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Brain wave classification using long 
short-term memory network based 
OPTICAL predictor
Shiu Kumar   4,5, Alok Sharma   1,2,3,4 & Tatsuhiko Tsunoda2,3,6

Brain-computer interface (BCI) systems having the ability to classify brain waves with greater 
accuracy are highly desirable. To this end, a number of techniques have been proposed aiming to be 
able to classify brain waves with high accuracy. However, the ability to classify brain waves and its 
implementation in real-time is still limited. In this study, we introduce a novel scheme for classifying 
motor imagery (MI) tasks using electroencephalography (EEG) signal that can be implemented in 
real-time having high classification accuracy between different MI tasks. We propose a new predictor, 
OPTICAL, that uses a combination of common spatial pattern (CSP) and long short-term memory 
(LSTM) network for obtaining improved MI EEG signal classification. A sliding window approach is 
proposed to obtain the time-series input from the spatially filtered data, which becomes input to 
the LSTM network. Moreover, instead of using LSTM directly for classification, we use regression 
based output of the LSTM network as one of the features for classification. On the other hand, linear 
discriminant analysis (LDA) is used to reduce the dimensionality of the CSP variance based features. The 
features in the reduced dimensional plane after performing LDA are used as input to the support vector 
machine (SVM) classifier together with the regression based feature obtained from the LSTM network. 
The regression based feature further boosts the performance of the proposed OPTICAL predictor. 
OPTICAL showed significant improvement in the ability to accurately classify left and right-hand MI 
tasks on two publically available datasets. The improvements in the average misclassification rates are 
3.09% and 2.07% for BCI Competition IV Dataset I and GigaDB dataset, respectively. The Matlab code is 
available at https://github.com/ShiuKumar/OPTICAL.

Brain-computer interface (BCI) has become a hot topic of research as it is increasingly being used in gaming 
applications1 and in stroke rehabilitation2–7 for translating the brain signals of the imagined task into intended 
movement of the limb that has been paralyzed. For example, BCI controlled wheel-chairs2,8,9 are being developed 
to enable people with disabilities to maneuver around the house and perform basic tasks. Moreover, BCI research 
is also being carried out to detect in advance that a person is going to suffer from a seizure attack so that they can 
be informed in order to prevent accident or serious injuries10–12. Electroencephalography (EEG) signal obtained 
using non-invasive sensors have been widely used12,13 for these purposes due to its low cost, easy to use and that 
it does not require any surgery as required by invasive sensors. BCI using non-invasive sensors are approaching 
their required technological advancements and translate neural activities into meaningful information that can be 
used to drive activity-dependent neuroplasticity or rehabilitation robots. Although some promising results have 
been achieved, BCI for rehabilitation is still a new and emerging field. Therefore, being able to classify the differ-
ent tasks with greater accuracy using the EEG signal will not only be beneficial for gaming and rehabilitation but 
also help in better detection of diseases or abnormal behaviors such as seizure12,14, sleep apnea15, sleep stages16,17, 
and drowsiness18 detection. Thus, developing a BCI system that can classify different types of EEG signals with 
high accuracy is highly desirable.
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Common spatial pattern has been widely used for extracting the features from EEG signals for classification. 
However, the responsive frequency range varies from subject to subject and for this reason subject dependent 
BCI’s19–25 are being mostly proposed. A poorly selected frequency band may contain unwanted or redundant 
information and will degrade the performance of the overall system. The selection of the frequency bands plays 
a key role in extracting significant features and manually tuning the filters will be a difficult task. To tackle this 
problem, many subject-dependent approaches utilizing multiple frequency bands have been proposed21,26–36. 
These methods use multiple filter bands to filter the signal into different sub-bands and then utilize CSP for 
extracting the features. Some approaches proposed different methods of selecting the best sub-bands21,24,32,34 
while other approaches considered various feature selection techniques20,28,31,35–37 using all sub-bands to achieve 
promising results. While appropriately using multiple sub-bands helped achieve improved performance, it also 
increased the computation complexity of the system38. Few researchers have also considered directly improv-
ing the CSP algorithm39–43 for better performance. Other methods that have been proposed use wavelet packet 
decomposition23, empirical mode decomposition19,29, Riemannian tangent space mapping22,44, artificial neural 
networks40,45,46 and deep learning47,48.

Deep learning has recently gained widespread attention in the field of signal processing. However, it has not 
been fully explored for EEG signal classification. In this study, we focus on subject-dependent approach and pro-
pose an Optimized CSP and LSTM based predictor named OPTICAL. An LSTM network is a recurrent neural 
network consisting of LSTM layers having the ability to selectively remember important information for a longer 
period and is mostly used for sequence prediction. As reported in our previous works30, to keep the computa-
tional complexity of the system low, OPTICAL uses a single Butterworth band-pass filter with cutoff frequencies 
of 7–30 Hz. Promising 10 × 10-fold cross-validation results have been obtained using OPTICAL, which has been 
evaluated using the BCI Competition IV dataset 149 and GigaDB dataset50. OPTICAL showed improvement in the 
classification performance (achieving average misclassification rate of 17.48% and 31.81% for BCI Competition 
IV dataset 1 and GigaDB dataset, respectively) and can be beneficial in developing improved BCI systems for 
rehabilitation. Apart from this, if applied appropriately, it might also help detect seizure, sleep apnea and sleep 
stages with greater accuracy. The results obtained are superior compared to other competing methods. Thus, 
we have shown that appropriately using LSTM network can help develop improved BCI systems. Almost all the 
related works19,20,23,26,31,34,35,51,52 considered classification of MI tasks, which were limited to binary class MI EEG 
signal classification problem. However, it should be noted that real-time EEG signal contains noise and other 
activities (such as eye blinking, eyeball movement up/down, eyeball movement left/right, jaw clenching and head 
movement left/right), referred to as non-task related EEG signals. Thus, it is important to show that the proposed 
approach will be able to perform well if the implementation takes place in real-time. Therefore, we utilize the 
rest-state and non-task related EEG signals to show that the proposed method will perform well for real-time clas-
sification. For this purpose, we have utilized the one-versus-rest approach (as using the one-versus-rest approach 
yields substantially better results than using the multi-class classification) for classification of the multi-class MI 
tasks using the conventional CSP algorithm. The GigaDB dataset, which also provides the recordings for the 
rest-state and other non-tasks related signals, has been used to show the effectiveness of OPTICAL for real-time 
implementation. For real-time implementation, we achieved an average misclassification rate of 17.78% over 52 
subjects using GigaDB dataset.

