
RESEARCH Open Access

HseSUMO: Sumoylation site prediction
using half-sphere exposures of amino acids
residues
Alok Sharma1,2,3*† , Artem Lysenko2†, Yosvany López4, Abdollah Dehzangi5, Ronesh Sharma3,6, Hamendra Reddy3,
Abdul Sattar1 and Tatsuhiko Tsunoda2,7,8*

From 17th International Conference on Bioinformatics (InCoB 2018): Genomics
New Delhi, India. 26-28 September, 2018

Abstract

Background: Post-translational modifications are viewed as an important mechanism for controlling protein
function and are believed to be involved in multiple important diseases. However, their profiling using laboratory-
based techniques remain challenging. Therefore, making the development of accurate computational methods to
predict post-translational modifications is particularly important for making progress in this area of research.

Results: This work explores the use of four half-sphere exposure-based features for computational prediction of
sumoylation sites. Unlike most of the previously proposed approaches, which focused on patterns of amino acid
co-occurrence, we were able to demonstrate that protein structural based features could be sufficiently informative
to achieve good predictive performance. The evaluation of our method has demonstrated high sensitivity (0.9),
accuracy (0.89) and Matthew’s correlation coefficient (0.78–0.79). We have compared these results to the recently
released pSumo-CD method and were able to demonstrate better performance of our method on the same
evaluation dataset.

Conclusions: The proposed predictor HseSUMO uses half-sphere exposures of amino acids to predict sumoylation
sites. It has shown promising results on a benchmark dataset when compared with the state-of-the-art method.
The extracted data of this study can be accessed at https://github.com/YosvanyLopez/HseSUMO.

Background
Post-translational modifications (PTMs) of proteins are
enzyme-medicated covalent alterations of protein sequence
during which a chemical group can be added to a particu-
lar residue or sequence is cleaved at a specific location [1].
These modifications greatly expand the range of possible
final forms of proteins that can be generated from the
same genomic sequence [2]. PTMs also play an important
role in modulation of all aspects of protein function, in
particular, they can determine protein localization within

the cell [3], mediate signal transduction [4, 5], activate or
deactivate enzymes and transporters [6, 7] and underlie
protein degradation and recycling [8]. Despite this critical
role PTMs play in all living systems, accurate identification
of all types of these modifications using laboratory methods
remains challenging. Some pertinent problems include [9]:
(1) isolation of specific proteins with modification (s) of
interest from the highly diverse and biochemically hetero-
geneous proteome (2) masking effects of the highly abun-
dant proteins in the sample, which can make isolation
using standard immunoprecipitation and chromatographic
methods difficult and (3) the diversity and molecular
complexity of possible PTMs themselves.
Positions at which PTMs are possible are usually highly

specific to particular protein residues and are governed by
the amino acid motifs at the site and three-dimensional
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conformation of the protein [1]. Therefore, a priori identi-
fication of the sites and proteins where particular PTMs
can occur can be an important way to narrow down the
possibilities and facilitate their experimental verification.
This sequence-based specificity allows for the possibility
of identification of these sites using computational pre-
dictive approaches and development of such methods is
an area of active research [10].
One of the important types of PTMs, called sumoyla-

tion, involves reversible covalent bonding of small
ubiquitin-like modifier proteins SUMO1, SUMO2 and
SUMO3 [11]. This modification is of particular interest
due to its involvement in neurodegenerative [12–14] and
immune-related diseases [15–17], as well as cancer [18,
19]. Sumoylation involves several enzymatic steps and was
previously reported to be commonly found at ψK.E/D (or
inverse E/D.Kψ) motif, where ψ can any of the hydropho-
bic amino acids [20]. However most recent results indicate
that as many as half of all sumoylation sites do not actu-
ally follow this pattern [4], therefore simple motif-based
strategies are likely to be insufficient for good predictive
performance on these more recent data.
To date, multiple sequence-based approaches to predic-

