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Abstract

A main objective of algebraic number theory is finding relations between special values of L-
functions and arithmetic invariants. In this research area the equivariant Tamagawa Number
Conjecture (short: eTNC) is a very broad generalization of, for example, the analytic class
number formula and the refined Birch and Swinnerton-Dyer conjecture. It is only proven for
very few cases like the case of Tate motives with underlying Galois groups of absolutely abelian
extensions by work of D. Burns, C. Greither and M. Flach.

Mimicking their proof, W. Bley was able to show the p-part of the eTNC for Tate motives
at s = 0, where the underlying Galois group is that of an abelian extension of an imaginary
quadratic field k if p is an odd split prime in k not dividing the class number hk. One vital
ingredient in this proof is an analogue of a result of D. Solomon concerning the construction of
p-units in absolutely abelian fields and the computation of their valuation in the split imaginary
quadratic situation.

In this dissertation we construct p-units, where p is a prime ideal above p, and compute their
valuation if p > 3 is a non-split prime in the imaginary quadratic field k and p - hk as well as
some partial results for p = 2, 3. Additionally, we are able to recover the results of D. Solomon
(resp. W. Bley) for the cyclotomic (resp. the split imaginary quadratic) situation with this new
method. Then we show the usefulness of this result for proving the eTNC in two ways:

First, we prove the Iwasawa-theoretic Mazur-Rubin-Sano conjecture for some abelian exten-
sions where p is non-split in the imaginary quadratic number field, which is in turn a condition
for proving the eTNC for Tate motives at s = 0 with a theorem of D. Burns, M. Kurihara and
T. Sano.

Secondly, building on the proof of W. Bley for the split case, we show how to reduce the
validity of the p-part of the eTNC in the inert case for p > 2 and p - hk to three conditions
incorporating work on the equivariant main conjecture for imaginary quadratic number fields.



Zusammenfassung

Ein Hauptziel der Algebraischen Zahlentheorie ist das Finden von Beziehungen zwischen speziellen
Werten von L-Funktionen und arithmetischen Invarianten. In diesem Teilgebiet ist die äquiv-
ariante Tamagawazahlvermutung (kurz: eTNC) eine sehr umfassende Verallgemeinerung unter
anderem von der analytischen Klassenzahlformel und der verfeinerten Vermutung von Birch und
Swinnerton-Dyer. Sie ist nur in wenigen Fällen bewiesen, wie beispielsweise von D. Burns, C. Gre-
ither und M. Flach im Fall von Tatemotiven, denen die Galoisgruppe einer absolut-abelschen
Erweiterung zugrunde liegt.

Basierend auf Ideen in deren Beweis konnte W. Bley den p-Anteil der eTNC für Tatemotive
bei s = 0 zeigen, welchen die Galoisgruppe einer abelschen Erweiterung eines imaginär-quadra-
tischen Zahlkörpers k zugrunde liegt (im Fall, dass p eine ungerade Primzahl ist, die in k zerlegt,
und p nicht die Klassenzahl hk teilt). Ein essentieller Bestandteil der Beweisführung ist ein Anal-
ogon eines Resultats von D. Solomon über die Konstruktion von p-Einheiten in absolut-abelschen
Zahlkörpern sowie die Berechnung ihrer Bewertungen in der zerlegten imaginär-quadratischen
Situation.

In dieser Dissertation konstruieren wir p-Einheiten, wobei p ein Primideal über p ist und
p > 3 eine im imaginär-quadratischen Zahlkörper k nicht-zerlegte Primzahl mit p - hk ist (für
p = 2, 3 zeigen wir einige Teilresultate). Zusätzlich sind wir in der Lage, das Resultat von
D. Solomon (bzw. W. Bley) im zyklotomischen (bzw. zerlegten imaginär-quadratischen) Fall mit
unseren neuen Methoden erneut zu beweisen. Anschließend zeigen wir den Nutzen unseres neuen
Resultats im Zusammenhang mit der eTNC auf zwei Arten:

Erstens zeigen wir die Iwasawa-theoretische Mazur-Rubin-Sano-Vermutung für einige Er-
weiterungen, bei denen p im imaginär-quadratischen Zahlkörper nicht-zerlegt ist. Diese Ver-
mutung ist wiederum eine Voraussetzung in einem Theorem von D. Burns, M. Kurihara und
T. Sano, welches zeigt, wie man unter der Annahme einiger Hypothesen die eTNC für Tatemo-
tive bei s = 0 folgern kann.