Materials and Methods
In this study, we propose a machine learning-based optimized predictor that combines the LSTM network with 
CSP for the classification of EEG signals named OPTICAL. The following sections describe the publically avail-
able benchmark datasets that are used to evaluate the performance of OPTICAL. A detailed overview of the 
OPTICAL predictor is also presented.

Benchmark dataset 1 – BCI competition IV dataset 1.  The BCI competition IV dataset 153 is a 
publically available dataset provided by the Berlin BCI group. This dataset contains EEG recordings of seven 
healthy subjects performing two MI tasks without any feedback. Out of the seven subjects, the data for subjects 
c, d and e were artificially generated. The two MI tasks performed by each subject were selected from the left 
hand, right-hand and foot MI tasks. BrainAmp MR plus amplifiers and an Ag/AgCl electrode caps were used 
to acquire the EEG recordings. 59 channels were used to record the data at a sampling frequency of 1000 Hz. A 
down-sampled version at 100 Hz, which is also made available, has been used in this study consisting of 200 trials 
for each subject having an equal number of each trial. A detailed description of the dataset can be found at the 
given reference.

Benchmark dataset 2 – GigaDB dataset.  The GigaDB dataset50 is a publically available dataset that has 
been published recently. It consists of EEG recordings of the left hand and right-hand MI tasks of 52 healthy 
subjects out of which 19 were female subjects. All subjects were right-handed except for subject’s s20 and s33 that 
were both handed. The EEG data were acquired using 64 Ag/AgCl active electrodes at a sampling rate of 512 Hz. 
The electrodes were placed based on the international 10–10 system. Apart from the left and right-hand MI tasks, 
non-task related EEG data such as eye blinking, eyeball movement up/down, eyeball movement left/right, head 
movement, jaw clenching, and resting state were also recorded. The results of a psychological and physiological 
questionnaire and EMG data are also made available. However, these have not been used in this study. 100 or 120 
trials of each task-related (left and right-hand) MI EEG signal for each subject were recorded. The dataset con-
tains a combination of well-discriminated data (38 subjects) and less-discriminative data. For a detailed descrip-
tion of the dataset, refer to the published dataset description50.
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Preprocessing.  In this study, we have taken a two seconds window 0.50 seconds after the visual cue was 
presented to perform the MI tasks. This is the same as done in other related works21,22,26,38,50. Common average 
referencing has been applied to all the trials. Each trial is then filtered using a Butterworth bandpass filter having 
passband cutoff frequencies of 7 and 30 Hz. This preprocessed data is utilized for further processing.

The proposed predictor (OPTICAL).  The framework of the proposed subject-dependent predictor, 
OPTICAL, is shown in Fig. 1. The predictor is named OPTICAL as it combines CSP and LSTM, and the LSTM 
network is optimized using Bayesian optimization. As can be seen from Fig. 1, two sets of CSP spatial filters are 
learned by the predictor. One set of spatial filters are directly learned from the trials of the training data after 
temporal filtering. The variance based CSP features are extracted from these spatially filtered data and linear dis-
criminant analysis (LDA) is then applied to these features to obtain a one-dimensional feature. The second set of 
CSP spatial filters is learned from the combined data that is obtained after the segmentation of each of the trials 
from the training data as shown in Fig. 2. Each trial data is broken down into smaller parts by taking a smaller 
window of length l sample points with an overlap of t sample points, resulting in N segments being obtained from 
each trial. These N segments obtained from each of the training trials are used to learn the second set of CSP 
spatial filters. All the segments are then spatially filtered using this set of spatial filters. The variance based features 
of each segment from a single trial are computed and a feature matrix as shown in Fig. 2 is formed. In the feature 
matrix, FW

i
j
 represents the i-th feature obtained from the j-th windowed segment of the respective trial. This is 

repeated for all the trials to obtain the feature matrix of all the trials, which becomes the input to the LSTM 
network.

The inputs to the LSTM network are the feature matrices of all the training trials that are used to train the 
network. Each of these feature matrices represents the sequential input of each trial. The LSTM network thus uses 
these sequential inputs to train the network. The LSTM network used in this study consists of the sequence input 
layer, two consecutive LSTM layers having 100 and 20 hidden units in first and second LSTM layers respectively, 
a fully connected layer and a regression output layer. Since the output layer is a regression layer, the output is a 
one-dimensional vector. Thus, the one-dimensional feature vector obtained after performing LDA is concate-
nated with the output feature vector of the LSTM network and fed to a support vector machine (SVM) classifier. 
The SVM model is trained using these features of the training data. In the training phase, the LSTM network 
hyper-parameters are optimized using Bayesian optimization and the optimized hyper-parameters are then used 
in the test phase. A test trial is first filtered using the band-pass filter. The filtered test trial then undergoes 2 dif-
ferent processes as in training phase. In the first process the filtered test data is filtered using the corresponding 
spatial filter learned during the training phase to obtain the CSP variance based features and the dimensionality 

Figure 1.  The framework of the proposed predictor, OPTICAL.