tion of sumoylation sites have been proposed. Some earlier
approaches are SUMOsp [21], which employs a group-
based prediction system (GPS) similarity clustering and
SUMOpre [22], which works by fitting a multiple linear re-
gression model to a 7-residue sequence window. In 2009,
an updated version of the SUMOsp algorithm was released
that achieved higher specificity and accuracy than any other
tools available at the time and proved the utility of their
original GPS-based approach. Next, SUMOhydro [23] was
proposed that introduced an improved dataset of
experimentally-determined sumoylation sites and explored
an original type of predictive feature (binary-encoded
hydrophobicity pattern) in combination with a support vec-
tor machine classifier. GPS-SUMO [24] further refined a
GPS-based approach proposed in SUMOsp 1.0 and 2.0,
and combined it with particle swarm optimization algo-
rithm. Then, an important shift in direction was proposed
by [25], who were the first to use protein structural features
for prediction of sumoylation sites, in particular, predicted
disorder and confirmation flexibility. And, finally, the most
recent methods are pSumo-CD [26] and SUMO_LDA [27].
The former applied a covariance discriminant algorithm in
combination with pseudo amino acid composition model.
The latter works by computing a position-specific amino
acid propensity matrix at locations of interest, which was
then used in combination with linear discriminant analysis.
Although good performance results have been consist-

ently reported even in the very early studies, it appears
likely that these efforts have been severely limited by the
amount of experimental data that was available at the
time. Most importantly, it appears that the proportion of

the sumoylation sites that do not follow the consensus
motif was previously greatly underestimated (e.g. it was
assumed to be only about 23% in [21]) until sufficient
data were collected in more recent studies [4]. This indi-
cates that the problem is both more complex than was
previously thought and that structural patterns of the
protein fold likely play an important role in determining
suitable sumoylation sites. However, a vast majority of
previously proposed methods have focused on features
chiefly based on amino acid occurrence patterns at the
sites of interest. To explore the usefulness of structural
features [28–33], we propose a novel method, Hse-
SUMO that uses a combination of four different
half-sphere exposure (HSE) measures, originally devel-
oped to characterize solvent exposure at particular
amino acid residues [34]. We demonstrate that a com-
bination of these features is highly promising for predic-
tion of sumoylation sites and we were able to achieve
very good levels of performance even using a relatively
simple decision tree classifier (0.89 area under ROC
curve for 6, 8 and 10-fold cross-validation schemes).
HSE measure is used for feature computation. It is an

alternative measure of the solvent exposure of the amino
acids and its use for sumoylation site prediction has
shown promising results when compared with the existing
state-of-the-art sumoylation site predictor. This indicates
that HSE contains the complementary information of the
amino acids to identity the sumoylation sites. In the litera-
ture, the HSE measure has been shown to contain import-
ant information in the related field of research [35, 36].
In addition, the imbalance of data deteriorates the per-

formance. To tackle this, we have used the under-sampling
technique to obtain the balanced sampling. Furthermore,
to report the statistical significance of the HseSUMO, we
performed k-fold cross-validation and reported perform-
ance measures such as sensitivity, specificity, accuracy and
MCC. For sumoylation site prediction, it is very crucial to
have high sensitivity as detecting affected lysine sites are of
prime importance. Thus, HseSUMO achieved performance
improvement of 36.5% in terms of sensitivity and 16.7% in
terms of accuracy.

Methods
Dataset description
All data used in this analysis is from the Compendium
of Protein Lysine Modifications (CPLM) database [37], a
resource which manually curates information about 12
different types of lysine PTMs from literature. From
these data we have identified a subset of all proteins
which were profiled for sumoylation, giving 448 proteins
in total that had 780 positive examples of sumoylated
sites and 21,353 confirmed non-sumoylated sites. We fil-
tered out sequences over 40% sequential similarity using
CD-HIT [38]. Therefore, our benchmark dataset has less
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than 40% sequential similarity. The difference between
positive and negative samples creates class imbalance
problem. The two commonly used strategies to overcome
this problem are over-sampling and under-sampling. The
over-sampling procedure could increase the probability of
over-fitting the model, and under-sampling often provides
a modest solution for a given model. Therefore, we
selected under-sampling procedure like NearMiss method
[39] by employing the imbalanced-learn package of py-
thon. After applying NearMiss method we ended up with
780 negative and 780 positive samples.

Half-sphere exposure feature computation
Half-sphere exposure (HSE) is a solvent exposure measure-
ment similar to Contact Number (CN) [40], and Accessible
Surface Area (ASA) [41]. In contrast to ASA and CN that
do not provide explicit information regarding the orienta-
tion of side chains which is important on the conformation
of the 3D structure of the proteins and its interaction with
other macro-molecules HSE is designed to attain such
information [42]. HSE is introduced in [42] and can be
calculated in two ways by splitting the sphere around the
Cα atom (with radius R typically equal to 12 Å) into two
half-spheres either along the vector of Cα-Cβ atoms or a
pseudovector of Cα-Cβ generated from the sum of vectors
Cαi − 1 −Cαi and Cαi+ 1 −Cαi. The first one is referred to as
HSEβ and the second one as HSEα.
For HSEβ, the half-sphere containing the Cβ atom is

