the worker thread returns to the thread pool. The
transfer of user values between reactives during the propagation phase on the other hand is implemented
through direct interactions between reactives, visualized as dashed arrows. Submitted notify tasks
carry only a boolean parameter of whether or not a reactive has changed. Values are then retrieved
during ongoing reevaluations by executing read operations before, after and depend directly on other
reactives, usually also along dependency edges but in the reverse direction.

In summary, instants’ graph traversals in FrameSweep are a back-and-forth process: Push tasks for-
wards along dependency edges indirectly through interactions with a thread pool that counts the number
of active tasks, and (during propagation) pull changed values through direct interactions in usually the
reverse direction of dependency edges. Applying this model in distributed applications, where instants
affect reactives on multiple hosts and dependency edges cross network boundaries, would incur two
significant performance impacts. First, any instant’s tasks are spread across multiple host. This would
make governing their execution through a single thread pool on one host highly inefficient, as every
submitted and completed task would have to be started and report its completion through slow network
communication. Second, back-and-forth interaction between reactives would repeated back-and-forth
remote communication over each remote dependency edge for the propagation a single change.

103

Figure 7.1: FrameSweep’s Fundamental Approach to Distribution

To minimize the amount of necessary remote communication, FrameSweep implements a different
communication scheme for change propagation across remote dependencies. First, FrameSweep intro-
duces mirror reactives for reactives that are shared remotely. Local reactives never depend on remote
reactives directly. Instead, all remote dependency edges are indirected through a mirror reactive on each
remote host. In Figure 7.1, the star-shaped reactive labelled c∗ is the mirror reactive for c from host A on
host B. The mirror reactive serves as a remote replica of the original reactives’ node history. It thereby
acts as a gateway for all derived reactives on host B to depend on the remotely shared reactive c from
host A while still requiring only a single remote dependency edge. As a first improvement, this allows
any number of local derived reactives to engage in back-and-forth interaction with the same remote
reactive at the same cost as just a single one.

Second, remotely shared reactives interact with their mirrors through different operations than local
reactives on individual hosts during the propagation phase, replacing the back-and-forth interaction with
purely forwards push-based propagation. Remote reactives send a notify task to all mirror reactives that
does not just carry a boolean flag of whether or not a change occurred, but instead directly pushes the
newly changed or no value. Upon receiving a notify task with no value, it simply sends out local notify
tasks with their boolean flag set as Unchanged, thus engaging with further local reactives on the remote
host regularly through back-and-forth interactions again. Upon receiving a notify task with a changed
value, the mirror reactive adds this value to its node history, thereby replicate the original reactive’s
change without communicating backwards over the remote dependency edge, and then sends out local
notify tasks with a boolean flag set as Changed. This way, the propagation traversal executes equally
to the framing traversal over remote dependency edges by pushing tasks forwards, without any reads in
the opposite direction.

Third, the run-submit-done cycle of interactions, which is executed during each graph traversal locally
once per affected reactive, is coarsened over remote dependency edges so that it executes only once for
each remotely affected host, regardless of the actual number of reactives affected within that host. In
essence, this makes FrameSweep’s graph traversals an instance of diffusing computations [Dijkstra and
Scholten, 1980]. Figure 7.1 visualizes this coarsened cycle of interactions in the center of the figure,
above the remote dependency edge. Initially equal to local propagation, the thread pool on host A runs
(“run”) a submitted frame or notify task for a given instant on the remotely shared reactive c. Then
differently though, c does not submit further tasks for the instant to the local thread pool, and does not

104 7 Distribution Engineering and Optimizations

report itself as done once its reevaluation is complete. Instead, alongside sending a frame or notify task
to its mirror reactive c∗, it conceptually transfers (“transfer”) its running task to host B. Upon receiving
this frame or notify task, the mirror reactive c∗ registers (“register”) with the local thread pool that it
is executing a task that is actually counted by the thread pool on host A. At this point, the instant has
two active tasks counted: one in the thread pool of host A, and one in the thread pool on host B. The
active task on host B is the ongoing reevaluation of the mirror reactive c∗, and will interact with the
thread pool on B as a local graph traversal, submitting and completing tasks normally (“submit” and
“done”). The active task counted on host A does not correspond to an actual active task though, but
instead stands as a representation of the instant being active – with any number of actual tasks – on host
B. When the instant’s activeTasks counter on host B eventually reaches zero, the host B will report a
single “done” to the thread pool on host A, representative for all tasks on host B having completed. With
this, the instant’s activeTasks can then also reach zero and thereby also conclude termination of the
entire distributed graph traversal.

In summary, these modifications achieve that FrameSweep executes instants over distributed DG
topologies through two back-and-forth communications over each remote dependency edge. During
the framing traversal, a single frame task is pushed across, and the remote host eventually reports com-
pletion of all subsequently spawned tasks in a single return message. During the propagation traversal,
the same happens with a single notify task that pushes the remotely shared reactive’s changed value
eagerly to the remote host, thereby avoiding any backwards communication to retrieve this value

7.2 Lazy Framing

Lazy Framing is an optimization that affects several aspects of FrameSweep in the cases where pipeline
parallelism is being utilized. Most importantly, it removes the need for retrofitting to execute graph
traversals, thereby achieving that FrameSweep is indeed only a two-phase algorithm. Lazy Framing
is based on nearly the same observation that forms the basis for the protective shield that enables
retrofitting: If an instant t has a placeholder on some reactive r, but it is not the first placeholder
on that reactive, then all placeholders by t on all reactives d reachable from r (i.e., r

∗
−→
DG

d) are not first

placeholders either. This is because all instants t ′ that have an earlier placeholder on r (i.e., t ′
∗
−−→
SSG

t),

will also have earlier placeholders on all d. Moreover, because of glitch freedom allowing placehold-
ers to be removed only in topological order of the DG, any of these placeholders on any d can only be
removed after the respective placeholders on r were removed first. Therefore, the placeholder by t on
r will become the first placeholder on r, before any placeholder by t on any d can become the first
placeholder on that d. In conclusion, this means that any placeholders created by t on any such d are
useless while t does not yet have the first placeholder on r, because no corresponding reevaluations can
be executed yet. The only effect of eagerly creating these useless placeholders is that more placeholders
will have to be added, removed or updated by potential later retrofitting executions. The key change
implemented by Lazy Framing is therefore to defer the creation of useless placeholders until they may
actually be relevant: At any time, only the first placeholder of every reactive is actually propagated to all
its successor reactives.

7.2.1 Framing

The first key change of Lazy Framing is for the framing phase to terminate early. The framing traversal
only recurses to successor reactives if – as before – it visited a reactive for the first time, i.e., newly created
a placeholder where there was none before, and – newly added – no other placeholder by any earlier
instants exist on the reactive. Figure 7.2 visualizes the effects of Lazy Framing, using the same running
example setup as FrameSweep’s original introduction did in Chapter 5. In Figure 7.2 (a), instant t1 has
completed its framing phase on the left-hand side of the graph normally, having created placeholders on

7.2 Lazy Framing 105

Figure 7.2: Lazy Framing Example Trace: Framing and Propagation

106 7 Distribution Engineering and Optimizations

p0, f0, s1 and all reached omitted reactives up to c. On the right-hand side of the graph, instant t2 is
still executing its’ framing phase, having created placeholders on p2, f2 and s2. Lazy Framing did not
have any effect yet, because neither t2 nor t1 did not encounter any other instants so far. In Figure 7.2
(b), instant t3 has started its framing phase, and already created placeholders on p1, f0, f1 and s2. Here,
Lazy Framing does have an effect, because the placeholders that t3 created on f1 and s2 are preceded by
earlier placeholders by t1 and t2 respectively. Therefore, the framing traversal of t3 does not recurse to
the successor reactives of either of these reactives. In fact, this means that t3 at this point has already
completed its entire lazy framing traversal, after having created only four placeholders. Notice however,
that since t3 has t2 as a predecessor in SSG and t2 has not transitioned to its propagation phase yet, t3
is also not allowed to transition to its propagation phase yet.

The downside of Lazy Framing is that it introduces significant additional complexity to FrameSweep
in that each graph traversal requires several additional case distinctions for recursion, as the next step
demonstrates. In Figure 7.2 (b), the framing phase of t3 created the first placeholder on f1, and therefore
recursed to s2 where it also created a placeholder and ordered t2

∗
−−→
SSG

t3. In Figure 7.2 (c), the continued

framing traversal of t2 now also created a placeholder on f1. Because of the order t2
∗
−−→
SSG

t3, the new

placeholder by t2 is ordered earlier than previously created placeholder by t3. This means, t2 usurped the
position of first placeholder on f1 from t3. Since t3 then no longer has the first placeholder, the framing
traversal by t3 should not have recursed to successor reactives. As a result, the framing traversal of t2
must recurse to the successors of f1 to not only create more placeholders for itself, but to simultaneously
undo the framing traversal by t3. As a result, in Figure 7.2 (d) on s2, t2 incremented its own placeholder
and simultaneously decremented the placeholder of t3. Because the latter thereby became an idempotent
version, the framing traversal by t2 must continue to undo the framing traversal by t3 on the successors
of s2 as well.

7.2.2 Propagation

During instants’ propagation phase, placeholders are replaced either by written or idempotent versions
through change or no-change propagation. In all of these cases, one placeholder being replaced gives
way to a potentially existing next placeholder to become the first on the reactive in its stead. If that
happens, the new first placeholder must be propagated to all successor reactives simultaneously together
with the notify task that propagates the previous first placeholder’s removal. This is demonstrated on
the left-hand side of Figure 7.2 (c). The reevaluation of f0 by t1 completed and replaced the respective
placeholder with a written Free. As a consequence, the placeholder by t3 has become the new first
placeholder on f1. Therefore, the notify task by t1 must not only propagate the change of f1 by t1, but
must simultaneously progress the Lazy Framing traversal of t3. As a result, t1 on s1 has updated its own
placeholder from “p=1, c=0” to “p=0, c=1” and simultaneously has created a new placeholder for t3.

This example shows, that Lazy Framing in general does not reduce the cost of framing traversals, but
only shifts it onto the propagation phases of preceding instants instead. Still, Lazy Framing can result in
actual reduced costs through tertiary effects. Since generally fewer placeholders exist in a given appli-
cation, finding or creating new versions becomes slightly cheaper because fewer comparisons involving
the SSG order are necessary. Further, when dynamic dependency drops occur, fewer placeholders are
removed whose previous creation had no effects except establishing additional edges in the SSG shrinks,
i.e., marginally fewer SSG edges are created overall. The most notable effect of fewer SSG edges is that
instants with fewer predecessors in turn have fewer reasons to suspend before phase transitions.

Lastly, Lazy Framing can have beneficial interactions with no-change propagation, resulting in
pipelined instants potentially achieving nearly depth-minimal execution. As an example, consider
the progression shown in Figure 7.3 (independent of the running example), showing a section of the
philosopher application of one philosophers’ filter Event, fold Signal and the first following Signal
in the summing-up Signal chain, here labelled add. In the initial step (a), instant t4 just emitted Done

7.2 Lazy Framing 107

Figure 7.3: Depth-Minimal Execution Opportunity with Lazy Framing

from filter, and is now reevaluating fold (placeholder “4: p=0, c=1”). Instant t5 is pipelined directly
behind t4, currently reevaluating filter, and having the first placeholder there. Because its placeholder
is the first on filter, the framing phase of t5 has (been) recursed to create a placeholder on fold, too.
Its placeholder on fold is not the first though, meaning t5 does not have a placeholder on add yet due
to Lazy Framing.

In step (b), the reevaluation of filter by t5 completed but did not emit a value. As a result, the
corresponding placeholder was replaced with an idempotent version, and an Unchanged notify was
submitted for fold. This notify subsequently replaced the placeholder by t5 on fold by an idempo-
tent version, too. Since under Lazy Framing, this previously non-first placeholder was not propagated
to successor reactives yet, the no-change propagation by t5 now does not recurse further to add, but
terminates early. In step (c), t4 finally completed its reevaluation of fold and replaced its placeholder
by a written version with the incremented user value 7. The resulting search by t4 for a successor’s
placeholder that becomes the new first placeholder and that t4 must therefore propagate alongside its
Changed notify skipped over the idempotent version by t5 and found the placeholder by t6 instead. As
a result, t4 on add has updated its own placeholder and created a new one for t6. Neither the fram-
ing nor the propagation traversal of t5 have ever reached t6 or any further successor reactives. This
interaction of pipeline parallelism with lazy framing and no-change propagation therefore resulted in t5
completing without having traversed the full depth of the DG. Note though, that it is equally possible
for t4 to complete its reevaluations sooner, such that the no-change propagation of t5 never catches up
but still propagates no-changes through the entire depth of the DG, continuously trailing a few reactives
behind the propagation of t4 in the “pipeline”. Lazy Framing therefore does not achieve strictly better
minimalism for executions, but only opens the possibility better-than-breadth-minimal executions under
fortunate concurrency interactions.

7.2.3 Retrofitting

The following reasoning proves, why retrofitting under Lazy Framing does not need to traverse the DG.
Recall the following properties of retrofitting:

• An instant t can add or remove an edge r −→
DG

d only during its active reevaluation of d, i.e., t has

a placeholder on d that persists until after retrofitting is completed. In Figure 7.2 (d), t1 has a
placeholder and is reevaluating s1 (striped grey background).

• Retrofitting is applied for all instants t ′ that have a placeholder or written version on r that is or-
dered later than the version by t itself (i.e., t

∗
−−→
SSG

t ′, cf. computeRetrofit in Listing 5.4 Line 159ff.)

108 7 Distribution Engineering and Optimizations

Figure 7.4: Lazy Framing Example Trace: Retrofitting

7.2 Lazy Framing 109

1 locally-exclusive procedure Reactive.retrofit(reactive, retrofitChange, retrofitFrame, delta):
2 # delta is +1 or -1
3 foreach (succ ∈ retrofitFrame):
4 execute ensureVersion(reevaluating, succ)
5 increment/decrement reevaluating[succ].pending += delta
6 foreach (succ ∈ retrofitChange):
7 execute ensureVersion(reevaluating, succ)
8 increment/decrement reevaluating[succ].changes += delta

9 # procedure Reactive.reframe(reactive, instant, delta) is no longer needed.

