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Abstract 

Background: Pneumococcal colonisation, although usually asymptomatic, is key to the 
pathogenesis of invasive disease. Colonisation is infrequently detected in older adults, 
despite their high rates of pneumococcal disease; this may relate to sampling from the 
wrong site or reliance on culture-based rather than molecular diagnostic methods.  Anti-
pneumococcal immunity (including responses to vaccination) declines with age, but the 
immunogenicity of colonisation in older adults has not been studied. Alongside innate 
immunity, three specific defence mechanisms exist against pneumococcal disease: herd 
immunity, adaptive immunity (conferred by natural or vaccine-induced antibodies) and 
antibiotics.  Current pneumococcal vaccines confer incomplete protection against 
pneumococcal disease in older adults.   

Research Questions: 

1. Can experimental human pneumococcal colonisation be safely established in older 
adults? 

2. What is the rate of experimental colonisation in older adults?  
3. Do anti-pneumococcal antibodies (natural or post-vaccination) prevent 

experimental colonisation in older adults? 
4. Is experimental colonisation immunogenic in older adults? 
5. What is the optimal sampling site and diagnostic methodology for detecting 

colonisation in older adults? 
6. What do colonisation studies of the general adult population reveal about herd 

immunity and pneumococcal antimicrobial resistance in the community? 

Findings: Experimental colonisation was established in 39% of volunteers (n = 25/64) with 
no adverse events. Experimental colonisation was unaffected by previous pneumococcal 
polysaccharide vaccination or baseline anti-capsular antibody levels.  Although the rate of 
experimental colonisation was similar to that of younger volunteers in previous studies, the 
immune responses were markedly different: older adults did not demonstrate serotype-
specific immune boosting following pneumococcal colonisation.  Furthermore, 
pneumococcal challenge without colonisation led to a drop in specific antibody levels.  
Nasal wash culture appeared to be the optimal detection strategy compared with 
molecular testing of nasal wash, oropharyngeal swab or saliva.   
In a review of all prospective experimental human pneumococcal colonisation volunteers 
between 2010 and 2017, community-acquired colonisation was identified at baseline in 
6.5% (n = 52/795) using nasal wash culture. The commonest serotype was 3 (a vaccine 
serotype), but otherwise non-vaccine serotypes predominated.  There were no changes in 
serotype distribution over time.  15% of isolates (n = 8/52, all identified in 2015 or later) 
were resistant to at least one of the antibiotics tested.   
Conclusions: Experimental pneumococcal colonisation is feasible and safe in older people.   
However, the immunological effects are different to those identified in younger adults in 
previous studies.  We found no evidence that the niche of colonisation changes with age.  
Nasal wash culture detected higher-than-expected rates of community-acquired 
colonisation in young adults, with the dominance of non-vaccine serotypes suggesting that 
the limits of herd immunity have been reached.  New pneumococcal vaccines are needed 
for older adults, and the experimental colonisation model could be used in early phase 
testing of candidate vaccines.  If such vaccines continue to rely on serotype-specific 
protection, then community colonisation studies could inform the serotype composition.   
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1 Introduction 

Streptococcus pneumoniae (the pneumococcus), a gram-positive, encapsulated, aerobic 

diplococcal bacterium, is responsible for high levels of morbidity and mortality across the 

globe.  Throughout history, humans have suffered from pneumococcal disease and the 

pneumococcus has evolved in parallel with us (1).  Over 90 different pneumococcal 

serotypes, defined by capsular polysaccharide (CPS) have been reported, and these vary 

substantially in their propensities to cause colonisation and/or disease (2, 3).  Serotype 

distributions vary substantially across populations, age-groups and time periods (4, 5).  This 

Introduction comprises an overview of pneumococcal disease and colonisation, followed by 

our three main defences against pneumococcal disease: natural immunity, vaccination and 

antibiotics.   

1.1 The burden of pneumococcal disease in adults 

1.1.1 Pneumococcal pneumonia 

Community-acquired pneumonia (CAP) is the sixth biggest cause of death in the UK; it kills 

29,000 people and leads to over 200,000 hospitalizations and 2.3 million bed days each 

year (6).  The pneumococcus is the single commonest identifiable bacterial cause of CAP, 

accounting for 40% of cases in the UK (7).  In resource-limited settings, the burden of 

pneumococcal CAP is even higher (8, 9).  Pneumococcal infections are particularly 

problematic for people aged over 65, who have up to a five-fold increase in the incidence 

and mortality of pneumococcal CAP relative to those aged under 65 (10, 11).   In the United 

States, an estimated 600,000 episodes of pneumococcal CAP occur annually, with a total 

cost to society of US$4.85bn (12); hospitalizations for pneumococcal CAP are predicted to 

increase by nearly 100% by the year 2040, with 87% of this increase accounted for by the 

older people (13).   
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1.1.2 Pneumococcal meningitis 

Pneumococcal meningitis frequently results in death or long-term sequelae, with mortality 

rates exceeding 30% in some settings (14).  Although pneumococcal meningitis is a global 

disease affecting all age-groups, it has substantially higher mortality in older people (15).  In 

resource-rich settings, the pneumococcus has become the commonest cause of adult 

bacterial meningitis (particularly in older people), following the reduction in meningococcal 

disease due to childhood vaccination campaigns (16, 17).  In the African meningitis belt, 

outbreaks of pneumococcal meningitis occur in parallel with seasonal outbreaks of 

meningococcal disease in teenagers and young adults (18).  With the successful roll-out of 

effective serogroup A meningococcal vaccines, there are concerns that the pneumococcus 

will become the predominant causative organism of meningitis in Africa as well (19). 

1.1.3 Pneumococcal bacteraemia 

Pneumococcal bacteraemia is associated with substantial mortality whether in isolation or 

when associated with confirmed organ infection, and is associated with increased incidence 

and mortality in older people (20, 21).   

1.2 The importance of pneumococcal colonisation 

The link between pneumococcal nasopharyngeal colonisation (or carriage) and the 

subsequent development of all forms of pneumococcal disease is generally accepted. This 

is supported by both experimental data (murine models of meningitis) and epidemiologic 

studies (children with otitis media and adults with pneumonia) (22-24).  Children aged 

under two years have high rates (over 60%) of nasopharyngeal pneumococcal colonisation 

(25, 26). Up to 15% of colonisation episodes progress to clinical disease (particularly otitis 

media) before an immune response can clear the pathogen, which could be explained by 

the lack of a robust anti-polysaccharide immune response in young children (23, 27, 28).  
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Colonisation rates fall with increasing age, particularly in well-resourced settings, with rates 

in young adults generally <10% (29, 30).   

Colonised children are a reservoir of pneumococci, which can then spread to other children 

and adults in their household (31, 32).  This mechanism has been postulated as the main 

source of pneumococcal disease in communities; hence, childhood vaccination 

programmes that reduce colonisation are said to induce “herd immunity” (33).  For these 

reasons, epidemiologic and vaccine impact studies focus on children and their families 

rather than a random population sample (32, 34). However, adults also contribute to 

pneumococcal transmission (31), and excluding the general adult population from 

colonisation studies can miss important trends and reservoirs of colonisation (35).   

1.2.1 The definition and determination of colonisation 

A large pan-European study recently reported a pneumococcal carriage prevalence of 1.9% 

in individuals aged >10 years, with a prevalence of 1.2% in UK adults (30).  However, this 

study utilized nasal rather than nasopharyngeal swabs, in order to improve participant 

uptake.  Deep nasopharyngeal swabs are recommended to identify pneumococcal 

colonisation (36).  In adults, the addition of oropharyngeal swabs may increase diagnostic 

sensitivity—a World Health Organisation (WHO) working group concluded that pairing oral 

swabs with nasopharyngeal samples was desirable but not mandatory (36).  Nasal wash 

(instillation and retrieval of sterile saline via the nasal cavity) is another acceptable method 

for pneumococcal detection, with equivalent or superior sensitivity to nasopharyngeal 

swabs (36, 37).  There is no consensus regarding the relevance of samples from other 

niches and the diagnostic methods applied to such samples.  

1.2.2 Pneumococcal colonisation in older adults: a controversial topic 

Table 1.1 lists examples of studies that attempted to define the rate of pneumococcal 

colonisation in older adults (defined as either >60 or >65 years in different studies) . Much 



6 
 

of the variation between these studies can be explained by the different sampling sites—

nasopharyngeal, oropharyngeal or saliva—and detection methods—classical culture, 

quantitative polymerase chain reaction (qPCR) or some combination of the two.   

Table 1.1: Examples of studies attempting to define the rate of pneumococcal colonization in older people  

Reference Year Country Number 
sampled 

Age 
(years) 

Site  Analysis Rate of 
detection of 
pneumococci, 
n (%) 

(32) 2015 UK 599 NR NP Classical 
microbiology 

13 (2.2%) 

(38) 
 

2015 USA 210 81.4 
(6.3)* 

NP Classical 
microbiology 

4 (1.9%) 

(39) 
 

2014 Portugal 3,361 74.56 
(8.2)* 

NP Classical 
microbiology 
with qPCR 
confirmation 
of positive 
specimens 

61 (1.8%) 

OP 15 (0.4%) 

Overall  76 (2.3%) 

(40) 
 

2012 Belgium 503 80.3 
(10.0)* 

NP 
 

Classical 
microbiology 

21 (4.2%) 

(41) 
 

2016 Italy 417 73.97 
(6.66)* 

OP qPCR 41 (9.8%) 

(42) 2013 Italy 283 NR NP Culture-
enriched 
qPCR 

53 (18.7%) 

(43) 2016 Nether-
lands 

330 72.7 
(68.7—
79.0)† 

NP Classical 
microbiology 

16 (5%) 

qPCR 32 (10%) 

OP Classical 
microbiology 

16 (5%) 

 qPCR 58 (18%) 

Overall   75 (23%) 

(44) 2015 Nether-
lands 

270** 69 
(NR)* 

NP Culture-
enriched 
qPCR 

13 (5%) 

OP 31 (11%) 

Saliva 76 (28%) 

Overall  91 (34%)†† 
All studies enrolled community-dwelling adults 
NP: Nasopharyngeal; NR: Not reported; OP: Oropharyngeal; qPCR: quantitative polymerase chain reaction 
* Mean (SD) 
† Median (IQR) 
**135 subjects, sampled both pre and post influenza-like illness. At a participant level, 65/135 (48%) tested 
positive on at least one occasion.   
††Subjects could test positive by one or both methods, hence “overall” does not equal the sum total of the 
separate methods 
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Our understanding of pneumococcal colonisation, disease susceptibility and natural 

immunity in children, young adults and murine models derives from traditional bacterial 

culture methods in nasopharyngeal specimens (23, 45).  For example, salivary qPCR in 

children can suggest rates of colonisation approaching 100% (46), but this has yet to be 

correlated with immunological endpoints (such as the generation or boosting of anti-

capsular antibodies), incidence of clinical disease or protection against future acquisition.   

While studies of nasopharyngeal swab cultures from older adults have shown lower rates 

of colonisation than in children (1.8—4.2%) (38-40), the addition of oral swabs and the 

combination of traditional culture and qPCR can estimate rates of colonisation (if defined 

as ≥1 sample from any site testing positive by any method) to as high as 23% in an older 

population (43), or 34% if saliva is also sampled (44).   False positive qPCR results from 

other oral streptococci are also a concern, although steps have been taken to increase the 

test specificity in recent studies, for example by performing qPCR against two rather than 

one pneumococcal gene target (47).   

Thus, although classical microbiological analysis on nasopharyngeal samples from older 

adults does not have as high a yield as molecular analysis of oral or salivary specimens, it 

has the advantage of allowing a more direct comparison with previous studies.  The choice 

of diagnostic sampling method must always be guided by the research question. One 

cannot simply state that qPCR is “more sensitive” than culture, as the clinicopathological 

significance of qPCR-positive, culture-negative colonisation may not be equivalent to that 

of culture-positive colonisation.  For example, a qPCR-positive, culture-negative result 

might imply low-density pneumococcal colonisation (48), which could have lower potential 

to cause disease or spread to other hosts (24).  Similarly, the detection of pneumococcal 

DNA in the oropharynx may not represent the presence of viable pneumococci.   
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Most importantly, high nasopharyngeal colonisation rates in older people (23%, as defined 

by classical culture) have been demonstrated during an outbreak in a nursing home (49), 

suggesting that culture-positive nasopharyngeal colonisation may be a clinically relevant 

measurement in this population.   

In this thesis, for the reasons outlined above and to be consistent when comparing studies 

of children, adults, older adults and mice, we define colonisation as the isolation of 

pneumococci from the nasopharynx by culture-based methods unless otherwise stated.   

1.2.3 Risk factors for pneumococcal colonisation 

Studies in industrialised countries have consistently identified regular contact with children 

aged <5 years as the biggest risk factor for pneumococcal colonisation (30, 32). Other 

factors, (including sex, crowding, environment and cigarette smoking) have been 

inconsistently associated with colonisation in different studies (4, 50-52).  Similarly, reports 

differ regarding whether antibiotic therapy in the weeks preceding sampling is associated 

with reduced risk of pneumococcal colonisation (50, 53), although recent antibiotics have 

been associated with increased risk of colonisation by antibiotic-resistant pneumococci in 

children (54-56).   

1.3 The relationship between colonisation and immunity 

Pneumococcal colonisation may be a necessary evil: exposure to pneumococcal antigens 

via repeated episodes of colonisation is key to acquiring and sustaining anti-pneumococcal 

immunity.   

Throughout childhood, adolescence and early adulthood, immunity against pneumococcus 

improves with age.  Colonisation rates fall with increasing age, along with a corresponding 

reduction in pneumococcal disease (25). It seems that repeated colonisation episodes lead 

to the development of protective immunity against the most prevalent circulating 

pneumococcal serotypes (anti-CPS antibodies are specific to a given serotype) (57).  
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Following the maturation of the immune system and multiple episodes of colonisation, 

young adults have well-functioning immune systems and established serotype-specific 

immunologic memory (29).   

Naturally-acquired immunity is multifactorial: non-serotype-specific anti-pneumococcal 

immunity develops alongside serotype-specific immunity in children, through mechanisms 

that have not been entirely elucidated (58).  In young infants with immature anti-CPS 

responses, epidemiological studies have suggested that non-serotype-specific immunity 

predominates, while serotype-specific immunity comes to the fore in older children (59) 

(57).  In adulthood, both epidemiologic and controlled human infection studies have 

suggested that serotype-specific immunity plays a major role in controlling colonisation (29, 

60).  We hypothesize that anti-pneumococcal immunity in older adults is more akin to that 

of young adults than to that of infants.  

Young adults experience very low morbidity and mortality from pneumococcal disease (e.g. 

3.1 cases annually per 100,000 population, versus 38.6 cases per 100,000 population in 

children aged under one year) (15), and their serotype-specific immunity is boosted by 

occasional episodes of asymptomatic colonisation (29, 31, 60).  However, in old age, a 

paradox emerges: while nasopharyngeal colonisation is less common in older adults (Table 

1.1), they are at extremely high risk of pneumococcal disease.   

One hypothesis suggests that the same mechanism (immunosenescence) determines 

increasing disease susceptibility with reduced colonisation: increased circulating levels of 

pro-inflammatory cytokines (“inflammaging”) could lead to clearance of colonisation 

before a natural boosting of pre-existing immunity could take place (61-63).  Equally but 

oppositely, inflammaging-induced chronic activation of inflammatory pathways can result 

in impaired upregulation of inflammation in response to pneumococcal challenge: a murine 

study found that baseline levels of upper respiratory tract pro-inflammatory cytokines (e.g. 
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toll-like receptor 1 and interleukin 1β) were higher in older than younger mice, but that 

pneumococcal colonisation resulted in increased levels of these cytokines in younger but 

not older mice [Krone 2013].   

An alternative line of enquiry explores that hypothesis that colonisation is under-detected 

in older people (e.g. due to poor choice of sampling site and/or method) and that it is a 

precursor to disease, which cannot be prevented by the senescent immune system.  

Mucosal immunity may be more durable than systemic humoral immunity (to be discussed 

in detail later)—this could explain a protection against colonisation but susceptibility to 

invasive disease. Regardless, older adults are clearly at high risk of pneumococcal disease, 

and therefore their natural anti-pneumococcal immunity must differ from that of younger 

adults.  Declines in both innate and adaptive immunity combined with increased rates of 

comorbidities all contribute to this (64), but we will focus here on antibody-mediated 

immunity.  

1.3.1 Naturally-acquired pneumococcal CPS antibodies 

Natural immunity arises following episodic colonisation.  Colonisation leads to increased 

serum levels of anti-pneumococcal antibodies, which are detectable in all adults (65, 66).  

In this section we will discuss their role in the control of pneumococcal disease.  Anti-CPS 

antibodies are the most widely-studied antibodies and are the direct effectors of vaccine-

induced protection, and therefore we focus on these.  The importance of anti-

pneumococcal antibodies is further supported by the first effective treatment for 

pneumococcal disease: passive immunotherapy, i.e. the transfer of specific immune serum 

from naturally-immune donors or immunized animals to patients with pneumococcal 

pneumonia (67).   

In addition to antibodies generated by natural colonisation, others have reported on 

naturally-arising polyvalent antibodies (often IgM) with potent anti-pneumococcal activity 
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(68)—whether these antibodies are analogous to those that arise following colonisation is 

unclear.  Furthermore, it is possible that these antibodies undergo refinement and 

increased specification over time, stimulated by antigen presentation (69).  In this thesis we 

define naturally-acquired antibodies as those that arise following pneumococcal exposure.   

Anti-CPS antibodies bind to the pneumococcal capsule and opsonise the bacteria, 

improving phagocytosis and downstream killing.  In addition, antibodies can promote an 

innate immune response by activating the classical complement pathway; in murine 

models this appears to be the dominant complement pathway in anti-pneumococcal 

immunity and is mediated via natural IgM rather than IgG (70).   

1.3.2 Protective antibodies are a product of nasopharyngeal colonisation 

Anti-CPS antibodies are particularly effective in control of bloodstream infections: passive 

transfer of human antibodies (generated following experimentally-induced colonisation) 

was protective in a murine model of lethal bacteraemia (60).  Passive transfer of pre-

colonisation serum from the same human volunteers conferred a lesser survival benefit. In 

a separate murine lethal challenge model, CD4-deficient knockout mice were able to 

mount a protective antibody response following experimental colonisation and survive 

subsequent bacteraemic challenge, whereas antibody-deficient knockout mice had no 

survival benefit from prior colonisation (71).  Experimental colonisation of mice also 

generated a protective response against subsequent pneumonia (45).  However, this 

experiment found that all arms of the innate and adaptive immune systems were required 

for protection: depletion of any of B-cells, neutrophils or CD4 T-cells eliminated the 

protective response.  This suggests that the control of mucosal disease is more complex 

than the control of bloodstream disease.  Thus, based on the evidence accumulated from a 

combination of murine and human challenge models, antibodies induced by pneumococcal 
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colonisation have been shown to confer protection against bacteraemia and contribute to 

protection against pneumonia.   

1.3.3 Clearance of colonisation is a multifaceted process 

Antibodies have an important role in the protection against becoming colonised. In mice, 

passive transfer of antibodies led to agglutination of bacteria following intranasal 

challenge, which caused the bacteria to clump and become more vulnerable to mucociliary 

clearance (72).  Pneumococcal antibody-mediated agglutination has also been 

demonstrated in humans following vaccination with pneumococcal conjugate vaccine (PCV) 

(73).  In this study, naturally-acquired antibodies were present in the nasopharynx prior to 

vaccination, but not in sufficient levels to induce agglutination.   Murine studies have 

suggested that the clearance of established colonisation is primarily mediated by CD4 T-

cells and interleukin 17 (IL-17), with a possible contribution from anti-protein antibodies 

(74-76). Thus, it appears that anti-CPS antibodies generated during a colonisation episode 

do not have a role in its clearance, though they may be protective against the future 

acquisition of colonisation and subsequent development of disease.  This role of anti-CPS 

antibodies is supported by clinical studies demonstrating a reduction in vaccine-serotype 

pneumococcal colonisation in vaccinated children, reaching virtual elimination in some 

countries (77). The functional importance of anti-CPS antibodies is summarized in Figure 

1.1.   
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Figure 1.1: Anti-capsular antibodies facilitate pneumococcal killing and can prevent colonisation 

(Prior to submission, this figure was published in a review article based on this chapter (78), included in this 
thesis as Appendix 10) 

1.3.4 Antibodies as a marker of pneumococcal exposure 

Colonisation-associated boosting of serotype-specific anti-CPS antibodies has been 

harnessed by researchers as a surrogate marker of pneumococcal colonisation (29, 79).  

Antibody titres vary markedly between individuals and between serotypes, so 

“seroincidence” estimation compares titres from two timepoints to assess for 

pneumococcal colonisation during the intervening period.  Seroincidence can only estimate 

carriage rates for the most common serotypes, as it is generally not practical to measure 

antibodies against all 96 serotypes.  Despite these limitations, seroincidence correlated well 

with observed colonisation rates in children in one study (79).   

1.3.5 Why does lifelong pneumococcal exposure not protect older people? 

If pneumococcal colonisation leads to the generation of antibodies, and these antibodies 

are protective against reacquisition of pneumococcus, then older people should be 

particularly well protected against pneumococcal disease.  Clearly this is not the case, and 

several explanations have been proposed.  Vaccine-induced antipneumococcal antibodies 

wane over time, and require booster vaccines in order to maintain protective levels. 
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Perhaps colonisation-induced antibodies may require boosting by regular episodes of 

colonisation (60), and this is too infrequent in older populations for boosting to occur.  

Otherwise, the defect in antibody-mediated immunity lies either with the B-cells 

responsible for secreting the antibodies, or with the antibodies themselves.  Although our 

focus here is on anti-capsular antibodies, other facets of the immune system can also be 

implicated, including T cell control of B cell responses (64), and alteration in neutrophil 

function with age (80).   

1.3.5.1 B cell populations are altered in older people 

IgM memory B-cells, which function in a T cell-independent manner, are a key component 

of antipneumococcal defences (69). A study found that IgM memory B-cells are less 

abundant in older than in younger adults (81).  In addition, aged IgM memory B-cells were 

determined to be functionally inferior in this same study, with a reduced capacity for 

antibody secretion and plasma cell differentiation.  Pneumococcal polysaccharide 

vaccination of the older volunteers led to some improvement in IgM levels and IgM 

memory B cell percentages, but not to the same degree as in younger subjects.  B1 cells are 

another potential culprit; these cells are responsible for producing naturally-acquired anti-

CPS antibodies (while T cell-dependent adaptive antibodies are generated by B2 cells). 

Levels of B1 cells are reduced in older adults (reviewed in (82)).  This is an emerging field, 

and there is a dearth of human studies relevant to this topic outside of the context of 

vaccination—we will explore this in a later section.   

1.3.5.2 Antibodies decline and lose functional efficacy with age.   

Population-based studies have shown that natural anti-CPS IgG and IgM levels fall with age 

(65, 83, 84).  Figure 1.2 shows a schematic of anti-CPS antibody levels and function at 

different ages relative to rates of pneumococcal colonisation and disease.  Antibody 

function (i.e. opsonic activity, or ability to target pathogens for phagocytosis) can vary 
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markedly between individuals; populations with high rates of pneumococcal colonisation 

and disease have higher serum opsonic activity than lower-risk populations, even when 

matched for age and antibody level (85).  For this reason, opsonophagocytic killing activity 

(measured by exposing pneumococci to antibodies of different research subjects, in the 

presence of standardised populations of neutrophils and complement) is a stronger 

correlate of protection than crude antibody levels (86). It is therefore of great importance 

that the naturally-acquired anti-CPS antibodies of older people have less opsonic activity 

than those of young people.  In one study, the concentration of natural serotype-specific 

IgG required for opsonophagocytic killing (defined in the study as phagocytosis of 50% of 

target pneumococci) was up to twice as high in an unvaccinated older population when 

compared with a young population—differences in IgG function between young and old 

were even more substantial than differences in concentrations (80).  Similar, though less 

pronounced differences were seen for IgM. The authors noted that serotype-specific IgM 

concentrations and opsonic activity were poorly correlated, unlike those of IgG. When the 

decline in antibody level and function are combined, this strongly suggests that antibody 

defects are responsible for (or at least contribute towards) the age-related increase in 

vulnerability to pneumococcus.   
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Figure 1.2: Schematic of pneumococcal disease rates, pneumococcal colonisation rates and pneumococcal 
antibody activity in different age groups.  

(Prior to submission, this figure was published in a review article based on this chapter (78), included in this 
thesis as Appendix 10) 

Impaired opsonic functionality relative to antibody levels is seen in immunosuppression 

secondary to a wide variety of aetiologies.  For example, (although not directly comparable 

to an aged population), it is notable that anti-CPS IgG levels in human immunodeficiency 

virus-infected individuals (who have high rates of pneumococcal colonisation as well as 

disease) have reduced anti-CPS IgG opsonic activity when compared with HIV-uninfected 

subjects, even though anti-CPS IgG levels are higher in those with HIV (87).   

An observational study provides some clinical context and supports the hypothesis that 

reduced opsonic functionality in anti-CPS antibodies is a risk factor for pneumococcal 

disease in older people. Sera from patients in the acute and convalescent stages of various 

types of pneumococcal disease were compared with age-matched controls (88).  Only 27% 

of subjects with pneumococcal disease had IgG to their infecting serotype at time of 

presentation (compared to 37% of controls and 42% of colonised subjects).  Furthermore, 

acute antibodies from infected subjects had significantly lower opsonic activity than those 
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of controls or colonised subjects and were less protective via passive transfer in a lethal 

murine challenge model (20% survival vs 100%).  Sixty-two percent of convalescent sera 

had detectable IgG following pneumococcal disease, which demonstrated good function in 

>50% of patients.  Important limitations of this study include substantial loss to follow-up 

between the acute and convalescent phases, no reporting of ages, and no pre-disease 

antibody levels, the last of which means we cannot rule out the possibility of antibody 

sequestration in diseased tissues as an explanation for low circulating levels.   

The functional efficacy of antibodies can also be quantified via antibody avidity.  However, 

avidity does not always correlate with opsonophagocytic activity (89).  Studies differ on 

whether anti-pneumococcal antibody avidity falls with age or rises following vaccination 

(89)(90)(91).  Indeed, one study found that higher levels of antibody avidity correlated with 

increased severity of pneumonia (91); the authors suggested that the increased avidity 

reflected greater lifetime exposure to pneumococci (and hence increased affinity 

maturation over time) in older people who were naturally at risk of severe pneumonia, or 

alternatively boosted avidity during the initial phase of pneumococcal infection.  They 

concluded that avidity was a poor surrogate for susceptibility to pneumococcal disease.   

Most of the more detailed studies of antibody functionality in older people have been 

conducted in the context of vaccination. Vaccination is an obvious strategy to restore 

waning natural anti-CPS immunity.   

1.4 Vaccines against pneumococcal disease 

Vaccination with purified pneumococcal CPS was first described in 1934 (92), with the first 

report of clinical efficacy emerging following its use to halt an outbreak of serotype 1 

pneumococcal pneumonia in Massachusetts in 1938 (93).  A 14-valent pneumococcal 

polysaccharide vaccine (PPV) was formally licensed in 1977, and PPV23 denotes the current 

23-valent formulation, licensed in 1983.   
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Polysaccharide vaccines are not immunogenic in children aged <2 years (94).  However, 

conjugation of the polysaccharide to a protein carrier molecule can overcome this 

limitation (reviewed in (95)).  The pneumococcal protein-conjugated vaccine (PCV) has 

excellent immunogenicity and efficacy in children: a seven-valent conjugate vaccine was 

introduced in the USA in 2000 and in the UK in 2006; the most recent formulation is the 13-

valent PCV13, introduced in the UK in 2010.   

In addition to conferring direct protection against pneumococcal disease in children, 

childhood vaccination programs generate herd protection by reducing colonisation and 

thus halting transmission at a population level (33).  However, serotype replacement has 

abrogated much of this benefit in many settings (96, 97).  Even without significant levels of 

serotype replacement, vaccine type disease remains common in older people after 

childhood vaccination programs are established (98), and residual non-vaccine-type disease 

will persist as a public health problem (16).   

In the USA, current recommendations for adults aged over 65 years advise vaccination with 

PCV13 followed by PPV23 (99).  In the UK, PPV23 is recommended in older adults, but the 

addition of PCV13 was not deemed to be cost-effective, and the use of PPV23 is to be kept 

under review (100).  Recommendations in other Western European countries vary 

considerably (101).   

1.4.1 Current pneumococcal vaccine strategies provide poor protection in older 

adults 

The discrepancies in national vaccination policies stem from the poor (and disputed) 

efficacy of these vaccines in older people.  A Cochrane review in 2013 concluded that 

PPV23 effectively prevents pneumococcal bacteraemia and meningitis, including in older 

adults (102). It has minimal effect at the mucosal level, and thus has not been shown to 

reduce rates of colonisation.  The Cochrane review found no effect of PPV23 on rates of 
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(non-bacteraemic) pneumococcal CAP or all-cause pneumonia, partially due to the 

substantial heterogeneity of studies that were included.  Nonetheless, some individual 

studies—including both observational studies and well-conducted randomized controlled 

trials (RCTs)—have found PPV23 to be efficacious against pneumococcal pneumonia.  For 

example, one double-blind RCT in Japanese nursing home residents (a population expected 

to have a high incidence of pneumonia, and therefore better positioned to detect a vaccine 

effect) found a 62% relative risk reduction of pneumococcal pneumonia, and a 39% relative 

risk reduction of all-cause pneumonia with PPV23 (103).  When data from this study were 

pooled with others for the Cochrane meta-analysis, the effect was no longer significant; 

however, this does not exclude the possibility of a small protective effect against 

pneumococcal pneumonia from PPV23, which would be clinically significant in a high-risk 

population.  An important limitation of the Cochrane review is that the many of the studies 

it included were carried out in a general adult population, with limited data available for 

age-specific subgroup analyses.   

An important study of PPV23 in people aged ≥ 65 years has been published after the 

Cochrane review (104).  This study was observational in nature, but employed a test-

negative design: this reduces several biases and has been found to be similar to RCTs in 

providing estimates of vaccine effectiveness for seasonal influenza vaccines (105).  The 

study, carried out in Japan, found that the effectiveness of PPV23 was 27·4% against all 

pneumococcal CAP and 33·5% against CAP caused by the 23 vaccine serotypes (104).  