then defined as upper and the other as down
half-spheres and the numbers of Cα atoms enclosed in
these two half-spheres were named as HSEβ-up and
HSEβ-down, respectively. An illustration for HSE is
given in Fig. 1. For HSEα, the half-sphere perpendicular
to the sum of Cαi − 1 − Cαi and Cαi + 1 −Cαi vectors is
HSEα-up and another one is HSEα-down. The main
difference between HSEβ and HSEα is that calculating

the second does not require the position of Cβ which is
hard to determine for some cases. It was shown in [42]
that HSEα is a better measurement for solvent exposure
than CN, ASA and even HSEβ. However, the use of
HSEα and HSEβ simultaneously has shown to be
complementary [43, 44].

Lysine residue description
Lysine residue (sumoylated or non-sumoylated) is
described by a segment of 31 amino acids (15 upstream
and 15 downstream) as done by previous studies [45–51].
If a lysine residue is present in any terminus of a protein
sequence and if the segment of 31 residues is not possible
then we adjusted the segment by employing mirror of
amino acids [45]. Suppose lysine residue site is denoted by
K then a segment of 31 amino acids will be given as S = {A
−15, A−14,…, A−1, L, A1,…, A14, A15}. Therefore, a lysine K
consists of 31 HSE features and it is characterized by the
124-dimensional feature vector. The high dimensionality
can be further reduced by feature selection techniques
[52–54].

Model training
The model was trained using a decision tree-based classi-
fier. Despite its simplicity, the decision tree classifier has
the advantage of allowing easy interpretation of the under-
lying model, which can facilitate discovery of biologically
meaningful patterns captured by the model. To get an ac-
curate measure of performance we have used a repeated
cross-validation approach. There are three cross-validation
methods, i.e., independent dataset test, sub-sampling (or
K-fold cross-validation) test, and jackknife test, often used
to evaluate the anticipated success rate of a predictor.
Among the three methods, however, the jackknife test is
deemed the least arbitrary and most objective one and
hence has been widely recognized and increasingly adopted

Fig. 1 An illustration of half-sphere exposure of amino acid
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by investigators to examine the quality of various predic-
tors [55–59]. In the jackknife test, each sequence in the
training dataset is in turn singled out as an independent
test sample and all the rule-parameters are calculated with-
out including the one being identified. Though Jackknife
test is the most effective, due to its computational expense
we have adopted the K-fold test which is an alternative
evaluation method and has been widely used in many
protein-related problems [33, 60–62]. Briefly, in K-fold the
dataset was partitioned into k approximately equally-sized
folds (in this case either 6, 8 or 10) [63]. In turn, each of
the subsets was set aside and used for validation of the
model trained on the remaining k-1 folds. To train the pre-
dictor, we used the Python implementation of decision
trees. The quality of a split was measured with Gini impur-
ity and “best” was selected as the strategy for choosing the
split at each node. Moreover, only two samples were re-
quired for splitting an internal node.

Evaluation of model performance
According to established evaluation framework, we de-
fine the number of instances where sumoylated sites
were predicted, either correctly or incorrectly as true
positives (TP) or false positives (FP) respectively. Simi-
larly, for non-sumoylated sites, counts of correct or in-
correct predictions are defined as false negatives (FN) or
true negatives (TN). Then sensitivity (also known as true
positive rate) is a proportion of correctly predicted
sumoylated sites among all real sites:

Sens ¼ TP
FN þ TP

ð1Þ

and specificity is a proportion of all correctly predicted
non-sumoylated sites among all negative predictions:

Spec ¼ TN
FP þ TN

ð2Þ

The other two performance metrics are accuracy and
Matthew’s correlation coefficient which are defined
according to the following formulae:

Accuracy ¼ TN þ TP
TN þ FN þ TP þ FP

ð3Þ

MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN þ FPð Þ � TP þ FNð Þ � TP þ FPð Þ � TN þ FNð Þp

ð4Þ
The last evaluation metric used was the area under

receiver-operator characteristic (ROC) curve. The curve
is computed by considering how the trade-off between
sensitivity and false positive rate changes at a range of
different cut-offs of class prediction probability (M)
returned by a given classifier. Here, the false positive rate
is defined as follows:

FPR ¼ FP
TN þ FP

ð5Þ

And, finally, given these definitions the area under
(AUC) the ROC curve is described as follows:

AUC Mð Þ ¼
Z −∞

∞
Sens Mð Þ � −FPR0 Mð Þð Þ dM ð6Þ

To verify that the performance of the classifier is robust,
ROC-AUC measures were averaged across all cross-valid-
ation folds with the same fold number, and the resulting
average curves, AUC values and their standard deviations
are shown in Fig. 2. We also report the performance of the
most recently released alternative method called
pSumo-CD. The comparison was done by annotating all
proteins in our dataset using the pSumo-CD web server.
The resulting annotations were processed in an identical
way to those of our method and the same set of four
performance metrics were computed.

Results and discussion
The results of our evaluation are shown in Table 1, which
showed that our method was able to outperform
pSumo-CD on according to all metrics with exception of
specificity. However, we note that there is a trade-off
between the sensitivity and specificity measures, which can
be realized by altering a threshold of the classifier at which
a particular prediction is made. Notably, the sensitivity of
pSUMO-CD is considerably lower, and more robust mea-
sures like accuracy (16.7% higher) and Matthew’s correl-
ation coefficient (0.296 higher) are considerably better for
our method. The difference between performances
achieved for different k-folds validation schemes was also
relatively small, indicating that over-fitting is likely to be
relatively low. We also would like to point out that as
pSumo-CD is, in essence, a machine learning method it will
inherently have better performance on the samples from
the original dataset used to train its model. Although from
the description of the method we were able to deduce that
there might be an overlap between our evaluation dataset
and training dataset of pSumo-CD, not enough information
was provided to allow us to identify and exclude these
samples. Therefore, for this reason, the evaluation is likely
to be biased in favor of pSumo-CD.
To compare the HseSUMO with pSumo-CD predictors,

we have analyzed the sumoylation sites predicted by Hse-
SUMO and pSumo-CD. (Additional file 1: Supplementary
Table S1) shows the total number of sites predicted for 448
proteins analyzed in this paper. It is observed that out of
780 positives sites, HseSUMO correctly predicted 698 sites
compared to 418 sites predicted by pSumo-CD. Thus, 35%
increase in the prediction ratio is noted for HseSUMO.
Moreover, evaluating the performance of HseSUMO for
different folds resulted with higher value of sensitivity for
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10-fold cross-validation, while for 6-fold cross-validation a
better performance was observed in terms of specificity,
accuracy and MCC measures. Overall, there is a very little
change in the performance measures for different folds
when comparing HseSUMO and pSumo-CD.

In detail, the highest sensitivity by HseSUMO was noted
as 0.904. The specificity was in the range of 0.872 and
0.895. The specificity of pSumo-CD was the highest achiev-
ing at 0.921, however, it provided sensitivity of 0.536 only.
Thus, most of the sumoylation sites were not detected. The
accuracy for HseSUMO was in the range of 0.888 and
0.895, however, for pSUMO-CD we achieved 0.728. The
MCC measure was in the range 0.776 and 0.790 for Hse-
SUMO, while pSUMO-CD was able to achieve 0.494 MCC
score. In summary, we were able to achieve performance
improvement of 36.5, 16.7, and 29.6% in terms of sensitiv-
ity, accuracy and MCC, respectively. However, pSumo-CD
only showed high performance on specificity measure.
Although the metrics reported above are commonly used

to evaluate the performance of particular machine learning
classifiers, they are all subject to a limitation of only being
applicable after a class prediction has been made. However,
most classifiers can return a score rather than hard
prediction and the final prediction is generated by applying
a particular cut-off to that score. Depending on the cost
attached to making an error of particular type different
threshold can be chosen. Therefore, an analysis of the area
under the ROC curve, which summarizes performance at
all possible threshold can potentially be more useful. The
results of the ROC-AUC analysis of our method are shown
in Fig. 2; average AUC value for all fold numbers was
recorded at 0.89, indicating stable performance. In all cases,
the higher standard deviation was associated with lower
score cut-offs.
Our method was able to achieve highly competitive

results despite forgoing pattern-based features that were
key for many previous approaches, and, importantly, also
performed well on an updated dataset that incorporated
greater proportion of sites. These results indicate that
structural features, e.g. HSE features are likely important
for underlying biology of sumoylation mechanism and
could be highly promising features for improvements in
computational prediction of both sumoylation sites as
well as other types of PTMs.