Listing 7.1: Pseudocode Implementation of Retrofitting under Lazy Framing.

In Figure 7.2 (d), t1 must apply retrofitting for the written Free by t2 and the placeholder by t3 on
f1.

• Retrofitting undoes – or belatedly executes – the framing traversal of these t ′ over the added
or removed edge, i.e., starting from d (cf. retrofit in Line 167ff.) and potentially affecting
placeholders on all d ′ transitively reachable from d (i.e., d

∗
−→
DG

d ′, cf. reframe in Line 178ff.).

Any placeholder by any such t ′ on d cannot be the first placeholder there, because the placeholder by t
is the first placeholder on d, ordered earlier than those of any t ′. Thus, with Lazy Framing, neither did
any previously superfluously executed, nor would any missing framing traversals by any such t ′ recurse
to the successors of d, i.e., to any d ′. Therefore, even if placeholders by any such t ′ exist on any such d ′,
they cannot have been affected by framing traversals over d. Thus, retrofitting only needs to add, remove
or update any placeholders directly on d, but not on any transitively reachable d ′, i.e., retrofitting with
Lazy Framing does not need to execute any graph traversals.

While the many additional case distinctions for Lazy Framing make the pseudocode of all other
scheduling procedures of FrameSweep too complex to be suitable for presentation here, the opposite
is true for retrofitting. Listing 7.1 shows the updated implementation of Reactive.retrofit under
Lazy Framing. For every placeholder that prompted retrofitting (Line 3ff.), retrofit ensures that a
version exists on the reevaluating reactive and decrements/increments its pending counter. For ev-
ery written version that prompted retrofitting (Line 6ff.), retrofit instead decrements/increments the
changed counter. In both cases, the need to check if the version turned from an idempotent version
into a placeholder or vice versa and then recurse to all successor reactives is gone. Equally, the entire
implementation of the recursive reframe traversal (cf. Listing 5.4 Line 178ff.) is no longer needed.

To exemplify retrofitting under Lazy Framing, Figure 7.4 (e) shows the running example after t2 has
started, and has progressed both its own propagation traversal and the framing traversal of t3 past
s2. This state is equal to the state in Figure 5.7 (f), from when retrofitting was first introduced in
Chapter 5, except for fewer placeholders existing on c because of Lazy Framing. Figure 7.4 (e) shows
the ongoing reevaluation of s1 by t1 (placeholder with striped gray background) while executing its
depend read on f1. Still equal to Chapter 5, an idempotent version by t1 on f1 was already created and
the reevaluation is now tasked with executing the discovery of dependency edge f1 −→DG

s1 (grey bold

edge). The protective shield, visualized by “GF” and “SR”, looks smaller, because the region it protects
contains fewer placeholders than in Chapter 5. Nevertheless, it still prevents all the same user-visible
operations from executing, they merely may be suspended on different sets of placeholders.

Figure 7.4 (g) shows the result of retrofitting with Lazy Framing. The visible changes are identical to
the those shown without Lazy Framing in Chapter 5 from Figure 5.6 (f) to Figure 5.7 (g). There however,
t1 had to execute further retrofitting for t2 on several omitted nodes, i.e., the shown differences were
incomplete, whereas here this is not the case. Figure 7.4 (g) visualizes the complete set of all changes
made by retrofitting, omitting none. The application of these changes to the omitted reactives happens

110 7 Distribution Engineering and Optimizations

instead as part of the regular progression of all involved instants: While in Figure 7.4 (f), the next
placeholder on s1 after t1 belonged to t3, in Figure 7.4 (g) the new placeholder by t2 has taken its place.
Figure 7.4 (h) demonstrates this result. The propagation traversal of t1 is complete, with its placeholder
on s1 replaced by a written Blocked(1) and later no-change propagation having replaced its placeholder
on c by an idempotent version. Together with its propagation traversal, t1 has progressed the framing
traversal of t2 instead of t3, creating new placeholders for t2 on c and all omitted reactives between s1
and c. From here on out, t2 will progress the framing phase of t3 alongside its own propagation, and yet
again the entire application will ultimately reach the same final state as Figure 5.7 (j), having upheld all
the same semantic guarantees along the entire way.

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep

The simplified implementation of FrameSweep in Chapter 5 relied on extensive mutual exclusion to
protect node histories and the SSG against concurrent modifications. Most problematic for distributed
applications is its reliance on global mutual exclusion while searching or inserting new node versions
into any reactives’ node history and during instants’ phase transitions. Global mutual exclusion requires a
centralized lock, which is highly impractical in distributed applications without access to shared memory.
Moreover, a central lock very quickly becomes a performance bottleneck, because every instant must
acquire it many times, once for each affected reactive. Further, a centralized lock inevitably is a single
point of failure for the entire application, which is bad for reliability.

Less problematic, but still potentially causing significant performance issues in distributed applications,
is local mutual exclusion per reactive. Creating versions may require new edges to be added to the
SSG, which is slow in distributed applications because the SSG is a global data structure, meaning this
process involves slow remote communication. Due to local mutual exclusion, any operation performing
such remote synchronization will block all other operations from executing on the reactive for its entire
duration. This includes operations such as depend reads over existing DG edges, that would complete
near instantaneously without requiring any remote synchronization because all required versions already
exist.

This section discusses a more sophisticated design for the interaction of node histories and the SSG,
that avoids such performance issues. The central abstraction around which the improved design re-
volves is the following interface that abstracts the functionality of the SSG through three operations with
linearizable (atomic) semantics:

• existsPath(a
∗
−−→
SSG

b): query, if path a
∗
−−→
SSG

b exists.

• addAcyclicEdge(a −−→
SSG

b): create edge a −−→
SSG

b unless it closes a cycle, i.e., unless existsPath(b
∗
−−→
SSG

a).

• predecessors(b): retrieve the current list of predecessors a with a −−→
SSG

b.

Section 7.3.1 discusses a non-blocking implementation of searching and creating node versions in reac-
tives’ node histories based on existsPath and addAcyclicEdge. Section 7.3.2 discusses a non-blocking
implementation of instants’ phase transitions based on predecessors. Finally, Section 7.3.3 discusses a
concurrent, decentralized and distributed implementation of the SSG behind this interface.

7.3.1 Non-Blocking Version Creation

FrameSweep’s improved implementation of node histories is based on sorted non-blocking linked lists,
but is simpler in some and more complex in other aspects. The implementation is simpler because
nearly all of the complexity in the implementation of non-blocking linked lists originates from the need

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 111

1 procedure Reactive.ensureVersion(reactive, instant):
2 execute tailRecursiveCASCreateVersion(reactive, instant, Reactive.head)

3 procedure Reactive.tailRecursiveCASCreateVersion(reactive, instant, reactive[current]):
4 let maybeNext := reactive[current].next
5 if (maybeNext matches Some(reactive[next]) ∧ next == instant):
6 return reactive[next]
7 else if (maybeNext == None ∨
8 (maybeNext matches Some(reactive[next]) ∧
9 (existsPath(instant

∗
−−→
SSG
next) ∨

10 next.phaseLocked {

11 next.phase <= instant.phase ∧ addAcyclicEdge(instant −−→
SSG
next)

12 }))):

13 if (addAcyclicEdge(current −−→
SSG
instant)):

14 create reactive[instant] := (next := maybeNext, pending := 0, changed := 0, value := None)

15 if (atomic-compare-and-set(current.next, maybeNext, reactive[instant]):
16 return reactive[instant]
17 else:
18 tailrecurse tailRecursiveCASCreateVersion(reactive, instant, reactive[current])
19 else:
20 tailrecurse tailRecursiveCASCreateVersion(reactive, instant, Reactive.head)
21 else:
22 tailrecurse tailRecursiveCASCreateVersion(reactive, instant, reactive[next])

Listing 7.2: (Almost) Non-Blocking Version Creation.

to support deletion of intermediate elements, but node histories only ever grow, meaning support for
deletion is unnecessary. A node history is simply a head pointer to the oldest node version that is still of
potential interest to some executing instant – Section 7.4 will discuss this in more detail in the context of
garbage collection. Every node version has a next pointer – either Some(nextVersion), or None to mark
the end of the list – and new versions can be linked into the list with linearizable semantics through a
single atomic compare-and-set attempt of this pointer. At the same time, the implementation is more
complex, because the SSG order that determines the position at which a version can be found or inserted
is potentially incomplete. Establishing missing ordering relations through addAcyclicEdge executions
is more expensive than any other aspect of inserting node versions, because it involves the need for
remote synchronization to protect against concurrent executions from possibly other remote hosts. To
minimize the number of addAcyclicEdge executions, FrameSweep decides on a position speculatively
in the presence of missing ordering relations. Once decided, FrameSweep then attempts to establish
all missing ordering relations to finalize this position in at most two addAcyclicEdge calls: one for all
missing predecessor relations, if any, and one for all missing successor relations, if any. This means,
inserting a node version has more possibilities to fail due to race conditions than the single compare-
and-set instruction of the next pointer, all of which must be handled.

Listing 7.2 shows the pseudocode of an alternative non-blocking implementation of ensureVersion as
a tail-recursive retry loop that traverses the linked list of node versions. The execution starts at the head
node version (Line 2). On each current node version, it retrieves the maybeNext node version (Line 4).
If the searching instant already has a version, it will show up this way, and is returned (Line 5f).
Otherwise, the search verifies, if one of the following three conditions are met:

• the search has reached the end of the list (Line 7).

• the order instant
∗
−−→
SSG

next exists (Line 9).

112 7 Distribution Engineering and Optimizations

• the next instant is in an earlier phase and the order instant
∗
−−→
SSG

next was successfully newly

established before next transitioned its phase (Lines 10 to 12). Note that, since any further fol-
lowing versions’ instants are already ordered later than the next, this single addAcyclicEdge call
– if successful – establishes by transitivity, that all following versions’ instants are also ordered as
successors of the searching instant.

If none of these conditions is met, the search recurses onwards in the in the node history (Line 22). In
case next

∗
−−→
SSG

instant is already established, the onwards recursion is necessary and correct because

instant is ordered later in the node history. In case next
∗
−−→
SSG

instant is not established yet, the

onwards recursion is speculation. Normally, the searching instant should try to establish the order
next

∗
−−→
SSG

instant, but there may be further versions for which the same is true. In order to establish

all missing predecessor ordering relations in a single addAcyclicEdge call, FrameSweep thus recurses
further to find the latest of them.

If any of the three conditions is met, the searching instant has reached the latest position in the
history where it can be ordered. Since no own version was found up to this point, none exists, meaning
one must be newly inserted between the current and maybeNext versions. To do so, any previously
speculated predecessor ordering relations must first be established. A single addAcyclicEdge(current
−−→
SSG

instant) call will establish all of these by transitivity (Line 13). It may however occur, that this

addAcyclicEdge call fails, because current −−→
SSG

instant would close a cycle. This happens when

the reverse order instant −−→
SSG

current was established concurrently, e.g., by a previously speculated

predecessor ordering itself as successor of the searching instant on a different reactive. The meaning
of this failure is that the speculated position turned out to be wrong, and the searching instant must be
ordered earlier than speculated. To accommodate this case, the search must therefore backtrack to find
the correct earlier position. For simplicity, this backtracking here is implemented as a simple restart from
the head pointer (Line 20).

Once all ordering relations between instants have been established successfully, the search can finally
attempt to insert a new version for the parameter instant between current and next. To do so, it
instantiates a new version with the next pointer set to the maybeNext version (Line 14). Finally, the
search tries to atomically compare-and-set the next pointer of current from maybeNext to the new
version. If that fails, the next pointer was changed by racing operations, and therefore the search
resumes from the current reactive and re-assesses the next pointer’s new value (Line 14). This ensures
linearizable semantics in that from any amount of racing insertion attempts between next and current,
only a single one can succeed, while all others make no changes and re-assess the situation. No insertion
can get lost from the pointer update being overwritten by a concurrent insertion. No two unordered
instants can insert two consecutive versions without seeing each other and establishing some ordering
relation beforehand. No two concurrent tasks of the same instant can simultaneously insert two versions
for that same instant.

In summary, this implementation of ensureVersion executes all synchronization that is necessary
for creating new idempotent versions without relying on any kind of local or global mutual exclusion.
FrameSweep still uses local mutual exclusion between concurrent tasks on the same reactive, but only
when already inserted node versions will be modified in order to avoid race conditions in relation to
which node version is the first placeholder of a given node history. Specifically, local mutual exclusion
is applied only to the second half of frame, notify, reevOut and retrofit, where they may convert
versions between idempotent and placeholder or placeholder and written. Read operations on the other
hand (before, after, now and depend) execute entirely without any mutual exclusion of other opera-
tions on the reactive, since they may require the insertion of an idempotent version, but do not change
any versions afterwards. The only synchronization they stems from suspending for placeholders to be
removed, but this is implemented through the park() and unpark() notification mechanism of Java’s
LockSupport API, i.e., also without mutual exclusion.

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 113

7.3.2 Non-Blocking Phase Transition

The simplified implementation of FrameSweep in Chapter 5 guarded instants’ phase transitions
with global mutual exclusion to prevent race conditions with two other scheduling aspects. First,
ensureVersion collected all instants of a smaller phase, and then added an edge to the SSG for the
earliest one. For this process to be safe, all of these instants had to be prevented from transition-
ing their phase, which was assured through global mutual exclusion. In the new implementation of
ensureVersion, the earliest of these instants is always encountered before all the others. Therefore, it
is feasible to directly prevent only the earliest instant from transitioning its phase, meaning an instant-
specific lock suffices. This is what the phase-locked scope in Listing 7.2 Line 10 expresses. It is no
longer necessary to prevent all instants in a smaller phase from transitioning while the earliest has not
been determined yet, and thus this aspect no longer requires global mutual exclusion.

Second, an instants phase transition may occur only once the following two conditions are met at
the same time: The instant’s activeTasks counter must be zero, i.e., its graph traversal of the current
phase must be complete, and all its predecessor instants must already have completed the same phase
transition. Since the second condition again involves multiple instants, the simplified implementation of
FrameSweep in Chapter 5 also protected it through global mutual exclusion. These conditions remain
unchanged, i.e., they still involve multiple instants, and therefore an implementation without global
mutual exclusion requires further engineering.