Figure 2.  Performing segmentation and obtaining the feature matrix.
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of the features reduced using the corresponding LDA vector learned during training phase. The resulting output 
becomes one of the features for the trained SVM model. In the second process, the filtered test trial is segmented 
and the segmented data is spatially filtered using the corresponding spatial filter learned during the training 
phase. CSP variance based features are extracted and the feature matrix of the test trial is formed, which is fed 
to the trained LSTM network. The regression output of the LSTM network becomes the second feature for 
the trained SVM model. Finally, using these two features the SVM model predicts the class/task the test trial 
belongs to. This procedure is repeated for each of the test trials. It should be noted that the proposed approach is 
subject-dependent. We take a subject at a time and then we split this subjects data into training and test set using 
10-fold cross-validation scheme. Then we use training set to train the model while test set is used to evaluate the 
model. This procedure is repeated 10 times resulting in 10 × 10-fold cross-validation scheme. The misclassifi-
cation rates obtained from 10 × 10-fold cross-validation scheme are averaged and this result is reported as the 
misclassification rate for the subject. The above process is repeated for each of the subjects in order to obtain their 
respective misclassification rate. The average misclassification rate for a dataset is calculated by averaging the 
misclassification rates over all the subjects in the dataset.

Common spatial pattern.  The common spatial pattern has been widely used for EEG signal processing. It pro-
jects the data into a new time-series where the variance of one class is minimized while that of the other class is 
maximized. Thus the variance based CSP features are utilized for classification. A detail description of the CSP 
algorithm can be found in our previous work30. Once the spatial filter W is determined using the training data, an 
EEG trial E can be filtered using equation (1) to obtain the spatially filtered signal, Z. T in equation (1) represents 
the transpose operator. The features of a single trial can then be obtained using equation (2). The CSP variance 
based features of all data can be obtained following these procedures.

=Z W E (1)T

=y Zlog(var( )) (2)

Long short-term memory (LSTM) network.  Deep learning has been gaining widespread attention and perform-
ing well compared to other conventional methods in many applications. One of the deep learning networks is the 
recurrent neural network and a recurrent neural network having LSTM layers is usually referred to as an LSTM 
network. The LSTM network has been seen to be more effective than the feed-forward neural networks and 
recurrent neural networks (not containing any LSTM layer) in terms of sequence prediction due to their ability to 
selectively remember important information or values for a longer period of time. An LSTM network is usually 
used for processing and classifying or predicting time-series or sequence data. In this study, we propose a novel 
idea to apply LSTM for EEG signal processing. A sliding overlapping window is applied to each trial to obtain a 
feature matrix in the form of sequence data, which is used as the sequence input to the LSTM network. In general, 
the LSTM architecture comprises of a memory cell, an input gate, a forget gate and an output gate. The memory 
cell of the LSTM layer stores or remembers values (states) for either long or short times. On the other hand, the 
degree to which a new information or value flows into the cell of an LSTM layer is controlled by the input gate, 
the degree to which an information or value remains in the cell of the LSTM layer is controlled by the forget gate 
while the degree to which information or value stored in the cell of the LSTM layer is utilized for computing the 
output activation is controlled by the output gate. OPTICAL utilizes a recurrent neural network comprising of 
two LSTM layers. A detailed explanation of the LSTM network can be found in Supplement 1 and other related 
works54,55.

Selection of the hyper-parameters for the LSTM network.  The performance of the LSTM network depends 
on a number of hyper-parameters such as the network size, initial learn rate, learn rate schedule (which has 
hyper-parameters such as learn rate drop factor and learn rate drop period), momentum and L2 regularization. 
The network size selected in this work is explained in the discussion section. The parameter selection of other 
hyper-parameters is carried out using Bayesian optimization technique. It was noted that using piecewise sched-
ule in the optimization process as the learn rate schedule did not perform well and thus we have used the default 
settings. This could be due to the number of training samples not being large enough, which is mostly the case 
for BCI applications. We have used the Stochastic gradient descent momentum, which utilizes a contribution 
proportional to the previous iterations update for the current update. The initial learn rate and L2 regularization 
depends on the data and the network used or selected. Therefore, to select the best initial learn rate and L2 reg-
ularization parameters for achieving optimal results we have employed Bayesian optimization technique. The 
range for the initial learn rate and L2 regularization were set to [1E-4, 1E-1] and [1E-5, 1E-3], respectively. These 
hyper-parameters were set around the default hyper-parameter values. 10-fold cross-validation has been used on 
the training data during the Bayesian optimization for selecting the best parameters. Figure 3 shows the effect of 
selecting different values for the initial learn rate and L2 regularization parameters for one of the trials runs of 
subject a of BCI competition IV dataset 1. It shows how the Bayesian optimization technique can determine the 
best feasible values for these two hyper-parameters and justifies the need for optimizing the network parameters.