Conclusions
Despite recent progress in the development of better
laboratory-based PTM detection methods, their experi-
mental identification remains challenging. In this study,

Fig. 2 Receiver operating characteristic curves of HseSUMO
performance. Three panels show results for 6-fold (a), 8-fold (b),
and 10-fold (c) evaluation schemes

Table 1 Performance evaluation of HseSUMO. CV refers to the
cross-validation scheme for 6-fold, 8-fold and 10-fold

Methods Sensitivity Specificity Accuracy MCC

pSumo-CD 0.536 0.921 0.728 0.494

HseSUMO (CV- 6 0.895 0.895 0.895 0.790

HseSUMO (CV- 8) 0.897 0.879 0.888 0.777

HseSUMO (CV- 10) 0.904 0.872 0.888 0.776

The highest values are depicted as bold faces
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we propose a new, accurate method for prediction of
sumoylation sites, an important type of PTM underlying
multiple human diseases. Our method demonstrates the
predictive power of features based on protein structure
in case of sumoylation. This finding is of great interest,
as all of the currently available methods in this area are
based on features derived from some form of amino acid
co-occurrence patterns, but recent experimental results
indicate that over half of all known sumoylation sites are
not associated with a clear amino acid motif [4]. Further-
more, to make current predictors more practical to the
scientific community, a user friendly web-server is often
developed [36, 64–66]. Therefore, we will make an effort
to provide a flexible web-server for the method in the near
future, which will undoubtedly contribute to enhance the
ongoing work of experiment scientists and medical
researchers alike. Meanwhile, interested researchers can
access to the scripts and training matrices available at
https://github.com/YosvanyLopez/HseSUMO.

Additional file

Additional file 1: Supplementary Table S1. Prediction of protein
sequences by predictors (XLS 58 kb)

Abbreviations
ASA: Accessible surface area; AUC: Are under curve; CN: Contact number;
FN: False negative; FP: False positive; HSE: Half-sphere exposure;
HseSUMO: Sumoylation predictor using HSE of amino acids; MCC: Matthew’s
correlation coefficient; PTM: Post-translation modification; ROC: Receiver
operating characteristics; TN: True negative; TP: True positive

Acknowledgements
Not applicable.

Funding
Publication costs were funded by the Grant-in-Aid for RIKEN IMS and CREST
from the Japan Science and Technology Agency.

Availability of data and materials
The datasets used and analysed during the current study are publically
available online at https://github.com/YosvanyLopez/HseSUMO

Authors’ contributions
AlS and AL conceived and wrote the first manuscript. YL and AD performed
analysis and experiments. HR, RS, AS and TT contributed in manuscript write-
up. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they do not have any competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Institute for Integrated and Intelligent Systems, Griffith University, Q,
Brisbane LD-4111, Australia. 2Laboratory for Medical Science Mathematics,
RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
3School of Engineering and Physics, Faculty of Science, Technology and
Environment, University of the South Pacific, Suva, Fiji Islands. 4Genesis
Institute of Genetic Research, Genesis Healthcare Co, Tokyo, Japan.
5Department of Computer Science, Morgan State University, Baltimore, MD,
USA. 6School of Electrical and Electronics Engineering, Fiji National University,
Suva, Fiji. 7Department of Medical Science Mathematics, Medical Research
Institute, Tokyo Medical and Dental University, Tokyo, Japan. 8CREST, JST,
Tokyo 113-8510, Japan.

Received: 25 May 2018 Accepted: 28 October 2018
Published: 18 April 2019

References
1. Mann M, Jensen ON. Proteomic analysis of post-translational modifications.

Nat Biotechnol. 2003;21(3):255.
2. Jensen ON. Interpreting the protein language using proteomics. Nat Rev

Mol Cell Biol. 2006;7(6):391.
3. Warden SM, Richardson C, O'DONNELL J, Stapleton D, Witters LA. Post-

translational modifications of the β-1 subunit of AMP-activated protein kinase
affect enzyme activity and cellular localization. Biochem J. 2001;354(2):275–83.

4. Hendriks IA, D'souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC.
Uncovering global SUMOylation signaling networks in a site-specific
manner. Nat Struct Mol Biol. 2014;21(10):927.

5. Pawson T, Scott JD. Protein phosphorylation in signaling–50 years and
counting. Trends Biochem Sci. 2005;30(6):286–90.

6. Kessler BM, Edelmann MJ. PTMs in conversation: activity and function of
deubiquitinating enzymes regulated via post-translational modifications. Cell
Biochem Biophys. 2011;60(1–2):21–38.