Observe first, that it is insufficient to check the two conditions individually in any order, or even
repeatedly alternating, as the following example will show. Consider a propagating instant t trying to
transition to completion. It has no active tasks, but it has a predecessor instant p that is still propagating.
First, t verifies that its activeTasks counter is zero. As part of completing a reevaluation, p afterwards
submits a subsequent reevaluation of the same reactive for t, and then transitions to completed. At
that point, t verifies its predecessors, and sees that all have completed, but its activeTasks counter is
no longer at zero due to the newly submitted reevaluation. Next, the restarted propagation traversal
of t establishes a new predecessor relation to a propagating instant p’, and afterwards completes its
last task. Now t can again verify that its activeTasks counter is at zero, but also again has a new
propagating predecessor. Therefore, this process can repeat an arbitrary number of times, showing that
even observing both conditions to be true in alternating order any number of times does not mean that
a phase transition is allowed yet.

Notice though, that this loop can only continue if set of predecessors keeps growing larger. This is
the key insight that FrameSweep exploits to implement its phase transition precondition check without
any mutual exclusion through the following three step loop. First, retrieve the current set of predecessor
instants, and suspend until all of them have completed the planned phase transition. Second, suspend
until the activeTasks counter has reached zero. Third, retrieve the current set of predecessor instants
again, and compare it to the one retrieved in the first step. If the set has changed, repeat from the first
step with the new set. If the set is unchanged though, then both conditions of the precondition were met
at the same time in the second step, and therefore the instant can execute its phase transition.

7.3.3 Decentralized Serialization Graph Tracking

FrameSweep’s implementation of the SSG adapts a partially dynamic graph algorithm for maintaining
the transitive closure of a directed graph under only edge insertions [Italiano, 1986] to its distributed
and concurrent environment. In its original form, this algorithm is suitable for use neither under dis-
tribution, nor under concurrency. To remedy this, the next section first describes, how FrameSweep
adapts the algorithm for use in the distributed setting. The remaining sections then introduce another
algorithm for determining connectedness in the form of undirected transitive reachability, also adapt it
to FrameSweep’s distributed setting, and finally use it to add thread-safety for concurrent modifications
to the aforementioned algorithm for directed transitive reachability.

114 7 Distribution Engineering and Optimizations

Figure 7.5: Transitive Reachability through Hash-Indexed Spanning Trees

Distributed Transitive Reachability

Each instant b stores a spanning tree of all predecessor instants, i.e., all a with a
∗
−−→
SSG

b. All nodes in the

spanning tree of each b are indexed in a thread-safe non-blocking hash table, with the instant that they
represent as their key. Lastly, each b has a set of all successor instants, i.e., all c with b

∗
−−→
SSG

c.

Figure 7.6: Example SSG

Figure 7.5 shows an exemplary state of these internal data structures for
the SSG visualized with black edges in Figure 7.6. The bottom row visual-
izes the spanning trees of all instants. Every instant is the root of its own
spanning tree, the corresponding nodes are highlighted black. Note that be-
cause the spanning trees contain predecessors rather than successors from
the SSG, spanning tree children edges and SSG edges point in opposite di-
rections. The middle row visualizes the hash table of the spanning tree
nodes. Each node of an instant’s spanning tree is indexed through an entry
in the instant’s hash table that references the node. Each instant’s entry in
its own hash table is again highlighted black and points to its spanning tree’s
root. The top row visualizes the successor sets as rounded rectangles. E.g.,
instant a has a node in its own spanning tree and an entry in its own hash
table, both highlighted black. It also has a node in the spanning tree and
an entry in the hash table of both instants c and f. Correspondingly, the
successor set of a contains a, c and f.

For distribution, the hash-indexed predecessor spanning trees are repli-
cated to remote hosts. E.g., if instant c from Figure 7.5 originated on host
A, but also affected some reactive on host B, then host B stores a copy of its
hash-indexed spanning tree. Further, because the hash-indexed spanning tree of c contains instants a
and b, host B also has copies of their hash-indexed spanning trees. When additional instants are added
to the hash-indexed spanning tree of c, this addition is replicated on host B too, in order to keep the
replica up to date. Removal of instants from these replica is discussed in Section 7.4 in the context of
garbage collection.

Having replicas of instants’ hash-indexed spanning trees available on each host enables FrameSweep
to provide non-blocking constant time implementations for the idempotent operations existsPath(a
∗
−−→
SSG

b) and predecessors(b). For existsPath(a
∗
−−→
SSG

b), FrameSweep simply looks up, whether or

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 115

Figure 7.7: Pruning and Copying Spanning Subtrees

not the local replica of the hash table of instant b associates a spanning tree node with instant a. For
predecessors(b), FrameSweep simply returns the current contents of the hash table of b.

Operation addAcyclicEdge(a −−→
SSG

b) is significantly more complex, because it is not idempotent and

requires remote synchronization to achieve linearizable semantics. The following paragraph concludes
the description of the transitive reachability algorithm by discussing the operation addEdge(a −−→

SSG
b)

for updating hash-indexed spanning trees when adding a new edge to the SSG as introduced by the
original algorithm, i.e., not thread-safe and without avoid cycles. The next subsection then introduces
the “Lock-Union-Find” data structure, a partially dynamic graph algorithm for mutual exclusion over
connected components (reachability in un-directed graphs) under only edge insertions. Finally, the last
subsection describes, how addAcyclicEdge(a −−→

SSG
b) can be implemented correctly by tying together

addEdge(a −−→
SSG

b) and existsPath(a
∗
−−→
SSG

b) under mutual exclusion provided by “Lock-Union-Find”.

As an example for edge insertion, consider addEdge(e −−→
SSG

c) to the SSG from Figure 7.6, which

visualizes this edge as a gray arrow. First, a reference to the spanning tree of e is sent to all successors of
c, together with the instruction to attach integrate the tree below c. In case these successors reside on a
different host, a copy of the spanning tree is sent instead of a reference. In Figure 7.5, the spanning tree
of e highlighted by a rectangular frame with dotted outline, and dotted arrows visualize the paths along
which it is sent to c and f.

Each instant that receives a spanning tree pointer and an instant below which to attach this tree first
retrieves the node in its own spanning tree for that instant. It then recursively attaches each node below
the corresponding node in its own spanning tree, starting with the one just looked up. Figure 7.7 shows
the result of this process. Instant c newly added e below its spanning tree node for itself (i.e., the root),
then d below e (spanning tree nodes and hash table entries with grey background). Next, it found that
instant b was already reachable (the grey dotted line visualizes the redundancy) and therefore ignored
it (i.e., the spanning tree node with grey outline was not added). Instant f also newly added e below its
spanning tree node for c (grey background), but then found that d was already reachable (dotted grey
line visualizing the redundancy), and therefore ignored d (grey outline) and skipped assessing any of its
children, i.e., b (not shown), because they are already reachable by transitivity. Drawing this transitivity
conclusion is why the algorithm is built on spanning trees, and what enables addEdge to execute in
amortized linear time [Italiano, 1986]. Finally, each instant appends itself to the set of successors of
each newly reachable instant. In Figure 7.7, the dotted arrows show how f appended itself to the
successor set of the newly reachable e, and how c did the same for both d and e (successor set entries
with grey background).

116 7 Distribution Engineering and Optimizations

1 procedure lock(node):
2 let found := find(node)
3 if (atomic-compare-and-set(found.ptr, None, Some(found))):
4 return Some(found)
5 else:
6 return None

7 procedure lockUnion(a, b):
8 let maybeLocked := lock(a)
9 if (maybeLocked matches Some(locked)):

10 let found := find(b)
11 if (found == locked ∨
12 atomic-compare-and-set(found.ptr, None, Some(locked))):

13 return Some(locked)
14 else:
15 execute unlock(locked)
16 return None
17 else:
18 return None

19 procedure unlock(locked):
20 update locked.ptr := None

Listing 7.3: Pseudocode of Lock-Union-Find.

Lock-Union-Find Fundamentals

A union-find data structure [Galler and Fisher, 1964] is a partially dynamic graph algorithm that as-
sociates a single representative element with each connected component of an undirected graph under
only edge insertions. Each node maintains a pointer that is either None, indicating that the node itself
is the representative of its connected component, or Some(other), in which case the representative for
its connected component can be found by following these pointers recursively – this is the find(node)
operation. If, for two nodes a and b, find(a) and find(b) return the same representative, then a and
b are part of the same connected component, i.e., there is some transitive path a ∗

SSG b in the graph.
Union-find therefore relates to the hash-indexed spanning trees from the previous section in that it also
computes transitive reachability between nodes, but for undirected instead of directed graphs. Inserting
a new edge a SSG bmay unify two previously separate connected components into one single connected
component. If a and b are not part of the same connected component, i.e., have different representatives,
then their connected components can be unified into a single common connected component by setting
one representative’s pointer to the other representative – this is the union(a SSG b) operation.

For the purposes of synchronizing addAcyclicEdge(a −−→
SSG

b) operations, the lock-union-find data

structure extends union-find twofold. First, lock-union-find adds a third pointer state: A node whose
pointer points to the node itself implies that the node is the representative of its connected component,
but the connected component is currently locked. Second, lock-union-find adds operations lock(node)
and unlock(locked), and replaces union(a SSG b) with lockUnion(a SSG b). Listing 7.3 shows sim-
plified pseudocode implementations for these operations. In practice, both implementations are signif-
icantly more complex since they perform additional tasks that are not relevant here, e.g., non-blocking
path compression for execution in nearly constant time, and non-blocking manual reference counting for
distributed garbage collection, cf. Section 7.4.

The procedure lock(node), defined in Line 1ff., tries to lock the connected component that node
belongs to. It first executes find(node) (Line 2) and then tries to lock the returned representative
by updating its pointer from None to itself through an atomic compare-and-set instruction (Line 3). If

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 117

this fails, either because the representative is locked by a different party or because a racing union
operation concurrently changed its pointer to a different representative, then lock(node) returns None
to indicate an unsuccessful attempt (Line 5f). If it succeeds, the connected component was locked
successfully, and lock returns the reference to the locked representative of the connected component as
Some(locked) (Line 4). While locked, the connected component can neither be locked nor unified with
other components by other parties until unlock(locked) is executed.

The procedure lockUnion(a SSG b)), defined in Line 7ff., tries to establish that both a and b are
part of a single locked connected component. It first tries to lock the representative of the connected
component of a (Line 8). If that fails, lockUnion also fails and returns None (Line 17). Otherwise, it
retrieves the representative of the connected component of b (Line 10). If the representative of b is the
same as the locked representative of a (Line 11), then a and b are already part of the same connected
component that was locked by lock(a). Alternatively, if an atomic compare-and-set attempt of the
pointer of the representative of b from None to the locked representative of a succeeds (Line 12), then
a and b were newly unified into a single connected component whose lock is still held from the initial
lock(a). In both of these cases, lockUnion succeeded and returns – equally to lock – a reference to the
locked representative of the unified connected component.

The last compare-and-set attempt can also fail though, again either because the representative of b is
locked by a different party or because a racing union operation concurrently changed its pointer to a
different representative. In this case (Line 14), lockUnion discards the progress it made up to that point,
by unlocking the connected component of a, and then also fails, returning None. Discarding this progress
instead of retrying the unification of both connected components is necessary to avoid the following
deadlock. Consider lockUnion(a SSG b) and lockUnion(b SSG a) to execute concurrently. The for-
mer successfully locks the connected component of a, the latter that of b. At that point, neither execution
can succeed in unifying the connected components of a and b, because they both simultaneously and
indefinitely block each other’s compare-and-set attempts from succeeding. To avoid this situation, both
must repeatedly unlock their locked connected components, so that the respective other has a chance to
succeed.

Distributed Lock-Union-Find

To make lock-union-find usable in a distributed and concurrent environment, the only necessary modifi-
cation is to allow the use of remote references in nodes’ representative pointers. No further synchroniza-
tion is required to deal with any concurrency issues, because the code as presented already implements
linearizable semantics:

• For lock(node), this is because all its functionality is implemented by the single atomic compare-
and-set instruction. If a different thread concurrently locks a connected components representative,
or unifies it under a different representative, then the compare-and-set attempt will fail, and there-
fore lock will fail, without having caused any changes.

• For unlock(locked), this is because it is not subject to any race conditions. Only a single thread
can lock a given connected component, and only that single thread is allowed to execute unlock
for its representative. Both lock and lockUnion cannot make any changes to the pointer while it
is locked, because their atomic compare-and-set operations can only succeed while the pointer is
Null.

• For lockUnion(a SSG b), linearizable semantics become apparent when realizing that the unifi-
cation of two separate connected components essentially requires both to be locked beforehand.
For the parameter a the connected component is clearly locked by the explicit lock(a) call. For
the parameter b on the other hand, this is not the case, since its representative is compare-and-set
directly from unlocked to the other representative. This is semantically equivalent to updating it in

118 7 Distribution Engineering and Optimizations

1 procedure addAcyclicEdge(a −−→
SSG

b):

2 let maybeLocked := lockUnion(a SSG b)

3 if (maybeLocked matches Some(locked)):
4 try {

5 if (existsPath(a
∗
−−→
SSG

b)):

6 return true

7 else if (existsPath(b
∗
−−→
SSG

a)):

8 return false
9 else:

10 let changes := addEdge(a −−→
SSG

b)

11 return true
12 } finally { execute unlock(locked) }

13 else if (existsPath(a
∗
−−→
SSG

b)):

14 return true

15 else if (existsPath(b
∗
−−→
SSG

a)):

16 return false
17 else:
18 tailrecurse addAcyclicEdge(a −−→

SSG
b)

Listing 7.4: Pseudocode of “Add Acyclic Edge”.

two steps the following way though: Instead of compare-and-set from unlocked to the other rep-
resentative, compare-and-set it from unlocked to locked. This succeeds and fails in the exact same
cases as the direct compare-and-set would. If it succeeds, both connected components are locked
and no other thread can change either representatives’ pointer. Then, the executing thread can
safely update the pointer from locked to the other representative, achieving the same result as if
the compare-and-set had updated it to that value directly. This shows that for any given connected
component, only a single thread can successfully execute lockUnion with any other instant at any
given point in time, while all other concurrent invocations may at most lock and then again unlock
some components, leaving no lasting changes.´

In conclusion, lock-union-find therefore is a partially dynamic graph algorithm that implements mutual
exclusion over connected component of distributed graphs under only edge additions in a thread-safe
and fully decentralized fashion.