Support Vector Machine (SVM).  SVM is a supervised learning technique that can be utilized for both 
classification and regression. The SVM algorithm finds a hyperplane that maximizes the separation of the support 
vectors. In this study, we have used an SVM classifier with radial basis kernel function. Use of kernel function 
allows mapping of non-linear data to a higher dimension where the data are linearly separable.
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Performance measures.  It is very important to evaluate the performance of the predictor that is designed 
or proposed. The performance measures used to evaluate the performance of OPTICAL are the misclassification 
rate, sensitivity, specificity, and Cohen’s kappa index (κ). The misclassification rate shows the percentage of trials 
in the test data that have been incorrectly classified. The sensitivity shows the ability of the classifier or predictor 
to correctly classify the positive trials while specificity shows the ability of the classifier or predictor to classify 
the negative trials correctly. Cohen’s kappa index is a statistical measure that is used to assess the reliability of the 
classifier or predictor. These performance measures are calculated using equations (3–6), where TP is the true 
positives, TN is the true negatives, FP is the false positives, FN is the false negatives, pe is the chance of agreement 
that is expected and pa is actual percentage of agreement. Lower values of misclassification rate and higher values 
of sensitivity, specificity and Cohen’s kappa index are preferred.
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Results
To make a fair comparison between OPTICAL and other competing methods, we have evaluated all the methods 
using 10 × 10-fold cross-validation scheme. In this scheme, the data is divided into 10 segments where 9 seg-
ments are used as training set while the remaining one segment is used as test set. This procedure is repeated by 
taking a new segment each time for testing until all subsets are used exactly once. The whole procedure is then 
repeated 10 times and the results are averaged. All results reported in this study are obtained using this proce-
dure. We have compared OPTICAL with other competing methods such as the conventional CSP approach, the 
discriminative filter bank CSP (DFBCSP)34 approach, the spatial-frequency-temporal optimized feature sparse 
representation-based classification (SFTOFSRC) approach20, and the sparse Bayesian learning of filter banks 
(SBLFB)26 approach. For the conventional CSP approach, a wide band-pass filter having cutoff frequencies of 
4–40 Hz has been used. Six spatial filters have been used in all the methods to make a fair comparison between 
all the methods. Matlab running on a personal computer at 3.3 GHz (Intel(R) Core(TM) i7) has been used for all 
processing in this study.

Comparison of results with competing methods.  A comparison of the misclassification rate together 
with the standard deviation of OPTICAL and other competing methods for BCI competition IV dataset 1 and the 
GigaDB dataset are given in Tables 1 and 2, respectively. The last column in Table 2 shows the misclassification 
rate of the proposed OPTICAL predictor for real-time implementation and is discussed later. The lowest value of 
the misclassification rate for each subject is highlighted in bold. OPTICAL* is the proposed OPTICAL predictor 
without parameter optimization of the LSTM network using Bayesian Optimization. As can be seen from Tables 1 
and 2, our proposed OPTICAL predictor outperforms all other competing methods. It achieved an improvement 
of 3.09% and 2.07% compared to the second best performing method (SBLFB) on BCI competition IV dataset 1 
and GigaDB dataset, respectively. 3 out of 7 subjects of BCI competition IV dataset 1 and 17 out of 52 subjects of 

Figure 3.  Determining the best feasible hyper-parameters of LSTM network using Bayesian optimization.
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GigaDB dataset achieved the lowest misclassification rate using OPTICAL. This is the highest number achieved 
compared to other methods that had second highest number of subjects with lowest misclassification rates 
(OPTICAL*: 3 out of 7 subjects for BCI competition IV dataset 1 (our proposed predictor without optimizing 
LSTM network hyper-parameters) and SBLFB: 11 out of 52 subjects for GigaDB dataset). All methods were able 
to correctly classify all the trials of subject 50 of GigaDB dataset, which may be probably due to subject 50 having 
a very good quality of the trials. It is also worth mentioning that OPTICAL*, our proposed predictor without 
parameter optimization of the LSTM network was able to achieve the lowest average misclassification rate com-
pared to other competing methods. However, optimizing the hyper-parameters of the LSTM network for each 
subject resulted in further reduction of the average misclassification rate and thus has been utilized in this work.

A comparison of other statistical measures such as sensitivity, specificity and Cohen’s kappa index is shown 
in Table 3. The highest values of each statistical measure are highlighted in bold. It can be seen that OPTICAL 
achieved the highest average sensitivity, specificity and Cohen’s kappa index on both the datasets. This shows that 
OPTICAL can predict or classify the positive and negative samples with higher accuracies compared to other 
methods thus achieving the lowest misclassification rate. OPTICAL also achieved the highest Cohen’s kappa 
index showing that it is more reliable than other competing methods.

Real-time implementation of the proposed predictor (OPTICAL).  Any method developed for 
improving BCI systems should be such that it can be effectively implemented in real-time and this has been a 
major issue. In this study, we have used the rest-state together with other non-task related signals of GigaDB data-
set to test if the system can perform well in real-time. The one-versus-rest method has been utilized for learning 
the CSP spatial filters in the real-time implementation as it involves 3 class classification. Firstly, classification 
is done to classify the non-task related signals against the MI task signals (left hand and right-hand MI tasks). 
Once this is done, those trials that are classified as MI task signals are then classified as left hand or right-hand MI 
task signals. Thus, different spatial filters are learned for each of the stages. The results of the real-time (3 class) 
implementation of OPTICAL are shown in Table 2 labeled as Real-time. We achieved an average misclassification 
rate of 17.78%, which is very promising. To avoid data imbalance, we randomly selected the number of non-task 
related trials equal to the total number of MI task related trials. This real-time average misclassification rate is 
lower compared to the two-class average misclassification rate of 31.81%. This may be because the non-task 
related EEG signals and task related MI EEG signals are easily separable due to their distinctive characteristics. 
We also performed the real-time implementation of OPTICAL using multi-class CSP56, which requires only one 
level of classification and obtained an average misclassification rate of 22.88% using GigaDB dataset. Since the 
one-versus-rest approach performed well compared to the multi-class approach achieving greater than 5% dif-
ference in average misclassification rate, we have reported the results of the one-versus-rest approach. In future, 
experiments will also be carried out by including non-task related MI EEG data to further test the reliability of 
OPTICAL in real-time. However, the current results are promising and provide key findings for future research 
work.