Effectiveness was not demonstrated against all-cause pneumonia or mortality.  

Furthermore, it was notable that this effect was only statistically significant for subjects 

who had been vaccinated within the previous two years.   

Conjugated vaccines, while covering fewer serotypes, protect against colonisation in 

children and young adults (106, 107).  In addition to efficacy against vaccine-type 
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bacteraemia and meningitis, PCV13 has been shown to reduce rates of vaccine-type CAP in 

a single large RCT in older adults (CAPiTA) (108).   However, with vaccine efficacy of 45.6%, 

this vaccine did not show complete protection against vaccine-type disease. PCV13 efficacy 

declined with increasing age: In a post-hoc analysis, overall vaccine efficacy against vaccine-

type CAP was 65% in 65-year-old subjects but only 40% in 75-year-olds (109). Furthermore, 

a concomitant increase in non-vaccine type disease was noted, resulting in no effect 

against pneumococcal pneumonia in general, and all-cause mortality was unaffected (108).  

A nested study within CAPiTA found that PCV13 reduced rates of vaccine-type 

pneumococcal colonisation in older adults compared with placebo, but that the effect was 

only detectable up to six months post-vaccine (110).   

1.4.2 Pneumococcal vaccines are variably immunogenic in older people 

The clinical findings reported in the previous section are discordant with immunological 

studies of pneumococcal vaccines in older adults.  In a study of 74 older adults, dialysis 

patients and transplant recipients (i.e. without young healthy controls), PPV23 was found 

to improve anti-CPS IgG levels against three selected vaccine serotypes (6, 14 and 23) and 

not only to improve opsonic activity, but to strengthen the correlation between IgG levels 

and opsonic activity, suggesting that vaccine-induced antibodies are more potent than 

naturally acquired antibodies (111).  A study of 219 adults aged ≥70 years found that PCV7 

was more immunogenic (as measured by concentration and function of post-vaccine anti-

CPS IgG) than PPV23 for all but one of the PCV7 serotypes (112). However, a larger study (n 

= 599) of adults aged 50—80 years found that PCV7 and PPV23 were equally immunogenic 

(as defined by IgG concentrations) at one month and one year following vaccination (84).  

No functional tests were performed.  The reasons for the discrepant results between these 

two studies remains unclear.  A randomized study of nursing home residents aged ≥80 

years found that both PPV23 and PCV7 were immunogenic in this population, with the 

conjugate vaccine resulting in higher IgG levels and opsonic activity for some serotypes, 
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and both vaccines equally immunogenic for others (113).  The effects of single-dose versus 

boosted vaccination, in various combinations, have been assessed in a number of studies 

but with conflicting results (reviewed in (114)).   

The differential effects of the two vaccines on B-cells have been studied extensively.  In a 

cohort of 348 subjects aged 50—70 years, the antibody responses were similar to previous 

studies: PCV7 lead to greater anti-CPS IgG concentrations than PPV23 for some but not all 

serotypes—four out of seven in this case (116).  However, serotype-specific memory B cell 

concentrations increased for all seven serotypes following PCV7 but decreased following 

PPV23 (117).  This is consistent with the T-dependent immunogenicity of PCV7.  

Importantly, repeated doses of unconjugated polysaccharide vaccines do not result in 

immune boosting—rather, the antibody response is inferior to that following primary 

vaccination (hyporesponsiveness) (118).  Memory B cell depletion has been implicated in 

this phenomenon (117), which can be avoided by spacing vaccine administrations by at 

least five years (119).  It is unclear whether repeated natural exposure to pneumococcal 

antigens is associated with hyporesponsiveness, but this intriguing hypothesis has been 

proposed as an additional mechanism of pneumococcal immunodeficiency in older people 

(117) and is an important topic for future research.   

The immune responses to PPV23 across an aged population are heterogeneous. One study 

has suggested that a four-fold increase in IgG concentration from baseline following 

vaccination is protective against recurrent pneumococcal CAP in older adults (115).  This 

study had a number of limitations (including low rates of confirmed pneumococcal 

aetiology in cases of CAP) and has not been replicated.   
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1.4.2.1 The duration of immunity following pneumococcal vaccination is the subject of 

ongoing research 

The above studies based all analyses on blood samples taken up to one month post-

vaccination.  Another study randomized 252 subjects aged 50—80 years to vaccination with 

either single-dose PPV23 or PCV7, or PCV boosted with either PPV23 or repeat PCV7, and 

followed them for two years (120).  Surprisingly, there was no significant difference in the 

quantity of circulating serotype-specific memory B-cells at two years between the four 

groups.  Two-year levels of serotype-specific memory and plasma cells were closely 

correlated with baseline serotype-specific IgG levels, and not with the IgG levels from 7 or 

28 days post-vaccination.  The authors concluded that pre-existing natural anti-

pneumococcal immunity was a more important driver of the post-vaccine immune 

response than the type or schedule of vaccine administered.  No functional assays were 

carried out, and there were no young adult control subjects, but this remains an important 

study.  It is unclear why these authors found no difference in memory B cell concentrations 

between PPV and PCV-vaccinated subjects while other authors found a dramatic difference 

(117), but different experimental methodologies and sampling timepoints between the 

various studies are possible explanations.     

Although some authors have found durable memory B cell responses following either PPV 

or PCV, clinical and antibody-based studies are less reassuring.  PPV-induced antibody 

levels decline in older people over five years (119); while they may not decline to the pre-

vaccination baseline, clinical data consistently show reduced protective efficacy over time, 

suggesting that this decline is relevant and clinically significant (104, 121).  Similar declines 

in opsonic function over time were seen in older adults who received PCV13 (110).  The 

immunological properties of PCV13 (T-cell-dependent immunity, leading to lasting 

immunological memory), suggest that any decline in efficacy would be of a lesser 

magnitude than that of PPV23; however, immunosenescence may well interfere with this.  
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In the CAPiTA trial of PCV13 in over-65s, conducted over four years, clinical efficacy did not 

appear to decline over time (108), although efficacy was lower in the oldest participants 

(109).  This suggests that there an age-related component to the clinical protective 

response following primary vaccination with PCV13. A longer period of follow-up would be 

required to determine the duration of protection in older people, but conjugate vaccines 

do appear to confer longer clinical protection than polysaccharide vaccines.  

1.4.3 Pneumococcal vaccines are more immunogenic in young than in older people 

While uncontrolled studies have shown an improved antipneumococcal immune response 

following vaccination in older people, this is far less impressive than the immune response 

generated by the same vaccine in healthy young people.  A study compared anti-CPS 

antibody levels in 58 volunteers aged >65 years and 44 controls aged <45 years, 28 days 

after they had received PPV23 (no pre-vaccination levels were taken) (122).  For the 

majority of serotypes, antibody levels did not differ significantly between the two groups.  

However, opsonic titres against all but one serotype (18C) were markedly higher in the 

younger subjects.  Antibody potency (opsonization titre divided by the antibody 

concentration) was at least two-fold higher for all serotypes in younger subjects than in 

older subjects, while the amount of antibody needed to achieve a 1:8 opsonization index (a 

putative protective level) in young subjects was less than half of that in the older subjects.   

We are unaware of any direct comparison studies of the immunogenicity of PCV in older 

and younger people.  Murine studies have explored this question, but the results were 

markedly different from with what would be expected in human subjects based on the 

state of current knowledge, and will therefore not be discussed here (123).   

1.4.4 Immunoglobulin subsets present a further area for study 

Immunoglobulin subsets—for example, IgM versus IgG, or even IgG1 versus IgG2—could 

differ between older and younger adults.  IgG responses can be divided into IgG1 
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(classically associated with T-cell independent responses to plain polysaccharide 

vaccination) and IgG2 (classically associated with T-cell dependent responses to PCV in 

children) (95).  However, it is notable that, at least for the meningococcal conjugate 

vaccine, a study found that vaccination of older children and adolescents generated a 

predominantly IgG2 response, with IgG1 responses restricted to the youngest children 

(124).  There is a dearth of research into these subsets specifically in older adults. One 

study of healthy adults of all ages found similar mean concentrations of total IgG1 and IgG2 

at all ages, but greater variability of IgG1 and IgG2 concentrations in individuals aged >70 

years (125).  (124)IgM responses in older adults have been studied in greater detail.   

1.4.5 Anti-CPS IgM responses are markedly deficient in older people 

A study compared sera from 45 healthy older subjects and 55 healthy young controls, all of 

whom had been vaccinated four weeks previously with PPV23, and tested the samples 

against three representative serotypes: 14, 18C and 23F (126).  In keeping with previous 

studies, absolute anti-CPS IgG levels were similar between both groups, but the younger 

adults had higher opsonic activity and potency than the older adults (albeit not achieving 

statistical significance for serotype 18C).  Young adults commonly demonstrated high levels 

of opsonic activity even with low levels of antibody (i.e. the correlation between antibody 

levels and opsonic activity was poor), whereas antibody levels and activity were tightly 

correlated in the older adults.  IgM made a disproportionately significant contribution to 

opsonic activity: when IgM was removed from the young subjects’ samples, their opsonic 

activity was decreased, with stronger correlation between their IgG levels and opsonic 

function.  When all serum samples were depleted of IgM and reanalyzed, the opsonic 

activity of the older adults’ sera did not decline and the differences in opsonic activity 

between old and young subjects were no longer statistically significant.  The authors 
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concluded that reduced functionality of IgM rather than IgG was responsible for the 

reduced opsonic capacity of older adults when compared with younger adults.   

The kinetics of IgM could partially explain the above findings: unlike IgG, post-vaccination 

IgM levels rise more slowly, and to a lower peak, in older adults compared with younger 

adults (127). All samples in the above study were taken quite soon after vaccination.   Little 

is known regarding the duration of IgM responses in older people beyond 28 days post-

vaccination, and thus the relevance of this laboratory-based study to long-term clinical 

protection is not certain.  However, additional research has shown that the underlying IgM 

B cell responses to vaccination, in addition to IgM activity itself, are also diminished in older 

people.   

A study comparing 14 older adults with young controls examined the immune response 

against two of the PPV23 serotypes (14 and 23F) and found that serotype 14-specific IgM 

did not rise significantly following vaccination in the older adults (though anti-23F IgM did) 

(128).  Opsonic activity improved following vaccination in older adults, and this was 

correlated with IgG levels but not with IgM levels, and was significantly lower than the 

opsonic activity of young vaccine recipients, consistent with previous studies.  Flow 

cytometric analysis showed differences between young and older subjects in their post-

vaccination B cell phenotypes: both absolute and relative numbers of CD27+IgM+ (IgM 

memory) B-cells were reduced in the older adults.  The serotype-specific immune response 

in the older adults was dominated by switched memory B-cells (CD27+IgM−).  This 

difference in B cell populations explained the poor IgM response in the older adults, and 

may provide a key insight into the underlying reasons for poor vaccine-induced clinical 

protection in this population, but the small numbers (of both subjects and serotypes 

examined) are an important limitation of this study.   
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Switched memory B-cells comprise part of a T-cell-dependent immune response while IgM 

memory B-cells are T-independent (69).  Regulatory T cell populations are reduced in older 

people (129); this has been implicated in altered inflammatory responses and susceptibility 

to pneumonia in the this population (reviewed in (64)).  Therefore, alterations in T-

dependent immunity coupled with a reduction in T-independent IgM memory B-cells leaves 

older people vulnerable on two fronts.   

IgM defects are unlikely to be the sole reason for the increased susceptibility of older 

people to pneumococcal disease.  However, by virtue of its pentameric structure, IgM 

would be expected to agglutinate and opsonize more efficiently than IgG, and thus even 

small defects in IgM levels or function would be expected to have a disproportionate 

impact.  IgM is also key to activating the complement cascade in response to 

pneumococcus (70).  While the IgM response to PCV has not been widely studied in older 

people, it is key to the immune response to conjugated vaccines in children (130).  

Furthermore, PCV-induced IgM antibodies appear to confer cross-protection against some 

non-vaccine serotypes in children (131)—this has not been demonstrated older people, but 

could represent another domain in which IgM is of key importance.  For now, the above 

data must be regarded as hypothesis-generating rather than conclusive, but they are 

intriguing nonetheless.   

1.5 Antibodies have mucosal as well as systemic activity 

It is generally reported that IgM and IgA are the principal antibodies present at mucosal 

surfaces (132, 133), although the relative contributions of different globulin fractions to 

total antibody levels varies markedly between different organ systems (134).  IgA-mediated 

defence against pneumococcus is limited, as all pneumococci synthesize an efficient IgA1 

protease, abrogating its protective effect (72).  In the final part of this review, we will 

explore the nature of mucosal anti-pneumococcal immunity and its relationship with age.   
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There is a degree of overlap between the mucosal and systemic humoral immune systems, 

and each is capable of influencing the other (133).  Antigens from the nasal mucosal surface 

are presented to nasopharyngeal-associated lymphoid tissue (NALT), leading to both local 

and systemic immune responses. Germinal centres in NALT are responsible for generating 

B-cells that secrete IgA and IgM at the mucosal surface. Furthermore, systemic antibodies 

can be transported from blood to mucosal surfaces.     

1.5.1 Systemic exposure to pneumococcal antigens via vaccination can lead to 

mucosal protection 

One study found that PPV leads to an increase in levels of all classes of anti-CPS in 

secretions (specifically saliva and tears; nasal secretions were not studied) (135). Notably, 

the fold increases in salivary IgG (4.5-fold) and IgM (4.0-fold) were more pronounced than 

that of IgA (2.0-fold).  However, the functional and clinical effects of these antibodies have 

not been explored.   

In young adults, systemic immunization with PCV13 leads to high serum concentrations of 

anti-pneumococcal IgG, which spills over into the nasal mucosal compartment and can, by 

virtue of its agglutinating properties, prevent the development of pneumococcal 

colonisation (73).  This is likely to be the mechanism for the reduction in pneumococcal 

colonisation following infant vaccination.   

1.5.2 Mucosal exposure to pneumococcal antigens can generate both systemic and 

local responses 

As outlined earlier, the upper respiratory mucosa represents humans’ first point of contact 

with the pneumococcus.  Transient pneumococcal exposure (in a human challenge model 

where subjects were inoculated but did not become colonised) resulted in the generation 

of mucosal anti-protein antibodies but not anti-CPS antibodies, and no change in systemic 
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antibody levels (136).  Prolonged exposure via colonisation leads to increases in functional 

local and systemic anti-CPS antibodies (60).   

Without vaccination, antipneumococcal antibody levels at respiratory mucosal surfaces are 

too low to prevent colonisation. However, “priming” by experimental pneumococcal 

colonisation is protective against subsequent colonisation up to one year later (60)—

whether this is due specifically to mucosal antibodies, serum antibodies (à la vaccination), 

T-cell immunity or a combination of these remains undetermined.   

In addition to inducing mucosal and systemic antipneumococcal antibodies, human 

pneumococcal colonisation leads to an increase in the number of pneumococcal-specific 

memory IL-17A+ CD4 T-cells (Th-17 cells) (137).  When stimulated by pneumococci in vitro, 

IL-17A secreted by these Th-17 cells enhanced the phagocytic killing of pneumococci by 

alveolar macrophages.  Importantly, this Th-17 increase is seen in both peripheral blood 

and in the lung itself, thus providing evidence of traffic of acquired immune memory from 

the upper to the lower respiratory tract.  However, an alternative hypothesis is that 

microaspiration of pneumococci during colonisation directly induces a local T cell 

infiltration and differentiation within the lungs.   

In summary, pneumococci are capable of stimulating a specific immune response at the 

mucosal surface in addition to generating systemic immunity.  The multifaceted mucosal 

immune response includes both specific antibodies and memory T-cells, and a response in 

the upper respiratory tract may be echoed in the lower respiratory tract.  High 

concentrations of anti-CPS antibodies at the nasopharyngeal surface can prevent 

pneumococcal acquisition.  A mucosal vaccine against pneumococcus could be a promising 

strategy to provide protection for the vulnerable older population.   
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1.5.3 Mucosal anti-pneumococcal immunity is affected by aging 

Detailed studies of mucosal immunosenescence in general have only been undertaken in 

mice: it appears that nasal immune function deteriorates with age, but at a similar rate to 

systemic immunity, whereas intestinal mucosal immunity “ages” at a faster rate (138).  A 

murine study demonstrated impaired innate antipneumococcal nasal mucosal immunity 

with increasing age: monocyte/macrophage influx in response to colonisation was delayed 

in old (18—23 month) mice compared with younger controls, and the older mice had 

impaired upregulation of innate immune response genes (including Toll-like receptors 1 

and 2, nucleotide-binding oligomerization domain-containing protein 2 and interleukin 1β) 

(139).  The effect of aging on nasal antibodies has not been studied in older humans, but 

salivary antipneumococcal antibodies have been shown to decrease in both concentration 

and rate of secretion with age (140).   

1.5.4 Murine studies of adjuvanted mucosal vaccines have shown promise 

Studies of mucosal vaccination strategies against pneumococcus have only been 

undertaken in murine models (reviewed in (141)) and examined both protein antigens and 

CPS.  The most intriguing findings from these studies have been the effect of novel 

adjuvants on restoring the immune response in aged mice to both protein and 

polysaccharide antigens.  Addition of CpG oligodeoxynucleotides (CpG-ODN) was found to 

improve the systemic and mucosal antibody response to conjugated pneumococcal 

serotype 9V CPS administered nasally to young mice (142).  CpG-ODN enhances antibody 

production through stimulation of type 1 helper T-cells; the underlying mechanism of this 

remains uncertain (143).  This same adjuvant restored the antibody response of aged mice 

to conjugated serotype 14 CPS administered systemically (144).  For nasally-administered 

pneumococcal surface protein A (PspA), a dual adjuvant strategy of CpG-ODN and plasmid-

expressing Flt3 ligand was required to induce similar antibody levels (serum and mucosal 
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IgG and IgA) in young and old mice (145).   This strategy also enhanced PspA-specific CD4 T-

cell responses in old mice and was protective against nasopharyngeal colonisation in these 

mice.   

It must be emphasized that mouse IgA, having a different configuration to human IgA, is 

less susceptible to cleavage by pneumococcal IgA protease.  Thus, if the above findings are 

to have applicability for human vaccination, it will be essential to demonstrate either that 

antibodies are a dispensable component of the mucosal immune response, or that other 

immunoglobulins—such as secretory IgM and IgG—are sufficient for protection in humans.  

If the relative dysfunction of anti-CPS IgM in older humans is indeed of clinical significance, 

then this may prove to be the Achilles’ heel of this vaccination strategy, unless an adjuvant 

can be identified that can restore the function of IgM in older adults.  With this caveat in 

mind, an appropriately-adjuvanted mucosal vaccine could still have enormous potential for 

reducing the burden of pneumococcal disease in older adults.   

1.6 Alternative antibody targets to polysaccharide 

Thus far, we have focused on anti-CPS antibodies.  These antibodies are induced by natural 

exposure to pneumococcus and are also the antigens employed in all currently-licensed 

pneumococcal vaccines.  Furthermore, there is a substantial body of literature comparing 

anti-CPS immunity in young and older adults.  However, the pneumococcus also expresses 

a variety of surface proteins which are conserved across different serotypes, many of which 

have been proposed as vaccine candidates (146) and indeed have been explored in 

mucosal vaccines  in animal models as outlined above.  Parenteral protein-based vaccines 

have shown a degree of promise during early-phase studies in young adults, but have yet to 

achieve their full potential (147).  Anti-protein immune responses have been demonstrated 

following colonisation (60) and may contribute to naturally-acquired protection against 

colonisation (58) although their mechanistic significance has not been definitively 
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established (148).  In children, studies are conflicting regarding whether anti-protein 

antibodies confer protection or serve as a marker of exposure and increased risk of disease 

(149, 150).    In a single study of young adults, antibodies against two out of 27 vaccine-

candidate proteins were found to be elevated following experimental colonisation with 

serotype 6B: PiuA and PspA-UAB055, while none were protective against colonisation (60).   

1.6.1 Anti-protein antibodies in older people 

Anti-protein antibody levels are reduced in older adults (65).  Anti-protein antibody levels 

rise following pneumococcal disease in older adults (151), and there is a suggestion that 

their functionality may not be adversely affected by aging, though these findings remain 

preliminary (German E et al, in press).  Apart from these, and the above-mentioned murine 

studies of mucosal anti-protein immunity, we are unaware of any substantial body of work 

exploring the nature of aging and anti-protein immunity, and this topic must be prioritized 

in future research.  

1.7 Summary of antibody-based pneumococcal immunity 

Impaired naturally-acquired CPS immunity leaves older people vulnerable to pneumococcal 

disease. This may or may not be related to reduced boosting due to infrequent 

pneumococcal colonisation.  The functional antibody responses to current pneumococcal 

vaccines are also suboptimal in older adults.  PCV13 has overcome some, but by no means 

all of the immunological limitations of PPV23.  Reduced antibody functionality combined 

with limited serotype coverage means that pneumococcal vaccination in older adults does 

not deliver as substantial a benefit as would be expected.   

If anti-CPS antibodies are to remain the mediator of protection, then improvements in the 

functionality of aged antibodies will need to be induced.  A mucosal vaccine, with an 

appropriate adjuvant, would be an attractive strategy.  Vaccination strategies seeking to 
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exploit non-capsular antigens or T cell-mediated immunity have shown a degree of promise 

in early-phase studies in young adults, but have yet to achieve their full potential (147).  

Careful studies of anti-protein immunity in older people would guide the exploration of 

such a vaccination strategy in older adults.  Future studies should investigate the dynamics 

of colonisation and mechanisms of naturally-acquired immunity in older people in greater 

detail, as well as exploring the nature of respiratory mucosal immunity in older people, in 

order to better inform vaccine development for this growing and vulnerable population.   

1.8 Controlled human infection models in research 

Studies of pneumococcal colonisation are limited by the sensitivity of diagnostic tests, 

variations in sampling methodology and low prevalence in certain settings, as outlined 

earlier.  Studies of pneumococcal disease have similar limitations.  In recent years, research 

into infectious diseases has been revolutionised by the development of controlled human 

infection models (CHIMs). CHIMs of a wide variety of pathogens have been carried out 

throughout history, particularly in the twentieth century, but many early studies were 

carried out in an ethical vacuum—in the most egregious cases, prisoners were infected 

without their consent (152).  In the decades following the second world war, an ethical 

framework for human challenge studies has been established (153).  CHIMs are now 

generally accepted as essential to study the pathogenesis and prevention of a number of 

infectious diseases (154), including cholera (155), malaria (156) and typhoid (157).  

1.8.1 Experimental Human Pneumococcal Colonisation 

Given that pneumococcal colonisation is key to the pathogenesis of pneumococcal disease 

as well as natural anti-pneumococcal immunity, a CHIM of pneumococcus can be 

established by inducing carriage rather than clinical disease (158).  The Liverpool School of 
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Tropical Medicine (LSTM) established an Experimental Human Pneumococcal Colonisation 

(EHPC) model in 2011.  Exclusion criteria typically comprised: 

• Allergy to penicillin  

• Smoking or ex-smoker with significant history 

• Chronic illness, particularly if expected to affect immunity (such as asthma, 

diabetes) 

• Taking steroids (including steroid nasal spray) or other immunosuppressants 

• Antibiotic therapy in the preceding four weeks 

• Caring responsibilities for children aged < 5 years, hospital patients or people with 

chronic illnesses  

• Pregnancy or lack of adequate contraception (women only) 

Initial studies of the model were carried out in volunteers aged between 18 and 50 years, 

and determined that experimental colonisation is feasible and safe in this population, and 

that it is reproducible (typically resulting in 45% of subjects becoming colonised), 

immunogenic and can be used as a vaccine testing platform (60, 107).    

1.9 Treatment of pneumococcal disease 

In this final section, we discuss the treatment of suspected or confirmed pneumococcal 

disease, with the former being a more common scenario in clinical practice.  Penicillin and 

other β-lactam drugs (such as cephalosporins) have historically been the mainstay of 

therapy for pneumococcal disease.  Other options include macrolides, tetracyclines and 

respiratory fluoroquinolones.   

1.9.1 Local treatment guidelines for pneumococcal disease 

In Table 1.2 and Table 1.3, we present a review of national guidelines and local formularies 

(primary and tertiary care) for the recommended treatment of any of: 
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• Lower respiratory tract infections in healthy adults 

• Suspected pneumococcal disease (pneumonia or meningitis) 

• Confirmed pneumococcal disease (pneumonia or meningitis)  
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Table 1.2: Local and national guidelines relevant to the treatment of suspected or confirmed pneumococcal respiratory infection 

Guideline Clinical scenario First-line antibiotic(s) Alternative antibiotic(s) 

Class(es) Specific agent(s) Class(es) Specific agent(s) 

BTS (7) Empiric treatment of 
mild CAP 

β-lactam 
 

Amoxicillin Macrolide OR 
tetracycline 

Clarithromycin OR Doxycycline 

BTS (7) Empiric treatment of 
severe CAP 

β-lactam 
PLUS 
macrolide 
 

Amoxicillin OR Benzylpenicillin 
OR Amoxicillin-Clavulanate (high 
severity) 
PLUS Clarithromycin 

Tetracycline OR 
fluoroquinolone 
(moderate); OR β-
lactam PLUS macrolide 
(severe) 

Doxycycline OR Levofloxacin 
OR Moxifloxacin (moderate); 
Cefuroxime OR Cefotaxime OR 
Ceftriaxone PLUS 
Clarithromycin (severe) 

BTS (7) Treatment of 
confirmed 
pneumococcal CAP 

β-lactam 
 

Amoxicillin OR Benzylpenicillin Macrolide OR β-lactam 
 

Clarithromycin OR Cefuroxine 
OR Cefotaxime OR Ceftriaxone 

Local hospital Empiric treatment of 
mild CAP 

β-lactam 
 

Amoxicillin Macrolide Clarithromycin 

Local hospital Empiric treatment of 
severe CAP 

β-lactam 
PLUS 
macrolide 
 

Amoxicillin (moderate) OR 
Benzylpenicillin (high severity) 
PLUS Clarithromycin 

Tetracycline OR 
glycopeptide PLUS 
macrolide 

Doxycycline (moderate 
severity); 
Teicoplanin PLUS 
Clarithromycin (high severity) 

Local primary 
care (159) 

Empiric treatment of 
mild CAP 

β-lactam 
 

Amoxicillin Macrolide OR 
tetracycline 

Clarithromycin OR Doxycycline 

Empiric treatment of 
moderately-severe 
CAP 

β-lactam 
PLUS 
macrolide 

Amoxicillin PLUS clarithromycin Tetracycline Doxycycline 

Local primary 
care (159) 

Empiric treatment of 
acute bronchitis 

β-lactam 
 

Amoxicillin Tetracycline Doxycycline 

CAP: Community-acquired pneumonia; Local hospital: Royal Liverpool University Hospital Antimicrobial Formulary (accessed October 2017); Local primary care: Pan-Mersey Area Prescribing 
Committee: Antimicrobial Guide and Management of Common Infections in Primary Care, 2017—2019 (159); National: British Thoracic Society Guidelines for the Management of Community 
Acquired Pneumonia in Adults: update 2009 (7).  All guidelines refer to treatment of adults.   
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Table 1.3: Local and national guidelines relevant to the treatment of suspected or confirmed pneumococcal meningitis. 

Guideline Clinical scenario First-line antibiotic(s) Alternative 

Class Specific agent(s) 

National (160) Treatment of suspected 
bacterial meningitis 

β-lactam (± glycopeptide 
or rifamycin) 

Ceftriaxone OR Cefotaxime; (Add Vancomycin OR 
Rifampicin if recent travel to a region with high 
rates of penicillin resistant pneumococci) 

Chloramphenicol 

National (160) Treatment of 
pneumococcal meningitis 

β-lactam (± glycopeptide 
or rifamycin) 

Ceftriaxone OR Cefotaxime (Benzylpenicillin 
acceptable if MIC ≤ 0.06 mg/L confirmed);  

(Add Vancomycin OR Rifampicin if cephalosporin 
resistance) 

Chloramphenicol 

Local hospital Treatment of suspected 
bacterial meningitis 

β-lactam Ceftriaxone Chloramphenicol 

Local hospital: Royal Liverpool University Hospital Formulary (accessed October 2017); National: The UK joint specialist societies guideline on the diagnosis and management of acute 
meningitis, 2016 (160).  All guidelines refer to treatment of adults.   
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1.9.2 Antimicrobial resistance in pneumococci 

Antimicrobial resistance (AMR) is a growing global threat.  Penicillin and macrolide 

resistance were identified in pneumococci in the 1960s (161) and today penicillin non-

susceptible pneumococci are listed on the WHO’s Global priority list of antibiotic-resistant 

bacteria (162).  Data on invasive pneumococcal isolates from the European Centre for 

Disease Prevention and Control show wide variation in pneumococcal susceptibility profiles 

between different countries, with (for example) >40% of Romanian isolates non-susceptible 

to penicillin versus 0.4% of Belgian isolates (163).  In recent years there has been a trend 

towards reduced rates of AMR in the UK; in 2016, 4.9% of invasive isolates were non-

susceptible to penicillin, 6.5% non-susceptible to macrolides and 2.6% non-susceptible to 

both.   

Microbiology laboratories define antimicrobial resistance based on the minimum inhibitory 

concentration (MIC): the lowest concentration of an antibiotic required to completely 

prevent growth of a given organism (164).  MICs are related to predicted concentrations of 

the given antibiotic (at standard doses) at the site of interest (e.g. in blood or in 

cerebrospinal fluid (CSF)) to predict whether the organism will be successfully treated by 

the antibiotic—this determines the “clinical breakpoint”.  Clinical breakpoints are generally 

determined by national or supranational bodies rather than individual hospitals; in Europe, 

they are set by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

(165).   