Thread-Safe Reachability Changes through Lock-Union-Find

Concluding the implementation of decentralized Serialization Graph Tracking, this section presents the
distributed, linearizable and fully decentralized implementation of addAcyclicEdge(a −−→

SSG
b). It ties

together existsPath(a
∗
−−→
SSG

b) and addEdge(a −−→
SSG

b) from the directed transitive reachability of in-

stants under the mutual exclusion over connected components, i.e., undirected reachability, of lock-
union-find. The key concept behind the implementation is, that any thread may only establish a directed
edge a −−→

SSG
b in the data structures for transitive reachability, if it holds the lock for the connected

component in which the two instants have unified through establishing the undirected edge a SSG b.
This means, after a lockUnion(a SSG b) call succeeded, the both the directed and undirected transitive
reachability of both instants a and b cannot be modified by concurrent threads. As a consequence, the
result of any existsPath query involving either a or b becomes reliable, and addEdge(a −−→

SSG
b) can

7.3 Parallelizing and Decentralizing the Data Structures of FrameSweep 119

execute without any danger of race conditions from other concurrent addAcyclicEdge calls. This way,
addAcyclicEdge(a −−→

SSG
b) achieves linearizable semantics overall.

Listing 7.4 shows the corresponding pseudocode. An execution of addAcyclicEdge(a −−→
SSG

b) first

attempts to lockUnion(a SSG b) (Line 2). If lockUnion succeeds (Line 3ff), addAcyclicEdge verifies

that the insertion of edge a −−→
SSG

b is neither redundant (path a
∗
−−→
SSG

b already exists, Line 5) nor illegal

due to closing a cycle (reverse path b
∗
−−→
SSG

a already exists, Line 7). Then, addAcyclicEdge executes

addEdge(a
∗
−−→
SSG

b) (Line 10) and afterwards unlocks the connected component again (Line 12). If

lockUnion fails, this means that other threads are concurrently executing addAcyclicEdge operations
within the same connected component. These may affect the reachability of a and/or b directly or even
transitively. In that case, addAcyclicEdge therefore verifies optimistically, i.e., through non-blocking
existsPath executions without locking anything, if the planned insertion of edge a −−→

SSG
b has become

either redundant (Line 13) or illegal (Line 15). Only if still neither of is the case, addAcyclicEdge loops
back to retrying lockUnion again.

In summary, once addAcyclicEdge(a −−→
SSG

b) returns, a and b are guaranteed to be ordered against

each other. They may be ordered in either way, and the return value indicates, which way is the case. If
the call returns true, then it either established a

∗
−−→
SSG

b itself, or some other thread did so concurrently.

If it returns false, then some other thread concurrently established the reverse order b
∗
−−→
SSG

a instead.

7.4 Garbage Collection

Three aspects of FrameSweep require manual maintenance to facilitate garbage collection and prevent
memory leaks. Instants become obsolete, but are still referenced in the SSG data structures for directed
reachability (hash-indexed spanning trees) and undirected reachability (lock-union-find representative
pointers). Node versions also become obsolete, but are still referenced by node histories. This section
addresses each of these aspects.

Instants become obsolete once they transition to completed. FrameSweep enables garbage collection
of completed instants from the SSG through two aspects. First, when an instant transitions to completed,
all replica of its hash-indexed spanning tree are unlinked. Second, the implementation of existsEdge(a
−−→
SSG

b) returns true by default if instant a is completed. This means, any framing or propagating instants

will always see completed instants as predecessors, without having to actually store them as predeces-
sors. Therefore, no new references to completed instants will be established. Once all instants have
completed, that added a now completed instant as a predecessor in their hash-index spanning tree when
it was still executing, the instant has become entirely unlinked from the SSG.

For lock-union-find representative pointers, automatic garbage collection is prevented because each
host references them statically as a substitute for all remote references. Enabling them to be garbage
collected therefore requires to unlink these static references once no remote references exist anymore.
To determine the absence of remote references reliably, FrameSweep uses reference counting. Reference
counting usually requires complex algorithms to detect unreachable cyclic object graphs. This is unnec-
essary for FrameSweep though, because lock-union-find representative pointers form a tree structure
that cannot have cycles. FrameSweep therefore implements this reference counting simply by counting
for each instant the number of other instants whose representative pointer point to that instant. Once
this counter drops to zero, the its static reference is dropped, and then the local garbage collector can
eventually deallocate it.

Node versions generally must be retained even after their associated instant completed, because later
instants may still read their value, e.g., through before. A version can only be deleted safely, once a
written successor version exists that also belongs to a completed instant. FrameSweep implements this

120 7 Distribution Engineering and Optimizations

garbage collection of node versions as a by-product of traversing node histories. Any traversal keeps track
of the head node version where it started. If the traversal finds another written version by a completed
instant, it attempts to compare-and-set the head pointer to this later version. If that succeeds, all node
version before the new head pointer are no longer referenced and can be garbage collected. Failures on
the other hand are simply ignored, since they indicate that a concurrent operation already progressed
the head pointer.

7.5 Syntactic Transparency and Explicit Transactions

The implementation of FrameSweep presented in Chapter 5 is syntactically transparent in that all
scheduling is implemented inside of the unchanged established API of reactives as introduced in Sec-
tion 2. As a result, existing REScala code not written with multi-threading in mind, e.g., the code of the
philosopher example shown in Section 2, can run without any changes on top of FrameSweep ensuring
its correct execution in a multi-threaded environment. Notably, this includes the instantiation of new
reactives. When code such as that from Section 2 is executed, it imperatively instructs new reactives
to be created one by one. FrameSweep executes one instant for each reactive instantiation, where the
reactive is first instantiated and then connected to its dependencies by dynamically inserting all required
edges during its initial evaluation. This is possible at any place in the DG at any time, i.e., even while
concurrent instants are propagating, without such changes having been foreseen or planned during de-
velopment of the applications. Any number of edges can be added or removed as part of a single instant,
which yields consistent semantics for atomically (dis-)connecting new or obsolete nodes or subgraphs.
Retrofitting automatically (de-)schedules superfluous or missing reevaluations of newly (dis-)connected
nodes as needed.

In some cases though, applications require more extensive synchronization than linearizability for
individual imperative interactions. The philosphers’ driving thread from Listing 2.8 is one example of
this. Due to FrameSweep’s syntactic transparency, this code can be reused without modifications on top
of FrameSweep, and all imperative set instants and now reads will appear to execute with linearizable
semantics. In order for the philosopher application to behave correctly though, the sights(idx).now
== Ready condition from Line 3 and the subsequent phils(idx).set(Eating) instant from Line 4 must
execute as a single linearizable operation together, instead of as two separate ones. In fact, the example
execution trace of FrameSweep visualized in Figure 5.4 through Figure 5.7 of Chapter 5 is only possible
if this condition and update are executed as two separate linearizable operations, because instant t3 of
phils(1).set(Eating) is started in Figure 5.6 (e) while sights(1).now == Ready is no longer true.
The sights(1).now == Ready condition must have been evaluated much earlier and independently
of the subsequent phils(1).set(Eating), with both phils(1) and phils(2) having executed their
Eating updates between the two interactions.

To enable applications to declare multiple imperative interactions as a single atomic unit of work,
FrameSweep supports the optional feature of extended transactions. The first form of extended transac-
tions supported by FrameSweep are multiple read transactions. These bundle together any number of
s.now operations. As an example, consider the following code, also based on the philosophers example:
2 if (transaction{ forks(0).now == Free && forks(1).now == Free })
3 phils(1).set(Eating)

Listing 7.5: Multiple Read Transaction.

Because the explicit transaction scope ensures that both .now reads are executed together as a single
atomic unit, this condition behaves identically to the single sights(1).now == Ready read from the
original Listing 2.8, Line 3.

The second form of extended transactions supported by FrameSweep are read-update-read transac-
tions. These bundle together a single update(...) instant with any number of proceeding and suc-
ceeding s.now reads. Read-update-read transactions allow programs to express instants with atomic

7.5 Syntactic Transparency and Explicit Transactions 121

pre- and post-conditions. They come with one complication related to the fact that the scheduler
must know the declaredInputs set of possibly changed input reactives before starting to execute
the transaction. For an isolated update(i1 -> v1, i2 -> v2, ...) call, FrameSweep automatically
infers declared Inputs = {i1,i2, ...} from the call’s parameters to retain syntactic transparency in List-
ing 5.1 Line 28. For a call to transaction{...} with an arbitrary user-defined closure as the only
parameter though, this is not possible. Instead, FrameSweep requires read-update-read transactions
to provide their declaredInputs explicitly, as a second parameter to the transaction scope. This is
slightly inconvenient in that it does introduce some syntactic clutter, but FrameSweep still keeps this to
a minimum in that only potentially changed input reactives must be declared, while all other potentially
reevaluated derived reactives are still inferred automatically. With read-update-read transactions, the
loop iteration from Listing 2.8 can be implemented correctly by grouping together the sights(idx) ==
Ready check and the subsequent phils(idx).set(Eating) instant:

2 transaction(Set(phils(idx))) {

3 if (sights(idx).now == Ready)
4 phils(idx).set(Eating)

5 }

Listing 7.6: Thread-Safe Eating Through Read-Update-Read Transactions.

Note that for the case where sights(idx).now does not return Ready, phils(1) is included in the
declaredInputs for the framing phase, but then not assigned a new value for the propagation phase.
This is the reason for the propagation phase to support a discrepancy where some of the declaredInputs
do not have a new value associated in the inputChanges map, handled in Listing 5.2 Line 69.

122 7 Distribution Engineering and Optimizations

8 Evaluation
The evaluation measures the performance costs of FrameSweep’s different features, and puts them in
relation against each other and against other scheduling algorithms as a frame of reference. In general, it
consists of several comparisons experiments. Each experiment uses a specific set of instants on a specific
DG topology, emphasizing different features of RP propagation over others. Each experiment then runs its
specific workload with FrameSweep and – as far as available – other propagation algorithms, measuring
the time each algorithm takes to complete said workload. The evaluation then draws conclusions by
comparing the results within each experiment, as well as across multiple experiments.

In distributed applications, remote communication is orders of magnitude slower than local computa-
tions. Therefore, performance measurements over distributed DG topologies will always be dominated
by the longest path of sequential remote communication required to complete a given workload, over-
shadowing any differences in CPU processing cost. The evaluation is thus is split into two different classes
of experiments for measuring two different cost associated with the different features of FrameSweep.
Section 8.1 evaluates the performance of a variant of FrameSweep optimized for non-distributed topolo-
gies, quantifying associated CPU processing cost and showing that FrameSweep, despite its compar-
atively complex implementation, provides better performance and scalability. Section 8.2 evaluates
FrameSweep’s performance on distributed topologies, quantifying the associated amount of sequen-
tial remote communication. Lastly, Section 8.3 quantifies, how much effort is required to parallelize
the existing, non-distributed “Universe” RP application from REScala’s example corpus, and the effect
this has on the application’s performance.

Another desirable evaluation approach involves measuring the effect of using FrameSweep in real
complex applications beyond the Universe example, particularly in distributed applications. Even evalu-
ating the effects of FrameSweep on multiple complex applications though will not yield any guarantees
that the results generalize to other/future applications. Yet more critically, since FrameSweep is the first
RP implementation to enable RP with synchronous propagation semantics in distributed applications, no
applications exist yet that use such a library. Build such an application (or even multiple ones) for the
sole purpose of this evaluation would unavoidably introduce significant bias. Therefore, the evaluation
does not investigate this direction, but follows only the above-mentioned microbenchmarks approach to
outline a set of rules that does allow users to generally estimate the impact that given features of any
applications will have on their performance.

8.1 Comparing Local Performance

Using non-distributed DG topologies, we evaluate the effect of the following factors on the performance
of FrameSweep: relation between cost of user computations and synchronization overhead, level of
thread contention, DG topology, and cost of dynamic edge changes and handling of their conflicts
(retrofitting). In Section 8.1.1, we evaluate, which topologies FrameSweep can parallelize, and how
costly user computations must be for this to be efficient. The experiments in Section 8.1.2 investigate
scalability as a function of overhead, which itself is a function of contention, in benchmarks with very
cheap user computations, i.e., where scheduling overhead dominates execution costs. Section 8.1.3
analyzes the performance costs related to dynamic edge changes.

The non-distributed evaluation compares the following scheduling approaches:

• A variant of FrameSweep optimized for the local setting, differing from the distributed implemen-
tation in two aspects: Most significantly, the thread pool was removed, because it causes a lot of

123

context switching between different threads for executing even an individual instant, which has
significant negative performance impacts in the absence of network communication. Instead, the
submitted tasks of each instant are executed inside of the respective update(...) call by the call-
ing imperative thread itself. Secondly, the decentralized SSG implementation uses a global lock
instead of lock-union-find for mutual exclusion. This was done because the way that distributed
FrameSweep uses lock-union-find for mutual exclusion is not well-optimized yet (discussed in more
detail in Section 8.2), and quickly became a performance bottleneck in high contention scenarios.

• G-Lock implements global locking by wrapping the execution of each instant with a global
synchronized{..} scope. This prohibits concurrent executions, but thereby trivially fulfils our
correctness for all applications.

• Handcrafted refers to application-tailored manual locking implementations, which we include
whenever feasible. In Handcrafted implementations, no synchronization is integrated into the
RP runtime. Instead, the imperative user code is changed to manually acquire and release locks
before and after executing any now or update(...). Handcrafted solutions have little overhead,
but often require significant effort to be devised individually for each application, and are fragile
in that they do not generalize to other applications and easily break when parts of the application
are changed. Note that more elaborate Handcrafted solutions become possible when also acquir-
ing and releasing locks inside of reactives’ user computations (this would, e.g., enable some cases
of pipeline parallelism). But, such solutions are much more complex to explain, and extremify
above-mentioned negative aspects so much that we consider them unreasonable and hence do not
include them in the evaluation.