7. Huber SC, Hardin SC. Numerous posttranslational modifications provide
opportunities for the intricate regulation of metabolic enzymes at multiple
levels. Curr Opin Plant Biol. 2004;7(3):318–22.

8. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J.
Global analysis of phosphorylation and ubiquitylation cross-talk in protein
degradation. Nat Methods. 2013;10(7):676.

9. Qing G, Lu Q, Xiong Y, Zhang L, Wang H, Li X, Liang X, Sun T. New
opportunities and challenges of smart polymers in post-translational
modification proteomics. Adv Mater. 2017;29(20). https://doi.org/10.1002/
adma.201604670.

10. Kamath KS, Vasavada MS, Srivastava S. Proteomic databases and tools to
decipher post-translational modifications. J Proteome. 2011;75(1):127–44.

11. Flotho A, Melchior F. Sumoylation: a regulatory protein modification in
health and disease. Annu Rev Biochem. 2013;82:357–85.

12. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K,
Lukacsovich T, Zhu Y-Z, Cattaneo E. SUMO modification of huntingtin and
Huntington's disease pathology. Science. 2004;304(5667):100–4.

13. Krumova P, Weishaupt JH. Sumoylation in neurodegenerative diseases. Cell
Mol Life Sci. 2013;70(12):2123–38.

14. Lee L, Sakurai M, Matsuzaki S, Arancio O, Fraser P. SUMO and Alzheimer’s
disease. NeuroMolecular Med. 2013;15(4):720–36.

15. Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat
Rev Immunol. 2003;3(11):900.

16. Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: new insights
on cellular and molecular mechanisms. Trends Immunol. 2007;28(12):551–8.

17. Li M, Guo D, Isales CM, Eizirik DL, Atkinson M, She J-X, Wang C-Y. SUMO
wrestling with type 1 diabetes. J Mol Med. 2005;83(7):504–13.

18. Kim KI, Baek SH. SUMOylation code in cancer development and metastasis.
Mol Cells. 2006;22(3):247–53.

19. Eifler K, Vertegaal AC. SUMOylation-mediated regulation of cell cycle
progression and cancer. Trends Biochem Sci. 2015;40(12):779–93.

20. Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires
both a consensus modification motif and nuclear targeting. J Biol Chem.
2001;276(16):12654–9.

21. Xue Y, Zhou F, Fu C, Xu Y, Yao X. SUMOsp: a web server for sumoylation
site prediction. Nucleic Acids Res. 2006;34(suppl_2):W254–7.

22. Xu J, He Y, Qiang B, Yuan J, Peng X, Pan X-M. A novel method for high
accuracy sumoylation site prediction from protein sequences. BMC
Bioinformatics. 2008;9(1):8.

Sharma et al. BMC Genomics 2019, 19(Suppl 9):982 Page 6 of 7

https://github.com/YosvanyLopez/HseSUMO
https://doi.org/10.1186/s12864-018-5206-8
https://github.com/YosvanyLopez/HseSUMO
https://doi.org/10.1002/adma.201604670
https://doi.org/10.1002/adma.201604670


23. Chen Y-Z, Chen Z, Gong Y-A, Ying G. SUMOhydro: a novel method for the
prediction of sumoylation sites based on hydrophobic properties. PLoS One.
2012;7(6):e39195.

24. Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Liu Z, Zhao Y, Xue Y, Ren J.
GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-
interaction motifs. Nucleic Acids Res. 2014;42(W1):W325–30.

25. Yavuz AS, Sezerman OU. Predicting sumoylation sites using support vector
machines based on various sequence features, conformational flexibility and
disorder. BMC Genomics. 2014;15(9):S18.

26. Jia J, Zhang L, Liu Z, Xiao X, Chou K-C. pSumo-CD: predicting sumoylation sites
in proteins with covariance discriminant algorithm by incorporating sequence-
coupled effects into general PseAAC. Bioinformatics. 2016;32(20):3133–41.

27. Xu Y, Ding Y-X, Deng N-Y, Liu L-M. Prediction of sumoylation sites in
proteins using linear discriminant analysis. Gene. 2016;576(1):99–104.

28. Sharma R, Sharma A, Raicar G, Tsunoda T, Patil A. OPAL+: Length‐Specific
MoRF Prediction in Intrinsically Disordered Protein Sequences, Proteomics.
2018. https://doi.org/10.1002/pmic.201800058.