1.9.2.1 Penicillin non-susceptibility 

Penicillin non-susceptibility in pneumococci derives from mutations in one or more of the 

six penicillin-binding proteins (166), and may have first been acquired via the “scavenging” 

of genes from commensal Streptococcus mitis (167, 168).  The term “penicillin resistance” 

is rarely employed when discussing pneumococci, as the significance of increased 
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pneumococcal MICs to β-lactam antibiotics remains controversial (169-171).  Low-level 

penicillin “resistance” (MIC ≤2 mg/L) can be overcome by high-dose intravenous penicillin 

therapy, as this achieves serum concentrations in excess of the MIC (172, 173).  Penicillin 

reaches lower concentrations in CSF, where its breakpoint is accordingly defined as 0.06 

mg/L.  Clinical and microbiological failure of penicillin monotherapy for bacteraemic 

pneumococcal pneumonia is encountered at higher levels of resistance, when penicillin 

MICs are >2 mg/L (174).  Lower-level penicillin resistance is typically associated with 

alteration of a single penicillin-binding protein, such as PBP-2B, while mutations in multiple 

genes (e.g. the combination of PBB-2A and PBB-2X in one series) confer higher-level 

resistance (175).  Penicillin non-susceptible isolates are usually sensitive to third-generation 

cephalosporins (172), which achieve therapeutic concentrations in CSF if administered at 

maximal doses (176).  Given this reliance on cephalosporins to overcome elevated penicillin 

MICs, it is not surprising that ceftriaxone resistance was associated with mortality from 

pneumococcal bacteraemia in a recent study (173).   

Although the EUCAST guidelines consider non-meningeal infections from pneumococci with 

an MIC up to 2 mg/L to be susceptible to high-dose benzylpenicillin (165), the doses in 

question (2.4g x 4—6/day) are in excess of those routinely recommended in the UK (7).  

Using EUCAST breakpoints, standard doses of benzylpenicillin (1.2g x 4/day) are only 

recommended for pneumonia caused by pneumococci with MICs up to 0.5 mg/L 

1.9.2.2 Macrolide resistance  

Resistance to macrolides typically results from either the acquisition of an efflux pump 

(low-level resistance, via the mef(A) gene) or a mutation in the macrolide binding site in the 

23S ribosomal subunit (high-level resistance, via the erm(B) gene) (168).  Macrolide 

resistance has been unequivocally associated with clinical and microbiological failure in 

cases of both pneumococcal pneumonia and bacteraemia (reviewed in (169)).  



39 
 

Nonetheless, larger-scale studies have suggested that the contribution of macrolide 

resistance to adverse clinical outcomes remains small (reviewed in (161)).   

1.9.2.3 Fluoroquinolone resistance 

Fluoroquinolone resistance has also been associated with clinical and microbiological 

failure in cases of pneumococcal pneumonia ((177), others reviewed in (178)).  Prior 

exposure to the non-respiratory fluoroquinolone ciprofloxacin has been hypothesised to 

select for low-level resistance mutations in DNA gyrase and topoisomerase IV in colonising 

pneumococci, with subsequent respiratory fluoroquinolone treatment having the potential 

to select for higher levels of resistance (177).  The lack of large prospective studies prevents 

us from accurately estimating the impact of fluoroquinolone resistance on treatment 

outcomes in pneumococcal disease.   

1.9.2.4 Resistance to other antimicrobials 

Trimethoprim-sulfamethoxazole (TMP-SMX) is not employed against respiratory tract 

infections in the UK.  However, it is widely employed globally as prophylactic therapy in 

HIV-infected patients, in whom it confers protection against invasive bacterial diseases in 

addition to its intended target, Pneumocystis jirovecii.  This has led to high rates (>90%) of 

pneumococcal resistance to TMP-SMX in regions with high HIV prevalence (179).  The 

clinical significance of TMP-SMX resistance remains undetermined.  Similarly, doxycycline is 

rarely administered to critically-ill patients with community-acquired pneumonia in the UK, 

which could result in clinical failures being under-noticed and under-reported.  One author 

estimated—based on rates of resistance, likely impact of resistance, and host factors—that 

there was an 82% likelihood of community-acquired non-meningeal pneumococcal disease 

responding to doxycycline, and a 65% chance for TMP-SMX, versus 97% for ceftriaxone 

(168).  There are no hard data to back up these assertions.  Vancomycin resistance is 
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exceedingly uncommon—thus, this agent remains the drug of “last resort” for 

pneumococci.  

1.9.3 The significance of colonisation with antibiotic-resistant pneumococci 

Given the strong links between pneumococcal colonisation and onward transmission, and 

between pneumococcal colonisation and disease, it is highly likely that resistance rates in 

colonising pneumococci will correlate with those of invasive pneumococci.  This is 

supported by epidemiologic studies in children (180).  Vaccine impact studies also support 

this hypothesis: when vaccine-serotype pneumococci are the most likely pneumococci to 

harbour resistance, pneumococcal vaccination programmes reduce the rates of infection 

with resistant pneumococci throughout the community (181).   

1.10 Summary 

1. It is unknown whether older adults are as susceptible to pneumococcal 

colonisation as younger adults, or even substantially susceptible at all.   

2. The niche of pneumococcal colonisation in older people may not be the same as 

that in young adults.   

3. Pneumococcal colonisation may not be an immunising event in older adults.  

4. There is a substantial unmet need for an improved pneumococcal vaccination in 

older adults.  

5. Currently, herd immunity from paediatric vaccination is key to protecting older 

adults from pneumococcal disease, but this is vulnerable to serotype replacement 

6. As pneumococcal colonisation is key determinant of pneumococcal transmission 

within communities, surveillance for antimicrobial resistance among colonising 

isolates is warranted.   

Items 1—4 could be answered by expanding Liverpool’s existing controlled human infection 

model of S pneumoniae into an older cohort than has previously been recruited.  This 
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would provide data to support, refute or generate hypotheses regarding susceptibility, site 

and immunogenicity of pneumococcal colonisation in this population, as well as providing a 

vaccine testing platform in a key risk population.  For items 5—6, the EHPC programme 

could also provide incidental surveillance data on colonisation, herd immunity and serotype 

replacement in adults the community, and be a valuable source of pneumococcal isolates 

for susceptibility testing.   
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2  Methodology 

This thesis reports results from two studies.  The “Aging and Immunity” study was the 

expansion of the Experimental Human Pneumococcal Carriage (EHPC) model into a cohort 

of older adults; in this chapter, we describe how the study was designed and executed, and 

the clinical and laboratory methods we employed.  The “Natural Carriage” study explored 

the rates and distribution of baseline pneumococcal carriage throughout the history of the 

EHPC programme; in this chapter, we report how these isolates were serotyped and tested 

for antimicrobial resistance.   

2.1 The NHS approval process 

Establishing an EHPC study requires careful coordination between the clinical team and 

numerous approval bodies, including the local NHS Research Ethics Committee (REC) and 

the relevant National Health Service (NHS) trust Research Development and Innovation 

(RD&I) department, as outlined in the flowcharts below (Figure 2.1, Figure 2.2).  All 

previous EHPC studies had undergone a similar approval process, and the flowcharts 

include specific dates and identifiers for the “Aging and Immunity” study.  Following ethical 

approval, protocol amendments required provisional approval by the sponsor(s) before 

review by the REC.   

REC applications were made using the online Integrated Research Application System 

(IRAS) form, supported by other documents including a participant information sheet, 

protocol, questionnaires, provisional intention to sponsor letter, advertisements and 

General Practitioner (GP) letters (see APPENDIX 5).  

The NHS REC defines a sponsor as an individual, organisation or group taking on 

responsibility for securing the arrangements to initiate, manage and finance a study. The 

sponsor’s role is to ensure that the research safeguards the rights, safety, dignity and 
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wellbeing of participants.  In addition, the sponsor ensures the research is registered on a 

public database and reviews all REC amendments prior to submission, while confirming 

that research complies with legislation and Good Clinical Practice (GCP) requirements.  

The decision regarding single sponsorship versus co-sponsorship was taken on a study-by-

study basis.  For the “Aging and Immunity” study, both LSTM and the local NHS trust 

requested that, as the study would take place on NHS premises (the clinical research unit 

(CRU) of the Royal Liverpool University Hospital (RLUH)) and involved a degree of risk, the 

study should be co-sponsored by the Royal Liverpool and Broadgreen University Hospitals 

Trust (RLBUHT) in addition to LSTM.  A contract was drawn up between the two 

institutions, including designated oversight and liability roles for each party and a material 

transfer agreement between the two sites.  In addition, specific approval was obtained 

from the CRU.   
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Develop all documentation for ethics: 
including patient information leaflet (PIL), 
consent form, protocol, GP letter, hospital 
advert.  

Develop study design and initial version of 
protocol  

Complete Integrated Research Application 
System (IRAS) form – complete REC, R&D and 
Clinical Research Network (CRN) portfolio 
sections and submit 

Arrange date for Research Ethics Committee 
(REC) 

Attend REC meeting 
 
Address all REC amendments and submit 
 
REC approval 

General outline of ethical approval process  Specific to “Aging and Immunity” study 

Additional amendments during the study, as 
required 

Submitted 16 December 2015 

Attended 21 January 2016 
 
15 February 2016 

Favourable opinion 4 February 2016, full 
approval 15 February 2016 

Ref 16/NW/0031 

ISRCTN (International Standard Randomised 
Controlled Trials No.) registration  

ISRCTN ID 10948363 
As part of good research practice, even 
though this study was not a randomised trial, 
it was prospectively registered with ISRCTN 

Amendment 1 (Technical modifications requested 
by local RD&I, alterations to sampling schedule) 
Submitted 18 March 2016 
Amendment 2 14 April 2016 (Adding the Royal 
Liverpool Hospital as co-sponsor) 14 April 2016 
Amendment 3 (Adding text of a study website) 10 
May 2016  
Amendment 4 (Expanding inclusion criteria and 
adding extra samples) 7 February 2017 
Amendment 5 (Specific approval to use the 
DocMail® service to send letters from primary 
care practices within the Merseyside Clinical 
Commissioning Group) 19 July 2017 
Amendment 6 (Amending the protocol to remove 
certain criteria of restricted medications and the 
placebo group) 18 October 2017 

Figure 2.1: Overview of ethical approval process 
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Trust agree to sponsor 
 

Already in place from previous studies 

Discussed at operational group meeting 
on 10 February 2016 
 

Finance and insurance agreements 
 

Material Transfer Agreements (MTAs) 

Other approvals – Directorate manager, 
pharmacy 

Advertising and recruitment 
1.  

Site Specific Information Form (SSIF) 
submission on IRAS – only to be submitted 
when ready to start (commences 70-day 
countdown for recruitment) 

Clinical Research Unit (CRU) approval: risk 
management plan, discussion at 
operational group meeting, testing of 
emergency phone number 
 

Set up Data Monitoring and Safety 
Committee (DMSC) 

Research Development and Innovation 
department (RD&I) - Study number and 
title established 

Review at local RD&I meeting (with 
independent peer review) – provisional 
intent to sponsor letter granted 

Complete Governance Registration 
Information Document (GRID) and 
Declaration of Interest (DoI) form from 
RD&I; Engage with finance and pharmacy 
 

JRO (Joint Research Office) application 
 

Number 5174 
Title Experimental Human Pneumococcal Carriage  
Working towards a nasal vaccine for pneumonia: 
The effect of age on immune function 
Short title EHPC: Aging and Immunity 

29 February 2016  
From this point, we were permitted to 
advertise and hold information sessions, 
but not to consent participants for the 
study 

11 February 2016 

11 February 2016 
 

General outline of NHS approval process  Specific to “Aging and Immunity” study 

31 May 2016 

24 March 2016 

First consent 1 June 2016 

31 May 2016 

Figure 2.2: Overview of NHS approval process 
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2.2 Recruitment and advertising 

All advertisement materials required approval by the REC before use (See APPENDIX 3 for an 

example), and only locations listed in the ethically-approved study protocol could be used 

for advertising.  Advertisements inviting volunteers to participate were placed on: 

• Physical notice boards in public and private areas, including libraries, bingo halls, 

gymnasia and GP waiting rooms; 

• The intranet/internet of local universities, colleges, LSTM and Royal Liverpool 

University Hospital (RLUH); 

• Social media including Facebook and Twitter; 

Participants were also approached based on their prior consent to receive generic research 

communications (the Consent4Consent database, established by the RLUH).   For studies of 

particular population groups, we conducted targeted outreach and public engagement 

events at (among others) adult education centres, bowling clubs, food fairs, libraries, 

retirement associations and Women’s Institute meetings.  Finally, a collaboration between 

the Clinical Research Network (CRN) and local primary care centres could request practices 

to screen their patient lists against the study inclusion/exclusion criteria and send letters of 

invitation to potentially eligible participants.  

Interested persons were asked to contact the research team by phone, text message or 

email for further information. Potential participants were sent a copy of the participant 

information sheet and invited to contact a member of the research team if still interested 

in participating.  

Potential participants were invited to discuss the study during a 45-minute appointment 

(including a 30-minute group presentation); family members were welcome to attend 

these appointments as well. They were asked to demonstrate that they understand the 

study’s objectives, associated risks and potential benefits. At this point, they had an 

opportunity to discuss the study with a study clinician and ask questions privately; they 
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were given an unrestricted amount of time to decide whether to participate or not.  If 

individuals agreed to participate in the study and met the inclusion criteria, they were 

invited to provide written informed consent. Once consent was obtained, the participant’s 

GP was permitted to share their medical records (either by sending an electronic summary 

or filling out a questionnaire (see APPENDIX 5)), and this also contributed to the eligibility 

assessment.   

2.3 Safety considerations  

The natural history of pneumococcal colonisation suggests that the risk to adults of 

developing pneumococcal infection during EHPC very low: < 5% of adults are colonised at 

any time, while the incidence of invasive disease is 20/100 000 patient years. In addition, 

the following factors further supported our confidence in our ability to safely run the study: 

• Specific inclusion/exclusion criteria were in place, to minimise the risk of 

pneumococcal disease; 

• Serotype selection meant that bacteria of lower pathogenicity were used, rather 

than those typically associated with severe disease; 

• Dose ranging studies were performed and published at the start of the EHPC 

programme, to lay a foundation for future studies (60); 

• Specific safety measures were in place, including 24-hour access to the study team 

and standby antibiotics; 

• At the time of ethics application for the “Aging and Immunity” study, the study 

team had six years of experience in human challenge studies involving over 400 

participants, following very similar protocols, and facing the same safety issues.  No 

episodes of pneumococcal infection or severe adverse events (SAEs) had occurred 

in any of our participants. 
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The risk for pneumococcal disease increases with both age and comorbidity (182, 183) and 

so the inclusion/exclusion criteria for the “Aging and Immunity” study were designed to 

minimise any risk of pneumococcal disease, balanced with a desire to recruit as 

representative a sample as possible.    

2.3.1 Inclusion criteria for the “Aging and Immunity” study, with rationales 

• Adults aged 50-84 years—previous EHPC studies had used 50 as their upper age 

limit;  

• Fluent spoken English—to ensure a comprehensive understanding of the research 

project and their proposed involvement; 

• WHO performance status 0 (able to carry out all normal activity without restriction) 

or 1 (restricted in strenuous activity but ambulatory and able to carry out light 

work)—because attendance at multiple visits were required, and as a surrogate for 

control of comorbidities 

• Access to telephone—to allow safety and timely communication; 

• Capacity to give informed consent. 

2.3.2 Exclusion criteria for the “Aging and Immunity” study, with rationales 

Clinical judgement was used in interpreting these exclusion criteria, with any concerns 

discussed with the chief investigator before enrolment.   

• Caring responsibilities for children aged < 5 years, hospital patients or people with 

chronic illnesses—to minimise the exposure to potentially pathogenic bacteria in 

those at high risk; 

• History of drug or alcohol abuse—to minimise risk of pneumococcal disease; 

• Smoking any cigarettes currently or within the last six months—minimise risk of 

pneumococcal disease; 
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• Ex-smoker with a significant smoking history (>20 pack-year history of smoking OR 

up to 20 pack-year history of smoking but quit less than five years ago OR up to 10 

pack-year history of smoking but quit less than six months ago*)—to minimise the 

risk of pneumococcal disease, plus ensure that carriage rates were not affected by 

epithelial changes caused by smoking; 

• Any current treatment for asthma—to avoid excess risk of infection and minimise 

confounding effect of medications such as corticosteroids (an EHPC study 

exclusively enrolling participants with asthma was carried out at the same time as 

this study); 

• Taking daily medications that may affect the immune system e.g. steroids, steroid 

nasal spray, disease-modifying anti-rheumatoid drugs—to ensure homogeneity of 

the cohort and minimise risk of pneumococcal disease; 

• Taking medication that affects blood clotting e.g. aspirin, clopidogrel, warfarin or 

other oral or injectable anticoagulants—to reduce risk of bleeding associated with 

study procedures, also likely a surrogate marker of underlying systemic illness; 

• Significant cardiorespiratory disease (excluding stable hypertension)—to minimise 

risk of pneumococcal disease or severe complications should pneumococcal 

disease occur; 

• Disease associated with altered immunity, including diabetes, active malignancy, 

rheumatological conditions—to minimise risk of pneumococcal disease; 

• Other uncontrolled comorbidities, as determined by the clinical investigator, which 

would be expected to increase the risk of pneumococcal disease; 

• Any acute illness (new symptoms within preceding 14 days which are unexplained 

by the known past medical history)—to avoid confounding symptoms and minimise 

                                                           
* One pack-year is defined as smoking 20 cigarettes per day for one year. 
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risk of pneumococcal disease (e.g. due to impaired mucosal immunity from 

concomitant viral infection); 

• Having received any antibiotics in the preceding 28 days—to improve chance of 

carriage acquisition; 

• History of culture-proven pneumococcal disease—to reduce confounding of 

carriage rates and other laboratory measurements by immunological memory of 

prior pneumococcal exposure; 

• Allergy to penicillin— beta-lactam antibiotics are used for termination of carriage in 

the study protocol; 

• Involved in another clinical trial unless observational or in follow-up (non-

interventional) phase—investigational medicinal products could have 

unanticipated effects on immunity, and multiple blood tests for multiple studies 

could be risky for participants; 

• Prior participation in a clinical trial involving EHPC and bacterial inoculation in the 

past three years—to improve chance of carriage acquisition.  

Of note, prior PPV23 receipt was not an exclusion criterion, as it is recommended for all 

adults aged ≥ 65 years (100) and therefore it was expected that the majority of participants 

above this age would have received this vaccine.  PPV23 is not believed to affect the 

acquisition of nasopharyngeal colonisation (102), and so a pragmatic decision was made to 

accept volunteers who had received the vaccine.   

Specific “stop criteria” based on findings on pre-screening physical examination and 

investigations were also defined for this study.   

2.3.3 Pre-screening and “stop criteria” 

In EHPC studies of younger volunteers, baseline clinical screening (medical history, clinical 

exam and full blood count) were performed on the same day as their baseline samples (e.g. 
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pre-inoculation nasal wash, baseline serum etc).  For older volunteers, a more 

comprehensive clinical assessment was required to determine that a participant was safe 

to enrol, and there was greater potential for participants to be excluded pre-inoculation on 

clinical grounds.  Therefore, all clinical/safety assessments were bundled together as a 

“pre-screening” visit (which could take place some weeks before inoculation), and scientific 

baseline samples performed at a screening visit the week before inoculation.   

In addition to clinical history, medication review and clinical cardiac and respiratory 

examination (standard for all EHPC studies), all participants underwent electrocardiography 

(ECG) and spirometry.  Two blood samples were sent at pre-screen: a full blood count 

(including haemoglobin, platelet count, white blood cell count and differential) and a renal 

profile (including sodium, potassium, urea and creatinine).  If any of these assessments 

breached the protocol-defined “stop criteria” (Table 2.1), the participant would be 

excluded.   

Table 2.1: Stopping criteria for use during participant assessment prior to commencing the “Aging and 
Immunity” study.   

Stop criteria 

Clinical history and examination STOP if unexplained or concerning findings 
on history or examination 

Engagement with research team STOP if the research team have concerns 
about volunteer’s ability to commit to 
frequent communication and safety checks 

Full blood count STOP if haemoglobin <10g/L 
STOP if total white cell count <1.5 x109/L 
STOP if total white cell count >10 x109/L 
STOP if platelets <75 x109/L 

Renal profile STOP if sodium is outside reference range 
STOP if potassium is outside reference range 
STOP if urea is above reference ULN 
STOP if creatinine is above reference ULN 

ECG STOP if any evidence of significant 
conductive or ischaemic defect 

Resting oxygen saturation STOP if < 95% 

Spirometry STOP if FEV1 <LLN 
FEV1 Forced Expiratory Volume in one second; LLN Lower Limit of Normal; ULN Upper Limit of Normal 
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2.3.4 Risk stratification 

Participants were stratified in age-defined risk categories (Table 2.2).  The rationale for the 

age groups related to published pneumococcal disease rates (Centres for Disease Control 

and Prevention (183)) and clinical guidance for general use of PPV23 (age ≥ 65).   

Table 2.2: Age-defined risk categories for participants.   

Risk categories 

0 1 2 3 

Young healthy 
volunteers – not 
included in this 
study 

Age 50-64 Age 65-74 Age 75 - 84 

 

The study protocol required safety to be demonstrated in Category 1 before moving onto 

Category 2, and in Category 2 before moving onto Category 3.   Safety was defined as per 

practice in previous EHPC studies: at least six uneventful inoculations per group and no 

reservations among the clinical team and Data Monitoring and Safety Committee (DMSC) 

before proceeding.   

 

2.3.5 The Data Monitoring and Safety Committee 

A DMSC reviews accumulating data during a clinical trial and advises the sponsor on the 

future management of the trial.  A DMSC for the EHPC studies (consisting of two 

experienced trialists—one clinician and one statistician) has been in place for 6 years.  The 

DMSC’s role was to discuss the safety report containing information on all participants, 

either at the request of the study’s chief investigator, at the end of the study and/or in the 

event of any serious adverse events (SAEs).  The study team would provide the DSMC with 

general safety reports at key points during the study and update them regarding 

progression to higher risk groups.   
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2.3.5.1 Serious Adverse Events 

An SAE is an adverse event or adverse reaction that:  

• Results in death, or 

• Is life-threatening, or 

• Requires hospitalisation or prolongation of existing hospitalisation, or  

• Results in persistent or significant disability or incapacity, or  

• Consists of a congenital anomaly or birth defect. 

According to the EHPC study protocols, any unexpected (i.e. not listed in the protocol as an 

expected occurrence) related (i.e. resulting from administration of any of the research 

procedures) SAEs would be recorded and reported to the sponsors and DMSC (within 24 

hours of the principal investigator becoming aware). In the event of any unexpected 

related SAE, the study would be stopped temporarily for investigation and any further work 

referred back to the REC for consideration within 7 days. 

2.4 Study design 

The study schedule and procedures are outlined in Figure 2.3.  Following inoculation, 

participants were seen for a follow-up nasal wash on days 2, 7, 9, 14, 22 and 29.  If 

experimental colonisation was not identified on or by day 14, the participant could omit 

the day 22 visit, as they were deemed to be at lower risk of pneumococcal diseases and 

thus required less intensive follow-up.  Serum samples were taken at baseline and on day 

29.  All follow-up visits included a clinical assessment, and participants were asked to 

record their temperature daily for the first seven days, sending their temperature to the 

research team via text message.   
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Visit 2 (d-5): Screening 
Baseline Samples: Nasal wash and serum 

collection 

Visit 6 (d9) 
Nasal wash 

Visit 7 (d14) 
Nasal wash 

*Only carriage positive participants attend 
 

Take amoxicillin 
500mg three times a 

day for 3 days 

 No Yes 

Experimental carrier? 
(At least one culture-positive nasal 
wash and <2 negative nasal washes 

by day 29) 

 

Visit 8 (d22)* 
Nasal wash  

Visit 5 (d7) 
Nasal wash 

Visit 4 (d2)  
Nasal wash 

 

Visit 3 (d0) 
Pneumococcal inoculation 

 

Informed consent 
GP questionnaire to confirm eligibility  

 

Visit 1: Pre-screening appointment   
Medical history, clinical examination, ECG, 
spirometry, full blood count, renal profile  

Visit 9 (d29)  
Nasal wash and serum collection 

 

Figure 2.3: Study flowchart 
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2.5 Sample size calculation 

In order to compare this group with previous healthy volunteers, a total sample of 64 

inoculated subjects was required. A cohort of this size would permit the detection of a 

difference of 0.78 at α = 0.05 with a power of 0.80, allowing for study non-completion. 

The underlying assumptions were: 

• Experimental colonisation rate is 45% in healthy volunteers (previous published 

data) (60); 

• Experimental colonisation rate falls to 10% in older people (i.e. relative risk is 0.22, 

expected from published cross-sectional studies of carriage prevalence suggesting 

very low carriage rates amongst older people) (39); 

• Participant drop-out would lead to 10% non-completion rate.  

Of note, we did not allow for natural colonisation with pneumococcus at baseline when 

calculating our sample size, as our literature review suggested that this would occur at 

negligible rates in an older population.  In fact we did identify three “natural carriers” 

during this study.  Therefore we performed post-hoc sensitivity analyses which excluded 

these participants.   

2.6 Clinical procedures 

2.6.1 Pneumococcal challenge 

On inoculation days, each participant was seen by a study clinician to assess for any acute 

symptoms, to ensure that inoculation was safe to go ahead.  The participant was then 

placed in a semi-recumbent position on a reclining chair. A P200 micropipette was used to 

draw up 80,000 colony-forming units (CFU) of pneumococcus suspended in 100µL 0.9% 

sodium chloride solution (normal saline) The plunger was depressed slowly and the pipette 

tip arced to and fro along the apex of the nostril.  Direct visualisation of the tip was 
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maintained at all times.  The participant was advised to breathe through their mouth, and 

then requested to remain in the reclining chair for 15 minutes.  

2.6.2 Safety briefing 

Participants were given a post-inoculation advice sheet, including emergency contact 

details and “red flag” symptoms (see APPENDIX 6: Post-inoculation safety leaflet). They were 

given a thermometer and requested to send their temperature to the research team by 

text message daily for the first week post-inoculation.  They were also given a three-day 

course of amoxicillin 500mg tablets.  If they became unwell they were advised to check 

their temperature and contact the research team, who would advise them to seek 

healthcare, take amoxicillin and/or attend the research facility the next day for a review.   

2.6.3 Nasal wash 

Nasal wash was essential to determine colonisation.  Nasal washes were performed at 

baseline screening pre-inoculation and at pre-determined study-specific timepoints 

thereafter.   

A modified Naclerio method was used for nasal wash in all EHPC studies (184). This has 

been validated by our team as being at least as sensitive as, and better tolerated than the 

WHO gold standard nasopharyngeal swab for the detection of pneumococci in adults (36, 

37).    

In the Naclerio method, 5mL of normal saline is introduced using a syringe and held for a 

few seconds in the nose before being expelled in to a sterile container.  The participant is 

advised to occlude their pharynx, either by pressing their tongue against their hard palate, 

or by “holding a swallow mid-way through”.  The procedure is repeated twice in each 

nostril, thus using 20mL saline in total. In the event of nasal wash loss (e.g. through 

inadvertent swallowing) the procedure may then be repeated to obtain an adequate 

specimen (defined as ≥10mL saline recaptured) using up to an additional 10mL of saline.  
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Nasal wash samples were kept at ambient temperature and transported to the laboratory 

within one hour of collection.   

2.6.4 Oropharyngeal swab 

The participant’s tongue was depressed using a tongue depressor, exposing the 

palatopharyngeal arch. Flocked swabs (Copan diagnostics, obtained from ThermoFisher, 

Basingstoke, UK) were used to make five small circular motions in contact with the mucosa 

of the palatopharyngeal arch in contact whilst avoiding the tongue. Swabs were placed in 

sterile containers with 1mL skim milk, tryptone, glucose, and glycerin (STGG) media 

(produced in-house) and transported to the laboratory at ambient temperature.  Throat 

swabs were always taken prior to nasal sampling to ensure that the oropharynx was not 

inadvertently contaminated with nasal pathogens.   

2.6.5 Saliva samples 

Saliva collection was performed using the Salivette® system (Sarstedt AG & Co, Nümbrecht, 

Germany), comprising a small absorbent sponge with a sterile plastic container that can be 

directly transferred to a centrifuge. The participant was asked to hold the sponge in their 

mouth until they perceived it as being saturated with saliva. The sponge was transported to 

the laboratory in the container () on wet ice.   

2.6.6 Blood sampling 

Up to 50mL of venous blood was collected at protocol-defined timepoints using standard 

phlebotomy techniques.   

2.7 Laboratory procedures 

2.7.1 Experimental bacterial inoculum preparation 

An isolate of serotype 6B pneumococcus (strain BHN418, GenBank accession number 

ASHP00000000.1) was provided by Prof PW Hermans (Radboud University, Nijmegen, The 
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Netherlands).  The reference laboratory at Public Health England tested the isolate and 

found it to be fully sensitive to all standard antibiotics, including penicillin.  Genome 

sequencing for purity of each inoculum batch was performed by the Wellcome Sanger 

Institute (Hinxton, UK).  A mid-log culture was frozen at -80°C in aliquots of 20% glycerol-

enriched Vegitone broth (Sigma-Aldrich, Dorset, UK).  On experimental inoculation days, an 

aliquot was thawed, washed twice, and re-suspended in 500µL normal saline before being 

diluted to achieve the target dose of 80,000 CFU/100µL.  The actual inoculated dose 

achieved on the day was calculated by plating the thawed isolate prior to transport to the 

clinical research facility, and again upon return.  Three 10µL dots were plated in parallel 

lines on blood agar, and colonies counted using the Miles and Misra method (185).  The 

mean of the colony counts on the pre- and post-dose plates was accepted as the true 

inoculated dose.  A variation of half or double of the target dose was considered 

acceptable, as it had previously been demonstrated in dose-ranging studies that this range 

is safe and leads to similar colonisation outcomes (60). 

2.7.2 Bacterial culture 

Nasal wash samples were centrifuged for ten minutes at 3,345g, and the supernatant 

separated from the residual pellet.  The pellet was resuspended in 100µL STGG, 20µL of 

which was streaked on a gentamicin/blood agar plate and incubated overnight at 37°C in 

5% carbon dioxide.  (The gentamicin suppresses competing respiratory pathogens, thus 

maximising the chance of pneumococcal detection.)  Experimental colonisation was 

defined as the identification of serogroup 6 pneumococcus on the plate the following day.  

Pneumococci were defined using classical microbiological criteria:  

1. Typical draughtsman-like colony morphology on agar;  

2. The presence of α-haemolysis;  

3. Optochin sensitivity;  
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4. Solubility in bile salts;  

5. Gram-positive diplococci on microscopy.   

Serogroup was confirmed by a commercially available latex agglutination test 

(PneumoLatex, Statens Serum Institut, Copenhagen, Denmark); more detailed serotyping 

was not deemed necessary for experimental colonisation, as pneumococci from serogroup 

6 in general are rare in the UK (34).  Therefore, the detection of serogroup 6 pneumococci 

in a volunteer recently exposed to serotype 6B could reasonably be assumed to represent 

experimental colonisation.  Natural colonisation was defined as identification of 

pneumococci that belonged to any other serogroup from a nasal wash at any timepoint.   