• STM-RP is an integrated RP scheduler that stores all reactives’ variables in ScalaSTM [Bronson
et al., 2010], a library-based off-the-shelf software-transactional memory. Each instant’s execution
is wrapped in an atomic{...} scope and executed optimistically, aborting and restarting upon
concurrency conflicts. STM-RP thus does not fulfil our correctness: it provides strict serializabil-
ity, but is not abort-free. It is therefore applicable only to applications without side-effects; for
compatibility, all our benchmarks adhere to this.

All non-distributed experiments measure throughput, i.e., number of instants completed over a certain
amount of time (more is better), for an increasing number of threads that concurrently execute instants.
All experiments run on computers with dual Intel Xeon E5-2670 CPUs for 2x8 cores at 2.6 - 3.3 GHz,
using the OpenJDK JMH benchmark harness in the 64-Bit Oracle JRE 8u141 at 1 GB fixed heap under
CentOS Linux 7.4. In general, shown results are average measurements of executing each benchmark
operation in every configuration for at least 35 seconds (after at least 25 seconds unmeasured warmup),
repeated six times on fresh JVM instances each. Every single data point in each of the following chart thus
represents at least 3.5 minutes of execution; a data point of, e.g., 50 ops/ms is the average measurement
based on the benchmark operation having executed over 10.5 million times.

8.1.1 Cost of User Computations and Impact of Topology

Our first set of experiments serves a twofold purpose. First, they analyze, how well FrameSweep can
parallelize concurrent instants on different topologies. Second, we analyze, how costly user computa-
tions have to be so that scheduling overhead doesn’t reduce throughput more than scaling increases it.
For the first goal, the experiments use a set of minimalized fundamental topology building blocks. We
analyze scalability by measuring throughput across 1 to 16 threads concurrently executing instants on
each topology. We sized each of these topologies to contain precisely 16 designated work reactives, so
that maximum scalability can be achieved, but only if the framework actually manages to parallelize each
topology down to single reactives. For the second goal, through trials on each topology, we pinpointed

124 8 Evaluation

Topology & Throughput Topology & Throughput
Legend

contention chart contention chart

 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

Concurrent Threads

op
/m

s
 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

Concurrent Threads

op
/m

s MV-RP
STM-RP

G-Lock
Handcrafted

(Handcrafted is not
included here, but
only later in Figure 8.3.)

 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

Concurrent Threads

op
/m

s

 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

Concurrent Threads

op
/m

s

Figure 8.1: Scalability across base topologies of instants with approx. 160 µs user computation time

the minimum amount of work per work reactive, such that FrameSweep provides scalability up to just
below 16 threads. We choose the target point just below 16 threads so that the corresponding pinnacle
point in the throughput graphs is visible and shows that the selected amount of work is precisely as large
as necessary.

Figure 8.1 shows the topologies and resulting throughput graphs. In the topology visualizations,
thicker arrows pointing towards input reactives represent active threads admitting changes. The color of
reactives visualizes a heatmap of how much contention these resulting instants cause on each reactive,
with darker shades representing higher contention. In the top left experiment, all instants perform some
uncontended workload before funneling into a maximally contended global bottleneck reactive. For this
topology, each instant affects only a single work reactive (marked W). Scalability to just below 16 threads
(shown in the throughput graph) is reached at a computational cost (on the hardware we used) of only
ca. 160 µs user computation time per work reactive.

Notice that all topologies in this set of experiments have at least one single-reactive bottleneck for
all instants. Achieving scalability thus requires support for pipeline parallelism. FrameSweep features
pipeline parallelism by design. Handcrafted solutions cannot provide pipeline parallelism (without man-
aging locks from inside user computations), so no Handcrafted measurements are included. STM-RP can
support pipeline parallelism, but only under lucky external circumstances. Such circumstances are given
in this first topology (conflicts can only occur for a brief moment at the very end of each instant), but
not in the others, thus STM-RP provides scalability only for this first topology.

In the bottom left experiment, the top left topology is reversed so that instants first pass the bottleneck
and only afterwards reach the parallelizable work reactives. This way, all reactives in the graph are
contended by all threads. To parallelize this topology, multiversion concurrency control is indispensable:
to concurrently recompute all work reactives in different threads, all threads’ written values on the
topology’s input reactives must be available to be read simultaneously. The scalability shown in this
experiment’s throughput graph was achieved with each work reactive performing only ca. 10 µs of
computations, which adds up to again ca. 160 µs for each entire instant.

In the top right topology, the work reactives are arranged in a “chain” topology, and the bottom
right “grid” topology is a combination of the previous two experiments, with work reactives arranged
in 4 chains of 4 reactives length each. The throughput scalability shown for both the chain and grid
topologies was also achieved with ca. 10 µs of computations per reactive, i.e., ca. 160 µs per instant.
All topologies in this set of experiments thus have their inflection point at just below 16 threads at the
same amount of computations per instant. The reason for this is as follows. The inflection point in these
charts occurs, when the capability of the scheduler to order instants in the SSG reaches its limit and
becomes a bottleneck for throughput. This bottleneck is dependent on the topology, but only indirectly,
in that it depends on how often instants need to be ordered in which numbers, which is a consequence
of the DG topology. It is independent though, of how the cost of reevaluations is distributed across the
topology. The topologies in this set of experiments all have the same inflection point because they differ

8.1 Comparing Local Performance 125

only in the second aspect, but not in the first (in each topology, every instant conflicts with all others
upon reaching the bottleneck reactive). We evaluate the effect of differences in the first aspect in the
next set of experiments.

Summarizing this set of experiments, we conclude that FrameSweep with multiversions and pipeline
parallelism can parallelize reevaluations down to individual reactives, regardless of the DG topology.
The necessary computational cost of user computations per instant to overcome the overhead cost of
scheduling up to almost 16 threads is only ca. 160 µs (on our hardware, and assuming that work is
spread evenly across at least 16 reactives). This cost can mostly be considered an upper bound, because
– as the following experiments will also show – the bottleneck becomes much less restrictive when there
is less contention between concurrent instants.

8.1.2 Very Cheap User Computations

Next we analyze scheduling overhead and its impact on scalability in more detail. To do so efficiently, we
use an application with cheap and fast instants, so that the scheduling overhead dominates the cost of
executions and is therefore heavily emphasized in the measurements. Our philosophers application from
Section 2 serves well for this, since the majority of its reactives executes only a single integer addition
and equality check, or even less. The operation (op) that we use as a benchmark always executes two
instants: First, the Read-Update-Read transaction from Listing 7.6 is repeated until the if-condition passes
and the phils(idx).set(Eating) instant is executed once. Afterwards, a second instant changes the
philosopher back to Thinking.

Three aspects of FrameSweep cause overhead: the framing phase, operations on reactives must search
for their correct placement in the node histories, and instant ordering relations must be recorded in the
SSG. Clearly, these aspects easily dominate the reactives’ user computations of the philosopher appli-
cation in execution cost. Moreover, the latter two aspects are more expensive under higher contention
(node histories contain more elements and more ordering relations between instants are created). Con-
tention is therefore the most influential factor on scheduling overhead, and thus also on scalability if
instants are cheap. We thus run different configurations of philosophers that produce different amounts
of contention, to evaluate this entire space.

Extreme Contention

 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

Axes’ units and lines’ labels as in Figure 8.1

Figure 8.2: Extreme contention

Figure 8.2 on the left shows the topology of the philo-
sphers application from Section 2. This original config-
uration is a fairly extreme worst-case in terms of con-
tention. All forks are contended by two threads, all
sights, Events, and the folding Signal counts by three,
and the summing-up Signal chain (totalCount) succes-
sively funnels all 16 threads into a single reactive bottle-
neck. This bottleneck again means, we cannot devise a
Handcrafted solution better than global locking (without
managing locks from inside user computations). Thus, we compare only G-Lock, FrameSweep and
STM-RP.

The chart in the middle of Figure 8.2 shows the throughput graph of 1 to 16 threads running on a
table of 16 philosophers.1 First, consider the data points for one thread. The throughput of G-Lock
represents synchronization-free single-threaded performance of instants, as the overhead of acquiring
an uncontended global lock before each change propagation is negligible. With about 75 op/ms (recall,
each op is two instants plus two .now reads in single-threaded measurements), this corresponds to each

1 When there are more philosophers than threads, philosophers are distributed to threads round-robin and each thread for
each measured op picks a random philosopher from its assigned pool (e.g., thread #2 of 5 randomly chooses phils(2),
phils(7) or phils(12)).

126 8 Evaluation

Topology & Dynamic reactives Dynamic reactives, Static reactives
contention and edges static edges and edges

High
 0

 50

 100

 150

 0 2 4 6 8 10 12 14 16
 0

 50

 100

 150

 0 2 4 6 8 10 12 14 16
 0

 50

 100

 150

 0 2 4 6 8 10 12 14 16

Low
 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16
 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16
 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16

None
 0

 225

 450

 675

 900

 0 2 4 6 8 10 12 14 16
 0

 225

 450

 675

 900

 0 2 4 6 8 10 12 14 16
 0

 225

 450

 675

 900

 0 2 4 6 8 10 12 14 16

Axes’ units and lines’ labels as in Figure 8.1.

Figure 8.3: Throughput for Different Configurations of the Philosophers Application

instant executing in about 6.5 µs time, i.e., instants are indeed very cheap. Hence, the overhead cost of
the other schedulers in a single-threaded environment stands out clearly: application performance drops
by 25% with FrameSweep, and by 55% with STM-RP.

Next, consider the configuration with two threads. G-Lock still executes the same workload, but has
become noticeably slower because the global lock is now contended by multiple threads, i.e., the CPU
has to engage its synchronization mechanisms, which makes the lock acquisition more expensive. For
FrameSweep, this situation is more complex. With pipeline parallelism, FrameSweep allows very fine-
grained parallelization of RP applications (shown in detail in Section 8.1.1). With only two threads
executing on 16 philosophers, contention is still low enough that they can execute most of their work-
load (including scheduling overhead) concurrently. Nevertheless, FrameSweep also becomes noticeably
slower, i.e., its scheduling overhead increased significantly. Aside from also having some contention
on the reactives’ locks, this is mainly caused by its initially expensive serializability mechanisms (large
histories, instant ordering) now having to engage.

For three and more threads, the throughput of G-Lock and STM-RP remains constant, with STM-RP
around 50% lower than G-Lock. For G-Lock this is expected (it prohibits concurrency), for STM-RP this is
because it cannot parallelize instants under high contention of the application. FrameSweep is successful
in parallelizing the application’s instants, indicated by its throughput initially increasing up to around
9 threads. This shows that while initially engaging its serializability mechanisms significantly increased
its overhead, adding on more threads afterwards has less of an impact. Beyond 9 threads, the potential
for parallelization becomes increasingly saturated while the overhead continues to grow, and thus the
throughput decreases again.

Overall, in a setting with extreme contention and very cheap instants the performance of FrameSweep
remains between 5% and 30% lower than G-Lock, i.e., FrameSweep fails to improve performance despite
successfully parallelizing instants. This is to be expected because in this setting the synchronization
overhead clearly dominates the cost of what can be parallelized. On the other hand, the overhead does
not make FrameSweep unreasonable to use. We consider this scenario an example at the lower bound
for the usability of FrameSweep. In the following experiments in this subsection, we show that lowering
contention allows FrameSweep to succeed in scaling performance, even if instants remain cheap and
synchronization overhead still dominates the cost of each instant’s execution.

8.1 Comparing Local Performance 127

High Contention
First, by removing the summing-up signal chain (i.e., remove Line 37 in Section 2), we remove the

most extremely contended reactives, including the bottleneck, from the application. The remaining
topology still induces a high amount of contention with most reactives still being contended by three
threads, but no longer contains reactives contended by more than three threads. Its contention heatmap
is labelled “High” in the first row, left-most column of Figure 8.3.

Without the bottleneck, we can devise a Handcrafted synchronization: For each phils(i), a
java.util.concurrent.locks.ReentrantLock referenced as lock(i) is added. In order to update
a given phils(i), the executing thread must hold the philosopher’s own lock(i), and both neighbors’
lock(i-1) and lock(i+1) (out-of-bounds indices wrap around). This way, the only interaction that can
occur between concurrent instants are racing read operations of some shared forks, which is harmless
since reads are idempotent and commutative. Threads simply block to acquire needed locks, ordered
by their indices to prevent deadlocks. E.g., to update phils(0), locks lock(0), lock(1), lock(15)
are acquired in that order. Similar to G-Lock, this Handcrafted approach has almost no overhead (three
locks per instant, instead of one), but permits parallelization.

The left-most chart in the first row (second column) of Figure 8.3 shows throughputs again on a table
of 16 philosophers. Without the summing-up chain, throughput of G-Lock has increased by about 20%,
but follows the same shape as in Figure 8.2. Handcrafted performs similar to G-Lock and does not achieve
any scalability. This is because threads queue up while blocking to acquire their needed locks, and then
transitively waiting even for threads with non-interacting instants2. This shows that such simplistic
locking is unsuitable for scenarios with high contention. Adding more sophisticated mechanisms for
dealing with such issues, however, is usually not reasonable, as it would require to invest yet more effort
into a fragile synchronization that cannot be applied to other topologies and breaks under changes.

For FrameSweep, removing the summing-up-chain reduced single-threaded overhead to 20%, for
STM-RP it is still at 55%. Further, despite the still very high amount of contention causing signifi-
cant overhead, FrameSweep already does manage to scale throughput, surpassing the performance of
G-Lock and Handcrafted from three threads onwards. This is due to pipeline parallelism providing more
fine-grained mutual exclusion than Handcrafted, blocking threads only on individual reactives and only
as long as necessary, thus threads do not queue up needlessly. STM-RP also achieves speed-ups, but does
not manage to outperform G-Lock even at 16 threads.

Low Contention
To investigate low contention scenarios, we spread threads more thinly by using a larger table of 64

philosophers. The corresponding topology, with a contention heatmap for an exemplary thread distri-
bution snapshot, is labelled “Low” in Figure 8.3 (second row, left-most column). The left-most chart in
that row (second column) shows the experiment’s results. G-Lock is the same as under high contention,
which is expected since the workload per thread is the same. Contention is low enough that Handcrafted
no longer forms excessive queues and can scale across all 16 threads. The throughput of FrameSweep
scales about twice as well as under high contention for large thread counts. Even under low contention,
FrameSweep still scales better than Handcrafted, from its 20% lower single-threaded throughput to out-
performing Handcrafted by about 10% at 16 threads. STM-RP also manages to scale above G-Lock from
three threads onwards, but still achieves only approximately 60% of the performance of FrameSweep
and Handcrafted.