Discussion
Our proposed predictor, OPTICAL, has outperformed all other competing methods. We have shown the results 
for both OPTICAL* and OPTICAL. OPTICAL* predictor does not perform parameter optimization of the 
LSTM network as mentioned earlier. On the other hand, the proposed OPTICAL predictor involves optimiza-
tion of the LSTM network hyper-parameters using Bayesian Optimization. It can be seen from Tables 1 and 2 
that optimizing the LSTM network hyper-parameters resulted in a further improvement of the misclassification 
rate by 1.78% and 1.42% on BCI competition IV dataset 1 and GigaDB dataset, respectively. The DFBCSP and 
SFTOFSRC approaches did not perform well. While the DFBCSP method had a good performance on BCI com-
petition IV dataset 1, it did not perform well on GigaDB dataset. On the other hand, reasonable performance of 
the SFTOFSRC method was noted on BCI Competition III dataset IVa and BCI Competition IV dataset IIb (as 
reported by the authors). However, it did not perform well on both the datasets used in this work and achieved the 
highest average misclassification rates for both the datasets. The GigaDB dataset has a large number of subjects 
(52 subjects) and using this dataset shows the reliability and robustness of the approaches. OPTICAL performed 
well on both datasets showing that it is more reliable and robust predictor compared to other competing methods.

The distribution of the best two features obtained using the CSP approach and the proposed OPTICAL pre-
dictor for one of the trial runs using subject 01 of GigaDB dataset are shown in Fig. 4. It can be seen that the 

Subject CSP DFBCSP SBLFB SFTOFSRC OPTICAL* OPTICAL

a 18.00 ± 9.53 16.80 ± 7.81 19.10 ± 9.73 30.67 ± 11.50 14.30 ± 7.49 12.68 ± 9.71

b 50.80 ± 9.86 42.90 ± 9.75 41.50 ± 11.12 45.83 ± 8.91 41.70 ± 11.85 38.33 ± 9.94

c 48.90 ± 9.70 35.20 ± 8.51 33.20 ± 12.52 45.00 ± 10.42 34.10 ± 10.18 28.17 ± 11.02

d 35.30 ± 10.27 23.50 ± 8.41 11.50 ± 7.91 32.93 ± 10.96 14.70 ± 9.66 11.83 ± 7.60

e 30.70 ± 11.29 18.30 ± 8.84 11.60 ± 6.88 40.33 ± 13.13 10.90 ± 6.28 11.00 ± 6.22

f 31.30 ± 11.10 14.30 ± 8.57 21.20 ± 11.97 31.83 ± 11.33 13.50 ± 6.41 14.17 ± 7.66

g 7.60 ± 6.57 9.00 ± 5.05 5.90 ± 5.41 20.00 ± 10.59 5.60 ± 4.59 6.17 ± 5.03

Average 31.80 ± 9.76 22.86 ± 8.13 20.57 ± 9.36 35.21 ± 10.98 19.26 ± 8.07 17.48 ± 8.17

Table 1.  Misclassification rate (%) of different methods evaluated using BCI competition IV dataset 1.
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Subject CSP DFBCSP SBLFB SFTOFSRC OPTICAL* OPTICAL Real-time

1 27.30 ± 12.91 37.20 ± 9.54 37.20 ± 9.85 40.17 ± 10.63 20.70 ± 8.33 20.00 ± 9.37 15.00 ± 9.05

2 49.00 ± 9.31 50.20 ± 11.56 44.10 ± 12.65 58.33 ± 8.64 45.70 ± 11.47 47.67 ± 12.37 23.25 ± 4.26

3 11.40 ± 6.70 33.00 ± 10.15 8.40 ± 7.25 11.50 ± 6.97 8.60 ± 6.15 6.00 ± 5.78 2.75 ± 2.19

4 39.10 ± 9.41 49.40 ± 13.46 19.40 ± 8.84 20.83 ± 10.99 24.10 ± 8.67 22.00 ± 10.05 14.50 ± 5.50

5 1.00 ± 2.02 1.30 ± 2.22 1.00 ± 2.02 0.50 ± 1.53 0.90 ± 1.94 1.00 ± 2.03 0.75 ± 1.21

6 20.20 ± 9.31 20.20 ± 8.02 17.50 ± 8.16 20.67 ± 6.40 16.60 ± 7.66 17.67 ± 7.74 8.00 ± 6.32

7 50.42 ± 7.68 54.67 ± 10.02 45.17 ± 8.96 48.33 ± 10.92 47.75 ± 11.33 47.22 ± 7.92 31.67 ± 7.20

8 49.60 ± 11.20 55.00 ± 11.78 53.90 ± 11.97 58.00 ± 9.43 43.80 ± 11.45 44.33 ± 11.65 24.00 ± 4.28

9 49.50 ± 9.77 49.42 ± 11.67 44.33 ± 9.92 44.44 ± 9.75 43.75 ± 10.95 43.60 ± 10.07 27.50 ± 4.89

10 42.70 ± 11.62 58.30 ± 8.84 36.40 ± 10.05 48.00 ± 9.06 30.90 ± 11.77 27.00 ± 10.31 14.25 ± 6.02

11 45.80 ± 9.55 41.70 ± 9.98 49.80 ± 10.15 45.33 ± 7.98 49.30 ± 11.20 42.67 ± 9.89 26.00 ± 6.69

12 31.00 ± 9.85 42.30 ± 8.82 37.40 ± 10.26 45.00 ± 10.51 34.50 ± 10.61 32.83 ± 8.97 15.75 ± 7.55

13 11.10 ± 5.92 46.30 ± 9.57 11.50 ± 8.03 18.33 ± 8.64 14.60 ± 7.75 15.50 ± 8.24 9.00 ± 2.93

14 4.80 ± 4.28 35.60 ± 10.63 5.20 ± 5.34 6.17 ± 5.20 4.70 ± 4.56 3.50 ± 3.51 1.50 ± 2.42

15 49.90 ± 10.47 51.80 ± 11.94 33.20 ± 11.77 48.83 ± 13.75 43.00 ± 14.29 35.33 ± 11.29 18.25 ± 7.91