2.7.2.1 Pneumococcal colonisation density determination 

The STGG nasal wash pellet suspension was serially diluted on blood agar and incubated 

overnight as described above.  The following day, colonies were counted and multiplied by 

the dilution factor and pellet volume to determine the density in CFU/µL.  This was divided 

by the volume of nasal wash returned by the participant, leading to a result reported in in 

CFU/mL of nasal wash.  The remaining pellet suspension was stored at -80°C pending 

molecular testing.   

2.7.3 Oropharyngeal swab post-collection processing 

Upon receipt in the lab, the STGG samples were stored at -80°C pending molecular testing.   

2.7.4 Saliva post-collection processing 

Upon receipt in the lab, saliva was extracted from the cotton wool by centrifuging the 

salivette at 3700g for 3mins at 4°C.  The saliva was resuspended in an equal volume of 

STGG with 50% glycerol and stored at -80°C pending molecular testing.   
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2.7.5 Pneumococcal detection using qPCR 

We compared the performance of culture and qPCR on nasal wash specimens, and also 

used qPCR to analyse oropharyngeal swabs and saliva samples.  The choice of target gene is 

key in pneumococcal qPCR, given the high number of shared genes between pneumococci 

and other commensal streptococci (186, 187).  The autolysin gene (lytA) is generally 

considered to be the most specific for pneumococcus.  Specificity can be further improved 

by targeting two genes, and only classifying samples that detect both genes as positive (44).  

Our analysis was simplified because we knew that our participants had been exposed to 

serotype 6B. Therefore, we defined a positive pneumococcal qPCR as detection of both lytA 

and the 6A/B capsular polysaccharide gene (cpsA).   

2.7.5.1 Bacterial DNA extraction for qPCR 

DNA was extracted using the Agowa Mag Mini DNA isolation kit (LGC Genomics GmbH, 

Berlin, Germany) from 200µL of oropharyngeal swab and 300µL of nasal wash pellet and 

saliva.  Thawed samples were centrifuged at 20,200g for seven minutes. The pellet was re-

suspended in protease mix with lysis buffer (300µL; one part protease to six parts buffer), 

100µL of zirconium beads and 300µL of phenol.  The suspension was disrupted twice using 

a tissue homogeniser (Precellys Evolution, Bertin Instruments, Montigny-le-Bretonneux, 

France) at maximum speed for three minutes, with cooling on ice in between, and then 

centrifuged at 9,391g for 10 minutes at 20°C for separation of phases. The aqueous phase 

was mixed with binding buffer (600µL) and magnetic beads (10µL), then vortexed and 

incubated for 30-120 minutes in an orbital shaker (Fisher Scientific, Loughborough, UK) at 

room temperature. The sample and magnetic beads were washed twice with 200µL wash 

buffer, after which the beads were dried at 55°C for 10 minutes. The bacterial DNA was 

eluted with 63µL of elution buffer, whereupon the beads were removed using a magnet 

separator and the eluent stored at -20°C.   



61 
 

2.7.5.2 Multiplex amplification of lytA and cpsA genes 

The master mix included 9.375µL of diethylpyrocarbonate-treated water and 12.5µL of 

TaqMan® Universal PCR Master Mix (from ThermoFisher, Basingstoke, UK) and primers and 

probes for the two genes of interest (all from EuroGenTec, Southampton, UK). For lytA, we 

added 0.15µL of forward primer (5’-ACGCAATCTAGCAGATGAAGCA-3’), 0.15µL of reverse 

primer (5’-TCGTGCGTTTTAATTCCAGCT-3’) and 0.075µL of probe (5’-(FAM)-

GCCGAAAACGCTTGATACAGGGAG-(BHQ1)-3’) (186).  For cpsA, we added 0.1µL of forward 

primer (5’-AAGTTTGCACTAGAGTATGGGAAGGT-3’), 0.1µL of backward primer (5’-

ACATTATGTCCATGTCTTCGATACAAG-3’) and 0.05µL of probe (5’-(HEX)- 

TGTTCTGCCCTGAGCAACTGG–(BHQ1)-3’) (188). All volumes were multiplied by the planned 

number of wells when preparing the master mix. We added 2.5µL of extracted DNA to 

22.5µL of the master mix in each well. On each plate, two negative controls used 25µL 

master mix only, and each plate contained a standard curve of 10-fold dilutions of 

pneumococcal genomic DNA (106-101 copies/mL). Samples were assayed as duplicates, 

using thermal cycling conditions: 10 minutes at 95°C for DNA denaturation followed by 40 

cycles of 15 seconds at 95°C and one minute at 60°C. All qPCR thermal cycling was 

performed in the same MX3005P Real-Time qPCR system (Agilent Technologies, Stockport, 

UK), with the detection threshold set at 3900 for lytA and 650 for cpsA.  

The lower limit of detection was set at 40 cycles (48). The qPCR plate was repeated if:  

1. There was DNA detected in either of the negative control wells;  

2. Any of the standards between 106-102 were not detected; 

3. Neither of the 101 standards was detected; 

4. The cycle threshold difference between any duplicates of 103—106 standards was 

>1 

5. R2 of the two standard curves <0.98  
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6. The slope of standard was not between -3.1 and -3.6; 

7. Efficiency was not between 90% and 110%. 

2.7.6 Anti-capsular polysaccharide IgG ELISA  

We measured anti-6B CPS IgG titres using a modification of the WHO enzyme-linked 

immunosorbent assay (ELISA) protocol.  Serum samples were depleted of cell wall 

polysaccharide (CWPS) antibodies by incubating for 30 minutes in phosphate-buffered 

saline (PBS) blocked with heat-inactivated foetal bovine serum (ThermoFisher, Basingstoke 

UK) and 10µg/mL solution of CWPS (Statens Serum Institut, Copenhagen, Denmark).  These 

pre-absorbed serum samples were then transferred to a 96-well plate (Maxisorp microtiter, 

Nunc, Roskilde, Denmark) that had been coated overnight at 4°C with 5µg/mL purified 

pneumococcal 6B CPS (Statens Serum Institut).  The samples were serially diluted from 

1:400 to 1:3,200 in the microtiter plates, then incubated for two hours at room 

temperature.  Reference serum 98SF (US Food and Drug Administration (FDA)) was pre-

absorbed in a similar fashion and serially diluted from 1:500 to 1:32,000, with one row left 

blank, as a standard curve.  The samples were washed three times with PBS containing 

0.05% Tween, and then the secondary antibody (goat anti-human IgG conjugated to 

alkaline phosphatase; Sigma-Aldrich Corporation, Dorset, UK) was added and incubated for 

90 minutes.  The wells were washed three times again prior to incubation with p-

nitrophenylphosphate (Sigma-Aldrich Corporation) for 15-20 minutes at room temperature 

for colour development.  Antibody detection was performed using a FLUOstar Omega plate 

reader (BMG Labtech GmbH, Ortenberg, Germany), with optical densities read at 405nm.  

The antibody concentrations were determined by comparing the fluorescence in each 

sample well against the standard curve generated from the serially diluted 98SF reference 

serum, and are reported in ng/mL. All samples were analysed in duplicate.   
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2.7.7 Serotyping of natural carriage isolates 

All isolates were initially tested using a commercially available latex agglutination kit 

(PneumoLatex, Statens Serum Institut, Copenhagen, Denmark).  This kit comprises a series 

of reagents and an identification key. When pneumococci were identified on a plate, a 

single colony would be added to a drop of each reagent. Depending on which reagent or 

reagents were agglutinated, the identification key would identify which serogroup the 

isolate belonged to.  Some serogroups (e.g. 3 or 8) cannot be subdivided into serotypes, 

and therefore no further identification procedures were needed for these.  The remainder 

(e.g. serogroup 9 or 19) were sent to the Bacterial Microarray Group at St. George's 

University of London (BμG@S Biosciences) for molecular serotyping.  This methodology 

(serotyping from genomic DNA on a molecular microarray) has been published previously 

and has been validated in a multicentre study (189-191).   

2.7.7.1 Bacterial DNA extraction for molecular serotyping 

The DNA was extracted using the QIAamp minikit (Qiagen, Hilden, Germany) according to 

the manufacturer’s instructions.  Briefly: following centrifugation, the bacterial pellet was 

resuspended in 180 μL of an enzyme lysis solution comprising 20 mg/mL lysozyme, 20 mM 

Tris-HCl, 2 mM EDTA and 1.2% Triton.   After 30 minutes incubation at 37°C, 200 μL Qiagen 

buffer AL and 20 μL proteinase K were added, and the mixture was incubated for 30 

minutes at 56°C followed by 15 minutes at 95°C. The standard manufacturer's extraction 

protocol was followed, and DNA was eluted into 200 μL Qiagen buffer AE.  

2.7.7.2 Molecular serotyping 

The BμG@S microarray contains thousands of oligonucleotide probes corresponding to the 

genes that (in combination) determine the pneumococcal capsular serotype.  

Fluorescently-labelled genomic DNA is hybridised to these probes, and the fluorescent 

intensity is used to determine the serotype.  Approximately 300 ng of the extracted DNA 
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(quantified using a NanoDrop spectrophotometer; ThermoFisher, Basingstoke UK) was 

fluorescently labelled with either ULS-Cy3 (green) or ULS-Cy5 (red) using the Agilent 

Technologies Genomic DNA ULS Labeling Kit (Agilent Technologies, Stockport, UK). (The red 

and green channels are analysed independently, meaning that one array can measure two 

samples.) The fluorescently labelled samples were hybridised overnight to the Senti-SP 

v1.6.0 microarray, according to the Agilent Array CGH protocol. The microarrays were 

washed and scanned using an Agilent microarray scanner and feature extraction software. 

The BμG@S Biosciences methodology applies a Bayesian algorithm to the results to 

determine which serotype is present in each sample (190).   

2.7.8 Antimicrobial susceptibility testing 

• Antimicrobial susceptibility testing of natural carriage isolates was performed 

according to methodology recommended by the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) (165), screening using disc diffusion 

and confirming minimum inhibitory concentrations (MICs) using gradient diffusion.  

The agents chosen, concentrations within each disc and susceptibility cutoff 

diameters are shown in Table 2.3.  The agents were selected because of their 

prominence in national and local treatment guidelines (see Table 1.2 and Table 1.3 

in the INTRODUCTION), with the addition of trimethoprim-sulfamethoxazole given its 

global importance.  Antibiotics with rare/restricted indications that were unlikely to 

be encountered in a community setting (and therefore unlikely to exert selective 

pressure for resistance in healthy, community-dwelling adults, e.g. rifampicin, 

chloramphenicol) were excluded, but vancomycin was included because of its role 

as “antibiotic of last resort” against pneumococcus.   
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Table 2.3 Antimicrobial agents selected for susceptibility testing.   

Class of 
antimicrobial agent 

Specific agent used for 
AMR screening 

Concentration of 
agent within disc 

EUCAST zone 
diameter 
breakpoint 
(mm) (165) 

S ≥ R < 

β-lactam Oxacillin 1µg 20 * 

Macrolide Erythromycin 15µg 22 19* 

Fluoroquinolone Norfloxacin 10µg 11 * 

Tetracycline Tetracycline 30µg 25 22* 

Folate antagonist Trimethoprim-
sulfamethoxazole 

1.25/23.75µg 18 15 

Glycopeptide Vancomycin 5µg 16 16 

*Isolates whose zone diameters were less than the EUCAST breakpoint were subjected to additional MIC 
determination, as outlined in the text.  

2.7.8.1 Inoculum preparation 

An inoculum was prepared by growing bacteria overnight on blood agar and suspending a 

selection of colonies from the plate in saline. The density was confirmed to be equivalent of 

0.5 McFarland standard using a multiplate spectrometer (FluoStar Omega, BMG Labtech, 

Ortenberg, Germany).  100µL of suspension was pipetted into microplate wells, with 100µL 

saline as a blank, and optical densities (OD) were measured at 625nm.  An OD of 0.08—

0.13 at 625nm equates to a 0.5 McFarland standard (192).  For internal consistency, both 

between samples and within replicates of samples, we aimed for a blank-corrected OD of 

0.1±0.01—inocula were diluted with additional saline if their OD was too high, or 

supplemented with bacterial colonies if too low.  If an acceptable OD was not achieved 

within 60 minutes of commencing inoculum preparation, a fresh inoculum would be 

prepared from the original plate.   

2.7.8.2 Inoculation 

Plates were inoculated within 60 minutes (ideally within 15 minutes) of inoculum 

preparation, using MH-F media: Mueller-Hinton agar supplemented with 5% defibrinated 
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horse blood and 20 mg/L β-nicotinamide adenine dinucleotide (ThermoFisher, Basingstoke, 

UK).  A sterile cotton swab was dipped in the inoculum and streaked over the agar plate 

three times, rotating the plate by 60° between each pass, thus achieving a confluent lawn 

of growth.   

2.7.8.3 Antimicrobial disc application 

Within 15 minutes of inoculation, six discs (one containing each antibiotic of interest; 

ThermoFisher, Basingstoke, UK) were firmly applied to the surface of the agar, evenly-

spaced apart, using a disc dispenser.  The plates were inverted and incubated face down in 

stacks of no more than 5 for 16–20 hours at 35°C (± 1°C) with 5% CO2.   

2.7.8.4 Disc diameter assessment 

Following incubation, inhibition zones were read from the front with the naked eye, using 

reflected light, and disc diameters measured using a ruler.  The published EUCAST disc 

diameters (Table 2.3) were used to classify isolates as sensitive or resistant, with additional 

MIC measurement if indicated.  Isolates identified as intermediate susceptibility on disc 

diffusion were classified as resistant.   

2.7.8.5 Minimum inhibitory concentration determination 

MICs for isolates identified as potentially resistant on disc diffusion were determined using 

Etest strips (BioMérieux, Basingstoke, UK), following the manufacturers’ instructions.  

Briefly, an inoculum of 0.5 MacFarland units was prepared—in brain heart infusion broth 

(ThermoFisher, Basingstoke UK) rather than saline—and plated on MH-F agar following the 

same procedures used for disc diffusion. An Etest strip was applied using sterile forceps so 

that the entire strip was in complete contact with the agar surface. Plates were incubated 

face down in stacks of no more than 5 for 20—24 hours at 35°C with 5% CO2.  MICs were 

defined as the point showing no growth viewed from the front of the plate, using reflected 

light with the lid removed.  EUCAST breakpoints are given in Table 2.4: 
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Table 2.4: EUCAST antibiotic breakpoints 

Class of antimicrobial agent Specific agent tested MIC breakpoint 
(mg/L) (165) 

S ≤ R > 
β-lactam Benzylpenicillin 

(infections other than 
meningitis) 

0.06 2 

Benzylpenicillin 
(meningitis) 

0.06 0.06 

Ampicillin 0.5 2 

Ceftriaxone 0.5 0.5 

Fluoroquinolone Levofloxacin 2 2 

Macrolide Clarithromycin 0.25 0.5 

Tetracycline Doxycycline 1 2 
 

2.7.8.6 Quality control 

When preparing the inocula for disc diffusion, colony counts were performed on serial 

dilutions from each inoculum to retrospectively validate the OD results from the 

spectrometer. In the case of Escherichia coli, 0.5 McFarland is accepted as equating to 1 to 

2 × 108 CFU/mL; our pneumococcal colony counts were all between 0.5 and 3 × 108 

CFU/mL.   

Following EUCAST recommendations, the AST methodology was optimised using a known 

resistant strain, and one plate of this strain was included with each batch of test samples.  

Streptococcus pneumoniae NCTC 12977 (also known as ATCC 49619 and obtained from 

Public Health England), is a serotype 19F pneumococcus originally isolated from a sputum 

sample in Arizona and has low-level, chromosomally-mediated penicillin resistance.  

EUCAST has published the antimicrobial disc diameter ranges that should be observed 

when testing this strain (193), and readings by two independent readers were consistently 

within these limits, with the exception of co-trimoxazole (1—2mm wider than predicted on 
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two occasions).  No cause for this could be identified (other antibiotic discs on the same 

plate had diameters within the predicted range).  This may bias the study towards 

underestimating the rates of co-trimoxazole resistance.   

Two independent readers measured each inhibition zone.  For sensitivity, both the 

individual readings and the average of the two readings were checked against the EUCAST 

breakpoints. While inter-reader variability of 1—2mm was common, all readings (separate 

or averaged) were in agreement when classifying isolates as sensitive or resistant.  The full 

procedure was replicated using a freshly-prepared inoculum for resistant isolates and in 

cases of discrepancies or suspected cross-contamination.  Measurement by two 

independent reviewers was not mandated for MIC measurements, as the Etest results are 

simpler to interpret.   
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3 Establishing Experimental Human Pneumococcal Carriage in 

Older Adults 

3.1 Background 

As outlined in the INTRODUCTION, anti-pneumococcal polysaccharide immunity is diminished 

in older adults.  This immunodeficiency affects both natural and vaccine-induced 

antibodies.  It remains unclear whether pneumococcal colonisation occurs at high rates in 

older adults or, if it does, whether it is an immunising event.   

If EHPC could be established in older volunteers, it would answer the questions of how 

susceptible this population is to nasopharyngeal colonisation.  It would also open the 

possibility of vaccine trials (with an endpoint of colonisation acquisition) in an older 

population, particularly if the rate of experimental colonisation is high.  Finally, EHPC in 

older people would provide a platform for experimental studies of mucosal immunity and 

the systemic response to colonisation in this population, including serum anti-capsular 

polysaccharide (CPS) antibody levels.   

3.1.1 Aims 

1. To establish EHPC in a cohort of adults aged ≥50 years; 

2. To determine the rate of experimental colonisation in older adults; 

3. To describe the dynamics of experimental colonisation (density and duration) in 

older adults; 

4. To assess demographic and medical factors associated with experimental 

colonisation in older adults; 

5. To assess the safety of EHPC in older adults. 
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3.2 Methods 

3.2.1 Clinical procedures 

Ethical approval, inclusion/exclusion criteria, participant recruitment and clinical 

procedures are summarised in sections 2.1, 2.2, 2.3, 2.4 and 2.6.  Pneumococcal 

vaccination (PPV23) status was determined by review of each participant’s primary care 

medical record.   

3.2.2 Laboratory procedures 

Nasal washes were tested for the presence and density of S pneumoniae as outlined in 

section 2.7.2.   

3.2.3 Study objectives 

The primary endpoint was the rate of colonisation, as determined by the detection of S. 

pneumoniae serogroup 6 by classical bacterial culture methods from one or more nasal 

wash samples in the first 14 days following initial pneumococcal challenge.  Secondary 

endpoints included colonisation density, colonisation rates by age and by pneumococcal 

vaccination status, and the safety and tolerability of EHPC in older participants.   

3.2.4 Statistical analysis 

Descriptive statistics were used for reporting participant characteristics and microbiology 

results, with χ2 or Fisher’s exact test used to compare colonisation rates between different 

groups, where appropriate.  We did not recruit a dedicated cohort of younger controls to 

directly compare carriage rates.  Instead, for comparative purposes, we use aggregate 

results from colonisation studies of serotype 6B in young volunteers conducted between 

January 2015 and April 2017 (n = 225).   

Participants who became colonised did not necessarily have colonisation detected at every 

single time point—this is generally assumed to represent low-density colonisation rather 
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than true clearance and re-acquisition of experimental colonisation.  When calculating 

average colonisation densities at each timepoint, temporarily non-colonised participants 

(as opposed to “never-colonised” participants) were assigned a colonisation density of 0 

CFU/mL.  Total bacterial density over the time of the study was defined as the area under 

the density curve (AUC).  The AUC was calculated according to the trapezoid rule using 

values of [log10 (bacterial density+1)] for each interval, with all participants assigned a 

density of 0 CFU/mL on inoculation day.   

We used binary logistic regression to look for associations between demographic variables 

and colonisation outcomes.  In particular, we hypothesised that older age would be 

associated with reduced odds of developing experimental colonisation.  We also explored 

whether male sex, PPV23 status, smoking history and/or receipt of statin therapy would be 

associated with developing experimental colonisation.  We used the p value of the Wald 

statistic to establish whether each predictor was significantly associated with colonisation 

in univariate analysis, and pre-specified that we would include any variables with a p value 

≤ 0.2 in an adjusted multivariate model, eliminating any that became non-significant using 

backward stepwise regression.  

All analyses were performed using SPSS version 24 (IBM, New York).   

3.3 Results 

3.3.1 Participant characteristics 

The first participant was inoculated on 13 June 2016, and the last was inoculated on 19 

February 2018.  The recruitment process and screening outcomes are outlined in Figure 

3.1.  The oldest participant was 80 and the median age was 64 years.  The baseline 

characteristics are outlined in Table 3.1, with a more detailed age breakdown in Figure 3.2. 

Ten participants were excluded on the basis of abnormal clinical findings at their pre-
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screening visit, all of whom were referred for appropriate follow-up investigations and 

care.   
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Table 3.1: Baseline characteristics of all volunteers in the study 

 

 Age-defined risk category Total 

50-64 65-74 75 – 84 

Number of participants inoculated 34 25 5 64 

Number of females 18 (52.9%) 15 (60%) 3 (60%) 36 (56.3%) 

Age at inoculation, median (range) 59 (52—62) 69 (66—70) 78 (78—79) 64 (59—69) 

Inoculation dose, CFU/mL, median (range) 83,833 (76,000—
90,167) 

84,333 (69,333—
92,833) 

84,750 (73,833—
89,167) 

84,333 (69,333—
92,833) 

Number of ex-smokers 10 (29.4%) 11 (44%) 2 (40%) 22 (34.4%) 

Pack years smoked, median (IQR) 10 (4.5—10) 5 (2—10) 8 (1—8) 6.5 (3.3—10) 

Number with any reported comorbidity* 14 (41.2%) 15 (60%) 3 (60%) 32 (50.0%) 

Number prescribed any regular medication 11 (32.4%) 18 (72%) 3 (60%) 32 (50.0%) 

Number prescribed statin therapy 2 (5.9%) 5 (20%) 2 (40%) 9 (14.1%) 

Prior pneumococcal polysaccharide vaccine 0 17 (68%) 5 (100%) 22 (34.4%) 

Naturally colonised at baseline, n (serogroups) 3 (23, 3, 15) 0 0 3 (23, 3, 15) 

*Comorbidities reported in more than one participant included the following: 

• Benign prostatic hyperplasia: 5 

• Depression: 5 

• Hiatus hernia: 4 

• Hypothyroidism: 4 

• Osteoporosis: 3 

•  

• Bicuspid aortic valve: 2 

• Glaucoma: 2 

• Migraines: 2 

• Previous malignancy: 2 (1 melanoma, 1 testicular) 
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64 completed 29 days of follow-up 

64 inoculated with pneumococcus 

75 attended pre-screening visit 

83 provided informed consent to 

take part in the study and for their 

90 healthy volunteers aged ≥50yrs 

attended information session after 

receiving initial approach by email 

7 ineligible/not interested 

5 withdrew consent 
3 ineligible based on primary care 
records: 

• 1 history of alcohol excess 

• 1 diabetes mellitus 

• 1 undergoing investigations 
for possible prostatic cancer 

 

1 withdrew consent 
10 failed pre-screen 

• 4 failed spirometry 

• 2 turned out to have history 
of alcohol excess and 
abnormal blood results 

• 2 newly-identified cardiac 
murmurs 

• 1 newly-identified atrial 
fibrillation 

• 1 revealed history of 
splenectomy that wasn’t on 
their GP record 

 

Figure 3.1: Outcomes from recruitment, consent and pre-screening processes  
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Figure 3.2: Cumulative proportion graph showing the age distribution of inoculated participants 

 

3.3.2 Microbiological results 

The median inoculation dose was 84,333 CFU/mL (range 69,333—92,833 CFU/mL). We 

detected experimental colonisation by day 14 in 25 participants (39.1%) (Table 3.2, Figure 

3.3).  When baseline natural carriers were excluded, the rate was 37.7% (23/61).  Three 

participants missed visits—two non-carriers missed day 14 (attending day 22 instead) and 

one carrier attended their day 29 visit on day 22.   
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Table 3.2: Microbiological results 

Total number of participants 64 

Developed experimental colonisation 

Colonised having been negative at baseline 

Colonised on top of prior natural carriage 

25 

23 

2 

Maintained natural colonisation without developing experimental 
colonisation 

1 

Developed natural colonisation during the study 3 

Experimental colonisation density, mean (SD) (CFU/mL of nasal 
wash) 

Day 2 

Day 7 

Day 9 

Day 14 

Day 22 

Day 29 

 
6,396 (20,544) 

42,558 (213,895) 

141,649 (762,178) 

5,251 (19,187) 

15,012 (63,566) 

1,732 (14,699) 
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Figure 3.3: Microbiological status of participants pre- and post-inoculation 

(NVT GpG: Non-vaccine type, Group G)  
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As shown in Figure 3.3, three participants developed incident natural carriage during the 

study.  Two carried for only one day, while the third had detectable colonisation over three 

weeks.  Incident natural carriage is relatively infrequent in EHPC studies—as a comparison, 

in a study of 194 young adults carried out between 2015—2016, it occurred in four 

participants (study awaiting publication, data from EHPC internal safety records).   

3.3.2.1 Colonisation rates in different age groups 

The overall colonisation rate of 39.1% did not differ significantly from the 46.7% achieved 

in 225 young adults inoculated using exactly the same methods and during a similar time 

period (p = 0.281).  A breakdown of carriage rates by age decile is shown in Table 3.3 and 

Figure 3.4.  Carriage rates within the over-50 cohort did not differ by age decile (χ2 for trend 

p = 0.146).  In a sensitivity analysis excluding those with baseline natural colonisation, the 

differences still did not achieve statistical significance for the overall comparison (p = 0.212) 

or the age deciles (bearing in mind that all three natural carriers were aged <60 years).   

Table 3.3: Experimental colonisation rates in different age categories 

Age category Number of 
participants 

Number 
of carriers 

Percentage 
colonisation 

P value 
(versus young 
adults) 

Under 50* 225 105 46.7% - 

50—80 64 25 39.1% 0.281 

Age deciles:  50—59 19 9 47.4% 0.953 

 60—69 31 13 41.9% 0.620 

 70—80 14 3 21.4% 0.095 
*The results for “under 50s” were obtained in other studies by the same team between 2015—2017, using the 
same methodology 
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Figure 3.4: Experimental colonisation rates compared with a young adult cohort, and broken down by age decile 
within the older cohort. 
Error bars represent 95% CI 

3.3.2.2 Experimental colonisation density and duration 

The average colonisation densities at each timepoint are given in Table 3.2.  As shown in 

Figure 3.5, densities varied substantially within and between participants; the average AUC 

of density was 34.4 CFU.days/mL (95% CI 19.9—48.9).  While the majority of carriers were 

identified as such on their first post-inoculation nasal wash, four were first identified on 

day 7, two on day 9 and one on day 14.  The median duration of colonisation was 22 days, 

with 8/25 participants still having detectable colonisation at day 29, but four participants 

never carried beyond day 2.   These ranges and fluctuations in density and variable 

durations of colonisation are similar to those seen in young volunteers following both 

experimental and natural colonisation (J Rylance et al, manuscript under review, pre-print 

deposited at https://www.biorxiv.org/content/early/2018/06/14/343319; (48)).  The mean 

AUC of density did not differ between age deciles (p = 0.843 using ANOVA).  Using 
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Pearson’s correlation coefficient, we found no significant association between participant 

age and AUC of colonisation density (r = -0.099, p = 0.636; Figure 3.6).   
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Figure 3.5: Colonisation density over time in experimental carriers 
Each dashed line represents an individual participant; the heavy line represents the average density at each timepoint. The lines for participants identified as carriage-negative at certain time points 
are shown intersecting with the lower limit of detection for colonisation by culture-based methods.  
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Figure 3.6: Correlation between participant age and colonisation density 

(Dashed lines represent 95% CI) 

 

3.3.2.3 Experimental colonisation in PPV23 recipients 

Experimental colonisation was not affected by prior receipt of PPV23: 36.4% colonisation (n 

= 8/22) in PPV23 recipients versus 40.5% (n = 17/42) in non-recipients.  This remained true 

if the analysis was restricted to over-65s—36.4% (n = 8/22) in vaccine recipients versus 

37.5% (n = 3/8).  It also remained true when restricting analysis to over-65s who had 

received PPV23 within the preceding five years—46.2% (n = 6/13) in recent vaccine 

recipients versus 29.4% (n = 5/17) in the remainder.  These results were similar when 

excluding baseline natural carriers—the overall comparison was 36.4% colonisation (n = 

8/22) in PPV23 recipients versus 38.5% (n = 15/39) in non-recipients.    
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3.3.2.4 Experimental colonisation and statin therapy 

Statins have anti-inflammatory properties, but their utility in infectious disease prevention 

or mitigation remains unclear (194-196).  In our study, the rate of colonisation in 

participants taking statins was 33.3% (n = 3/9) versus 40% (n = 22/55) in the remainder (p = 

0.5 by Fisher’s exact test).   

3.3.2.5 Logistic regression model 

The results of univariate logistic regression exploring predictor variables for experimental 

colonisation are shown in Table 3.4.  Since none of our predictor variables approached a 

statistically significant association with the outcome, we did not progress to multivariate 

regression.  

Table 3.4: Predictors of experimental colonisation, using univariate logistic regression 

 Odds ratio 95% CI p value (Wald) of 
predictor 

Age (years) 0.97 0.90—1.03 0.313 

Male sex 0.59 0.21—1.66 0.319 

PPV23 receipt 0.84 0.29—2.43 0.749 

Ex-smoker 0.56 0.19—1.65 0.292 

Statin therapy 0.75 0.17—3.32 0.705 

 

3.3.3 Safety of EHPC in older adults 

There were no incidences of confirmed or suspected pneumococcal disease following 

inoculation, and no serious adverse events.  No temperatures ≥38°C were detected while 

the participants were monitoring their temperatures daily for the first seven days post-

inoculation.  Six participants developed symptoms that required clinical review by the 

research team: 

• One non-colonised participant (age 62) developed sciatica 10 days after inoculation 

and was advised to take over-the-counter analgesia. 
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• One non-colonised participant (age 58) developed upper respiratory symptoms 20 

days after inoculation; clinical examination was normal and a pharyngeal swab was 

negative for respiratory viruses; the symptoms resolved spontaneously. 