No Contention
As a final variation, we use a fixed placement of one thread on every fourth philosopher. This allows

all threads to execute concurrently without their instants ever interacting, resulting in zero contention.

2 The sudden drop in throughput from 8 to 9 threads, which becomes more exacerbated in later experiments, is caused by
queueing times becoming long enough to cross the threshold where ReentrantLock moves from spinning until the lock
becomes available to de-scheduling the requesting thread instead, which leads to a sudden increase in overhead.

128 8 Evaluation

The corresponding topology is labelled “None” in the last row of Figure 8.3. Reactives not reevaluated by
any thread are faded out through grey outlines, to visualize the conflict avoidance. The corresponding
throughput graph is shown next to it (third row, second column). G-Lock is again as before, but all other
schedulers can now scale freely, without their differing concurrency management approaches having
any effect. Their relative differences are thus equal across all thread counts (modulo some measurement
noise): FrameSweep 20% below Handcrafted, STM-RP 55%.

Comparing this contention-free spacing to the previous experiments, we can now estimate the cost
of contention for each scheduling approach on this application. At 16 threads, low contention costs
about 35% performance when using Handcrafted, 25% when using FrameSweep, and 15% when us-
ing STM-RP. High contention respectively costs about 75% performance under Handcrafted, 60% under
FrameSweep, and 45% under STM-RP. Extreme contention is not comparable due to its different work-
load (the removed summing-up chain).

Summary
To recap this set of experiments, we have shown that even for instants of only few computations under

high contention, FrameSweep is capable of providing scalability with multi-threading. STM-RP is least
affected by contention, but has significantly more overhead, resulting in performance consistently and
significantly lower than FrameSweep and Handcrafted, in addition to its weaker guarantees (not abort-
free). FrameSweep manages to outperform Handcrafted under low contention and even more so under
high contention (despite higher single-threaded overhead). Considering in addition that FrameSweep is
usable out-of-the-box and applicable to all topologies, whereas Handcrafted must be manually developed
and maintained for each application, FrameSweep is clearly the best choice here.

8.1.3 Cost of Dynamic Dependency Changes and Retrofitting

To evaluate the scheduling overhead for executing dynamic dependency changes, as well as for handling
the conflicts they produce (i.e., retrofitting), we modify the behavior of reactives that perform dynamic
dependency changes in the philosophers application, i.e., all sights reactives. For visualization, these
reactives are highlighted through bold outlines in the topology overviews of Figure 8.3. They account for
ca. 23% of executed reevaluations, with close to 10% of all reevaluations actually executing a dynamic
dependency change.

First, we changed the behavior of sights such that they always access both forks they depend on, but
are still declared as dynamic reactives. The results for these experiments are shown in the second-to-
right column of Figure 8.3, labelled “dynamic reactives, static edges”. This way, no dynamic dependency
changes occur, but the remaining workload of reevaluating these reactives stays nearly the same in
that the RP framework still must collect, which dependencies were accessed, and check if any changes
occurred compared to the previous reevaluation. For the high and low contention configurations (first
and second row), this removes both dynamic dependency changes and their according retrofitting. For
the contention-free configuration (third row), the lack of interaction between concurrent instants means
that the previously executed dynamic dependency changes never required any retrofitting, and thus only
dynamic dependency changes but no retrofitting was removed in this configuration. Considering the
contention-free configurations first, we see that all scheduling approaches show an insignificant increase
in performance across all threads. In particular, this includes G-Lock, which implies that this change
cannot be attributed to any operation-specific scheduling overhead, as G-Lock has no such thing. From
this we conclude that dynamic dependency changes have no noticeable cost overhead in any of the
scheduling approaches. Considering the low and high contention configurations, we observe the same
changes, meaning the handling of conflicts of dynamic dependency changes (i.e., retrofitting in case of
FrameSweep) on top of executing the changes themselves also has no noticeable impact on performance.

Concluding the philosophers experiments, we consider a final variation of the sights reactives, where
they declare both forks as their static set of dependencies at initialization, and the RP framework thus

8.1 Comparing Local Performance 129

no longer collects and compares their accessed dependencies during each reevaluation. This removes a
significant chunk of their reevaluation costs, but this chunk consists only of thread-local computations
that do not involve the schedulers, i.e., scheduling overhead remains unchanged. The results are shown
in the right-most column of Figure 8.3, labelled “static reactives and edges”. As expected, with less
computations to be executed under the same scheduling overhead, we observe noticeable increases in
throughput compared to the previous set of experiments (second-to-right column) across all schedul-
ing approaches, but the schedulers’ overhead is emphasized stronger, placing them relatively further
apart. In particular in the contention-free setup, the throughput of Handcrafted is much higher than
FrameSweep or STM-RP, because it has the least overhead (just three locks per instant). Comparing
this to the low contention scenario though, shows that this advantage quickly diminishes, and at high
contention even disappears entirely.

Summary
To recap the results from this set of experiments, both the cost of scheduling for dynamic dependency

changes and of handling the conflicts they cause (i.e., retrofitting) are negligible, in particular compared
to the significant cost of using dynamic dependencies in the first place.

Figure 8.4: Effects of Dimensions of RP applications on FrameSweep Scalability

8.1.4 Summary of Non-Distributed Experiments

The evaluation of FrameSweep on non-distributed DG topologies lead to the following conclusions. First,
the topology of the dependency graph, and whether or not the application uses and possibly has con-
flicts from dynamic edge changes, does not affect the scalability provided by FrameSweep. The only two
dimensions that have an impact are conflict density, which depends on how many threads are spread
how densely across a given topology, and the cost of user computations during reevaluations. Figure 8.4
visualizes these dimensions and intuitively positions the experiments we conducted in this space. This
shows that FrameSweep will be beneficial to use for most applications except those that execute instants
of only very cheap computations under extreme thread contention. Even for those worst-case scenarios
though, FrameSweep is feasible to use with only some overhead over global locking. It is also worth not-
ing that despite some optimization, FrameSweep is still a very young implementation with several more
potential optimizations not yet explored or even discovered. Thus, even though the evaluation already
shows mostly favorable results, FrameSweep still has potential for future performance improvements.

8.2 Evaluating Distribution Characteristics

The distributed experiments differ from the non-distributed experiments in the previous section in two
ways. First, the distributed evaluation only characterizes the cost of FrameSweep to provide its prop-
erties, but does not compare it to alternative approaches. This is because – as the current results will

130 8 Evaluation

show – FrameSweep’s distributed implementation isn’t optimally realized yet, while the integration of
any alternative approaches is more complex than in local applications and therefore would detract from
completing FrameSweep’s implementation. Second, in order to better visualize cost rather than compar-
ing performance, experiments measure duration rather than throughput, i.e., time per instants instead of
instants per time. To measure this cost as cleanly as possible, all experiments of the distributed evaluation
execute with a simulated message delivery delay of 24ms, so that when additionally accounting for local
processing times, one round-trip communication from one host to another and back takes approximately
50ms.

Section 8.2.1 evaluates, to which degree FrameSweep is able to parallelize the remote communication
involved in instants’ regular traversals of distributed DG topologies, and to what amount of round-
trip times the non-parallelizable remote communications adds up. Section 8.2.2 evaluates the increase
in round-trip time cost caused by the need for remote synchronization if instants conflict in different
locations of distributed DG topologies. Section 8.2.3 summarizes the current state of FrameSweep’s
distributed evaluation, and outlines future work in terms of FrameSweep’s implementation, comparison
against alternative approaches, and further experiment designs.

Figure 8.5: A Scalable Distributed Topology

8.2.1 Distributed Propagation

The first distributed experiment measures the most fundamental aspect of distributed propagation, which
is the number of round-trip times that the propagation of changes takes over a given amount of network
hops. Figure 8.5 visualizes a distributed DG topology that is scalable in both the number of sequential

 0

 900

 1800

 2700

 3600

 1 2 3 4 5 6 7 8

1 Branch
5 Hops

Figure 8.6: Single Thread Scaling

 0

 900

 1800

 2700

 3600

 0 2 4 6 8 10 12 14 16

8 Hops
7 Hops
6 Hops
5 Hops

4 Hops
3 Hops
2 Hops
1 Hops

Figure 8.7: Multi-Threading Scaling

8.2 Evaluating Distribution Characteristics 131

hops per branch, and the number of parallel branches. Figure 8.6 shows two representative curves of
how the time it takes instants to propagate through the topology evolves when scaling the topology
along these two dimensions. The green curve “5 Hops” corresponds to a configuration of five sequential
hops per branch growing from one to eight parallel branches. The green curve demonstrates, that
FrameSweep’s support for concurrent reevaluations per instant works flawlessly. The time it takes each
instant to complete is equal, regardless of the number of parallel branches.

The red curve “1 Branch” corresponds to a configuration of a single branch growing in length from
one up to eight sequential network hops. The first measurement on this curve lies at 98ms, showing
that propagating an instant over a single hop takes precisely two round-trip times. This corresponds
exactly to the two phases of FrameSweep. One round-trip for transferring a frame task and reporting
its completion, and a second round-trip for transferring a notify task and reporting its completion.
The measurements for two and more hops on the red curve show though, that the implementation
of FrameSweep does not yet properly implement the communication scheme presented in Section 7.1.
FrameSweep implements the replication of instants as a static spanning tree, with each replica being
associated with precisely one remote host as its origin. If an instant is newly replicated from a host A to
host B where it was previously unknown, then host B statically records the instant as originating from
host A. This is incompatible with the model of diffusing computations described in Section 7.1. If an
instant sends a task from host C to host B, then once all tasks on B are completed, B should report this
back to C. If the instant was previously propagated to host B from a different host A though, then B has
recorded A as its origin, and will register its active tasks and report their completion through A instead.
This causes a quadratic increase of communication time, which is what the red curve in Figure 8.6
shows. FrameSweep lacks support for hosts to switch between or track multiple origins for each instant.
Once this is added though, which requires only further engineering but no further theoretical advances,
round-trip times should grow only linearly, at a rate of two round-trip times per sequential network hop
(in line with the measurement for a single hop).

The next experiment investigates the effects of multi-threading and pipeline parallelism. Figure 8.7
shows the impact of having up to 16 threads admit instants concurrently to the topology from Figure 8.5
scaled to a single branch of one through eight sequential network hops. Regardless of the number of
sequential network hops, the time that each instant takes to complete remains nearly constant, modulo
some noise. With more threads executing more instants within the same amount of time, this corre-
sponds to throughput (number of instants per time, as measured for the local experiments) increasing
linearly. This experiment therefore demonstrates, that FrameSweep’s pipeline parallelism not only en-
ables instants to propagate in parallel even inside mutually affected regions of the DG topology, but also
enables them to propagate in parallel over shared slow network links.

Summary
The time required for instants to complete basic distributed change propagation is unaffected by both

dimensions of concurrency. Any number of instants can propagate from the same input reactive con-
currently, and instants can propagate over arbitrarily many parallel branches of independent reactives,
both without any effect on their execution times. Execution time is affected by the number of network
hops that an instant has to complete though. While this is expected and unavoidable, FrameSweep’s
implementation is incomplete, resulting in execution times increasing quadratically rather than linearly
with the number of successive network hops.

8.2.2 Distributed Synchronization

The previous section evaluated the effect on execution time under concurrency only for concurrent in-
stants admitted to the same input reactive, i.e., which ordered themselves in the SSG directly on their
origin host without any need for remote synchronization. To measure the amount of remote commu-
nication required to for conflict do involve remote synchronization, the topology in Figure 8.8 shows

132 8 Evaluation

Number of Hops Total: 8 7 6 5 4 3 2

Figure 8.8: Different Conflict Distance Topologies

.

 0
 1100
 2200
 3300
 4400
 5500

 1 2 3 4 5 6 7 8
Hops Before Merge

m
s/

in
st

an
t

Figure 8.9: Total Running Times

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8
Hops Before Merge

m
s/

in
st

an
t

Figure 8.10: Added Running Times

a distributed DG topology that is scalable again along two dimensions. As in the previous, the total
number of hops that each instant has to traverse is configurable, to control the length of instants’ regular
propagation. By choosing a fixed number of total length, a baseline for the execution time of instant’s
basic propagation can be selected. Differently from the previous experiments though, instants do not
all start from the same input reactive, but each instant starts on its own independent branch, and all
branches merge into a single common branch only at some later point. Figure 8.8 shows three exam-
ples of this topology, each with a total count of three hops. In the left example, the merge is placed
immediately after the first hop, meaning the conflict occurs one network hop away from both instants’
origin hosts. In the middle example, the merge is placed after two hops, and in the right example after
three hops, i.e., on the last host of each instant’s propagation. By varying the length of independent
branches, i.e., the number of hops before the merge, the distance between instants’ origins and conflicts
can be controlled. Increasing this distance makes conflict resolution more costly, since it requires remote
synchronization (the lockUnion execution) to execute across more hops. Thus, varying the length of
independent branches within a fixed total hop count allows to measure the effect of distance on conflict
resolution independently from the total propagation time.

Consider two instants propagating over an instance of this topology. The first instant to arrive at the
merge host will continue its framing traversal unhindered. The second instant must pause its framing
traversal to first establish synchronization between its own and the other instants’ origin host, and then
order itself later than the first instant in the SSG. When this order eventually is established, one of two
cases can apply. If the first instant still has a placeholder on the merge host, the second instant’s framing
phase is immediately complete because of lazy framing (cf. Section 7.2), and the second instant can
begin its propagation phase as soon as this information has reached its origin host. If the first instant
has begun propagating and already removed its placeholder on the merge host though, lazy framing
has no effect and the second instant must continue its framing traversal through the entire depth of
the topology. Because FrameSweep’s current implementation executes distributed DG traversals with
quadratic complexity, this will make a significant difference in the second instants’ execution time. If
both threads continuously admit a new instant as soon as their respective previous instant is complete (as

8.2 Evaluating Distribution Characteristics 133

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8

0
1
2
3

4
5
6
7

Hops Before Merge

Hops After Merge

m
s/

in
st

an
t

Figure 8.11: Added Running Times Re-Categorized

they did in previous experiments with concurrency), the relative timing of this interaction between both
threads’ instants will continuously shift, causing significant non-deterministic variance in measurements.