16 51.50 ± 11.92 48.30 ± 11.00 51.60 ± 10.02 51.33 ± 10.25 52.10 ± 10.26 52.50 ± 11.89 26.75 ± 6.67

17 51.80 ± 8.68 48.80 ± 9.88 47.20 ± 10.79 47.50 ± 10.06 50.20 ± 12.78 50.33 ± 9.46 24.00 ± 4.12

18 49.00 ± 11.61 51.90 ± 12.81 41.10 ± 11.31 50.83 ± 9.83 49.30 ± 8.75 46.67 ± 8.34 24.00 ± 5.55

19 45.50 ± 11.35 40.20 ± 9.20 35.40 ± 10.64 47.00 ± 12.36 42.90 ± 10.79 42.83 ± 9.16 22.25 ± 5.95

20 36.20 ± 9.61 42.70 ± 11.83 48.70 ± 10.73 47.17 ± 11.12 28.30 ± 10.67 27.17 ± 10.14 12.00 ± 4.97

21 45.70 ± 11.25 38.30 ± 10.53 35.20 ± 10.83 40.33 ± 9.73 40.20 ± 10.15 34.00 ± 11.33 16.75 ± 6.46

22 45.70 ± 10.93 45.70 ± 9.69 43.40 ± 11.71 44.00 ± 11.33 46.60 ± 9.71 41.33 ± 10.08 20.75 ± 3.55

23 32.60 ± 9.75 32.50 ± 10.66 25.40 ± 7.06 24.17 ± 9.11 19.80 ± 9.15 15.83 ± 8.31 9.75 ± 3.22

24 53.30 ± 11.41 54.50 ± 12.71 49.40 ± 9.18 50.50 ± 9.94 46.90 ± 10.97 39.33 ± 10.23 23.25 ± 5.14

25 56.70 ± 10.72 53.00 ± 12.78 46.90 ± 11.47 47.67 ± 10.73 49.00 ± 9.74 47.00 ± 14.18 23.00 ± 4.97

26 4.20 ± 4.21 4.30 ± 3.91 3.30 ± 3.73 5.00 ± 3.94 3.70 ± 4.02 3.17 ± 3.34 1.50 ± 1.75

27 52.50 ± 11.21 44.90 ± 11.72 51.00 ± 10.50 46.50 ± 11.00 57.00 ± 10.40 55.33 ± 9.99 28.50 ± 5.30

28 20.30 ± 8.60 24.80 ± 7.49 21.00 ± 8.08 24.17 ± 10.35 19.50 ± 8.28 19.17 ± 4.93 12.00 ± 2.58

29 54.80 ± 9.95 53.00 ± 11.87 57.70 ± 10.46 52.00 ± 10.55 56.30 ± 11.15 57.00 ± 10.88 31.25 ± 7.38

30 44.00 ± 9.53 47.80 ± 10.16 40.70 ± 11.95 45.67 ± 10.06 44.80 ± 9.42 44.50 ± 10.45 22.25 ± 4.63

31 45.00 ± 10.35 52.90 ± 11.78 38.20 ± 12.32 38.33 ± 6.61 38.60 ± 10.45 37.67 ± 10.97 21.00 ± 3.57

32 49.60 ± 11.01 52.00 ± 10.93 51.60 ± 12.27 49.17 ± 10.67 49.60 ± 13.47 49.43 ± 11.99 24.75 ± 4.63

33 48.90 ± 10.80 45.90 ± 10.63 46.20 ± 10.18 51.67 ± 11.24 47.20 ± 10.60 44.33 ± 12.23 24.25 ± 5.66

34 44.10 ± 12.02 46.40 ± 9.95 45.60 ± 10.03 45.83 ± 10.35 42.70 ± 9.96 42.00 ± 7.50 24.50 ± 3.50

35 18.90 ± 6.87 23.30 ± 8.96 27.70 ± 11.66 25.33 ± 9.91 18.40 ± 8.72 18.17 ± 9.33 10.00 ± 2.89

36 47.30 ± 12.50 46.70 ± 9.72 44.90 ± 11.85 48.67 ± 10.82 33.70 ± 12.49 30.50 ± 10.20 19.50 ± 6.21

37 26.60 ± 8.30 26.90 ± 9.94 26.00 ± 8.81 29.00 ± 8.65 23.80 ± 8.12 23.00 ± 10.20 13.50 ± 6.15

38 53.40 ± 10.66 51.10 ± 10.02 51.70 ± 9.35 53.00 ± 9.52 52.40 ± 12.09 51.50 ± 12.12 33.50 ± 3.76

39 28.60 ± 9.26 41.50 ± 10.22 29.80 ± 11.82 37.00 ± 9.25 28.20 ± 11.33 27.00 ± 9.25 20.00 ± 6.12

40 48.60 ± 9.32 47.50 ± 10.99 53.10 ± 10.25 47.17 ± 7.62 48.40 ± 10.81 48.83 ± 9.16 31.00 ± 6.69

41 25.70 ± 9.04 10.40 ± 6.05 19.60 ± 10.39 27.50 ± 7.74 15.90 ± 7.47 14.67 ± 8.80 8.00 ± 2.30

42 56.00 ± 7.95 57.00 ± 10.83 51.00 ± 10.97 54.50 ± 8.84 51.10 ± 10.51 51.67 ± 10.11 27.25 ± 6.06

43 6.70 ± 5.31 3.80 ± 4.47 3.60 ± 4.52 2.00 ± 2.82 4.90 ± 4.79 4.17 ± 4.17 2.50 ± 2.36

44 10.60 ± 6.11 9.80 ± 6.54 10.70 ± 6.47 17.00 ± 8.37 8.40 ± 7.45 10.83 ± 7.55 5.25 ± 3.22