• One colonised participant (age 64) complained of chest discomfort on day 7; ECG 

and clinical assessment were normal, and a working diagnosis of muscular pain was 

made; the symptoms resolved spontaneously. 

• One colonised participant (age 64) developed an earache on day 14; otoscopy was 

normal, and the symptoms gradually resolved spontaneously. 

• One non-colonised participant (aged 65) developed a pruritic abdominal rash on 

day 7.  The rash responded to empirical treatment for tinea corporis with topical 

miconazole/hydrocortisone. 

• One colonised participant (aged 71) complained of myalgia on day 7 and of an itchy 

eye on day 22; on both occasions, nothing was identified on clinical examination 

and the symptoms resolved spontaneously.   

In addition, one participant (non-colonised, age 71) attended his GP with a sore throat 20 

days after inoculation, and was given an analgesic spray which improved his symptoms.  

None of the above symptoms required extra appointments or reporting to the DMSC.   

 

3.4 Discussion 

EHPC is safe and feasible in older adults.  The rates of colonisation in the oldest participants 

in this cohort were lower than those seen in younger adults, but these differences are not 

statistically significant.  If there was a true difference in the rates of colonisation seen in the 

over-50s versus the under-50s (i.e. a relative risk reduction of 0.14) then the sample size 

required to demonstrate this would have been >300 subjects.  The patterns of density and 

duration of experimental colonisation are similar to those in younger adults.  This cohort 

was notable for a higher-than-expected rate of natural colonisation at baseline, as well as 
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three incidences of natural colonisation arising during the study.  We include those 

participants who were natural carriers at baseline in our calculations, but sensitivity 

analyses without these participants produced similar results. We also found that PPV23 had 

no discernible effect on experimental colonisation, even when restricting the analysis to 

over-65s (the target population) who had been vaccinated within five years (the putative 

duration of protection).  Furthermore, PPV23 had no effect on colonisation in a model that 

was adjusted for age, sex, smoking status and statin therapy.  This is consistent with a 

previous meta-analysis of the effects of PPV23 (102).  In the next chapter, we will present 

the results of anti-capsular antibody measurement in all participants, and assess if these 

titres are a stronger predictor of experimental colonisation than PPV23 status.    

New vaccine strategies are needed to protect older people against pneumococcal disease.  

The safety, tolerability and high rates of experimental colonisation seen in this study are 

supportive of the use of EHPC for vaccine testing in this key vulnerable population.   
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4 Experimental Human Pneumococcal Carriage in Older 

Adults—Immunological Findings 

4.1 Background 

As outlined in section 1.3.1 of the INTRODUCTION, all adults have circulating antibodies 

against pneumococcal capsular polysaccharide (CPS).  While population studies have 

demonstrated diminished antibody concentrations with increasing age (65), the antibody 

kinetics following pneumococcal exposure have not been studied in older people.  

Therefore, we do not know if the fall in antibody levels with age reflects reduced exposure 

to pneumococcal antigens (i.e. colonisation) in older people or a true decline in immune 

function with age.  In this chapter, we will explore the early antibody response to 

pneumococcal exposure.   

The ideal timepoint to measure post-exposure anti-CPS antibodies has not been defined.  

One clinical study obtained “convalescent serum” any time between ten days and 12 weeks 

after pneumococcal infection (88), while a colonisation study had a ten-month interval 

between serum samples (29).  However, vaccine studies have found that anti-CPS IgG levels 

reach their peak at four weeks post-PPV23 administration in both young and old adults 

(126, 127), and therefore we chose this timepoint for our study.  This timeframe is also 

similar to that of previous EHPC studies in young adults, facilitating future analyses directly 

comparing immune responses in different age groups (60).   

Pre-existing anti-CPS antibodies are hypothesised to be protective against pneumococcal 

colonisation.  A previous EHPC study of young adults did not confirm this hypothesis (60)—

baseline anti-CPS IgG levels were no different in volunteers who did and did not become 

colonised. We can explore whether this remains the case in older adults by measuring 

antibody levels prior to pneumococcal challenge in our cohort.   
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Antibody-mediated protection against colonisation is a key principle underpinning the 

childhood PCV13 programme.  However, PPV23 has not been shown to prevent 

colonisation (102), and did not protect against EHPC in our cohort aged 50—80 (section 

3.3.2.3).  Comparing baseline antibody levels and colonisation outcomes in vaccinated and 

unvaccinated participants will allow us to delve deeper into this conundrum.   

In addition, as outlined in section 1.3, anti-CPS antibody boosting has been demonstrated 

following pneumococcal colonisation (29), including EHPC (60).  The role of pneumococcal 

colonisation in the maintenance of natural immunity has not been explored in older adults.  

Comparing pre- and post-challenge antibody levels in our cohort will allow us to examine 

this phenomenon.  Multiple doses of pneumococcal polysaccharide do not necessarily 

result in proportionate cumulative increases in antibodies, particularly in older people 

(hyporesponsiveness, (117, 197)).  The antibody responses to experimental colonisation in 

vaccinated participants will therefore be of particular interest.   

4.1.1 Hypotheses 

We test seven hypotheses in this chapter, informed by previous literature on the subject: 

1. Higher baseline anti-CPS IgG levels are found in PPV23-vaccinated participants—if 

confirmed, this would justify subgroup analysis based on vaccine status for other 

hypotheses; 

2. Post-PPV23 antibody levels are not different in participants for whom a long time 

had passed since vaccination, compared with more recent vaccinees.  Opinions 

differ on the durability of the immune response to PPV23, and some authorities 

recommend revaccination after five years (99).  However, well-powered studies 

have found that, while antibodies do decline in the years after vaccination, they 

remain elevated well above pre-vaccination titres at five years (119).  Classifying all 
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participants who had ever received PPV23 as vaccine recipients would simplify our 

analysis.   

3. High baseline antibody levels are not associated with colonisation outcomes (i.e. 

baseline antibody levels would not be different in carriers and non-carriers, similar 

to young adults in previous EHPC studies (60)); 

4. Experimental colonisation results in boosting of anti-CPS antibody levels (similar to 

young adults in EHPC (60)); 

5. Pneumococcal challenge without subsequent culture-positive colonisation does not 

have any effect on systemic anti-CPS antibody levels (similar to young adults in 

EHPC (60, 137)); 

6. Higher baseline antibody levels are associated with reduced bacterial density (as 

measured by AUC) in colonised participants (PCV13 vaccination of children and 

young adults is associated with lower colonisation density, suggesting that control 

of density is antibody-driven (107, 198)); 

7. Antibody levels and responses are diminished in the oldest age decile (65).  

4.2 Methods 

4.2.1 Clinical procedures 

Participant enrolment, inoculation and colonisation determination was carried out as 

outlined in sections 2.2, 2.4 and 2.6.  Pneumococcal vaccination (PPV23) status was 

determined by review of each participant’s primary care medical record.  Serum samples 

were taken at baseline and at 29 days (± 7 days) post-inoculation.   

4.2.2 Laboratory procedures 

Pneumococci were cultured as outlined in section 2.7, and colonisation density was 

determined as outlined in section 2.7.2.1.  Anti-6B CPS IgG levels were measured in 

baseline and day 29 serum samples using ELISA, as described in section 2.7.6.  We defined 
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experimental carriers as participants who had S. pneumoniae serogroup 6 isolated from 

nasal wash at any timepoint following inoculation.   

4.2.3 Statistical analysis 

The antibody titres (in ng/mL) were log-transformed to achieve a normal distribution prior 

to statistical analysis, and the transformed results are reported in this chapter.  Fold change 

in antibodies was defined as the difference between the log-transformed day 29 and 

baseline levels.  Baseline levels were compared between groups (e.g. carriers and non-

carriers) using the unpaired t test, with the paired t test used for before-and-after 

comparisons.  Correlations between continuous variables were assessed using Pearson’s 

correlation.  We pre-specified that, if we identified higher baseline anti-CPS IgG levels in 

PPV23 recipients, we would perform analyses on the whole cohort and also on subgroups 

defined by PPV23 status.   

When reporting changes in antibody levels over time, we had a choice between presenting 

the mean values pre- and post-challenge within each group (e.g. carriers and non-carriers) 

or comparing the two groups based on the fold change in antibodies.  Previous literature 

suggests that either approach is acceptable (60, 199), and both absolute levels and fold-

changes are used in clinical practice (200, 201).  As our analysis is largely exploratory, we 

present many of our between-group comparisons using both approaches where 

appropriate.   

We used binary logistic regression to assess the effect of baseline antibody levels on the 

development of experimental colonisation and used linear regression to assess the effect 

of baseline antibodies on colonisation density (as defined by AUC).  We pre-specified that 

we would adjust the antibody levels for age and sex, given their well-documented effects 

on anti-pneumococcal immunity (65), regardless of findings on univariate analysis (i.e. 

forced-entry method of multivariate regression).  We excluded PPV23 status because its 
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effects would be largely accounted for by the antibody levels—this was supported by our 

initial finding that baseline antibody levels were indeed higher in PPV23 recipients.  We 

used the p value of the Wald statistic (in logistic regression) or ANOVA (in linear regression) 

to establish whether each predictor was significantly associated with colonisation.   

All tests were two-tailed, and a p value of < 0.05 was considered significant.  All analyses 

were performed using SPSS version 24 (IBM, New York). 

 

4.3 Results 

For each serum sample, we selected the dilution that gave a blank-corrected optical density 

(OD) closest to 0.1 (or at least between 0.7 and 2.0) in both replicates, as these fell along 

the linear part of the standard dilution curve.  We excluded replicates whose coefficient of 

variation (i.e. 
Standard deviation

Mean
) was ≤25%.  Fifteen sample pairs required repeat testing, 

either for poor agreement between replicates or insufficient dilution.    Four participants’ 

results were excluded for poor agreement between replicates despite multiple repeated 

rounds of testing, and an additional participant did not have a post-inoculation serum 

sample available; therefore results are reported for 59 participants.   

4.3.1 Baseline antibody levels and PPV23 

History of PPV23 receipt was associated with higher baseline anti-CPS IgG levels (Table 4.1).  

Table 4.1: Baseline anti-CPS IgG levels, by vaccine status 

 Prior PPV23 (n = 
20) 

No PPV23 (n = 
39) 

p 
value 

Anti-6B CPS IgG at baseline, log 
ng/mL, mean (SD) 

3.58 (0.28) 3.33 (0.37) 0.01 

Anti-6B CPS Ig denotes immunoglobulin directed against serotype-specific capsular polysaccharides, as 
measured by ELISA.    
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There was no association between baseline antibody levels and time since PPV receipt, as 

shown in Figure 4.1.   

 

Figure 4.1: Correlation between baseline anti-CPS IgG levels and time since PPV23 receipt 

(N = 20; dashed lines represent 95% CI) 

 

4.3.2 Antibody responses to experimental colonisation 

Baseline and post-challenge antibody titres in colonised and non-colonised subjects are 

shown in Table 4.2 and Figure 4.2.  The baseline levels—3.37 log ng/mL in non-carriers, 

3.48 log ng/mL in carriers—did not differ between the two groups (p = 0.25).   

We did not identify an increase in antibody levels following colonisation: The mean titre in 

colonised volunteers was essentially the same at baseline (3.48 log ng/mL) and on day 29 

(3.47 log ng/mL).  The mean titre in subjects who did not develop experimental 

colonisation fell to 3.27 log ng/mL at day 29 from 3.37 log ng/mL at baseline (p = 0.039).    
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Table 4.2: Immunological outcomes following pneumococcal challenge.  

 Anti-6B CPS IgG log ng/mL, mean (SD) p 
value Baseline Day 29 

Colonised (n = 24) 3.48 (0.35) 3.47 (0.43) 0.958 

Non-colonised (n = 35) 3.37 (0.36) 3.27 (0.41) 0.039 
 

 

Figure 4.2: Anti-6B CPS IgG levels at baseline and day 29 following inoculation 
Each symbol represents a single participant. The lines and error bars in the first panel represent mean (SD); the 
lines in the second panel connect the baseline and day 29 values for each participant. N = 24 carriers, 35 non-
carriers. * p < 0.05 

An alternative approach would be to analyse according to the fold-change in antibody 

levels following pneumococcal challenge.  The differences between log-transformed 

baseline and day 29 values were normally distributed.  The mean fold change in colonised 



89 
 

volunteers was -0.003 (standard deviation 0.29), while in non-colonised volunteers it was -

0.09 (SD 0.25).  This difference was not statistically significant (p = 0.217 by the unpaired t 

test).   

After finding increased baseline IgG levels in PPV23 recipients, we repeated the analysis 

separately on PPV23 recipients and non-recipients, for the reasons outlined in the 

introduction to this chapter.  The results excluding all PPV23 recipients are shown in Table 

4.3 and Figure 4.3.   

Table 4.3: Immunological outcomes following pneumococcal challenge, excluding PPV23 recipients 

 Anti-6B CPS IgG log ng/mL, mean (SD) p 
value Baseline Day 29 

Colonised (n = 16) 3.43 (0.39) 3.47 (0.50) 0.581 

Non-colonised (n = 23) 3.26 (0.34) 3.17 (0.37) 0.133 
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Figure 4.3: Anti-6B CPS IgG levels at baseline and day 29 following inoculation, excluding PPV23 recipients 
Each symbol represents a single participant. The lines and error bars in the first panel represent mean (SD); the 
lines in the second panel connect the baseline and day 29 values for each participant. N = 16 carriers, 23 non-
carriers. There were no statistically significant differences within or between groups.   

When PPV23 recipients were excluded, baseline anti-CPS IgG levels remained similar 

between carriers and non-carriers (3.43 vs 3.26 log ng/mL, p = 0.16).  There were no 

changes in antibody levels in either colonised or non-colonised participants.  The mean fold 

change in colonised participants was +0.05 (SD 0.34), versus -0.09 (0.28) in non-colonised 

participants (p = 0.17 using the unpaired t test).   
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Results for the remaining participants (i.e. only those that had received PPV23) are shown 

in Table 4.4 and Figure 4.4.  There was a fall in antibody levels post-colonisation (from 3.58 

to 3.47 log ng/mL) but this missed the threshold for statistical significance (p = 0.055).  

Non-colonised participants’ antibody levels also dropped.  The mean fold change was -0.2 

(SD 0.13) in colonised participants versus -0.09 (0.21) in non-colonised participants (p = 

0.91 using the unpaired t test).   

Table 4.4: Immunological outcomes following pneumococcal challenge, PPV23 recipients only 

 Anti-6B CPS IgG log ng/mL, mean (SD) p 
value Baseline Day 29 

Colonised (n = 8) 3.58 (0.27) 3.47 (0.26) 0.055 

Non-colonised (n = 12) 3.58 (0.31) 3.5 (0.4) 0.143 
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Figure 4.4: Anti-6B CPS IgG levels at baseline and day 29 following inoculation, among PPV23 recipients only 

Each symbol represents a single participant. The lines and error bars in the first panel represent mean (SD); the 
lines in the second panel connect the baseline and day 29 values for each participant.  N = 8 carriers, 12 non-
carriers. There were no statistically significant differences within or between groups. 

The mean fold change in vaccinated colonised participants (-0.1) was in the opposite 

direction to that of unvaccinated colonised participants (+0.05) but this was not statistically 

significant (p = 0.235).   

4.3.3 Antibody responses and colonisation density 

We used Pearson’s correlation to assess the relationship between AUC of colonisation 

density and antibody levels within the colonised cohort.  AUC did not correlate significantly 



93 
 

with day 29 antibody levels (r = -0.115, p = 0.59) or with fold change in antibody levels (r = 

0.319, p = 0.128).  There was a moderate correlation between higher baseline anti-CPS IgG 

levels and lower colonisation densities, the statistical significance of which was borderline 

(r = -0.401, p = 0.052; Figure 4.5).   The correlations were weaker in participants who had 

never received PPV23.  By contrast, correlation coefficients between antibody levels and 

reduced colonisation density were stronger in participants who had received PPV23, 

although they did not reach statistical significance. There were non-significant negative 

correlations between baseline antibodies and colonisation density (r = -0.57, p = 0.204) and 

between Day 29 antibodies and colonisation density (r = -0.53, p = 0.181), but not between 

fold change and density (r = 0.122, p =0.773).   

 

 
Figure 4.5: Correlation of baseline anti-6B IgG with area-under-the-curve of density in pneumococcal carriers 

(N = 24; dashed lines represent 95% CI) 
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4.3.4 Antibody responses and age 

The mean baseline antibody concentrations in each age decile are shown in Table 4.5. 

There was no difference in baseline concentrations between the three groups (p = 0.23 

using ANOVA, p = 0.366 when excluding PPV23 recipients).  There was also no correlation 

between baseline antibody levels and age (r = -0.038, p = 0.817; PPV23 recipients 

excluded).   

Table 4.5: Baseline anti-6B IgG levels and responses in different age deciles 

 Age deciles P value 

50—59 (n = 
19) 

60—69 (n 
=26) 

70—80 (n 
=14) 

Baseline anti-CPS IgG titre, log 
ng/mL, mean (SD) 

3.38 (0.37) 3.36 (0.37) 3.55 (0.29) 0.23 

Fold change in 
antibody levels 
(log-transformed) 
post-challenge, 
mean (SD) 

Colonised +0.08 (0.35) -0.05 (0.27) -0.05 (0.17) 0.606 

Non-
colonised 

-0.17 (0.31) -0.05 (0.25) -0.08 (0.21) 0.510 

 

Using the paired t test, we compared changes in antibody levels between baseline and day 

29 in carriers and non-carriers in each decile, and found no significant differences (data not 

shown).  As shown in Table 4.5, there were no differences in the fold change in antibody 

levels between the different age deciles in either carriers or non-carriers.  Of note, the 

average fold change was positive in carriers aged <60 years while it was negative in older 

carriers, although this was not statistically significant.  Using Pearson’s correlation we 

found that fold change in antibody levels in response to colonisation did not correlate with 

age in either carriers (r = -0.221, p = 0.229, shown in Figure 4.6) or non-carriers (r = 0.085, p 

= 0.626).  Further subdividing by PPV23 status resulted in no correlations between fold-

change of antibodies and age, in either carriers or non-carriers (data not shown).   
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Of note, reduced antibody levels have been associated with male sex in previous 

population studies (65).  There were no differences in mean baseline antibody titres 

between males (3.44 log ng/mL, SD 0.42) and females (3.39 log ng/mL, SD 0.30; p = 0.585).   

 
Figure 4.6: Fold change in anti-CPS IgG levels after pneumococcal challenge plotted against age (colonised 
participants only) 

(N = 24; dashed lines represent 95% CI) 

 

4.3.5 Regression analysis—experimental colonisation 

The results of univariate logistic regression exploring predictor variables for experimental 

colonisation are shown in Table 4.6, with the results of multivariate regression in Table 4.7.  

Baseline antibody levels did not have a significant effect on the odds of developing 

experimental colonisation, and this was not affected by adjusting for age and sex.   
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Table 4.6: Predictors of experimental colonisation, using univariate logistic regression 

 Odds ratio 95% CI p value (Wald) 

Age (years) 0.97 0.9—1.03 0.313 

Male sex 0.59 0.21—1.66 0.319 

Baseline antibody levels (log ng/mL) 2.46 0.54—11.14 0.242 

 

Table 4.7: Predictors of experimental colonisation, using multivariate logistic regression 

 Odds ratio 95% CI p value (Wald) 

Age (years) 0.96 0.89—1.03 0.264 

Male sex 0.48 0.16—1.44 0.188 

Baseline antibody levels (log ng/mL) 3.54 0.69—18.26 0.132 

(Constant) 0.173 - 0.582 

 

4.3.6 Regression analysis—experimental colonisation density 

The results of univariate linear regression exploring predictor variables for experimental 

colonisation density are shown in Table 4.8.  Baseline antibody levels were associated with 

lower colonisation density, with borderline statistical significance—these results are (by 

definition) identical to those found when using Pearson’s correlation (Section 4.3.3).  Age 

and sex alone were not associated with colonisation density.   

Table 4.8: Predictors of experimental colonisation density (as defined by AUC), using univariate linear regression 

 Unstandardised Standardised 
β 

p value  

B Standard 
error 

95% CI 

Age (years) -0.44 0.92 -2.33 — 1.45 -0.1 0.64 

Male sex 14.82 14.66 -16.0 — 44.64 0.2 0.34 

Baseline antibody 
levels (log ng/mL) 

-40.4 19.7 -81.27 — 0.43 -0.4 0.052 

 B denotes the unstandardised regression coefficient, and β the standardised coefficient.   

As pre-specified, we went on to perform multivariate analysis, adjusting antibody levels for 

age and sex (forced entry method).  The results are shown in Table 4.9.  Baseline antibody 

levels, adjusted for age and sex, were significantly associated with reduced colonisation 

density in experimental pneumococcal carriers. 
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Table 4.9: Predictors of experimental colonisation density (as defined by AUC), using multivariate linear 
regression 

 Unstandardised Standardised 
β 

p value  

B Standard 
error 

95% CI 

Age (years) -0.33 0.87 -2.14 — 1.47 -0.08 0.7 

Male sex 22.05 14.25 -7.67 — 51.77 0.31 0.14 

Baseline antibody 
levels (log ng/mL) 

-44.43 20.0 -86.15 — -2.71 -0.44 0.038 

(Constant) 200.72 81.1 31.56 — 369.88 - 0.022 
B denotes the unstandardised regression coefficient, and β the standardised coefficient.   

 

This model shows that, although higher baseline antibody levels do not affect the 

acquisition of experimental colonisation, a 1 log increase in pre-challenge antibody levels 

corresponds with a reduction in experimental colonisation AUC density of 44.4 

CFU.days/mL for those who do become carriers.  The model R2 was 0.25—i.e. the adjusted 

baseline antibody levels could only explain 25% of the variation in colonisation density in 

our sample.   

4.4 Discussion 

We investigated seven hypotheses in this chapter, and the findings are summarised in 

Table 4.10.    
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Table 4.10: Summary of immunological results 

 Hypothesis Finding 

1 Higher baseline anti-CPS IgG levels are 

found in PPV23-vaccinated participants 

Retained. 

2 Post-PPV23 antibody levels are not 

significantly lower in participants for 

whom a long time had passed since 

vaccination 

Retained. 

3 High baseline antibody levels are not 

associated with colonisation outcomes 

Retained—similar baseline antibody 

levels in participants who did and 

didn’t develop experimental 

colonisation. 

4 Experimental colonisation results in 

boosting of anti-CPS antibody levels 

Refuted—no change in antibodies 

following experimental colonisation.  

5  Pneumococcal challenge without 

colonisation does not have any effect 

on systemic antibody levels 

Refuted—fall in antibody levels in 

the cohort as a whole. However, this 

was only barely statistically 

significant. 

6 Higher baseline antibody levels are 

associated with reduced bacterial 

density in colonised participants 

 Retained—following adjustment for 

age and sex, higher baseline 

antibodies were associated with 

lower colonisation density, albeit 

with a p value of only 0.038, i.e. only 

just clearing the threshold for 

significance.   

7 Antibody levels and responses are 

diminished in the oldest age decile 

Not identified.   

The implications of these findings can be explored under two broad headings, as outlined in 

the introduction to this chapter: 

1. Antibody-mediated protection against colonisation 

2. Antibody boosting following colonisation 
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4.4.1 Antibody-mediated protection against colonisation 

Baseline anti-CPS antibody levels were not different between participants who did and did 

not go on to develop experimental colonisation.  This remained true when the cohort was 

subdivided based on PPV23 status.  This finding is consistent with EHPC studies in younger 

adults which drew the same conclusion (60) and our finding that PPV23 was not protective 

against colonisation in our previous chapter.  This does not explain why PCV13—which also 

induces anti-CPS antibodies—is protective against colonisation in younger participants 

(107).   

Indeed, a study of the effect of PCV13 on colonisation in older adults was published after 

our study was completed, based on a nested cohort within the CAPiTA study (108, 110).  

This study found that PCV13 did reduce the rate of vaccine-type colonisation compared 

with placebo at six months post-vaccine, but not at later timepoints.  It may be that PCV13 

results in improved antibody delivery to mucosal compartments (73) compared with 

natural or PPV23-induced immunity.  Equally, as outlined in Chapter 1, other facets of 

immunity must be involved in preventing colonisation.   

Higher baseline antibody levels, adjusted for age and sex, were significantly associated with 

lower colonisation density.  Although the model fit was poor, this finding is biologically 

plausible.  It is also consistent with the mechanism of action of vaccine-induced antibodies: 

in a previous EHPC study in young adults, PCV13 reduced the risk of pneumococcal 

acquisition (compared with placebo) but was also associated with reduced density in 

participants who did acquire colonisation (107).  

The implications of antibody-mediated control of density will require further study.  Higher 

colonisation density was associated with an increased risk of transmission in a murine 

model (202).  This association is widely held to be true for human children (203), but has 

yet to be demonstrated.  As adults are less likely than children to transmit in any case, the 
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public health relevance of higher densities in colonised adults is uncertain.  However, it is 

also plausible that higher colonisation density would be associated with higher risk of 

disease.  Adults with pneumococcal pneumonia have been found to have higher 

colonisation density than controls (24, 204), but in the absence of prospective studies a 

causal relationship remains to be determined.   

Older adults’ antibodies have been associated with reduced opsonophagocytic capacity in 

other studies (80).  However, reduction in colonisation density may be mediated by 

agglutination rather than opsonophagocytic killing (73), and future studies should explore 

the agglutination capacity of antibodies in older adults.   

The reduction in colonisation density by antibodies was small, and the majority of variation 

in density was unexplained by the multivariable model.  Similarly, pneumococcal vaccines 

are immunogenic but only confer partial protection against vaccine-type pneumococcal 

colonisation or disease (104, 110).  It remains clear that serotype-specific, antibody-

mediated immunity alone is not sufficient to control pneumococcal colonisation in older 

adults.   

4.4.2 Antibody boosting following colonisation 

In our primary analysis of the entire cohort, we did not identify antibody boosting in 

colonised recipients. This contrasts markedly with results seen in younger adults (60), and 

is supportive of a hypothesis that anti-pneumococcal immune responsiveness is diminished 

in older people.   

We demonstrated a small but statistically significant drop in anti-6B IgG levels following 

pneumococcal challenge without colonisation.  This may represent hyporesponsiveness.  In 

previous studies, hyporesponsiveness has not manifested itself as a fall in antibody levels 

following antigen challenge. Rather, it has manifested as a lower-than-expected rise in 

antibody titre after a PPV23 booster vaccination compared with the response to the 
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primary vaccine or to a PCV13 booster (116, 118, 197).  Serotype-specific memory B cell 

levels have been shown to fall following revaccination with PPV23 in older adults (117).  

These memory B-cells may undergo similar terminal differentiation in response to live 

pneumococcus.  However, these terminally-differentiated B-cells are still capable of 

secreting antibodies, and therefore a fall in antibody titres after four weeks remains 

unexpected.   

Another possible explanation is that peripheral antibodies were sequestered in the nose 

following pneumococcal challenge, leading to a drop in circulating levels.  This 

phenomenon has previously been noted for mucosal antibodies in PCV13-vaccinated young 

adults (preventing colonisation via agglutination), but did not affect peripheral antibody 

levels (73).  Therefore, it may be that some individuals have the capacity to recruit 

circulating antibodies (or antibody-secreting cells) to the nasopharyngeal mucosal surface 

and it is this capacity, rather than the absolute antibody concentration in blood, that 

determines whether the individual is protected against colonisation.  Further work 

specifically exploring the dynamics of mucosal rather than systemic immunity during EHPC 

in older people could investigate this hypothesis.  During the “Aging and Immunity” study 

we collected a number of mucosal samples, including nasal wash, nasal matrix absorption 

and nasal microbiopsy (205), and these will allow us to measure mucosal antibody, 

cytokine levels and immune cell populations over the duration of a challenge/colonisation 

episode in this older population.   

An EHPC study in young adults demonstrated a functional immune boost following 

colonisation—participants were protected against reacquisition of the same serotype for 

up to one year (60).  Our group plans to re-challenge carriers from the “Aging and 

Immunity” study with serotype 6B to provide further insight into the true impact of 

pneumococcal colonisation on immunity.   
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Recently there has been growing interest in the use of “seroincidence” to estimate 

pneumococcal colonisation incidence in populations.  If our EHPC results are similar to the 

antibody responses to naturally-acquired colonisation, this suggests that seroincidence 

would have poor sensitivity for identifying pneumococcal acquisition in older adults.  

Applying the same definition as a recent paediatric study to our cohort —any increase in 

serotype-specific antibodies between two timepoints (79)— gives seroincidence a 

sensitivity of 37.5% and specificity of 70.1% for identifying pneumococcal colonisation.   

4.4.2.1 Antibody boosting and vaccine status 

When we divided the participants by PPV23 status, we did not identify any statistically-

significant changes in antibody levels post-challenge.  These subgroups were under-

powered.  In addition, dividing the cohort by PPV23 status results in obvious age 

imbalances.     

4.4.2.2 Age-related trends 

While we did not identify an age-related trend within our cohort, clearly the responses to 

EHPC in this cohort of older adults are different to those previously reported in younger 

adults (60), and direct comparisons with serum from young controls would be a valuable 

future project.  The antibody response to colonisation may also be serotype dependent.  

Previous population studies have shown a decline in antibodies against certain serotypes 

(e.g. serotype 3) with age, but not in other serotypes including 6B (65).  By contrast, an 

observational study of colonisation in young adults found that 6B did not provoke as strong 

an antibody response as other serotypes (29).  It is unlikely that we will be able to study the 

serological response to experimental challenge with different serotypes in older adults, as 

EHPC studies with serotypes other than 6B have failed to establish high, reproducible rates 

of carriage thus far (Victoria Connor et al, unpublished data, and (60)).   
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While we did not measure functional activity in this study, IgG levels and serum 

opsonophagocytic activity are reasonably well correlated in older adults (126).  As 

mentioned above, a study of agglutinative as well as opsonophagocytic function in this 

cohort would provide valuable mechanistic insight.   