To measure execution time as deterministically as possible, this experiment therefore executes in-
stants differently than the previous experiments. Each measurement is taken by starting two concurrent
instants, one from each input, at nearly the same time. Execution time is measured as the time it takes
until both instants are complete, and the next measurement with a new pair of instants is only started
afterwards. This way, the timing of the two instants’ interaction will always be the same. Moreover,
the instant to arrive at the at the merge host second will always be the instant that executes all remote
synchronization, and will always order itself later than the other instant in the SSG and therefore also
complete later. Thus, each measurement will always correspond to the execution time of that instant
which actually executed the remote synchronization.

Figure 8.9 shows one curve for each total number of hops from one through eight, with data points
showing instants’ measured average execution time for each possible conflict distance within that total
hop count. E.g., the blue line with star points shows the execution time of instants on the topology with
a total length of six hops, with branches merging after one through six hops. All curves show a similar
shape: while the merge distance lies in the first half of the total length, execution time slowly increases
linearly, but once the merge distance lies further back than half the number of total hops, the increase
is much steeper. Figure 8.10 shows this effect more clearly, by presenting only the execution time that
is added to each instant by the conflict resolution, on top of its regular propagation. This is achieved by
subtracting from each measurement the baseline measured in Figure 8.6 that it takes for an instant to
propagate across a DG topology of the respective total hop count. E.g., from each measurement on the
red line of Figure 8.9, for eight hops total length, the baseline measurement is approximately 3500ms,
from the eight hops data point on the red line of Figure 8.6.

The slow linear increase of the curves in Figure 8.10 before their inflection point corresponds to the
case where the first instant still has a placeholder on the merge host when the second instant finishes
establishing an order between the two. The execution time slowly increases in this case, because the
second instant may transition from its framing phase to its propagation phase only after the first instant
did so. A greater distance to the merge host means that the two instants’ origin hosts are further apart
from each other, and thus it takes slightly longer for the first instant to communicate its phase transition
to the second instant’s origin host, thereby increasingly delaying the second instant’s own transition.

The steep increase of the curves in Figure 8.10 after their inflection point corresponds to the case where
the first instant has already removed its placeholder on the merge host when the second instant finishes
establishing an order between the two. Since in this case, the second instant must additionally execute its
framing traversal over the remaining depth of the topology before it can start its propagation traversal,
the framing traversal’s quadratic execution time interferes with the measurements of the synchronization
overhead. The execution time of the synchronization overhead hidden within this quadratic increase is
only linear though. Figure 8.11 demonstrates this by re-categorizing the exact same measurements
into curves based on how many hops follow the merge, rather than the total number of hops. The
measurements from where the merge was followed by one further network hop (green line with X
markers) show some noise. For the cases where the merge at the very end of the topology (red line with
plus markers), or two or three hops before the last node (blue line with asterisk markers and red line

134 8 Evaluation

Number of Hops Total: 8 7 6 5 4 3 2

Figure 8.12: Repeat Conflict Distances Topologies

.

 0
 1100
 2200
 3300
 4400
 5500

 1 2 3 4 5 6 7 8
Hops Before Second Merge

m
s/

in
st

an
t

Figure 8.13: Total Running Times

 0

 100

 200

 300

 400

 1 2 3 4 5 6 7 8
Hops Before Second Merge

m
s/

in
st

an
t

Figure 8.14: Added Running Times

with hollow square markers), the execution time overhead from remote synchronization again grows
only linearly when additional nodes are added before the merge and the topology after the merge is left
unchanged.

Figure 8.12 shows a slightly modified topology from the previous experiment, designed to evaluate the
effects of repeated conflicts. As in the previous topology, two input reactives initially propagate over two
independent branches that merge after a certain number of hops. Additionally though, a dedicated host
always merges both input reactives directly after only a single hop, so that for the instants’ interaction
on the later merge host, an order between the two instants has already been established. Figure 8.12
shows the measured total execution times, and Figure 8.14 the computed overhead based on Figure 8.6
as the baseline measurement for each total number of hops. The lines consistently show, that there is
some overhead in overall execution time, but that this overhead shrinks with increased distance to the
later merge host.

The reason for this overhead to exist is because each instant’s framing phase traverses to the dedi-
cated single-hop merge and over its independent branch concurrently. This means, while the single-hop
merge host establishes an order between the two instants, their framing traversals over their indepen-
dent branches concurrently traverse further down the DG topology. As a result, they may interact on the
later merge host before the established order from the single hop merge host has been replicated all the
way up to the later merge host. If that happens, the second instant’s framing traversal still pauses briefly
on the later merge node in an attempt to establish an order, and will continue once the replication of the
already-established order has caught up.

The reason for this overhead to shrink with increasing distance to the later merge host is the quadratic
execution time of FrameSweep’s graph traversals. The order replication traverses through the DG topol-
ogy in linear time. Meanwhile, the concurrently executing framing traversal slows down quadratically
the further down the DG topology it gets. This means, the further back the merge host lies, the fur-
ther will the order replication have caught up to the framing traversal, thereby shortening the framing
traversal’s pause, and thus reducing the overhead cost again.

8.2 Evaluating Distribution Characteristics 135

8.2.3 Summary and Future Work

The experiment on distributed topologies have shown, that FrameSweep’s distributed graph traversals
still support all dimensions of concurrency. In particular, pipeline parallelism – once conflicts have been
resolved – and breadth of the DG topology do not impact the execution time of instants at all. Added
execution time due to remote synchronization needs for safely establishing orders between concurrent
instants in the SSG on top of regular propagation execution time grows linearly with number of network
hops between the host where instants interact and the hosts where they originate from. Graph traver-
sals for framing and propagation are not implemented correctly yet, with their execution time growing
quadratically with the number of subsequent network hops, rather than linear.

The experiments have shown, that the quadratic time graph of graph traversals interferes with and
complicates FrameSweep’s performance analysis. As such, we have not implemented further experiments
yet, since optimizations, especially a proper implementation of graph traversals with linear execution
time, take priority. The same applies to integrating alternative scheduling approaches into the existing
experiments. For a comprehensive evaluation of distributed synchronization, both should be addressed.

Further experiments should be implemented in particular in regards to FrameSweep’s behavior on
distributed topologies under contention. Both the remote synchronization for SSG order establishment,
as well as the remotely synchronized phase transitions between instants are at risk of quickly form-
ing performance bottlenecks once many concurrent instants interact with each other. Thus, dedicated
experiments should be designed and implemented to that stress both of these factors. Lastly, a com-
prehensive experiment to evaluate the overall performance of FrameSweep in distributed applications,
without stressing any single factor in particular, is desirable.

In terms of alternative approaches for comparison, as in the local setting, no prior works exist that offer
the same guarantees as FrameSweep. Still, several options exist that offer similar but weaker properties.

• G-Lock could also be applied to distributed applications, although with certain additional restric-
tions. First, it requires a central host to manage the global lock. Second, it should still be combined
with a decentralized propagation algorithm, e.g., mark-sweep instead of REScala’s default height-
based priority queue.

• STM-RP may be applicable if a suitable reusable implementation of software transactional memory
can be found.

• DREAM (cf. Section 4.3.4), configured for Atomic consistency, can be used to run all experiments
that do not use dynamic dependencies.

• Similarly, a distributed adaptation of the propagation algorithm of Elm (cf. Section 4.3.2) may be
applicable to all experiments that do not use dynamic dependencies. Further, equal to G-Lock, it
would require a central host to initiate the propagation of each instant from all input reactives of
the entire application.

8.3 Parallelizing Existing Applications

This final experiment evaluates two research questions: First, how much effort and code changes are
necessary to migrate an existing single-threaded RP application into a multi-threaded environment safely.
Second, can this migration improve the application’s performance. The experiment uses “Universe”, an
existing REScala case study, because it is one of the largest applications in REScala’s example corpus and
has a structure that makes it easy to introduce multi-threading in its imperative parts. Universe is a local
application without distribution. This is both necessary, since no suitable distributed applications exist
yet, and better-suited for this experiment, because it allows to demonstrate the syntactic transparency of
FrameSweep in full effect.

136 8 Evaluation

For the first question, the experiment showed that no changes to the RP code of the application were
necessary at all. Only the application’s imperative code needed modifications, and these served only
to introduce multi-threading, not to facilitate the integration of FrameSweep: “Universe” implements
a simulation of an ecosystem with plants and animals, which repeatedly executes two phases. First, a
list of tasks for animals and plants to move, feed, grow etc. is populated by one single instant. Due to
executing only a single instant, this first phase is not parallelizable with concurrent instants. Second, all
the generated tasks from that list – each of which is again an instant – are executed. This second phase is
parallelizable by executing all of these instants at the same time. To achieve this parallelization, the only
change to the application was to use a parallel drop-in replacement from the standard Scala collections
library for the list of tasks. This parallel list submits all tasks to a thread pool for concurrent execution
instead of running them one after the other. No further changes were necessary to execute the resulting
multi-threaded application on top of FrameSweep.

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16

Figure 8.15: Universe Throughput

For the second question, Figure 8.15 shows the throughput (in-
stants per amount of time, higher is better) under up to 16 worker
threads. Since the application is only a simulation, it does not use
side-effects, and we were able to include STM-RP in this experi-
ment. We do not include Handcrafted results, as we deemed too
large the effort of not only precisely analyzing and understanding
the possible topologies of the application’s dependency graph, but
then also trying to find, how – or if at all – manual synchronization
is possible. As a rough intuition though, the application executes a
large number of instants across a very wide graph, meaning even
at 16 threads there is still very little contention during each second phase. Hence, STM-RP is equally
capable as FrameSweep in scaling the application’s throughput through multi-threading. Throughput in-
creases less quickly under higher numbers of worker threads because only each iteration’s second phase
is parallelized, but first phase execution times remain constant. Further noteworthy is the application’s
unusually heavy use of creating and removing reactives when animals and plants are spawned and killed.
This gives STM-RP a slight advantage over FrameSweep, because the data structures of STM-RP on the
reactives have a smaller memory footprint than those of FrameSweep, and are thus faster to instantiate.

In conclusion, both research questions have positive answers. The necessary effort for migrating to
safe multi-threaded execution is minuscule, and performance increased noticeably.

8.3 Parallelizing Existing Applications 137

9 Conclusion
This dissertation has presented a complete and detailed model of Reactive Programming. Through anal-
ysis of the model’s interaction with concurrency and distribution, the dissertation derived a formal def-
inition of correctness for synchronous propagation semantics in Distributed Reactive Programming. A
comprehensive survey has classified related prior works in regards to how their features and consistency
guarantees relate to those of Distributed Reactive Programming.

This dissertation has presented FrameSweep, the first algorithm to provide synchronous propagation
semantics for concurrent change propagation over dynamic distributed dataflow graphs. The correct-
ness of FrameSweep’s semantics has been formally proven, as well as empirically validated, alongside
its syntactic transparency. The dissertation discussed solutions for the practical engineering concerns
in regards to decentralizing the implementation of FrameSweep. The combination of syntactic trans-
parency with support for dynamic changes of the dependency graph topology enables arbitrary modular
composition of applications implemented through Distributed Reactive Programming. Any applications’
dataflow graphs can be merged and split, even dynamically at run-time, without the applications’ devel-
opers having to design the application with such composition in mind. As a result, using FrameSweep
as an example, this dissertation has proven, that the design of distributed and multi-threaded interac-
tive applications can be improved through Distributed Reactive Programming with all the proven benefits
(improved code quality, program comprehension and maintainability) that traditional Reactive Program-
ming brings for single-threaded local interactive applications.

Through empirical benchmarks, FrameSweep’s performance and scalability for local applications was
shown to compare favorably over global locking and software transactional memory, except for applica-
tions that consist only of few small reactive computations while being subject to heavy thread contention.
Empirical benchmarks on distributed topologies have shown that FrameSweep’s distributed implemen-
tation is not optimal yet. Correspondingly, completion, further optimization, and more extensive per-
formance evaluation of FrameSweep’s distributed implementation is are obvious next steps for future
work.

Further important avenues for future works are:

• An integration of FrameSweep into a Distributed Reactive Programming language implementation
that has an established syntax for specifying the distribution of dependency graph topologies, such
as ScalaLoci [Weisenburger et al., 2018].

• Integration of techniques for detecting and tolerating partial failures of distributed applications,
such as automatically persisting accumulated state and restoring it after crashes [Mogk et al.,
2018].

• Developing concepts for defining limits to the scope of synchronous propagation. For instance,
a state update on a server may result in changes propagating to many clients, but completion of
the server’s state update should not be transactionally bound to this change being processed by all
clients.

• An integration with (transactional) databases. Many distributed applications use databases. In
such applications, change propagations will change the contents of the database. In response,
the results of queries will change. This gap could be bridged, in that queries return live data
views [Mitschke et al., 2014] which update as part of the same change propagation that updates
the contents of the database.

139

Bibliography
[Abadi et al., 2005] Abadi, D. J., Ahmad, Y., Balazinska, M., Cherniack, M., hyon Hwang, J., Lindner,

W., Maskey, A. S., Rasin, E., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik, S. (2005). The design of the
borealis stream processing engine. In In CIDR, pages 277–289.

[Acar, 2005] Acar, U. A. (2005). Self-adjusting Computation. PhD thesis, Pittsburgh, PA, USA.
AAI3166271.

[Acar and Chen, 2013] Acar, U. A. and Chen, Y. (2013). Streaming big data with self-adjusting compu-
tation. In Proceedings of the 2013 Workshop on Data Driven Functional Programming, DDFP ’13, pages
15–18, New York, NY, USA. ACM.

[Agha, 1986] Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA.

[Bainomugisha et al., 2013] Bainomugisha, E., Carreton, A. L., Cutsem, T. v., Mostinckx, S., and Meuter,
W. d. (2013). A survey on reactive programming. ACM Comput. Surv., 45(4):52:1–52:34.