29. Saini H, Raicar G, Sharma A, Lal S, Dehzangi A, Lyons J, Paliwal KK, Imoto S,
Miyano S. Probabilistic expression of spatially varied amino acid dimers into
general form of Chous pseudo amino acid composition for protein fold
recognition. J Theor Biol. 2015;380:291–8.

30. Sharma R, Dehzangi A, Lyons J, Paliwal K, Tsunoda T, Sharma A. Predict
gram-positive and gram-negative subcellular localization via incorporating
evolutionary information and physicochemical features into Chou's general
PseAAC. IEEE Trans Nanobioscience. 2015;14(8):915–26.

31. Paliwal KK, Sharma A, Lyons J, Dehzangi A. Improving protein fold
recognition using the amalgamation of evolutionary-based and structural
based information. BMC Bioinformatics. 2014;15(Suppl 16):S12.

32. Lyons J, Dehzangi A, Heffernan R, Sharma A, Paliwal K, Sattar A, Zhou Y,
Yang Y. Predicting backbone Calpha angles and dihedrals from protein
sequences by stacked sparse auto-encoder deep neural network. J Comput
Chem. 2014;35(28):2040–6.

33. Sharma A, Lyons J, Dehzangi A, Paliwal KK. A feature extraction technique
using bi-gram probabilities of position specific scoring matrix for protein
fold recognition. J Theor Biol. 2013;320:41–6.

34. Heffernan R, Dehzangi A, Lyons J, Paliwal K, Sharma A, Wang J, Sattar A, Zhou
Y, Yang Y. Highly accurate sequence-based prediction of half-sphere exposures
of amino acid residues in proteins. Bioinformatics. 2015;32(6):843–9.

35. Yang Y, Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J,
Sattar A, Zhou Y. SPIDER2: a package to predict secondary structure,
accessible surface area and main-chain torsional angles by deep neural
networks. Methods Mol Biol. 2017;1484:55–63.

36. Sharma R, Raicar G, Tsunoda T, Patil A, Sharma A. OPAL: prediction of MoRF
regions in intrinsically disordered protein sequences. Bioinformatics. 2018;
34(11):1850–8.

37. Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q, Cheng Z, Guo A, Ren J, Xue
Y. CPLM: a database of protein lysine modifications. Nucleic Acids Res. 2014;
42(D1):D531–6.

38. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics. 2006;
22(13):1658–9.

39. Yen SJ, Lee YS. Under-sampling approaches for improving prediction of the
minority class in an imbalanced dataset. Lect Notes Contr Inf. 2006;344:731–40.

40. Chakravarty S, Varadarajan R. Residue depth: a novel parameter for the
analysis of protein structure and stability. Struct Fold Des. 1999;7(7):723–32.

41. Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number
and relative solvent accessibility in proteins. Proteins. 2002;47(2):142–53.

42. Hamelryck T. An amino acid has two sides: a new 2D measure provides a
different view of solvent exposure. Proteins. 2005;59(1):38–48.

43. Taherzadeh G, Zhou YQ, Liew AWC, Yang YD. Sequence-based prediction of
protein-carbohydrate binding sites using support vector machines. J Chem
Inf Model. 2016;56(10):2115–22.

44. Taherzadeh G, Yang YD, Zhang T, Liew AWC, Zhou YQ. Sequence-based
prediction of protein-peptide binding sites using support vector machine. J
Comput Chem. 2016;37(13):1223–9.

45. Jia JH, Liu Z, Xiao X, Liu BX, Chou KC. iSuc-PseOpt: identifying lysine
succinylation sites in proteins by incorporating sequence-coupling effects
into pseudo components and optimizing imbalanced training dataset. Anal
Biochem. 2016a;497:48–56.

46. Liu Z, Xiao X, Qiu WR, Chou KC. iDNA-methyl: identifying DNA methylation
sites via pseudo trinucleotide composition. Anal Biochem. 2015;474:69–77.

47. Chen w f p, ding h l h, Chou KC. iDNA6mA-PseKNC: identifying DNA N6-
methyladenosine sites using pseudo nucleotide composition. Anal Biochem.
2015;490:26–33.

48. Lopez Y, Sharma A, Dehzangi A, Lal SP, Taherzadeh G, Sattar A, Tsunoda T.
Success: evolutionary and structural properties of amino acids prove
effective for succinylation site prediction. BMC Genomics. 2018;19:923.