4.4.3 Conclusions 

While this cohort of older adults proved susceptible to experimental colonisation with 

pneumococcus, their anti-capsular antibody responses to pneumococcal challenge were 

markedly different to those previously reported in young adults.  In particular, 

pneumococcal challenge with colonisation did not boost antibody levels, and challenge 

without colonisation was associated with a fall in antibody levels.  We found no evidence of 

superior antibody responses to colonisation in PPV23 recipients.  Although pre-existing 

serotype-specific antibodies were not protective against colonisation acquisition, they may 

have a role in controlling colonisation density.   
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5 Defining the Pneumococcal Colonisation Niche using 

Different Sampling Methods 

5.1 Background 

As outlined in Table 1.1 and Section 1.2 of the INTRODUCTION, the ideal method to detect 

pneumococcal colonisation remains a matter of dispute, particularly in older adults.  

Published rates of colonisation differ substantially, and some of this may depend on the 

site of sampling—e.g. nasopharynx versus oropharynx—with some authors suggesting that 

the niche of colonisation changes with age (43).  Each site can be sampled using different 

methodologies—e.g. nasopharyngeal swab versus nasal wash; oropharyngeal swab versus 

saliva.  Finally, the sensitivity and specificity of different laboratory assays—e.g. culture vs 

qPCR—are quite different, and assay performance can vary between different types of 

samples from different niches.   

Defining both the niche of colonisation and the ideal sampling method is vital to maximise 

the yield of epidemiological colonisation studies and establish the true underlying rate of 

colonisation.  In addition, colonisation can be an endpoint for vaccine studies, and the 

definition of colonisation can affect the estimation of vaccine efficacy.   

A report from a WHO working group in 2013 recommended that  

For adults, both [nasopharyngeal] and [oropharyngeal] samples should be collected. 

However, if only one sample is possible, collecting from the nasopharynx is more sensitive 

than from the oropharynx (36).   

The report also recommended  

The [nasopharyngeal] swab approach for collection of the sample. [Nasopharyngeal] 

aspirates or washes are also acceptable methods of specimen collection as they have 
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sensitivity for pneumococcal detection equal to, or greater than, that of [nasopharyngeal] 

swabs, but may be less tolerated by participants (36).    

In our local context, nasal washes have been tolerated better than swabs in adults (37).  

The WHO working group recommended culture rather than molecular methods for 

pneumococcal detection, but acknowledged that  

Molecular testing of paired [nasopharyngeal and oropharyngeal] samples is needed to 

establish if the recommendations for anatomic site of sampling apply also to studies using 

molecular detection of pneumococci (36). 

Studies that compared the performance of culture and molecular methods for detecting 

community-acquired pneumococcal colonisation are summarised in Table 1.1 of the 

INTRODUCTION. The comparative performances of nasal wash, oropharyngeal swab and saliva 

have not been assessed in EHPC before.  A post-hoc study of EHPC in young adults 

compared the sensitivity of nasal wash culture and lytA qPCR, and found that 42.6% of 

samples were positive by qPCR versus 27.5% by nasal wash (48). The sensitivity of qPCR 

was 93.2% while the specificity was 75.9%.  The authors concluded that qPCR’s advantage 

was in detecting low-density colonisation.  The authors also speculated that continuous 

qPCR detection when culture results are negative may represent prolonged low-density 

carriage, living cells that are in a culture-unfavourable metabolic state, or remaining 

pneumococcal debris (48).  However, lytA qPCR may generate false-positive results by 

detecting other commensal streptococci; many experts now advocate targeting two genes 

in pneumococcal qPCR to maximise specificity (47).  This approach has not yet been applied 

to older participants or to oral samples in EHPC subjects.   

Along with their respective sensitivities and specificities, numerous other factors affect the 

choice of test and analysis method, such as patient acceptability, labour intensity, cost, 
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logistic and infrastructure requirements and ability to harmonise methodology across a 

variety of settings.   

When designing the “Aging and Immunity” study, we pre-specified that colonisation would 

be defined using nasal wash culture.  This facilitated direct comparisons with previous EHPC 

studies, and was the most logical definition given that participants underwent nasal 

inoculation.  For this reason, nasal wash culture would be the “gold standard” against 

which other diagnostic methods for experimental pneumococcal colonisation would be 

compared.  Alongside each nasal wash, we also took paired oropharyngeal swabs and saliva 

samples.  In this chapter, we compare the performance of molecular analysis of these 

samples with nasal wash culture in this cohort.   

5.1.1 Hypotheses 

We test the following hypotheses in this chapter:  

1. Nasal wash qPCR will identify pneumococcus in more samples than nasal wash 

culture (48); 

2. Oropharyngeal swab qPCR will identify pneumococcus in more samples than than 

nasal wash (see Table 1.1 for literature review); 

3. Saliva qPCR will identify the highest number of positive samples (Table 1.1); 

4. qPCR targeting lytA alone is more sensitive but less specific than qPCR targeting 

both lytA and cpsA genes (186); 

5. EHPC studies take samples at multiple timepoints, thus maximising the likelihood of 

detecting colonisation by culture—therefore, at the participant level (rather than 

the individual sample level) culture and molecular methods have similar sensitivity 

and specificity for classifying participants as colonised or non-colonised;  
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5.2 Methods 

We obtained nasal wash, oropharyngeal swab (OPS) and saliva samples at each timepoint 

in the “Aging and Immunity” study (see the timeline in Figure 2.3).  We tested the samples 

from baseline and days 2, 7 and 14 post-inoculation using qPCR.  (These timepoints are 

common to all EHPC studies, and future work will involve molecular tests on archived 

samples from young volunteers at these same timepoints.)  

5.2.1 Clinical procedures 

Nasal wash was performed as outlined in Section 2.6.3, OPS as in Section 2.6.4 and saliva 

collection as in Section 2.6.5.   

5.2.2 Laboratory procedures 

Nasal wash culture and pneumococcal identification were performed as outlined in Section 

2.7.2.  OPS and saliva samples were not cultured prior to DNA extraction and qPCR; future 

work will explore the effect of culture enrichment on test performance.   

Nasal wash pellets, OPS and saliva were stored in STGG at -80°C, and for the current 

analysis they underwent multiplex qPCR targeting both the lytA and the 6A/B capsular 

polysaccharide (cpsA) genes, as outlined in Section 2.7.5—two targets were chosen to 

maximise the specificity, with a positive qPCR requiring detection of both targets within 40 

cycles.  A schematic outlining the sample timing, samples taken and analytic methods is 

given in Figure 5.1.   
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Timepoints 

Baseline pre-inoculation 

Day 2 post-inoculation 

Day 7 post-inoculation 

Day 14 post-inoculation 

Nasal wash  

Oropharyngeal swab 

Saliva  

Culture 

qPCR 

qPCR 

qPCR 

Figure 5.1: Sampling schedule and testing methods employed in this chapter 
qPCR: quantitative polymerase chain reaction 

Comparisons 
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5.2.3 Statistical analysis 

Nasal wash culture was used as the “reference standard” against which the other tests 

would be measured.  We assessed the relative performance of each sample strategy at 

each timepoint for our primary analysis.  We included participants who were colonised with 

non-6B serotypes at any timepoint, as our diagnostic methods were intended to be 

serotype-specific.  As a secondary analysis, we re-ran each comparison with qPCR targeting 

lytA alone, to see if qPCR specificity was reduced by only targeting one gene.  Another 

secondary analysis assessed sensitivity and specificity at the participant level, defining a 

positive result as detection of pneumococci by a given method at any post-inoculation 

timepoint for each participant. We defined sensitivity and specificity as follows: 

• Sensitivity = 
Test positives

All culture positives
 

• Specificity = 
Test negatives

All culture negatives
 

Sensitivities and specificities are presented with 95% CIs which were calculated based on 

Newcombe’s efficient score method (206), using an online calculator 

(http://vassarstats.net/clin1.html, accessed 08 July 2018).  

5.3 Results 

Sixty-four adults aged 50—84 years provided 254 sample pairs for nasal wash culture/qPCR 

and nasal wash culture/OPS qPCR (two subjects had missed their day 14 visit), and 251 

sample pairs for nasal wash culture/saliva qPCR (two subjects missed their day 14 visit and 

a further three samples had insufficient saliva volume for testing).   

http://vassarstats.net/clin1.html
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5.3.1 Performance of qPCR versus nasal wash culture 

5.3.1.1 Nasal wash qPCR 

Using nasal wash culture, 20.1% of samples were positive for S pneumoniae serotype 6B, 

while 18.1% were positive using nasal wash qPCR (Table 5.1).   

Table 5.1: Performance of nasal wash lytA/6AB qPCR versus culture 

 Nasal wash culture Totals 

Positive Negative 

Nasal wash 

lytA/6AB qPCR 

Positive 41 5 46 

Negative 10 198 208 

Totals 51 203 254 

 

Sensitivity of qPCR versus the reference standard of culture = 
41

51
 = 80.4% (95% CI 66.5—

89.7%). 

Specificity of qPCR versus culture = 
198

203
 = 97.5% (94—99.1%). 

At the participant level, two participants were newly identified as carriers using nasal wash 

qPCR—one was qPCR positive at all three timepoints, while the other was only positive at 

one timepoint.  However, four culture-positive participants were missed by qPCR.   

5.3.1.2 Oropharyngeal swab qPCR 

As shown in Table 5.2, 7.9% of samples were positive by OPS qPCR.  

Table 5.2: Performance of oropharyngeal lytA/6AB qPCR versus nasal wash culture 

 Nasal wash culture Totals 

Positive Negative 

Oropharyngeal swab 

lytA/6AB qPCR 

Positive 16 4 20 

Negative 35 199 234 

Totals 51 203 254 
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Sensitivity of OPS qPCR versus NW culture = 
16

51
 = 31.4% (19.5—46%). 

Specificity of OPS qPCR versus NW culture =  
199

203
 = 98% (94.7—99.4%). 

Two culture-negative participants were newly identified as carriers using OPS qPCR; one of 

these was also positive by nasal wash qPCR.  However, 11 culture-positive participants 

were missed by OPS qPCR.   

5.3.1.3 Saliva qPCR 

As shown in Table 5.3, only 1.6% of samples tested positive by saliva qPCR. 

Table 5.3: Performance of saliva lytA/6AB qPCR versus nasal wash culture 

 Nasal wash culture Totals 

Positive Negative 

Saliva lytA/6AB 

qPCR 

Positive 3 1 4 

Negative 48 199 247 

Totals 51 200 251 

 

Sensitivity of saliva qPCR versus NW culture = 
3

51
  = 5.9% (1.5—17.2%). 

Specificity of saliva qPCR versus NW culture = 
199

200
 = 99.5% (96.8—99.9%). 

One participant was newly identified as colonised using saliva qPCR (the participant was 

also qPCR positive in both NW and OPS), while 21 carriers were missed entirely.   

5.3.2 Performance of lytA qPCR alone 

We performed two-target qPCR to maximise test specificity.  However, lytA is generally 

accepted to be the most specific single gene for pneumococcus (186), and there is a 
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substantial body of literature in which qPCR for lytA alone was used to diagnose 

pneumococcal colonisation (24, 48).  Therefore we did a secondary analysis of the 

performance of single-target qPCR.  Since lytA qPCR is serotype-independent, nasal wash 

culture positivity for any pneumococcal serotype (i.e. including “natural carriers”) was 

considered the reference standard in this analysis.   

5.3.2.1 Nasal wash lytA qPCR 

As shown in Table 5.4, 23.6% of samples were positive for S pneumoniae using nasal wash 

culture, compared with 24.4% using nasal wash lytA qPCR.   

Table 5.4: Performance of nasal wash lytA qPCR versus culture 

 Nasal wash culture Totals 

Positive Negative 

Nasal wash lytA 

qPCR 

Positive 52 10 62 

Negative 8 184 192 

Totals 60 194 254 

 

Sensitivity of lytA qPCR versus culture = 
52

60
 = 86.7% (74.9—93.7%). 

Specificity of lytA qPCR versus culture = 
184

194
 = 94.8% (90.5—97.4%). 

 

5.3.2.2 Oropharyngeal lytA qPCR 

Table 5.5: Performance of oropharyngeal lytA qPCR versus nasal wash culture 

 Nasal wash culture Totals 

Positive Negative 

Oropharyngeal swab 

lytA qPCR 

Positive 22 14 36 

Negative 38 180 218 

Totals 60 194 254 
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Sensitivity of OPS lytA qPCR versus NW culture = 
22

60
 = 36.6% (24.9—50.2%). 

Specificity of OPS lytA qPCR versus NW culture =  
180

194
 = 92.8% (87.9—95.8%). 

5.3.2.3 Saliva lytA qPCR 

Table 5.6: Performance of saliva lytA qPCR versus nasal wash culture 

 Nasal wash culture Totals 

Positive Negative 

Saliva lytA qPCR Positive 8 6 14 

Negative 52 185 237 

Totals 60 191 251 

 

Sensitivity of saliva lytA qPCR versus NW culture = 
8

60
  = 13.3% (6.3—25.1%). 

Specificity of saliva lytA qPCR versus NW culture = 
185

191
 = 96.8% (92.9—98.7%). 

5.3.3 Molecular methods in natural carriers 

Our use of serotype-specific methods (latex agglutination of culture samples and 6A/B 

qPCR) meant that we did not exclude participants who were “naturally” colonised with 

pneumococcus from our primary analysis.   Colonisation with non-6B serotypes was 

detected at 11 timepoints by culture, including two episodes of dual colonisation with 6B 

and a natural strain.  NW lytA qPCR was positive at 10/11 timepoints.  OPS and saliva lytA 

qPCR were jointly positive at one timepoint, and separately positive at one further 

timepoint each.  In the two instances where there was dual colonisation, NW qPCR was 

positive by both lytA and 6AB; in one of these cases saliva lytA qPCR was positive but 6A/B 

was negative.   
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5.3.4 Classification of volunteers as carriers 

When reporting the results of the primary analysis in this chapter, we noted how many 

participants were “newly identified as colonised” or “missed” by each molecular diagnostic 

method.  In this secondary analysis, we formally assess the performance of molecular 

methods versus nasal wash culture for classifying volunteers as experimental carriers.  If a 

volunteer tested positive by a given method at any of the three post-inoculation 

timepoints, they were classified as positive. Nasal wash culture for serotype 6B 

pneumococcus was again considered the reference standard (carriers of non-6B serotypes 

were classified as culture negative).  Missing samples were disregarded, and two volunteers 

who only tested positive for colonisation by culture on day 9 (i.e. did not have paired 

samples for molecular diagnostic) are classified as culture negative in this analysis.   

5.3.4.1 Nasal wash lytA/6AB qPCR 

Table 5.7: Performance of nasal wash lytA/6AB qPCR versus culture at participant level 

 Nasal wash culture Totals 

Positive Negative 

Nasal wash 

lytA/6AB qPCR 

Positive 19 2 21 

Negative 4 39 43 

Totals 23 41 64 

 

 

Sensitivity of qPCR versus culture = 
19

23
 = 82.6% (60.5—94.3%). 

Specificity of qPCR versus culture = 
39

41
 = 95% (82.2—99.2%). 
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5.3.4.2 Oropharyngeal lytA/6AB qPCR 

Table 5.8: Performance of oropharyngeal lytA/6AB qPCR versus nasal wash culture at participant level 

 Nasal wash culture Totals 

Positive Negative 

Oropharyngeal swab 

lytA/6AB qPCR 

Positive 12 2 14 

Negative 11 39 50 

Totals 23 41 64 

 

Sensitivity of OPS qPCR versus NW culture = 
12

23
 = 52.2% (31.3—72.6%) 

Specificity of OPS qPCR versus NW culture =  
39

41
 = 95% (82.2—99.2%) 

5.3.4.3 Saliva lytA/6AB qPCR 

Table 5.9: Performance of saliva lytA/6AB qPCR versus nasal wash culture at participant level 

 Nasal wash culture Totals 

Positive Negative 

Saliva lytA/6AB 

qPCR 

Positive 2 1 3 

Negative 21 40 61 

Totals 23 41 64 

 

Sensitivity of saliva qPCR versus NW culture = 
2

23
  = 8.7% (1.5—29.5%) 

Specificity of saliva qPCR versus NW culture = 
40

41
 = 97.6% (85.6—99.9%) 

5.4 Discussion 

We investigated five hypotheses in this chapter, and the outcomes are summarised in Table 

5.10.  A summary of the main results, juxtaposed with the results for lytA qPCR alone, is 
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given in Table 5.11.  A heatmap (Figure 5.2) summarises the findings of the primary analysis 

graphically.  

Table 5.10: Outcomes of hypotheses tested in this chapter 

 Hypothesis Outcome 

1 Nasal wash qPCR will identify 

pneumococcus in more samples than 

nasal wash culture 

Rejected—similar numbers of samples 

identified using either method, qPCR 

80.4% sensitive versus culture 

2 Oropharyngeal swab qPCR will identify 

pneumococcus in more samples than 

nasal wash culture 

Rejected—oropharyngeal swab 31.4% 

sensitive 

3 Saliva qPCR will identify the highest 

number of positive samples 

Rejected—5.9% sensitivity 

4 qPCR targeting lytA alone is more 

sensitive but less specific than qPCR 

targeting both lytA and cpsA genes 

Retained, but differences in sensitivity 

and specificity very small between the 

two methods (See Table 5.11) 

5 At the participant level, culture and 

molecular methods have similar 

sensitivity and specificity 

Rejected—culture was already superior 

to molecular methods at the individual 

sample level, and this did not change 

when a participant-level definition was 

used; similar sensitivity and specificity 

within each method at the sample and 

participant level, although OPS qPCR 

more sensitive at participant level than 

at sample level 
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Table 5.11: Summary of dual-target and single-target qPCR results 

 Sensitivity Specificity 

(Nasal wash culture) (100%) (100%) 

Nasal wash lytA/6AB qPCR 80.4% (66.5—89.7%) 97.5% (94—99.1%) 

lytA qPCR 86.7% (74.9—93.7%) 94.8% (90.5—97.4%) 

Oropharyngeal lytA/6AB qPCR 31.4% (19.5—46%) 98% (94.7—99.4%) 

lytA qPCR 36.6% (24.9—50.2%) 92.8% (87.9—95.8%) 

Saliva lytA/6AB qPCR 5.9% (1.5—17.2%) 99.5% (96.8—99.9%) 

lytA qPCR 13.3% (6.3—25.1%) 96.8% (92.9—98.7%) 

95% confidence intervals are given in parentheses.  
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3 23 43

4 24 44

5 25 45

6 26 46

7 27 47

8 28 48

9 29 49

10 30 50

11 31 51

12 32 52

13 33 53

14 34 54

15 35 55

16 36 56

17 37 57

18 38 58

19 39

20 40

        

  

Figure 5.2: Heatmap summarising the results of different pneumococcal tests 
Each row represents an individual participant’s sampling timepoint, each column a diagnostic method. Shaded 
squares indicate a positive result, with increasing darkness of shading indicating that a participant was positive by 
one, two, three or four diagnostic methods at that timepoint.  As shown in the pie chart, 77% of samples (n = 196) 
were negative for pneumococci by all four methods.    
NW, nasal wash; OPS, oropharyngeal swab; qPCR, quantitative polymerase chain reaction 

 

Negative by all detection methods 

(n = 196 samples) 

Positive by any method 

(n = 58) 
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None of the molecular sampling techniques demonstrated a sufficiently high sensitivity to 

replace nasal wash culture as the reference standard for pneumococcal detection in older 

adults.   If we had used only molecular methods, we would have detected fewer 

experimental carriers than we did using culture, even if we had analysed samples from 

multiple anatomical sites.   Combining culture with molecular methods for routine analysis 

in the “Aging and Immunity” study would have detected three new experimental carriers if 

both nasopharyngeal and oropharyngeal samples were tested, while adding a significant 

workload to the laboratory.   

The oral samples showed particularly poor sensitivity for pneumococcal detection by qPCR.  

This is in marked contrast with the results of community-based colonisation screening 

studies (44).  Unidentified issues with sample collection, processing or storage may have 

contributed to the high false negative rate.  In addition, oropharyngeal pneumococcal 

detection rates may indeed be low following experimental nasal inoculation, but this may 

not hold true for community-acquired colonisation.   

All molecular methods demonstrated high specificity.  Recent studies have reported 

capsular polysaccharide production by commensal streptococci (such as Streptococcus 

mitis) and the detection of the cps gene in these species (207), raising a concern that our 

lytA/cpsA qPCR could be vulnerable to false positives.  There were no lytA-positive, cpsA-

positive samples at baseline from any site in any of our participants. Therefore we remain 

confident that lytA/cpsA-positive samples obtained after serotype-6B pneumococcal 

exposure are more likely to represent genuine detection of experimental colonisation.   

5.4.1 Non-serotype-specific molecular testing 

Molecular methods are generally considered more sensitive but less specific than culture; 

hence, refinements to pneumococcal qPCR tend to focus on increasing specificity, e.g. by 

mandating two gene targets.  Our study found that lytA/6AB qPCR from any site had low 
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sensitivity but high specificity.  Therefore we looked at the performance of lytA qPCR alone.  

We found that omitting the cpsA qPCR came with a modest drop in specificity, and a 

similarly modest rise in sensitivity (Table 5.11). Nasal wash lytA qPCR had a sensitivity of 

86.7%, 95% CI 74.9—93.7%; the 93.2% sensitivity of nasal wash lytA qPCR in young adults 

falls (just) within this confidence interval (48).   

We cannot state with confidence how many lytA qPCR-positive, culture-negative samples 

represented true pneumococcal colonisation, perhaps in low densities, rather than a false 

positive assay due to (for example) commensal streptococcal detection.  40% of such 

samples (12/30) were from participants who were culture-positive at other timepoints, 

suggesting that the qPCR was detecting either true low-density colonisation or residual 

pneumococcal debris.   

In participants colonised with non-6B serotypes, nasal wash lytA qPCR performance did not 

differ substantially from that of culture.  The two “natural carriers” who were positive by 

nasal wash lytA/6AB qPCR also had dual colonisation including serogroup 6 identified on 

nasal wash culture—this reassures us that no experimental carriers were missed by culture 

due to overgrowth by non-6B serotypes.   

5.4.2 Reliability of saliva sampling 

The pneumococcal yield from saliva was surprisingly low—given the high rate of salivary 

colonisation identified in other studies, it is possible that methodological issues related to 

saliva collection or processing led to a high false-negative rate in our sample.  For example, 

a Dutch study identified colonisation in 28% of older adults using culture-enriched qPCR of 

saliva (44). This study used a similar absorbent sponge methodology to ours, but 

immediately placed the sample in glycerol and transported it to the laboratory on dry ice, 

whereas we transported our samples without preservative on wet ice, with a 1—2-hour 

interval between collection and processing.  However, other Dutch studies have detected 



121 
 

high salivary colonisation rates using much simpler methods—e.g. a paediatric study (88% 

colonisation) asked subjects to spit into a sterile container which was transported to the 

laboratory on wet ice within 4 hours (46).  Another study found that pneumococci could be 

reliably detected in dried saliva that had been stored for up to a month at ambient 

temperature (208).  Of note, these saliva samples were spiked with pneumococci, and thus 

may have been less representative of epidemiological participant samples.  These studies 

suggest that the salivary pneumococcal yield is not profoundly affected by the collection 

method.  Nonetheless, the discordance between our results and the sizeable body of 

evidence from the Netherlands remains unexplained. In addition, other studies in EHPC 

participants have required participants to spit directly into an STGG-filled tube, and these 

studies detected pneumococcal DNA in saliva up to 48 hours post-inoculation (E Nikolaou, 

unpublished data).  Future EHPC studies in older adults should adopt this methodology.  

Overall, our findings suggest that, if salivary PCR is employed, it should be used in parallel 

with other sampling strategies rather than on its own.   

Some authors have suggested that culture-enrichment pre-qPCR improves the sample yield 

(209).  Preliminary work with spiked samples in our lab found that qPCR of both culture-

enriched and raw samples were complementary, with a combination of the two methods 

yielding the highest number of positive samples (E Nikolaou, unpublished data).  Future 

work will explore the performance of culture enrichment in samples from the over-50 

cohort.   

5.4.2.1 Oral fluids other than saliva 

A variety of secretions are produced in the oral cavity, including saliva but also gingival-

crevicular fluid (210).  Gingival crevicular fluid has been found to contain numerous 

inflammatory mediators and antibodies, which can be reflective of an individual’s systemic 

inflammatory and immune status (210)(211).   Did our collection methods truly obtain 
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samples of participants’ saliva, or did we in fact collect an alternative oral secretion, or a 

mixture of saliva and other secretions?  

During saliva collection, we observed that a number of participants found it uncomfortable 

to hold the sponge in their mouth for the requisite duration; some found it easier to move 

the sponge around using their tongue, while others preferred to let it rest in a single 

location.  To minimise participant discomfort, we did not mandate a standardised 

anatomical niche in which to place the sponge.  Our collection and analytical methods were 

based on a modification of a protocol shared by a Dutch team (M-L Chu, personal 

communication), in which absorbant sponges were placed between gum and cheek.  

Therefore, we feel that our collection method retains validity, although it would have been 

ideal to completely standardise the saliva collection manoeuvre between participants. 

Gingival crevicular fluid is secreted in particularly small volumes, typically being collected 

using a filter paper strip rather than sponges (211).  Therefore, the fact that our 

participants were able to saturate a sponge suggests that saliva formed a significant 

fraction of the fluid we obtained.   

Gingival crevicular fluid does differ in composition from saliva, although it has been argued 

that differences in component concentrations are unlikely to translate to different 

conclusions in research should one fluid be substituted for the other (210). If 

pneumococcus colonises the oral cavity, there is no reason to suppose that the relative 

compositions of different oral secretions are more or less inhabitable to this encapsulated 

pathogen, which has adapted to tolerate inhospitable mucosal surfaces and evade mucosal 

host defences (212)(72).   

5.4.3 Limitations of nasal wash culture as an EHPC reference standard 

We chose nasal wash culture as our reference standard based on its use in prior EHPC 

studies.  However, comparison between a culture-based reference standard and a 
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(potentially more sensitive) molecular diagnostic method poses challenges.  Had we been 

able to culture the samples taken from the oropharyngeal niche, this would have facilitated 

direct comparisons between culture of oral and nasal samples, and then between qPCR of 

oral and nasal samples.  Overgrowth of oral samples by commensal flora is a major 

limitation of this approach, but including a culture-enrichment step in future studies could 

overcome this limitation (209)(47).   

Numerous methods exist to establish the performance of a diagnostic test in the setting of 

an imperfect reference standard, ranging from construction of composite reference 

standards (sometimes by panel consensus) to correction via statistical modelling (reviewed 

in (213)).  For example, a study assessing a new highly-sensitive PCR methodology (Xpert 

Ultra, versus the standard Xpert) for the diagnosis of tuberculous meningitis compared 

each diagnostic method (culture, Xpert and Xpert Ultra) against a reference standard of 

“positive by any of the three methodologies” (214).  

A future EHPC study could adopt a similar methodology—for example, assessing each qPCR 

from individual niches against a reference standard comprising qPCR positivity from any 

sample.  However, given the low positivity rates of oropharyngeal and salivary qPCR in this 

chapter, such a study would require methodological refinement—e.g. incorporating a 

culture-enrichment step and/or a different saliva collection methodology.   

5.4.4 The role of nasal wash culture outside the context of EHPC 

Nasal wash culture has a number of disadvantages. It can be uncomfortable and technically 

challenging for participants, although better tolerated than nasopharyngeal swab (37).  In 

addition, saline impairs pneumococcal viability, meaning that the sample must reach the 

laboratory within an hour of collection.  If nasal wash were used for field studies without 

near-patient laboratory facilities, then the sample would require freezing upon collection 
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or a preservative like glycerol or STGG to be added immediately afterwards.  The 

reasonable sensitivity of nasal wash qPCR could help overcome this limitation.   

In epidemiologic studies, simply detecting pneumococcal colonisation is not always 

enough—ideally, serotypes should also be identified.  Currently, serotype identification can 

only be performed with confidence on culture-based samples.  When performing qPCR in 

EHPC, we could be confident that a positive 6AB qPCR coupled with a positive lytA qPCR, in 

a participant recently inoculated with serotype 6B, represented serotype 6B colonisation.  

Serotyping of qPCR-positive samples from a general population is more logistically 

challenging, as potentially every lytA-positive sample must undergo repeat qPCR with 

separate probes for every serotype.  The majority of currently available probes only identify 

pneumococci at the serogroup level (47).  Current vaccines may not target every member 

of a serogroup: for example, of serotypes 9N, 9L and 9V, only 9V is in PCV13, and thus the 

detection of serogroup 9 by qPCR is of limited epidemiologic utility.  Novel methods, such 

as microarray analysis of genomic DNA, can classify pneumococci at serotype level (191) 

and could potentially be adapted for use with qPCR-positive samples.   

Culture also allows the phenotypic measurement of antimicrobial susceptibility, another 

important metric in epidemiologic studies.  Potentially, PCR probes directed against specific 

genes known to encode resistance could be employed—however, the issue of potential 

contamination with commensal flora cannot be overcome.  In addition, there have been no 

prospective studies correlating the detection of antimicrobial resistance genes with 

phenotypic susceptibility in pneumococci (215).   

5.4.5 Conclusions 

Nasal wash culture was superior to qPCR of nasal wash, oropharyngeal swab or saliva for 

detecting experimental pneumococcal colonisation in older adults.  We did not identify any 

potential benefit to integrating molecular diagnostics and/or alternative niches of 
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colonisation into routine EHPC practice.  We cannot rule out methodological limitations or 

qualitative differences between natural and experimental colonisation, and our results 

from qPCR of oral samples are discordant with the majority of community-acquired 

colonisation studies in older adults (Table 1.1).  Hence we cannot state with certainty that 

nasal wash culture is the optimum pneumococcal detection methodology in all 

circumstances.  Nonetheless, our findings underscore the validity of nasal wash culture in 

the EHPC model and reinforce the advantages of this strategy.  In the next chapter, we will 

employ culture, serotyping and antimicrobial resistance testing on nasal wash samples 

collected since the inception of the EHPC programme, demonstrating the utility of this 

approach in a “real world” context.   
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6 Community-Acquired Pneumococcal Colonisation in 

Healthy, Low-Risk Adults in Liverpool 

6.1 Background 

Previous chapters have discussed how older adults are highly susceptible to colonisation 

with serotype 6B pneumococcus, and that this appears to be independent of natural or 

PPV-induced anti-CPS immunity.  Serotype 6B is included in the 13-valent pneumococcal 

conjugate vaccine (PCV13), which is routinely administered to children in the UK.  