[Bernstein and Goodman, 1981] Bernstein, P. A. and Goodman, N. (1981). Concurrency control in dis-
tributed database systems. ACM Comput. Surv., 13(2):185–221.

[Bernstein et al., 1986] Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1986). Concurrency Control
and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Berry and Gonthier, 1992] Berry, G. and Gonthier, G. (1992). The Esterel synchronous programming
language: design, semantics, implementation. SCP, 19(2).

[Bhatotia et al., 2015] Bhatotia, P., Fonseca, P., Acar, U. A., Brandenburg, B. B., and Rodrigues, R.
(2015). ithreads: A threading library for parallel incremental computation. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 645–659, New York, NY, USA. ACM.

[Bhatotia et al., 2011] Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U. A., and Pasquin, R. (2011). In-
coop: Mapreduce for incremental computations. In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 7:1–7:14, New York, NY, USA. ACM.

[Bonér et al., 2014] Bonér, J., Farley, D., Kuhn, R., and Thompson, M. (2014). The reactive manifesto.

[Boniol and Adelantado, 1993] Boniol, F. and Adelantado, M. (1993). Programming distributed reactive
systems: A strong and weak synchronous coupling. In Schiper, A., editor, Distributed Algorithms, pages
294–308, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Boudol, 2004] Boudol, G. (2004). Ulm: A core programming model for global computing. In Schmidt,
D., editor, Programming Languages and Systems, pages 234–248, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[Boussinot, 1991] Boussinot, F. (1991). Reactive c: An extension of c to program reactive systems.
Softw. Pract. Exper., 21(4):401–428.

[Boussinot and de Simone, 1996] Boussinot, F. and de Simone, R. (1996). The sl synchronous language.
IEEE Transactions on Software Engineering, 22(4):256–266.

141

[Bronson et al., 2010] Bronson, N. G., Chafi, H., and Olukotun, K. (2010). CCSTM: A library-based STM
for Scala. In The First Annual Scala Workshop at Scala Days.

[Burckhardt and Coppieters, 2018] Burckhardt, S. and Coppieters, T. (2018). Reactive caching for com-
posed services: Polling at the speed of push. Proc. ACM Program. Lang., 2(OOPSLA):152:1–152:28.

[Burckhardt et al., 2011] Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., and Ball, T. (2011). Two for
the price of one: A model for parallel and incremental computation. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pages 427–444, New York, NY, USA. ACM.

[Carbone et al., 2015] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K.
(2015). Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 36(4).

[Caspi et al., 1994] Caspi, P., Girault, A., and Pilaud, D. (1994). Distributing reactive systems. In Seventh
International Conference on Parallel and Distributed Computing Systems, PDCS’94, Las Vegas, USA.
ISCA.

[Caspi et al., 1987] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. (1987). LUSTRE: a declarative
language for real-time programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’87, pages 178–188, New York, NY, USA. ACM.

[Cooper and Krishnamurthi, 2006] Cooper, G. H. and Krishnamurthi, S. (2006). Embedding dynamic
dataflow in a call-by-value language. In Proceedings of the 15th European Conference on Programming
Languages and Systems, ESOP’06, pages 294–308, Berlin, Heidelberg. Springer-Verlag.

[Cugola and Margara, 2012] Cugola, G. and Margara, A. (2012). Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62.

[Czaplicki and Chong, 2013] Czaplicki, E. and Chong, S. (2013). Asynchronous functional reactive pro-
gramming for guis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 411–422, New York, NY, USA. ACM.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM, 51(1):107–113.

[Dijkstra and Scholten, 1980] Dijkstra, E. W. and Scholten, C. S. (1980). Termination detection for
diffusing computations. Information Processing Letters, 11(1):1–4.

[Drechsler et al., 2018] Drechsler, J., Mogk, R., Salvaneschi, G., and Mezini, M. (2018). Thread-safe
reactive programming. Proc. ACM Program. Lang., 2(OOPSLA).

[Drechsler and Salvaneschi, 2014] Drechsler, J. and Salvaneschi, G. (2014). Optimizing distributed
rescala. REBLS’14.

[Drechsler et al., 2014] Drechsler, J., Salvaneschi, G., Mogk, R., and Mezini, M. (2014). Distributed
REScala: An update algorithm for distributed reactive programming. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 361–376, New York, NY, USA. ACM.

[Elliott and Hudak, 1997] Elliott, C. and Hudak, P. (1997). Functional reactive animation. SIGPLAN
Not., 32(8):263–273.

[Eugster et al., 2003] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131.

142 Bibliography

[Galler and Fisher, 1964] Galler, B. A. and Fisher, M. J. (1964). An improved equivalence algorithm.
Commun. ACM, 7(5):301–303.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[Gautier et al., 1987] Gautier, T., Le Guernic, P., and Besnard, L. (1987). SIGNAL: A declarative language
for synchronous programming of real-time systems. In FPCA, pages 257–277, London, UK. Springer-
Verlag.

[Halbwachs and Mandel, 2006] Halbwachs, N. and Mandel, L. (2006). Simulation and verification of
asynchronous systems by means of a synchronous model. In Sixth International Conference on Appli-
cation of Concurrency to System Design (ACSD’06), pages 3–14.

[Hammer et al., 2007] Hammer, M., Acar, U. A., Rajagopalan, M., and Ghuloum, A. (2007). A proposal
for parallel self-adjusting computation. In Proceedings of the 2007 Workshop on Declarative Aspects of
Multicore Programming, DAMP ’07, pages 3–9, New York, NY, USA. ACM.

[Han and Zhang, 2015] Han, Z. and Zhang, Y. (2015). Spark: A big data processing platform based on
memory computing. In 2015 Seventh International Symposium on Parallel Architectures, Algorithms
and Programming (PAAP), pages 172–176.

[Herlihy and Wing, 1990] Herlihy, M. P. and Wing, J. M. (1990). Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[Italiano, 1986] Italiano, G. (1986). Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, 48:273 – 281.

[Kahn, 1962] Kahn, A. B. (1962). Topological sorting of large networks. Commun. ACM, 5(11):558–562.

[Liberty and Betts, 2011] Liberty, J. and Betts, P. (2011). Programming Reactive Extensions and LINQ.
Apress, Berkely, CA, USA, 1st edition.

[Lombide Carreton et al., 2010] Lombide Carreton, A., Mostinckx, S., Van Cutsem, T., and De Meuter,
W. (2010). Loosely-coupled distributed reactive programming in mobile ad hoc networks. In Vitek,
J., editor, Objects, Models, Components, Patterns, pages 41–60, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[Maier and Odersky, 2012] Maier, I. and Odersky, M. (2012). Deprecating the Observer Pattern with
Scala.react. Technical report.

[Maier and Odersky, 2013] Maier, I. and Odersky, M. (2013). Higher-order reactive programming with
incremental lists. In Castagna, G., editor, ECOOP 2013 – Object-Oriented Programming, pages 707–
731, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Margara and Salvaneschi, 2014] Margara, A. and Salvaneschi, G. (2014). We have a dream: Dis-
tributed reactive programming with consistency guarantees. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS ’14, pages 142–153, New York, NY,
USA. ACM.

[Margara and Salvaneschi, 2018] Margara, A. and Salvaneschi, G. (2018). On the semantics of dis-
tributed reactive programming: The cost of consistency. IEEE Transactions on Software Engineering,
44(7):689–711.

Bibliography 143

[Meijer, 2010] Meijer, E. (2010). Reactive extensions (rx): Curing your asynchronous programming
blues. In ACM SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages 11:1–11:1,
New York, NY, USA. ACM.

[Meyerovich et al., 2009] Meyerovich, L. A., Guha, A., Baskin, J., Cooper, G. H., Greenberg, M., Brom-
field, A., and Krishnamurthi, S. (2009). Flapjax: A programming language for ajax applications. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 1–20, New York, NY, USA. ACM.

[Mitschke et al., 2014] Mitschke, R., Erdweg, S., Köhler, M., Mezini, M., and Salvaneschi, G. (2014).
I3ql: Language-integrated live data views. SIGPLAN Not., 49(10):417–432.

[Mogk et al., 2018] Mogk, R., Baumgärtner, L., Salvaneschi, G., Freisleben, B., and Mezini, M. (2018).
Fault-tolerant Distributed Reactive Programming. In Millstein, T., editor, 32nd European Conference
on Object-Oriented Programming (ECOOP 2018), volume 109 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 1:1–1:26, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[Myter et al., 2016] Myter, F., Coppieters, T., Scholliers, C., and De Meuter, W. (2016). I now pronounce
you reactive and consistent: Handling distributed and replicated state in reactive programming. In
Proceedings of the 3rd International Workshop on Reactive and Event-Based Languages and Systems,
REBLS 2016, pages 1–8, New York, NY, USA. ACM.

[Proença and Baquero, 2017] Proença, J. and Baquero, C. (2017). Quality-aware reactive program-
ming for the internet of things. In Dastani, M. and Sirjani, M., editors, Fundamentals of Software
Engineering, pages 180–195, Cham. Springer International Publishing.

[Prokopec et al., 2014] Prokopec, A., Haller, P., and Odersky, M. (2014). Containers and aggregates,
mutators and isolates for reactive programming. In Proceedings of the Fifth Annual Scala Workshop,
SCALA ’14, pages 51–61, New York, NY, USA. ACM.

[Reynders et al., 2014] Reynders, B., Devriese, D., and Piessens, F. (2014). Multi-tier functional reactive
programming for the web. In Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, Onward! 2014, pages 55–68, New York,
NY, USA. ACM.

[Salvaneschi et al., 2014a] Salvaneschi, G., Amann, S., Proksch, S., and Mezini, M. (2014a). An empir-
ical study on program comprehension with reactive programming. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, pages 564–575,
New York, NY, USA. ACM.

[Salvaneschi et al., 2013] Salvaneschi, G., Drechsler, J., and Mezini, M. (2013). Towards distributed
reactive programming. In De Nicola, R. and Julien, C., editors, Coordination Models and Languages,
pages 226–235, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Salvaneschi et al., 2014b] Salvaneschi, G., Hintz, G., and Mezini, M. (2014b). Rescala: Bridging be-
tween object-oriented and functional style in reactive applications. In Proceedings of the 13th Interna-
tional Conference on Modularity, MODULARITY ’14, pages 25–36, New York, NY, USA. ACM.

[Sant’Anna et al., 2013] Sant’Anna, F., Rodriguez, N., Ierusalimschy, R., Landsiedel, O., and Tsigas, P.
(2013). Safe system-level concurrency on resource-constrained nodes. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, pages 11:1–11:14, New York,
NY, USA. ACM.

144 Bibliography

[Sawada and Watanabe, 2016] Sawada, K. and Watanabe, T. (2016). Emfrp: A functional reactive pro-
gramming language for small-scale embedded systems. In Companion Proceedings of the 15th Interna-
tional Conference on Modularity, MODULARITY Companion 2016, pages 36–44, New York, NY, USA.
ACM.

[Weisenburger et al., 2018] Weisenburger, P., Köhler, M., and Salvaneschi, G. (2018). Distributed system
development with scalaloci. Proc. ACM Program. Lang., 2(OOPSLA).

[Wu et al., 2006] Wu, E., Diao, Y., and Rizvi, S. (2006). High-performance complex event processing
over streams. In Proceedings of the 2006 ACM SIGMOD international conference on Management of
data, SIGMOD ’06, pages 407–418, New York, NY, USA. ACM.

[Yip et al., 2016] Yip, E., Girault, A., Roop, P. S., and Biglari-Abhari, M. (2016). The forec synchronous
deterministic parallel programming language for multicores. In 2016 IEEE 10th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), volume 00, pages 297–304.

Bibliography 145

	Introduction
	Problem Statement
	Contributions
	Structure
	List of Publications

	Reactive Programming in REScala
	The Application Developer's Perspective
	Signals
	Dynamic Dependencies
	Events and Conversions
	Imperative Reactions

	RP Behind the Scenes
	Dependency Graph
	Synchronous Change Propagation
	Liveness and Glitch Freedom

	Anatomy of RP Applications
	Operations for Reading Reactives' Values
	Operations for Change Propagation
	Operations for Dynamic Dependency Edge Changes

	Introducing Concurrency and Distribution
	Implications of Concurrency
	Race Conditions between RP Operations
	Established Thread-Safety Properties
	Thread-Safety Correctness

	Implications of Distribution
	Concurrency in Distributed RP
	Correctness in Distributed RP

	A Survey of Reactive Frameworks
	Preface: Selective Topological Sorting
	Synchronous Programming Languages.
	Esterel: Imperative Synchronous Programming
	Other Synchronous Imperative Languages
	Synchronous Data Flow Languages
	Summary

	Reactive Programming
	Local, Single-Threaded Reactive Programming
	Reactive Programming Libraries with Concurrency
	Signal-only Distributed Reactive Programming for Eventual Consistency
	Other Distributed RP Frameworks

	Event-Based Programming
	Event-based Distributed Systems

	Automatic Incrementalization

	FrameSweep: A Scheduler for Thread-Safe Reactive Programming
	RP Architecture with an Integrated Scheduler
	Main Building Blocks
	Concurrency of FrameSweep's Operations
	Framing Phase
	Propagation with Pipeline Parallelism
	Read Operations
	Retrofitting

	Proving Correctness
	A Recap of Multiversion Theory
	Connecting FrameSweep and Multiversion Theory
	Multiversion Histories produced by FrameSweep
	Stored Serialization Graph Version Order

	Basic Aspects Proofs
	Advanced Aspects Proofs
	Serializability Proofs

	Distribution Engineering and Optimizations
	Distributed Propagation
	Lazy Framing
	Framing
	Propagation
	Retrofitting

	Parallelizing and Decentralizing the Data Structures of FrameSweep
	Non-Blocking Version Creation
	Non-Blocking Phase Transition
	Decentralized Serialization Graph Tracking

	Garbage Collection
	Syntactic Transparency and Explicit Transactions

	Evaluation
	Comparing Local Performance
	Cost of User Computations and Impact of Topology
	Very Cheap User Computations
	Cost of Dynamic Dependency Changes and Retrofitting
	Summary of Non-Distributed Experiments

	Evaluating Distribution Characteristics
	Distributed Propagation
	Distributed Synchronization
	Summary and Future Work

	Parallelizing Existing Applications

	Conclusion