45 46.20 ± 9.18 49.20 ± 10.27 49.40 ± 12.60 55.50 ± 11.62 45.70 ± 8.45 47.50 ± 10.97 31.25 ± 8.76

46 30.58 ± 7.46 35.58 ± 9.72 24.92 ± 9.16 31.81 ± 9.44 24.67 ± 8.07 25.42 ± 8.71 12.70 ± 5.05

47 27.10 ± 11.21 25.10 ± 8.36 29.10 ± 8.79 30.83 ± 11.07 22.00 ± 8.02 25.83 ± 9.83 12.75 ± 5.46

48 44.00 ± 10.69 11.80 ± 7.68 19.00 ± 8.45 30.00 ± 8.41 35.30 ± 11.31 21.83 ± 9.69 11.50 ± 5.80

49 10.50 ± 7.16 13.00 ± 6.70 10.40 ± 4.93 12.50 ± 8.59 13.70 ± 6.91 12.50 ± 6.66 15.00 ± 6.12

50 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

51 50.40 ± 9.52 43.10 ± 11.29 47.10 ± 9.69 45.67 ± 9.89 47.90 ± 11.39 46.83 ± 10.71 27.00 ± 5.11

52 42.50 ± 9.75 49.60 ± 10.59 39.50 ± 9.81 43.00 ± 9.15 40.10 ± 10.86 38.17 ± 13.10 19.00 ± 4.89

Average 36.31 ± 9.14 38.46 ± 9.62 33.88 ± 9.38 36.80 ± 9.06 33.23 ± 9.38 31.81 ± 9.06 17.78 ± 4.90

Table 2.  Misclassification rate (%) of different methods evaluated using GigaDB dataset.
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proposed OPTICAL predictor has features that are more separable, which accounts for the improved perfor-
mance of OPTICAL.

Moreover, in this study, we have proposed a sliding window approach for obtaining the sequence input for 
the LSTM network. In doing so, parameters such as the number of LSTM layers, the number of hidden units in 
each LSTM layer, the length of the sliding window (l) and the overlap (t) had to be selected. We selected a sliding 

Dataset Method Sensitivity Specificity
Cohen’s 
kappa index

BCI 
competition IV 
dataset 1

CSP 0.694 0.700 0.369

DFBCSP 0.794 0.795 0.542

SBLFB 0.806 0.801 0.589

SFTOFSRC 0.697 0.771 0.296

OPTICAL* 0.817 0.808 0.615

OPTICAL 0.833 0.825 0.650

GigaDB dataset

CSP 0.638 0.621 0.297

DFBCSP 0.619 0.616 0.266

SBLFB 0.666 0.658 0.339

SFTOFSRC 0.623 0.531 0.291

OPTICAL* 0.674 0.662 0.364

OPTICAL 0.688 0.675 0.374

Table 3.  A comparison of the statistical measures of the proposed predictor with other competing methods.

Figure 4.  Distribution of the best two features obtained using CSP and proposed predictor (OPTICAL).

https://doi.org/10.1038/s41598-019-45605-1


9Scientific Reports |          (2019) 9:9153  | https://doi.org/10.1038/s41598-019-45605-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

window length of 25% of the trial length and approximately 5% of trial length as the overlap. These two param-
eters were chosen such that all sample points in a trial were utilized without the need for padding. Using these 
parameters, we determined the optimal LSTM network. Experiments were carried out to determine the number 
of LSTM layers and the number of hidden units in each LSTM layer for optimal performance. We limited our 
experiments to a maximum of 2 LSTM layers and a maximum of 200 hidden units in each LSTM layer in order 
to keep the computational complexity of the system low. It was seen that using two LSTM layers produced better 
results compared to using a single LSTM layer. The result for single LSTM layer network with a different number 
of hidden units is shown in Fig. S1 (refer to Supplementary Text). The results for the LSTM network having two 
LSTM layers with a varying number of hidden units in each LSTM layer is shown in Fig. 5. As can be seen from 
Fig. 5, highest accuracies were obtained at four different combinations. We tested these four combinations on 
few other subjects for both datasets and the network having 100 hidden units in 1st LSTM layer and 20 hidden 
units in 2nd LSTM layer performed well compared to the other three combinations. Hence, LSTM network hav-
ing two LSTM layers with 100 hidden units in 1st LSTM layer and 20 hidden units in 2nd LSTM layer have been 
used in OPTICAL. Although we have selected the above mentioned hidden units for our proposed predictor, 
this is not the optimal LSTM network size for all the subjects. To obtain optimal performance for all subjects, we 
need to optimize the LSTM network size for each of the subjects. This has not been done in this study. We also 
did not optimize the window length and overlap parameters, which will be considered in future works. Other 
aspects that will be considered in future works are using other variants of LDA algorithms57–59, performing feature 
selection60–62 instead of LDA, and combining two or more methods63–66 to further improve the performance of 
OPTICAL.