Childhood pneumococcal vaccination has been shown to induce “herd immunity”, reducing 

vaccine-type colonisation in vaccinated children but also in unvaccinated adults (33) and 

reducing rates of invasive pneumococcal disease at regional and national population levels 

(216).   

A study published after ours was completed suggested that PCV13 could reduce rates of 

vaccine-type colonisation in older adults, but that the effect did not persist beyond six 

months (110). PPV23 (which also covers serotype 6B) has not been shown to protect 

against colonisation, including in our study of EHPC in older adults.  There are no plans to 

introduce PCV13 for older adults in the UK (100), and therefore childhood vaccination 

programmes will remain the cornerstone of community protection against pneumococcal 

colonisation, transmission and disease.   

6.1.1 The outlook for PCV13 in the UK 

When PCV13 was introduced into the UK childhood vaccine programme, it was 

administered at two and four months of age, with a booster dose at 13 months—this is 

denoted as a “2 + 1” schedule.  Recently the UK Joint Committee on Vaccines and 

Immunisation announced that the schedule would be changed to “1 + 1” (priming at 3 

months, boosting at 13 months), based on new immunological data (217, 218).  This was 
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predicated on the demonstration that vaccine-type pneumococci were circulating at 

negligible levels, and therefore that vaccine effectiveness on carriage rates could be 

maintained despite the new schedule’s more limited immunogenicity. However, the 

assertion that carriage was “controlled in all age groups” was based on studies of families 

rather than the general adult population (34).  Adults without regular contact with children 

may be less susceptible to the ecological effects of childhood PCV13 programmes, and 

could represent a “reservoir” of vaccine-type pneumococci with important implications for 

public health (35).  This reservoir could reintroduce vaccine-type pneumococci into the 

paediatric population, reversing the gains made by the PCV13 programme.   

Since the most virulent serotypes tend to be included in vaccine formulations, these will 

have higher disease-causing potential if they continue to circulate.  Following the rollout of 

PCV7 in 2006, serotype 19A (a non-PCV7 serotype) emerged as one of the leading causes of 

invasive pneumococcal disease (219, 220).  This supported a switch to PCV13, which covers 

serotype 19A. However, despite substantial declines in invasive serotype 19A disease in 

children since the introduction of PCV13 in the UK, it continues to cause disease in over-65s 

(5).  Rates of disease due to serotype 3 have not fallen in the UK adult or paediatric 

population since PCV13 was introduced (5), consistent with laboratory studies showing that 

vaccination against this serotype is relatively less effective (221).   

6.1.2 Serotype replacement 

Even if vaccine-type pneumococci are eliminated in the young adult population through 

herd immunity, overall rates of pneumococcal colonisation may still not decrease if non-

vaccine serotype (NVT) pneumococci move into the newly-vacant niche.  Serotype 

replacement has been demonstrated for pneumococcal disease of all age-groups in the UK 

(5).  This is highly likely to reflect serotype replacement in colonisation as well, which has 

been demonstrated in UK children and families (77, 222).  Serotype replacement in 
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colonisation has not been explored in the general UK adult population with the same rigour 

that has been applied to household and family surveys.   

6.1.3 Related research on this topic 

A study in the Netherlands specifically compared a cohort of parents to a cohort of adults 

who had no regular contact with children aged <6 years (47).  Nasopharyngeal swab culture 

detected colonisation in 9% (n = 26/298) of parents compared with 1% (n = 4/323) in 

“childless” adults (p<0.001).  The yield was substantially improved by culture-enriched 

qPCR targeting two pneumococcal surface proteins in saliva samples, resulting in 30% (n = 

89/298) colonisation in parents versus 6% (n = 18/323) in “childless” adults (p<0.001).   The 

reliance on molecular methods meant that the investigators could not precisely assign 

serotypes to all isolates: 43% of isolates were unserotyped, and many others could only be 

identified at the serogroup level.  The low rates of colonisation in “childless” adults limited 

the investigators’ ability to discern trends in serotype replacement compared with parents, 

although they still concluded that there was no evidence of a reservoir of NVTs in adults 

vis-à-vis children.  However, a study with a more precise method of serotyping would have 

greater potential to unmask any such trends.   

The most recent UK colonisation survey was carried out in 2015/2016 and enrolled children 

and their parents from two regions in southern England (223).  Colonisation was detected 

by nasopharyngeal swab culture in only 2.8% of parents (n = 8/284)—all were NVTs.  The 

proportion of colonised parents fell between the first survey in 2001/2002 (7.6%) and the 

most recent survey, while the proportion of under-5s colonised remained stable at around 

50%.   

6.1.4 Antimicrobial resistance and colonisation 

Since neither population immunity, natural immunity nor vaccine-induced immunity 

provide complete protection against pneumococcus in older adults, pneumococcal disease 
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will inevitably continue occurring in this population.  Antimicrobial therapy will remain 

necessary to reduce mortality in these cases.  Childhood PCV13 programmes can have 

complex effects on antimicrobial resistance rates (33, 181, 224).  Surveillance of invasive 

pneumococcal isolates in the UK has found rates of penicillin non-susceptibility as high as 

10% and macrolide resistance in 5—7% (225).  A recent colonisation study in UK adults 

attending primary care found penicillin and macrolide resistance in 13.9% (each) of isolates 

(based on 36 carriers out of 3,211 adults screened), but did not have matching serotype 

data (30).  The Dutch study comparing parents with “childless” adults relied on molecular 

detection of pneumococci and did not assess antimicrobial susceptibility (47). There are no 

longitudinal data of colonisation with resistant pneumococci in healthy UK adults, but this 

would provide further insight into the intersection of serotype replacement and 

antimicrobial resistance.   

Healthy volunteers participating in the EHPC programme at LSTM undergo screening for 

pneumococcal colonisation prior to experimental inoculation.  In this chapter we use these 

volunteers as a surrogate for the general healthy adult population to conduct a pilot study 

of the rates of colonisation, serotype distributions and antimicrobial susceptibility profiles 

over time.    

6.1.5 Hypotheses 

We test four hypotheses in this chapter, informed by previous literature on the subject: 

1. The prevalence of pneumococcal colonisation is <3% (recent studies in UK adults 

have found rates of colonisation between 1.2—3.4% (30, 34, 223)); 

2. The serotype composition changes over time in favour of non-vaccine-type 

colonisation (i.e. serotype replacement (222)); 
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3. Pneumococcal colonisation rates in young adults remain stable over time, with 

increases in non-vaccine-type colonisation balancing out any reduction in vaccine-

type colonisation (222); 

4. Antimicrobial resistance rates are low (<10% of isolates) and remain unchanged 

during the study period, reflecting the low exposure to healthcare 

settings/antibiotics anticipated among our cohort.   

6.2 Methods 

We reviewed all nasal washes from screening visits of EHPC volunteers between October 

2010 and March 2017 to identify natural carriers at baseline.  These isolates were 

subjected to serotyping and antimicrobial susceptibility testing.   

6.2.1 Inclusion and exclusion criteria 

No nasal washes were excluded from this analysis.  While the inclusion/exclusion criteria 

for EHPC varied to a small degree between studies, in general they remained similar to the 

criteria outlined in section 1.8.1.  In particular, smoking, recent antibiotics and close 

contact with the chronically ill or children under 5 were always exclusion criteria.  

(However, contact with these “at-risk” groups prior to participation was not recorded, 

because researchers were only concerned about the risks of post-inoculation contact.) Age 

>50 years was an exclusion criterion until the “Aging and Immunity” study commenced in 

2016, therefore the age distribution of participants is heavily weighted towards younger 

adults.  

Two trials of pneumococcal vaccines were performed during the period of analysis—one of 

the licensed PCV13 (n = 100 (107)), one of the experimental serotype-independent GEN004 

vaccine (n = 96; NCT02116998).  Pre-vaccine nasal washes were available for the PCV13 

study, but the baseline nasal washes in the GEN004 study were taken 64 days post-vaccine.  

Interim results suggest that this vaccine does not have a statistically significant effect on 
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colonisation (147).  It may still cause a small reduction in rates of colonisation, in which 

case our results would be biased towards underestimating true natural carriage rates.  The 

vaccine was designed with the aim of affecting all serotypes equally, therefore we worked 

under the assumption that serotype distributions were not biased by including participants 

from this trial (226).  It is unknown (but unlikely) whether rates of antimicrobial resistance 

were biased by including these participants.   

For studies with multiple inoculations (“re-challenges”), only the first screening nasal wash 

was included for each participant.  Similarly, participants who were screened twice within 

the same study (e.g. due to rescheduling their inoculation) were only counted once (their 

first screen).  However, volunteers who participated in more than one EPHC study were 

included on each occasion.  If a participant was recorded on our internal database as 

having been colonised at baseline but did not have a stored sample of their isolate, they 

were classified as “carriage negative” for this analysis.   

6.2.2 Clinical procedures 

Nasal washes were performed as outlined in section 2.6.3.   

6.2.3 Laboratory procedures 

Pneumococcal identification was performed as outlined in section 2.7.2, molecular 

serotyping as in section 2.7.7 and antimicrobial susceptibility testing as in section 2.7.8.  

Pneumococci were classified as vaccine or non-vaccine serotypes based on their presence 

or absence in PCV13, whose serotypes are shown in Table 6.1 alongside the additional 

serotypes included in PPV23.   
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Table 6.1: Serotypes in the two licensed pneumococcal vaccines 

Serotype PCV13 PPV23 Serotype PCV13 PPV23 

1   11A   

2   12F   

3   14   

4   15B   

5   17F   

6A   18C   

6B   19F   

7F   19A   

8   20   

9N   22F   

9V   23F   

10A   33F   
Shaded boxes indicate that the serotype is included in the indicated vaccine 

 

We determined antimicrobial susceptibility using EUCAST clinical breakpoints (Table 2.3, 

Table 2.4).  Meningitis breakpoints were used when determining penicillin susceptibility, 

and intermediately-susceptible isolates were classified as resistant.  We defined multiple 

drug-resistant (MDR) pneumococci as those that were resistant to at least three classes of 

antibiotic (224, 227).   

6.2.4 Statistical analysis 

For purposes of comparison, we made the assumption that maximal vaccine coverage of 

under-5s with the primary series of PCV13 was first achieved on 1 April 2015 (i.e. five years 

after its introduction) and divided our period of analysis into before and after this 

timepoint.  The timing and magnitude of serotype replacement following vaccination have 

varied substantially between different studies, regions and age groups (97); our assumption 

is supported by UK IPD data, showing an inflection in the rate of NVT IPD in young adults 

around 2014-2015 (5).  We compared the proportion colonised, the proportion colonised 

with PCV13 serotypes and the proportion of isolates displaying antibiotic resistant 

phenotypes before and after 1 April 2015 using χ2 or Fisher’s exact test where appropriate.   
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We compared serotype diversity during the two time periods using the Simpson index. The 

Simpson concentration, λ, sums the squares of the proportion of each serotype relative to 

the total number of isolates, and its inverse (1/ λ) is commonly used as a measure of 

species diversity (228, 229).  The closer the value of 1/ λ is to the total number of 

serotypes, the more evenly dispersed the serotypes are in the population.  All analyses 

were performed using SPSS version 24 (IBM, New York).   

6.3 Results 

Between September 2011 and March 2017, 795 healthy volunteers met the inclusion 

criteria for EHPC studies, signed informed consent and underwent at least one nasal wash.  

A demographic breakdown is given in Table 6.2. The median age was 21 years (IQR 20—23 

years) and 452 (56.9%) were female.  We detected natural colonisation in 52 subjects 

(6.5%, 95% CI 5.0—8.5%).  Another three participants were recorded as colonised but had 

no samples for analysis—we classified these three as non-colonised.  Two of the natural 

carriers reported in the “Aging and Immunity” study (Section 3.3.2) are included in this 

analysis, with the third being detected after the dataset for this study was finalised.   

We identified PCV13 serotypes in 17/52 (32.7%); the numbers of each serotype are given in  

Table 6.3 with numbers of vaccine versus non-vaccine serotypes over time shown in Figure 

6.1.  The microarray detected dual colonisation in one subject—99% of the signal was 

attributed to serotype 37 and 1% to 19F; we classified the participant as colonised with 

serotype 37. 
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Table 6.2: Demographic characteristics of participants 

 Non-carrier (n = 
743) 

Carrier (n = 52) Total (n = 795) 

Age, median (IQR) 21 (20—23) 21 (19—23) 21 (20—23) 

Female sex, n (%) 428 (57.6%) 24 (46.2%) 452 (56.9%) 

Year of screen,  
n (% of annual total):  

 
2010 

 
8 (100%) 

 
0 

 
8 

 2011 65 (97%) 2 (3%) 67 

 2012 129 (89.6%) 15 (10.4%) 144 

 2013 31 (96.9%) 1 (3.1%) 32 

 2014 66 (93%) 5 (7%) 71 

 2015 154 (94.5%) 9 (5.5%) 163 

 2016 178 (93.2%) 13 (6.8%) 191 

 2017 112 (94.1%) 7 (5.9%) 119 
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Figure 6.1: Percentage of volunteers colonised with pneumococcus each year 
NVT, non-vaccine type; VT, vaccine-type. Error bars represent 95% CI.  Note the scale on the y axis.  
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Prior to 01 April 2015, 24/368 subjects (6.5%) were colonised, with 28/427 colonised after 

01 April 2015 (6.6%; p = 0.98 by χ2).  Among colonised participants, 8/24 (33.3%) were 

carrying PCV13 serotypes before 01 April 2015 versus 9/28 (32.1%, p = 0.93) afterwards 

(Table 6.3, Figure 6.2).  The Simpson diversity index of the pre-01/04/2015 sample was 10.3 

while post-01/04/2015 it was 11.2.   

Table 6.3: Number of volunteers colonised with each serotype 

Serotype Pre 01/04/2015 Post 01/04/2015 Total 

3*† 5 5 10 

23B 2 3 5 

8† 2 2 4 

11A† 2 2 4 

35F 2 2 4 

37 2 2 4 

15A 1 2 3 

19F*† 1 2 3 

19A*† 1 2 3 

9N† 1 1 2 

31 0 2 2 

33F† 2 0 2 

35B 1 1 2 

6A* 1 0 1 

10A† 0 1 1 

15C 1 0 1 

24F 0 1 1 

Total 24 28 52 
Total numbers are provided in addition to numbers before and after the five-year anniversary of PCV13 
introduction 
* included in PVC13; † included in PPV23 
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Figure 6.2: Serotype distribution during the two time periods 
This bar chart shows the numbers of volunteers colonised with vaccine (left) and non-vaccine (right) serotypes, before (white bars) and after (grey bars) the five-year anniversary of PCV13 
introduction. (This figure has been included in a published paper (230), included in this thesis as Appendix 11) 
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6.3.1 Antimicrobial resistance 

We identified resistance to at least one antibiotic in 8/52 isolates (15.4%), and the 

susceptibility profiles are summarised in Table 6.4.  Two of the eight resistant isolates were 

PCV13 serotypes.  Therefore, 2/17 (11.8%) PCV13 serotypes harboured antimicrobial 

resistance versus 6/35 (17.1%) of NVTs (p = 0.99 by Fisher’s exact test; Figure 6.3).   

There was one case of discordance between disc diffusion screening and Etest MIC 

measurements. Norfloxacin disc screening suggested that an isolate was quinolone 

resistant, but it was determined to be sensitive when the levofloxacin MIC was measured 

(MIC 1.5 mg/mL, with 2 mg/mL being the cutoff for resistance).  

The highest rate of resistance was against penicillin (5/8 isolates), followed by 

clarithromycin and doxycycline (4/8 each).  We did not detect any levofloxacin or 

vancomycin resistance.  Two isolates displayed MDR phenotypes.  Using EUCAST non-

meningitis breakpoints, all penicillin non-susceptible isolates would have been deemed 

“intermediate susceptibility”, and all were fully-susceptible to amoxicillin and ceftriaxone.   

All antimicrobial resistant isolates were detected after 01 April 2015—i.e. 0/24 natural 

carriers harboured resistance before 01 April 2015, versus 8/28 (28.6%) after. This 

difference was statistically significant, with a p value of 0.005 by Fisher’s exact test.   
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Table 6.4: Antimicrobial susceptibility profiles among the eight isolates with any resistance detected 

 

 
*Included in PCV13 
F: Female; M: Male; R: Resistant; S: Sensitive; TMP-SMX: Trimethoprim-sulfamethoxazole 

 

 

 

Subject ID Date isolated Age 

(yrs) 

Sex Serotype Susceptibility to antimicrobial agents 

Penicillin G Clarithromycin Doxycycline TMP-SMX 

402/109 07/04/2015 27 F 24F S S S R 

402/057 21/04/2015 23 M 15A R R R S 

016/040 29/10/2015 18 M 15A R R S S 

016/174 18/02/2016 21 F 23B R S S R 

018/010 06/07/2016 57 M 23B R S S R 

019/020 13/10/2016 20 M 3* S S R S 

019/099 16/11/2016 19 F 8 S R R S 

019/165 08/02/2017 20 M 19F* R R R S 
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Figure 6.3: Numbers of isolates from each serotype in whom resistance was identified to any antimicrobials 
Solid components represent pan-sensitive isolates, while cross-hatched components denote numbers resistant to any antimicrobial.  
(This figure has been included in the supplementary appendix of a published paper (230), included in this thesis as Appendix 11) 
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6.4 Discussion 

In this pilot study, conducted over 7.5 years of screening healthy adult volunteers for 

participation in clinical research, we incidentally detected pneumococcal colonisation in 

6.4%.  The prevalence of PCV13 serotypes was low, dominated by serotype 3 and did not 

change over time.  Antimicrobial resistance was identified in 15.4% of isolates, all of whom 

were screened in 2015 or later.  The outcomes for each of our hypotheses are outlined in 

Table 6.5.   

Table 6.5: Outcomes of each hypothesis investigated in this chapter 

 Hypothesis Finding 

1 The prevalence of pneumococcal 

colonisation is <3% 

Refuted—colonisation identified in 6.4% 

(95% CI 5—8.5%). 

2 The serotype composition changes 

over time in favour of non-vaccine-

type colonisation 

Refuted—low prevalence of PCV13 

serotypes throughout, and grossly similar 

serotype distributions/diversity over time. 

3 Pneumococcal colonisation rates in 

young adults do not decline during 

the study period 

Retained. 

4 Antimicrobial resistance rates are 

low (<10% of isolates) and remain 

unchanged during the study period 

Refuted—antimicrobial resistance rates low 

but >10%, and all detected after 01 April 

2015. However, resistance rates against 

individual agents all <10%.  

 

6.4.1 Serotype findings 

We found low rates of PCV13-serotype compared with NVT colonisation in young adults, 

with the exception of serotype 3, and did not identify any change in the proportion of 

PCV13 versus non-vaccine type colonisation over time.   
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6.4.1.1 Vaccine type colonisation 

Three PCV13 serotypes continued to circulate during our period of analysis—3, 19F and 

19A.  One explanation is that these serotypes are less susceptible than others to herd 

protection from childhood PCV programmes.   

 PCV7 (covering serotypes 4, 6B, 9V, 14, 19F and 23F) had been included in the childhood 

vaccine programme since 2006, while PCV13 was introduced in 2010, i.e. the same year 

that screening for EHPC commenced. Therefore, it appears that circulation of PCV7 

serotypes was already controlled within the adult population, except serotype 19F.  A 

similar persistence of serotype 19F in IPD has recently been reported in the Alaskan native 

population (231).   

It is concerning that carriage of serotypes 3 and 19A has continued in adults throughout the 

PCV13 era.  Both serotypes are generally associated with above-average virulence and case 

fatality rates (220, 232).  PCV13 is known to have poor efficacy against serotype 3 (221), 

which continues to cause invasive disease among all ages in the UK (5).  Invasive disease 

due to serotype 19A is declining in children in the UK, but it remains an important cause of 

pneumococcal disease in over-65s (5).  

A reservoir of colonisation among adults could explain these findings.  The immune 

threshold for protection against pneumococcal colonisation is higher than that for disease 

(79), and therefore these serotypes may also continue to circulate in children.  However, 

the most recent UK childhood colonisation survey found only one serotype 3 and two 19A 

isolates in 150 colonised children aged <5 years (223).   

6.4.1.2 Non-vaccine type colonisation 

We did not identify any major patterns, dominant serotypes or changes over time among 

the NVTs isolated from healthy adults.  Serotype 23B was the most common NVT (five 

isolates), followed by 8, 11A, 35F and 37 (four each).  Serotype 8 has emerged as the 
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commonest cause of invasive disease in the UK population (particularly over-65s) in recent 

years, responsible for one in five of all cases (5).   

Of the ten commonest serotypes identified in colonisation in our study, half (serotypes 3, 8, 

15A, 19A and 23B) were also among the top ten serotypes causing invasive disease in 

England and Wales in 2016—2017 (5). Thus, our pilot data are somewhat reflective of 

current national trends in IPD.  The most recent UK childhood colonisation survey did not 

identify any children colonised with serotype 8, and serotypes 3 and 19A were among the 

least frequently isolated (223).   However, this survey did identify high rates of childhood 

colonisation with (for example) serotypes 10A and 22F, which are important in disease and 

were under-represented in our adult cohort.  A colonisation study including all age groups 

and covering a wider geographical area would be the ideal. If such a survey could 

successfully identify a range and ranking of serotypes that reflect disease incidence, then 

colonisation surveys could have the potential to predict serotype replacement in disease 

following the introduction of higher-valency conjugate vaccines.   

6.4.1.3 Serotype diversity 

We used the Simpson index to quantify serotype diversity. The closer the Simpson index is 

to the total number of serotypes in the sample, the more diverse the sample is.  We 

identified 14 distinct serotypes both before and after 01/04/2015, as shown in Table 6.3. 

With respective Simpson indices of 10.3 and 11.2, it appears that both time periods were 

similar in terms of serotype richness.  Visual inspection of Figure 6.2 gives a similar 

impression.   

6.4.2 Antimicrobial resistance 

Overall 15.4% of isolates were resistant to at least one antibiotic. We identified penicillin 

non-susceptibility in 10% of young adult pneumococcal carriers, and macrolide resistance 

in 8%, both of which mirror the resistance rates in invasive isolates (225).  Among those 
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colonised with resistant pneumococci, co-resistance to two or three agents was common, 

again reflecting emerging patterns in invasive disease (224).   In the penicillin non-

susceptible subjects, the penicillin MICs were generally low, meaning that all would be 

classified as “intermediate susceptibility” using non-meningitis breakpoints.  However, one 

subject (#019/165) had a penicillin MIC of 0.75 mg/L, which would be less likely to respond 

to intravenous benzylpenicillin at routine UK doses (1.2g QDS) even in non-meningeal 

infections (165).   

Most of the resistant isolates were from non-vaccine serotypes.  We identified dual 

resistance to penicillin and clarithromycin in two out of three carriers of serotype 15A.  

Serotype 15A has been among the top ten serotypes causing IPD in the UK since 2011, with 

a recent study finding that over 30% of these invasive isolates were resistant to three 

antibiotic classes (224).  Further analysis found that the majority of these multi-resistant 

15A isolates belonged to multilocus sequence type 63, suggestive of clonal spread within 

the population.  In our results, clonal expansion of resistance is also likely for serotype 23B, 

where we identified two carriers with resistance to both penicillin and TMP-SMX.  

Multilocus sequence typing or indeed whole genome sequencing would be required to 

confirm this hypothesis.   

However, not all resistance is due to clonal expansion—we also found co-existent 

clarithromycin and doxycycline resistance in 3/8 resistant isolates, all with different 

serotypes.  This suggests the spread of AMR via mobile genetic elements.  The Tn916 family 

of conjugative transposons commonly carries genes for both macrolide (e.g. Mef(E) or 

Erm(B)) and tetracycline (e.g. Tet(M)) resistance in pneumococci (233, 234).  Mobile genetic 

elements allow the spread of AMR between populations of pneumococci but also to other 

unrelated bacteria in the nasopharyngeal niche.  Again, genetic analysis would be needed 

to investigate this hypothesis further.   
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6.4.3 Limitations 

Our study has some important limitations.  We lack detailed medical history for the 

participants, as we did not have consent to retain these after the participants’ original trial 

participation had concluded.  However, the strict inclusion criteria mandated by EHPC 

studies mean that the study population is quite homogeneous, defined as it is by the 

absence of significant risk factors for pneumococcal colonisation.  Most recruitment events 

for EHPC studies were carried out in local universities, and it is reasonable to assume that 

the majority of recruits were themselves students or university employees, but we lack 

precise data on the source of each individual participant.  Prior antimicrobial exposure is 

unknown, beyond a requirement that all participants must not have received antibiotics in 

the month prior to enrolment.  Contact with children or healthcare settings pre-enrolment 

was not an exclusion criterion; it is unlikely that people would give up childcare roles simply 

to participate in a clinical trial.  However, some volunteers may have attended hospital for 

non-infectious indications, visited a relative in hospital or undergone university placement 

in a hospital before screening.  All of our screenings took place well after PCV7 had been 

introduced and during the period when PCV13 was being introduced, limiting our ability to 

identify vaccine-induced trends over time.   

Molecular testing may be more sensitive than culture for detection of community-acquired 

colonisation, particularly if the oropharyngeal niche is sampled in addition to the 

nasopharynx (47).  However, this would not allow confirmation of antimicrobial resistance.  

Phenotypic resistance testing is an important strength of our study, as the evidence base 

for genotypic-phenotypic correlation of AMR in pneumococci is poor (215).    

Nasal wash is not commonly performed in epidemiological colonisation studies. However, it 

has been recognised as being better tolerated than nasopharyngeal swab while maintaining 

equal sensitivity for pathogen detection (36, 37).  Nasal wash may in fact be a strength of 
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our study if it explains why we found higher-than-expected rates of colonisation in our 

population—nasopharyngeal swabs of UK adults who shared a household with children 

only identified colonisation in 2.8% (223).  Nasal wash is technically challenging for 

participants, but all participants in this study had (by definition) performed a successful 

nasal wash on their first attempt.  Child-friendly nasal-wash methods have also been 

reported (235).  It should be noted that nasal wash requires near-patient laboratory 

facilities, as the pneumococcal yield falls if kept in saline for >1 hour; this limits the 

potential for widespread nasal wash use in community colonisation studies. To overcome 

this limitation, basic near-patient facilities to centrifuge samples and re-suspend them in 

STGG media would be needed, or else investigators would need to rely on molecular 

testing methods.   

6.4.4 Implications of this study 

Using nasal wash culture in healthy adults, our study—admittedly a pilot—found a similar 

rate of colonisation to a Dutch study of a similar population that relied on combined oral 

and nasal sampling, analysed by both culture and qPCR (47).   Our methodology had the 

advantage of allowing full serotyping and antimicrobial susceptibility testing on every 

isolate, maximising the utility of our samples.    

Our results suggest that serotype replacement is well-established among young adults and 

that vaccine-type circulation is mostly controlled with the important exceptions of 

serotypes 3, 19F and 19A.  The relatively high rates of colonisation and of AMR were 

surprising, given that our study population was specifically selected to lack important risk 

factors for pneumococcal colonisation (smoking, contact with children < 5) and exposure to 

healthcare (caring roles, recent antibiotics).   

Surveillance of invasive pneumococcal disease by Public Health England has found an 

overall reduction in IPD in the UK population since the introduction of PCV7, but also that 
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serotype replacement has cancelled out any additional benefit from PCV13 (5).  The failure 

of herd protection is most apparent in the over-65 population.  We have identified ongoing 

carriage of epidemiologically important serotypes—e.g. 3, 8, 15A, 19F and 19A—in young 

adults, which might be contributing to ongoing disease in older adults independent of 

paediatric colonisation dynamics.  In addition, the adult reservoir of serotypes 19A/F could 

re-colonise the paediatric population after the abridged 1 + 1 PCV13 schedule is 

implemented.   

The emergence of AMR in the last three years of our study is concerning, representing a 

reservoir of antimicrobial resistance genes in the community.  As discussed above, AMR in 

young colonised adults could be driven by both clonal expansion and mobile genetic 

elements (although whole-genome sequencing would be required to confirm this).  Our 

study population was generally healthy and subjects were excluded if they had recently 

received antibiotics—i.e. there was low selective pressure for AMR.  The AMR we identified 

probably represents transmitted resistance, reflecting the background population rate of 

pneumococcal AMR; it is therefore likely that rates of AMR are higher in populations with 

greater antibiotic exposure.  The rates of resistance to individual drug classes are not high 

enough to warrant changes to treatment guidelines for pneumococcal disease.  However, 

ongoing vigilance for AMR in colonisation at the population level is warranted, to detect 

trends and increases in rates of AMR as early as possible.  Resistant isolates were mostly 

from non-vaccine serotypes, suggesting that the childhood PCV13 programme is unlikely to 

further reduce rates of AMR.   

The serotype distributions and rates of antimicrobial resistance in young adults were 

broadly similar to those seen in studies of invasive disease (5, 225).  The yield from 

screening for colonisation in adults is lower than in children, and studies of invasive disease 

can avail of routinely-collected clinical samples rather than the dedicated research 
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sampling programme needed for a colonisation study.  However, nasopharyngeal sampling 

of adults is quick and well-tolerated. The BμG@S molecular serotyping methods used on 

our samples could potentially be adapted for saliva samples, increasing the yield further 

(albeit without concomitant phenotypic AMR measurement).   Colonisation studies of 

young adults could augment the ongoing surveillance for trends in pneumococcal serotype 

distributions and susceptibility profiles in communities.   
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7 Conclusions 

In this thesis, we have established that adults aged 50—80 years develop experimental 

colonisation at similar rates to those seen in young adults.  We have also demonstrated 

that the immune response to colonisation in older adults is different to that of young 

adults, with no serotype-specific immune boosting following colonisation, and a drop in 

serotype-specific antibody levels following pneumococcal challenge.  This observation, 

coupled with the finding that prior PPV23 did not protect against experimental 

colonisation, adds to the existing body of evidence that anti-CPS immunity is deficient in 

older adults.   

Our comparison of different diagnostic strategies within the EHPC model confirmed that 

nasal wash was the most sensitive method for detecting pneumococcal colonisation within 

our cohort of older adults.  We did not find any evidence for a change of “niche” with 

aging, or to support the addition of oropharyngeal or saliva samples when assessing 

pneumococcal colonisation in older adults.  These findings come with the caveat that they 

may not be generalisable from experimental to community colonisation. However, our 

study of community-acquired pneumococcal colonisation in young adults supported the 

high diagnostic yield of nasal wash, as well as reaffirming the advantages of culture-based 

pneumococcal detection methods for serotyping and antimicrobial susceptibility testing.   