49. Dehzangi A, Lopez Y, Lal S, Taherzadeh G, Sattar A, Tsunoda T, Sharma A.
Improving succinylation prediction accuracy by incorporating the secondary
structure via helix, strand and coil, and evolutionary information from profile
bigrams. PLoS One. 2018;13(2):e0191900.

50. Dehzangi A, Lopez Y, Lal SP, Taherzadeh G, Michaelson J, Sattar A, Tsunoda T,
Sharma A. PSSM-Suc: accurately predicting succinylation using position specific
scoring matrix into bigram for feature extraction. J Theor Biol. 2017;425:97–102.

51. Lopez Y, Dehzangi A, Lal SP, Taherzadeh G, Michaelson J, Sattar A, Tsunoda
T, Sharma A. SucStruct: prediction of succinylated lysine residues by using
structural properties of amino acids. Anal Biochem. 2017;527:24–32.

52. Sharma A, Imoto S, Miyano S. A top-r feature selection algorithm for microarray
gene expression data. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(3):754–64.

53. Sharma A, Imoto S, Miyano S. A filter based feature selection algorithm
using null space of covariance matrix for DNA microarray gene expression
data. Curr Bioinforma. 2012;7(3):289–94.

54. Sharma A, Imoto S, Miyano S, Sharma V. Null space based feature selection
method for gene expression data. Int J Mach Learn Cyb. 2012;3(4):269–76.

55. Chou KC. Some remarks on protein attribute prediction and pseudo amino
acid composition (50th anniversary year review). J Theor Biol. 2011;273:236–47.

56. Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for
identifying anticancer peptides. Oncotarget. 2016;7(13):16895–909.

57. Chen W, Feng P, Ding H, Lin H, Chou KC. iRNA-methyl: identifying N (6)-
methyladenosine sites using pseudo nucleotide composition. Anal Biochem.
2015;490:26–33.

58. Chen W, Feng P, Yang H, Ding H, Lin H, Chou K-C. iRNA-3typeA: identifying
three types of modification at RNA’s adenosine sites. Molecular Therapy -
Nucleic Acids. 2018;11:468–74.

59. Chen W, Feng P-M, Lin H, Chou K-C. iSS-PseDNC: identifying splicing sites
using Pseudo dinucleotide composition. Biomed Res Int. 2014;2014:12.

60. Sharma R, Dehzangi A, Lyons J, Paliwal K, Tsunoda T, Sharma A. Predict
gram-positive and gram-negative subcellular localization via incorporating
evolutionary information and physicochemical features into Chou’s general
PseAAC. IEEE transactions on nanobioscience. 2015;14(8):915–26.

61. Lyons J, Paliwal KK, Dehzangi A, Hefferman R, Tatsuhiko T, Sharma A. Protein
fold recognition using HMM–HMM alignment and dynamic programming. J
Theor Biol. 2016;393:67–74.

62. Dehzangi A, Hefterman R, Sharma A, Lyons J, Paliwal KK, Sattar A. Gram-positive
and gram-negative protein subcellular localization by incorporating evolutionary-
based descriptors into Chou's general PseAAC. J. Theor. Biol. 2015;364:284–94.

63. Chou KC. An unprecedented revolution in medicinal chemistry driven by the
Progress of biological science. Curr Top Med Chem. 2017;17(21):2337–58.

64. Chen W, Feng PM, Deng EZ, Lin H, Chou KC. iTIS-PseTNC: a sequence-based
predictor for identifying translation initiation site in human genes using
pseudo trinucleotide composition. Anal Biochem. 2014;462:76–83.

65. Feng P, Ding H, Yang H, Chen W, Lin H, Chou KC. iRNA-PseColl: identifying the
occurrence sites of different RNA modifications by incorporating collective
effects of nucleotides into PseKNC. Mol Ther Nucleic Acids. 2017;7:155–63.

66. Feng P, Yang H, Ding H, Lin H, Chen W, Chou KC. iDNA6mA-PseKNC:
identifying DNA N (6)-methyladenosine sites by incorporating nucleotide
physicochemical properties into PseKNC. Genomics. 2018. https://doi.org/10.
1016/j.ygeno.2018.01.005.

Sharma et al. BMC Genomics 2019, 19(Suppl 9):982 Page 7 of 7

https://doi.org/10.1002/pmic.201800058
https://doi.org/10.1016/j.ygeno.2018.01.005
https://doi.org/10.1016/j.ygeno.2018.01.005

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Dataset description
	Half-sphere exposure feature computation
	Lysine residue description
	Model training
	Evaluation of model performance

	Results and discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