The graph of Fig. 6 shows how the root mean squared error and the loss function are minimized during the 
training of the LSTM network for one of the trial runs of subject 01 of GigaDB dataset. It was noted that OPTICAL 
can learn the LSTM network in 100 iterations which takes about six seconds. This does not include the time taken 
to optimize the LSTM network parameters. Similar graphs were obtained for other subjects on both the datasets. 
As reported in our previous work38, the time taken to process and classify a test signal for CSP and SBLFB are 
1.00 ms and 4.60 ms, respectively. The time taken to process and classify a test signal using the OPTICAL predic-
tor is 23 ms for the multi-class approach and 37 ms for the one-versus-rest approach, which makes it suitable for 
real-time applications. OPTICAL achieved improved performance compared to other approaches such as CSP 
and SBLFB at the expense of increased computational time. It is also worth mentioning that the time taken to 
classify a test signal using one-versus-rest approach would increase linearly with increasing number of MI tasks 
that need to be classified. This is due to the fact that for an n-class classification problem, the one-versus-rest 
approach will require n − 1 levels of classification. In this work, we considered the 3-class classification problem to 
evaluate the performance of OPTICAL when implemented in real-time. Therefore, two levels of classification are 
required where the first level is used to differentiate between tasks related MI and non-task related EEG signals, 
while the second level of classification is used to differentiate between the two tasks related MI EEG signals. On 
the other hand, there will be only a slight increase in the time taken to classify a test signal using the multi-class 
approach as the number of MI tasks is increased. Thus, the choice of using the one-versus-rest approach or the 
multi-class approach will depend on the specific application where OPTICAL needs to be used. We have also 
shown that OPTICAL can perform well for real-time classification. Furthermore, to show that the performance 
improvement achieved by OPTICAL is significant, we have performed paired t-test with a significance level of 
5%. This paired t-test was performed using the results of the proposed OPTICAL predictor and the results of 
SBLFB predictor (the second best performing method). The p-values obtained were 0.025 and 0.005 for BCI 
competition IV dataset 1 and GigaDB dataset, respectively. This shows that significant improvements have been 
achieved using OPTICAL for both the datasets.

Furthermore, EEG signals have low signal-to-noise-ratio, and as such, the features extracted are also noisy. 
LDA projects the feature space onto a lower-dimensional space with good class-separability while minimizing 

Figure 5.  Accuracies of the LSTM network having two LSTM layers with varying number of hidden units 
obtained using subject a of BCI competition IV dataset 1. The x-axis represents the number of hidden units in 
the 1st LSTM layer, the y-axis represents the number of hidden units in the 2nd LSTM layer and z-axis represents 
the accuracy.
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the noise. Thus, we have used the reduced dimensional feature space (obtained by performing LDA) as input 
to the SVM classifier instead of directly feeding the CSP variance based features to the SVM classifier (as done 
in our previous work30). It helps in reducing the noise present in the CSP variance based features and results in 
an improvement in the classification performance. This is evident from Fig. 7, where it is shown that using the 
reduced dimensional feature space obtained from LDA as input to the SVM classifier (CSP-LDA) achieved lower 
misclassification rate compared to directly using the CSP variance based features as input to the SVM classifier.

Moreover, the EEG signal for the same MI task varies between different sessions due to the slight changes in 
the position of the electrodes. This result in the EEG signals being scaled or offset by some value between different 
sessions. The classification-based LSTM network uses the softmax layer that is not scale-invariant and may result 
in degrading the performance of the system. On the other hand, the regression-based LSTM network67,68 is scale 
invariant and helps to tackle this problem to some extent. It can be seen from Fig. 7 that the regression-based 
LSTM network with SVM classifier performs better than the classification-based LSTM network for EEG signal 
classification. Therefore, we have employed the regression-based LSTM network.

Furthermore, we combine the power of both CSP and LSTM features. It can be noted that 3 out of the 7 
subjects (for BCI competition IV dataset 1) obtained lower misclassification rate using CSP-LDA in compar-
ison to the LSTM-regression based network. Therefore, we have combined the CSP-LDA approach with the 
LSTM-regression based network (resulting in the proposed OPTICAL predictor), which boosts the performance 
of the overall system. It can be noted from Fig. 7 that combining these 2 approaches resulted in further reduction 
in the misclassification rate of 5 out of the 7 subjects while also obtaining the lowest average misclassification rate. 
Thus, the framework presented in Fig. 1 has been adopted.

Figure 6.  Graph showing how the LSTM network learns the hyper-parameters to minimize the loss function.

Figure 7.  The misclassification rates of different experiments conducted using BCI competition IV dataset 1.

https://doi.org/10.1038/s41598-019-45605-1


1 1Scientific Reports |          (2019) 9:9153  | https://doi.org/10.1038/s41598-019-45605-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

To add on, it is also worth noting that the classification performance of the artificially generated data for BCI 
Competition IV dataset 1 (subjects c, d and e) was good with subjects d and e achieving less than 12% misclas-
sification rate. These results are in agreement with the results obtained by other related works such as CSP and 
SBLFB approaches.

Moreover, the hyper-parameters learned by the Bayesian optimization process differed significantly between 
various subjects. This is the reason why mostly subject-dependent approaches19,20,23,26,31,34,35,51,52 have been pro-
posed as the MI EEG signals for the same task varies between subjects. The MI EEG signals of a particular subject 
may also vary between different sessions due to slight deviation in the exact placement of the sensors. This will 
require re-tuning of the hyper-parameters, however, this is not practical. Thus, to tackle this problem, covariate 
shift detection algorithms69–72 are recommended in order to correct the shift in the MI EEG data that occurs 
between different sessions.

Conclusion
In this study, we have introduced a new predictor called OPTICAL which utilizes optimized CSP and LSTM 
network for the classification of EEG signals. A sliding window approach has been proposed for solving the 
problem of obtaining sequence input for the LSTM network. Significant improvements have been achieved on 
both the datasets, with GigaDB dataset having a considerably large number of subjects showing that OPTICAL is 
robust and reliable predictor. Promising results have been achieved as OPTICAL outperformed other competing 
methods in terms of misclassification rate, sensitivity, specificity and Cohen’s kappa index. OPTICAL can be used 
to develop improved BCI systems. Although we have evaluated OPTICAL using MI EEG datasets, it should also 
perform well for EEG signal classification in other applications such as sleep stage detection and seizure detec-
tion. Future works will consider deeper networks and hybrid approaches by combining OPTICAL with other 
approaches.

Data Availability
The datasets used in this work are publically available for the research committee.
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