Our findings present 3 avenues for future research: 

1. The use of the EHPC model in older adults 

2. Antibody-based anti-capsular immunity in older adults 

3. The role of colonisation surveys to inform vaccination policy 
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7.1 Future EHPC studies in older adults 

Our EHPC study established that this model has excellent safety, tolerability and rates of 

colonisation in older adults.  This study generated a wealth of samples and data, including 

nasal lining fluid samples, nasal microbiopsies and peripheral blood mononuclear cells, 

many of which have yet to be analysed.  Future studies may pursue in-depth analysis of 

putative biomarkers or correlates of protection identified by these secondary analyses.  

Candidate vaccines—designed by our team based on these findings, or from external 

partners—could be trialled in older adults using the EHPC model.  A negative outcome of 

such a trial would efficiently down-select candidates at Phase II level, avoiding the logistical 

and financial challenges of a Phase III efficacy trial.  A positive outcome at Phase II level, 

preventing experimental colonisation in an at-risk population (rather than a pure 

immunogenicity study or an EHPC study of young adults) would give vaccine developers 

and funding agencies confidence in progressing to Phase III.   

EHPC could also be used to explore ongoing unanswered questions regarding 

pneumococcal biology and ecology in older adults.  We found that saliva qPCR had poor 

sensitivity for detecting colonisation in older adults, in marked contrast to community-

based studies.  A future EHPC study employing alternative saliva collection methods would 

help explore this conundrum further.  In addition, alternative inoculation methods could 

explore whether the route of exposure influences the pneumococcal niche.   

Our cohort was not representative of the general older population: the exclusion of 

participants with chronic cardiac, respiratory or immunosuppressive conditions, while 

necessary for safety, is the main limitation of our study.  Under-representation of the 

“oldest old” (over-70s) within the study population is a further limitation.  These limitations 

may explain some of the discrepancies between our findings and other published studies—

for example, we did not demonstrate falling anti-CPS antibody titres with age, while others 
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have done so (65).  However, even in a particularly healthy cohort of older adults, we 

identified antibody responses to pneumococcal challenge that are different to those of 

younger adults.  EHPC was safe and well-tolerated in our cohort, meaning that future 

studies could consider adopting less restrictive inclusion criteria for older adults; indeed, an 

EHPC study recruiting volunteers with chronic obstructive pulmonary disease is due to 

commence in 2019.  Future studies could also focus specifically on enrolling over-70s, and 

using biomarkers of biological rather than chronological age (236, 237) either as inclusion 

criteria or to guide sub-group analyses.   

7.2 Anti-capsular immunity in older adults 

Anti-CPS immunity is the mechanism underpinning current pneumococcal vaccines.  We did 

not find evidence that pre-existing anti-CPS antibodies confer protection against 

colonisation.  Other researchers have found that PCV13 confers partial protection against 

vaccine-serotype CAP, IPD and colonisation in older adults.  We found that anti-CPS 

antibodies may contribute to control of pneumococcal density in older adults; however, 

evidence linking lower pneumococcal density with reductions in pneumococcal disease 

incidence, morbidity or mortality is lacking.  Higher pneumococcal nasopharyngeal density 

has been found in HIV-infected patients with pneumococcal pneumonia compared with 

controls with either non-pneumococcal pneumonia or asymptomatic HIV infection (24), 

while another study found higher nasopharyngeal pneumococcal density was measured in 

patients with more severe pneumococcal pneumonia (204).  Neither of these studies was 

sufficient to establish a prospective causal relationship between colonisation density and 

subsequent clinical outcomes.   

We did not find any indication that nasopharyngeal pneumococcal exposure improved anti-

capsular immunity in older adults, with static anti-CPS IgG levels in colonised participants 

and decreased levels in non-colonised participants.  Therefore, if a mucosal vaccination 
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strategy is pursued in older adults, an alternative antigen would have a greater likelihood 

of success.   

However, until an appropriate antigen, adjuvant, delivery system and correlate of 

protection are identified, polysaccharide vaccination—and particularly protein-conjugated 

polysaccharide vaccination—remains the only proven method for improving anti-

pneumococcal immunity and preventing pneumococcal disease in older adults.  The 

limitations of this strategy lie partially with its imperfect efficacy, but more with its 

suboptimal effectiveness in “real-world” settings.  Although PCV13 confers a degree of 

protection against vaccine-type CAP and IPD in older adults, there are no plans to add it to 

the adult vaccination schedule in the UK. Given the high rates of serotype replacement in 

pneumococcal disease in the UK, there is no reason to revisit this decision, unless a vaccine 

with greater (or more relevant) serotype coverage is introduced.   

7.3 Colonisation surveys to inform vaccine policy 

Herd immunity, conferred via the childhood PCV13 programme, has become a cornerstone 

of protection against pneumococcal disease in older adults.  However, our study of 

community-acquired colonisation in young adults in Liverpool found ongoing colonisation 

of the vaccine serotypes 3 and 19A.  This raises the possibility of an adult colonisation 

reservoir of these serotypes, since they continue to cause IPD in the general adult 

population.  Nonetheless, this incomplete herd protection is restricted to a small number of 

serotypes, and would not be sufficient in itself to justify expanding PCV13 coverage to older 

adults.   

In any case, herd protection is currently being diminished by serotype replacement. This 

was borne out by our community colonisation study, with the majority of isolates being 

NVTs.  We also identified the emergence of antimicrobial resistance in recent years, again 

clustered in NVTs, representing a further pneumococcal threat to the population.   
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Our study showed that nasal wash has a reasonable yield in young adults—higher than 

achieved by nasopharyngeal swab in comparable populations—and our findings 

complement existing surveillance data on circulating pneumococcal dynamics.  Colonisation 

surveys are a valuable measure of vaccine impact. However, they could have even greater 

public health benefit if they could inform future vaccine serotype composition.   

7.4 A roadmap towards colonisation survey-driven vaccine policy 

For colonisation surveys to truly inform vaccine policy, an adaptive pneumococcal vaccine 

design for older adults would be required.  With such a strategy, a system of pneumococcal 

serotype surveillance would identify trends in serotype replacement and inform the 

serotype composition of the adult vaccine in as close to real time as possible.  The vaccine 

itself could maintain the current protein-conjugated polysaccharide backbone but would 

target serotypes more relevant in adult disease.  Others have proposed such a strategy 

before (238), and adaptive vaccine strategies driven by circulating pathogen strains already 

exist for influenza, with data provided by the Global Influenza Surveillance and Response 

System (239).   

Pneumococcal serotype replacement does not occur at the same rate as influenza virus 

genetic drift, and therefore annual vaccine updates would not be required.  The key 

unanswered question remains: to what degree does serotype replacement in carriage 

precede and predict serotype replacement in disease? Mathematical modelling could 

combine our longitudinal colonisation data, historic childhood colonisation surveys and 

disease surveillance to address this question, although larger-scale adult colonisation 

surveys might be needed for statistical power.  If models establish the relationship 

between colonisation serotypes in different age groups and subsequent serotype-specific 

invasive disease rates, then colonisation surveys at regular intervals could be combined 

with disease surveillance to determine the serotype composition of the next vaccine. 
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Superior in-hospital diagnostics (for example, techniques to identify the serotypes in non-

bacteraemic pneumonia (240)) would enhance disease surveillance.   

Rapid reformulation of vaccines in response to colonisation and disease surveys would 

potentially require vaccine manufacturers to license their methodologies to other 

producers, in order to meet global demand for vaccines with different serotype 

combinations.  In addition, it would require pre-licensure studies demonstrating that 

introducing new serotypes into a standardised manufacturing process would consistently 

result in vaccines that are immunogenic in the target population.  EHPC studies in older 

adults could play a role in such studies, especially if new serotypes were successfully 

introduced into the EHPC model.  In the meantime, the impetus for novel, serotype-

independent, “universal” pneumococcal vaccines would remain, and EHPC studies, feasible 

in adults of all ages, could continue contributing to the pursuit of this goal.   
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                                        Experimental Human Pneumoccocal Carriage Model 
 

Study information: Research: working towards a nasal vaccine for pneumonia. 
 Version 5 (10th October 2017). REC Ref: 16/NW/0031 

Participant information sheet 

Research: working towards a nasal vaccine for pneumonia  

Exploring the effect of age on immunity against pneumonia 

Would you like to take part in our research? 

This information leaflet tells you how you 

could take part. A member of our team will 

also discuss it with you: please ask us if you 

have questions. You may want to talk to 

other people about the study: please do so. 

Take your time to decide if you want to be 

involved. 

What is the purpose of the study? 

We are developing a new vaccine to protect 

against bacteria called Pneumococcus. 

Small numbers of these bacteria are often 

found in the nose. Usually, the carrier does 

not know the bacteria are there. In most 

adults this is present at least once per year 

and more often in children. We think that 

small numbers of bacteria present in the 

nose (“nasal carriage”) can help to protect 

people against disease. 

Mild infections with pneumococcus are very 

common, such as ear infections in children. 

But pneumococcus can also infect the lung 

(causing pneumonia) or the brain (causing 

meningitis) or the blood (causing sepsis). 

These severe infections are very uncommon 

in healthy adults: about 50 cases in Liverpool 

per year. Very young children and adults who 

are elderly (mainly those who have other 

illnesses) are more likely to become ill.  

We may be able to protect people against 

severe disease from pneumococcus using a 

vaccine which could be sprayed into the 

nose. We don’t yet know if this will work. 

To test the idea, our research team want to 

study what happens when small numbers of 

the bacteria are put up the nose of healthy 

volunteers. We have already studied this 

using more than 400 volunteers, and have 

found this type of study to be safe. 

All of the volunteers we have studied so 

far have been less than fifty years of age.  

In order to develop a vaccine that will protect 

older people, we need to understand the 

immune responses to bacteria in adults aged 

over fifty. 

Do I have to take part? 

No. Taking part in this study is voluntary. 

Why have I been asked to take part? 

We are looking for volunteers who are fit and 

healthy. We check for reasons which may put 

you at higher risk from the study. We also 

make sure that your participation will provide 

helpful information to us. If we find any 

reason you may be at higher risk of infection, 

then we will not invite you to take part.  
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You will not be eligible if: 

• You are aged less than 50 years 

• You are a regular smoker or have a 
significant history of daily smoking 

• You are in close contact with those who 
have lower immune levels (such as young 
children and people with chronic ill 
health) 

• You have taken part in similar research 
before 

• You are allergic to penicillin 

• You have heart or lung disease 

• The study doctor thinks that a health 
condition, or medication means that you 
are at increased risk of infection 

What happens if I choose to take part? 

1. Health check – for safety, we check that 
you are healthy. This includes a clinical 
assessment and checklist (as above).  

2. Consent –We ask you to sign a consent 
form when you are sure you want to take 
part. 

3. Taking samples – We take samples from 
the nose, throat and blood (see below).  
We also do a heart tracing (ECG) and 
breathing test (spirometry)—again this is 
to check that you are healthy 

4. Being given drops of pneumococcus in 
the nose - We put a few drops with a 
small numbers of bacteria up your nose  

5. Monitoring– we will ask you to contact us 
daily (by phone or text) to make sure you 
are well  

6. Monitoring visits – We take samples from 
your nose to see whether the bacteria is 
present. 

Part one takes less than four weeks then 

after three to six months we will invite some 

participants to repeat this for part two.  

What kind of samples do you take? 

Samples from the nose: To collect cells from 

your nose we place a small piece of blotting 

paper inside your nostril for a few minutes 

(“nasosorption”), and also run a small plastic 

rod along the inside of each nostril (“nasal 

probe”). We also perform a “nasal wash”, 

where we squirt a little salty water into your 

nose. After a few seconds the water runs out 

into a sample bowl. This will tell us about the 

bacteria in your nose and your immunity. 

Throat swab:  we wipe the back of your 

mouth with a sterile swab (like a cotton bud). 

The laboratory can use this to find out if 

there are any bacteria or viruses. 

Saliva samples: we will ask you spit into a 

small tube or to chew on a small sponge for 

two minutes. We can then test the saliva in 

the sponge for bacteria.  

Blood samples:  We take blood samples from 

a vein in your arm (using a needle). We will 

never take more than 50 mL (about the same 

as 10 teaspoons). 

You may choose to allow the researchers to 

study the DNA from your blood sample.  If 

you choose not to donate your DNA you may 

still take part in the study. 

Some participants will also be asked to 

collect four nasosorption papers and eight 

saliva samples over 48 hours at home (or 

workplace etc).  This is an additional option 

which would be discussed with you in greater 

detail at the start of the study. If you choose 

to take home samples they must be collected 
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within 15 minutes of a set time. Therefore we 

will ask you to send a photograph of the 

sample to confirm the time taken.     

 

What will happen to my samples? 

We will process your samples in laboratories 

at the Liverpool School of Tropical Medicine 

(LSTM) and at the Royal Liverpool University 

Hospital. We will measure the levels of 

bacteria and viruses in your nose, and we will 

look in detail at how your immune system 

responds to the pneumococcus bacteria. 

To make full use of your samples, we will 

store the remainder. In the future, we can 

then go back to them with new tests to 

answer new questions. For some specialist 

tests, we may send samples to laboratories in 

the UK and abroad. 

What will happen at each visit of Stage 1? 

Visits 1 - 3: 

Consent and 
screening check 
(spread over about 
two weeks) 

First we will explain the study in detail, obtain your signed consent if you are 

happy to take part in the study, and ask some basic questions to ensure that you 

are eligible.  We will also write to your GP to confirm some aspects of your 

medical history (e.g. what medications you are taking, and which vaccinations 

you have had before).  

At the next visit, we make sure you are fit to take part in the study. We ask 

routine questions about your medical health, check your blood pressure, 

temperature and listen to your heart and lungs, perform a heart tracing (ECG), 

breathing test (spirometry) and blood test.  

If you are well enough to take part in the study, we do the throat swab, saliva 

collection, nasal swab, the nasal wash, nasal probe and another blood test.  

We then book your next appointments. If you have problems and can’t come at 

a specific time, we can be flexible to accommodate you. 

 Between one to seven days after Visit 3: 
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Visit 4: 

Being given 
pneumococcus up 
the nose 

We collect a sample from your nose using blotting paper.  We then use a 

dropper to put a small amount of water containing a small number of bacteria 

into each nostril. Usually, volunteers have no symptoms afterwards. There will 

be a doctor or nurse available by telephone 24 hours a day to answer questions. 

We will give you a course of antibiotics to keep with you, in case you are unwell, 

as well as a thermometer to check your temperature at home. Every day for the 

next week, we will need to be in contact with you by phone or text to check 

that all is well. 

 Up to six visits over the next five weeks 

Visits 5 - 10: 
Monitoring 

At each visit, a number of samples will be taken, which may include throat swab, 

saliva collection, nasal swab, nasal wash, nasal probe and blood tests 

   

End of Part 1 

of the study 

If our laboratory test finds that the pneumococcus bacteria stays in your nose, at 

this stage we will ask you to take a course of antibiotics to clear it, and we may 

ask you to be in part 2 of our study. 

 

 What about Part 2? 

We think that having small number of bacteria in your nose—even for a short time—might protect 

you against illness from this bacteria, possibly for a long time. But we cannot be certain. To test 

this, we may ask you to have the pneumococcus put into your nose a second time, after 3 to 6 

months. You do not have to take part in Part 2 if you do not want to. In total, Part 2 visits will take 

about 2 to 3 weeks. 

What will happen at each visit of Part 2? 

Visit 1: 

Screening check, 
consent, and taking 
samples 

We make sure you are still fit to take part in the study, by repeating the 

questions and examination done at Part 1. 

We do the throat swab, saliva collection, nasal wash, nasal probe and blood 

test. 

 1-7 days later 
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Visit 2: 

Being given 
pneumococcus up 
the nose 

We use a dropper to put a small amount of water containing a small number 

of bacteria into each nostril, just like before. 

Each day for the next week we will ask you to contact the research team by 

phone or text for seven days to ensure that all is well and to check your 

temperature reading (again, antibiotics and a thermometer are provided in 

the study).  

 Daily phone call or text message. 2 days later: 

Visit 3: Monitoring Throat swab, saliva collection, nasal wash, nasal probe and blood test 

 Daily phone call or text message. 5 days later: 

Visit 4: Monitoring Throat swab, saliva collection, nasal wash and nasal probe 

 Up to 7 days later 

Visit 5: End of the 
study 

At the end of Part 2, after a final throat swab, saliva collection, nasal wash, 

nasal probe and blood test, if our laboratory confirm that you have had 

pneumococcus in your nose, we will ask you to take the antibiotic course to 

clear it. 

 

What are the risks of being in the study? 

Risks of being given live bacteria   

Because the bacteria are alive, there is a very 

small risk of infection to you or your close 

contacts. We do not expect anyone to 

develop an infection but this is why we 

choose participants carefully, and why we 

monitor them closely. We provide a 

thermometer and antibiotics that treat these 

bacteria. We give you a separate leaflet 

which explains the safety precautions, and 

what to do if you feel unwell. If you carry the 

pneumococcus bacteria in your nose at the 

end of the study, we will ask you to take the 

antibiotics to kill the bacteria. 

Risks of medical tests during the study  

The only side effect of nasal sampling is a 

little discomfort.  Some people experience a 

runny nose.  Some people can feel light-

headed after blood tests, and sometimes 

may have a bruise. 

What if there is a problem? 

You can contact the research team 24 hours-

a-day by phone. They will answer any 

questions, and an emergency service will be 

available day and night, including visits to 

your home if you are unwell and unable to 

come in to see us. Any medical care you need 

will be provided by the NHS. 
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What if I wish to complain? 

If you wish to complain about any aspect of 

the study, you can contact the study doctor. 

The NHS complaints procedures are also 

available to you. Complaining will not affect 

the medical care you receive now or in the 

future. 

What if I change my mind, or want to 
stop? 

Even if you do start in the study, you are free 

to stop at any time and without giving a 

reason. If you decide not to take part, or to 

withdraw from the study, this will have no 

effect on your future health care. 

If you decide to stop, we will continue to use 

the samples and information that we have 

already collected unless you tell us not to. 

You will be paid for the visits completed up to 

that point.  

Will my details be kept confidential? 

Yes. For safety, we collect information about 

your medical history and contact details 

before you take part. The clinical research 

team use this information to check you are 

healthy, and to contact you when needed.  

We will ask your permission to ask your GP to 

share some of your medical history with us.   

We will also collect information which allows 

us to understand more about the samples, 

for example, you age or sex. However, those 

outside of the clinical team are never given 

information that can identify you. Your 

samples are given a unique number, and your 

name is not used. 

We do not expect to find anything which 

would affect your health care. If we do, we 

will let you and your GP know about it. 

All data will be collected and stored at the 

Royal Liverpool University Hospital and the 

Liverpool School of Tropical Medicine. It will 

be stored for a minimum period of 10 years.  

Your medical notes and research data are 

may be looked at by those who monitor the 

research. 

What are the benefits of taking part? 

There are no direct benefits to you. You will 

be a part of what we believe is a valuable 

research study that may help us to improve 

medical care for others. 

How much will I get paid? 

The money you are paid is compensation for 

inconvenience, loss of income, and possible 

discomfort of taking part. The first payment 

will be made at the end of part one. If you 

are eligible and choose to take part in the 

second study you will receive a second 

payment at the end of part two. Our 

payments are listed below: 
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Part 1  Visit length  

Visit 1: Study information, signing consent 45 min - 

Visit 2: Health check, screening and samples  60 min £40 

Visit 3: Screening and samples  30 min £30 

Visit 4: Having pneumococcus put up your nose. This includes you 
making daily telephone/text message contact for the first 7 days.  
(We will withhold £5 per day if you do not contact us) 

30 min £50 

Visits 5 and 6: Nasal samples, throat swab and blood samples 30 min £20 

Visit 7: Nasal samples and throat swab 20 min £15 

Visits 8 and 9: Nasal wash and throat swab (not all participants will be 
called for visit 9) 

15 min £10 

Visit 10: Nasal samples, throat swab and blood samples 25 min £20 

Optional home samples (for a subset of participants) 8 timepoints 
over 48 hours 

£48 

Part 2    

Visit 1: Screening and samples from the nose and blood 45 min £30 

Visit 2: Having pneumococcus put up your nose, and follow-up, as 
above 

60 min £50 

Visits 3, 4 and 5: Nasal samples, saliva collection, blood tests and throat 
swab 

15 min £15  

 

Contact details  

General questions: please contact the research team on 0151 706 3381 during normal working 
hours. Web site: www.lstmed.ac.uk/pneumoniavaccine 

 
The Chief Investigator for this study is Dr Jamie Rylance. You may contact him at the Liverpool 
School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Telephone: 0151 705 3775. 
This research is sponsored by the Liverpool School of Tropical Medicine and the Royal Liverpool and 
Broadgreen University Hospitals. It is funded by the Medical Research Council. The research has 
been reviewed for scientific content by an external panel. 
The National Research Ethics Service Committee (16/NW/0031) has reviewed the study and given 
approval for it to take place. 
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Appendix 4: Letter of invitation from primary care 

 

<To be printed on GP Letter Headed Paper>  
 
 
<Insert Patient Title and Name> 
<Insert Patient Address1> 
<Insert Patient Address2> 
<Insert Patient Address3> 
<Insert Patient Address4>      <Insert Date> 

 
 
Dear <Insert Patient Title and Name> 
 
We’d like to introduce you to ground-breaking research looking at ways to prevent 

pneumonia. The researchers are based in the Liverpool School of Tropical Medicine and 

Royal Liverpool University Hospital, and they study the immune response to a bacteria 

placed in the nose.  A better understanding of these immune responses could help them 

develop a new vaccine which could be used to protect children and other vulnerable 

populations all over the world.   

 

The team have been working on this for five years and have extensive experience in carrying 

out similar studies in over 500 volunteers. 

 

As part of our commitment to medical research, we have agreed to assist the research team 

at the hospital in identifying potential people registered at our practice who may be 

interested in taking part in their studies. Our records indicate that you may be eligible to 

take part in a study for non-smoking, healthy people who are between 50 and 84 years of 

age.  The study will involve a full medical assessment followed by the placement of bacteria 

in the nose and regular follow-up with doctors and nurses.  All volunteers are paid for their 

time and inconvenience.   

 

 

This study has been reviewed and approved by the National Research Ethics Service 

Committee to ensure the safety of the people taking part.  

 



189 
 

 

 

 

  

Taking part in a study can be an enjoyable experience where you get to meet like-minded 

people in a relaxing environment with a host of facilities and an opportunity to learn more 

about research—and about your own health—from medical experts. 

 

To find out more about the study please:  
 

- Call 0151  706 4856 
- Text 2VOL to 88802 
- Email: 2volresearch@lstmed.ac.uk 
- Website: ***************** 

 
Yours Sincerely, 
<Insert GP Signature> 
 
 
 
Dr <Insert GP Title and Name> 
< Insert Name of Practice > 
 

Experimental Human Pneumococcal Carriage (EHPC): Effect of age on immune 

function 

Letter to patients Version 1: 23rd February 2016 

REC Ref: xx/xx/xxxx 
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Appendix 5: General practitioner questionnaire 

 

 

    

 

GP questionnaire 
 

Dear Dr ______________________ 

Your patient _______________________________________________,  

DOB _______________, address  __________________________ has 

agreed to participate in the following study: Experimental Human 

Pneumococcal Carriage: Effect of age on immune function. This study 

involves inoculation with pneumococcal bacteria and monitoring over 4 

weeks for experimental carriage of the bacteria.  

To ensure that your patient is eligible and safe to participate, we require 

some background information. We appreciate that your practice is 

extremely busy, and therefore a printed patient summary, including current 

medication, past medical history and previous immunisation and 

allergies would suffice.  Alternatively, please would you complete, sign, 

date and stamp the attached questionnaire at your earliest convenience. 

Please return the completed forms by fax to Helen Hill on (0151) 706 4856.  

Thank you very much for your kind assistance in our research project.  If 

you have any concerns or questions regarding this study please feel free to 

contact us.  

Sister Helen Hill 

helen.hill@lstmed.ac.uk 

Tel (0151) 706 4856 

Fax (0151) 706 4856 

Please tick one box 

 

1. Printed patient summary attached 

 

2. Questionnaire completed 

 

3. This patient is not registered at my practice 
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Medical Report to be completed by the General Practitioner 

 
General Medical 
History 

Please 
Circle 

Please Provide Details 

   

Does the patient 
have cardiovascular 
and/or respiratory 
disease? 

 
YES 

 
NO 

 

Details 
 
_________________________________ 

 
Does the patient 
have an 
immunosuppressive 
condition? 
(Including diabetes, 
active malignancy, 
immunosuppression 
secondary to 
medications etc) 
 

YES 
 

NO 
 

Details 
 
 
_________________________________ 

Is the patient 
allergic to penicillin/ 
amoxicillin? 

 
YES 

 
NO 

 

 

 
Has the patient 
been prescribed 
any regular 
medications? 
 

YES 
 

NO 

Details (or please attach copy of latest 
prescription) 
 
___________________________________ 
 

 
Has the patient ever 
been 
microbiologically 
diagnosed with 
pneumococcal 
disease? (Culture-
proven or molecular 
diagnosis) 
 

YES 
 

NO 

Details 
 
 

 

Has the patient 
received a 
pneumococcal 
vaccine at any 
point? (Prevenar/ 
pneumovax) 

 
YES 

 
NO 

 

Vaccine and date 
 
_________________________________ 
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Please provide any additional relevant information: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date 
 
 

Practice stamp 

GP signature 
 
 

Print name 
 
 

 

 
Please fax these forms back to the Research nurses at the Royal Liverpool 
University Hospital on 0151 706 4856 (safe haven fax). 
 

For office use only 
 
Review of GPQ by study physician (please sign box below) 

Eligible to proceed with 
study based on GPQ 

YES NO  (please circle) 
 

 
 
 
Name 

 
 
 
Signature 

 
 
 
Date 

 
 

 
EHPC and Aging: GP Questionnaire Version 2: 18 March 2016  
REC Ref: 16/NW/0031 
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Appendix 6: Post-inoculation safety leaflet 

 

EXPERIMENTAL HUMAN PNEUMOCCAL CARRIAGE MODEL 

Working towards a nasal vaccine for pneumonia: 

The effect of age on immune function 

                      

 

                                

 

                                  

                                              Information Sheet  

                                     EMERGENCY RESEARCH TEAM  

                                               XXXXX XXX XXX  

                                                7 days a week 

                                                      OR CALL  

                                                  0151 706 2000  

                                            Hospital Switchboard  

                                           Ask for XXXXXXXXXXXXX 

 

 

 

 

Experimental Human Pneumococcal Carriage: The effect of age on immune function 
Emergency inoculation leaflet V1 18th March 2016                     REC Ref 16/NW/0031 
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 Do you have any of the following?  

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Fever (>37.5 ˚C)  

• Headache  

• Drowsiness  

• Cough  

• Shortness of breath 

• Earache  

• Generally Unwell  

 

NO 

Contact Research Team 

by 12noon every day for 

first 7 days on  

Xxxxx xxx xxx 

 

YES 

Call the Emergency Research 

Team on XXXXX XXX XXX 7 

days a week 

Or Call 0151 706 2000 and 

Ask for XXXXXXXXXXX  

If you are unable to get to a 

telephone start taking your 

antibiotics immediately  

 

Experimental Human Pneumococcal Carriage: The effect of age on immune function 
Emergency inoculation leaflet V1 18th March 2016                     REC Ref 16/NW/0031 
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What should I do?  
If you have any of the above symptoms we would ask that you should contact 
the research team on the following numbers without delay  
Xxxxx xxx xxx 7 days a week  
0151 706 2000 Hospital switchboard - ask for xxxxxxxxxxxxx who will be 
available by telephone 7 days a week for advice.  
 
What if I feel very unwell?  
In the unlikely event you feel very unwell, the research team emergency 
number (xxxxx xxx xxx) is available seven days a week. If for any reason you are 
unable to make contact with the team (or are not able to access a phone) we 
recommend that you start taking the antibiotics immediately (one tablet 
(500mg) of AMOXICILLIN to be taken three times per day) and attend your 
nearest Emergency department.  
 
 
What do I tell the doctor?  
If, for any reason you have to attend your doctor or the hospital you need to 
inform them that: You have had live Streptococcus pneumoniae inoculated into 
your nose on ___/___/_______ as part of a clinical study. The bacteria you 
carry are fully sensitive to amoxicillin and you have no history of allergy to this 
antibiotic.  
 
Do I need to do anything if I feel well?  
We ask that for the first 7 days you text or phone the research nurse by 
12noon every day on the following number: xxxxx xxx xxx. .  
This is to ensure that you are not experiencing any problems. If we do not hear 

from you by 12noon we will contact you to make sure you are not experiencing 

any problems. In the event that we cannot contact you, your next of kin will be 

contacted. 
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Things you should know........  

Following inoculation with pneumococcus  

After the pneumococcus is put into your nose it is possible that it may cause an 

infection. Although this is very unlikely it is sensible that you familiarise 

yourself with symptoms or signs that may indicate infection to make sure they 

are recognised and treated early.  

Keep your thermometer, antibiotics and contact numbers with you at all times 

during the study.  

WHAT SHOULD I LOOK OUT FOR?  

If you feel generally unwell or have any of the following:  

• Fever (temp>37.5 ˚C)  

• Shivering  

• Headache  

• Drowsiness  

• Shortness of breath 

• Cough  

• Earache  

 

If you have any of the symptoms or signs marked in bold please call the 

emergency number immediately.  

                                                   Xxxxx xxx xxx  

                                                   7 days a week  

                         OR Phone 0151 706 2000 and ask for xxxxxxxxxxxxx 
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Appendix 7: Poster presented at the International Symposium 

on Pneumococci and Pneumococcal Diseases, 2016 
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Appendix 8: Abstract presented at the British Infection 

Association Spring Meeting, 2017 
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Appendix 9: Poster presented at the LSTM Postgraduate 

Researcher Conference, 2018  
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Appendix 10: Review article published in Clinical and Vaccine 

Immunology, 2017 
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Appendix 11: Research paper published in the Journal of 

Infectious Diseases, 2019 
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