Zweitens, aufbauend auf dem Beweis von W. Bley im zerlegten Fall, zeigen wir, wie man die
Gültigkeit des p-Anteils der eTNC im trägen Fall für ungerade Primzahlen p mit p - hk auf drei
Annahmen reduzieren kann, wobei wir auch bisherige Arbeiten zur äquivarianten Hauptvermu-
tung für imaginär-quadratische Zahlkörper betrachten.



«Après cela il y aura, j’espère,
des gens qui trouveront leur profit
à déchiffrer tout ce gâchis.»

Évariste Galois (1811–1832)





Chapter 1

Introduction

Prologue The decision to write a dissertation in mathematics implies the hubris of thinking
one could contribute something new to this noble discipline. In order to have any chance of doing
that one has to commit substantial time and effort in trying to solve a very abstract question. So
one regularly comes across the following question: ’Why do we study this particular problem?’

As there are not many practical applications for the topics contained in this dissertation
(yet1), it is our opinion that one should look at the development of mathematics for motivation. In
mathematics this is particularly rewarding since, in comparison to other sciences, the knowledge
we inherit from our ancestors is surviving untarnished. So the following introduction has two
parts: The first part2 contains a short sketch of the history of that part of number theory we are
concerned with later on. It consists of, at first, seemingly unrelated strands of narrative which
will come together at the end. The second part is more of a conventional introduction giving an
overview of what can be found in this dissertation.

1.1 A short, subjective history of number theory - from Fermat
to the eTNC

From Fermat to Euler. It is said that P. Fermat (1607-1665) got hooked on number theory
after picking up a newly published Latin translation of the ancient Greek work of Diophantus
- the moment A. Weil ([Wei07, p.1]) calls the birth of modern number theory. Fermat studied
questions which can be formulated very easily: Which forms can primes have? What are the
integral solutions for x and y of Diophantine equations like x2−Ny2 = ±1? Are there non-trivial
integral solutions to the equation xn + yn = zn for n ≥ 3? Regarding the latter, he claimed that
he can prove that there are none. However, his contemporaries did not share his enthusiasm
and it seems that nobody wanted to pick up the baton. So one had to wait until 1729 when
C. Goldbach (1690-1764) wrote to his friend L. Euler (1707-1783) about Fermat’s assertion that
all integers of the form 22n + 1 are primes. This assertion, which Euler later showed to be wrong
through proving that 225 + 1 is not a prime, lured Euler to thinking about number theoretical
questions.

1Not to repeat Hardy’s mistake cf. [Har40]
2This part may be a bit unconventional as it is more of an essay-style text than a rigorous mathematical text,

but we hope it is nevertheless enjoyable to the reader.
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The Basler Problem. One of these questions Euler considered is called the Basler Problem:
When ζ(s) :=

∑∞
n=1

1
ns , what is the value of ζ(2)?3 In 1735 he succeeded by proving that

ζ(2) = π2

6 and in another proof of this assertion he showed that there is an (Euler) product
expansion for ζ(s). This means ζ(s) =

∏
p(1−p−s)−1, where the product ranges over all rational

primes. In 1739, he even showed that

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k, (1.1)

where B2k are the Bernoulli numbers and k ≥ 1, and from that formula it is easy to obtain

ζ(2k)π−2k ∈ Q. (1.2)

We remark here that (1.2) is an archetypical example of a phenomenon we will concern ourselves
with further below.

Magnum opus of Gauss. Euler still felt the need to justify his efforts in number theory,
which led him to announce that they will be to ’the whole benefit of analysis’. But then things
changed quickly for number theory, so that several decades later C.F. Gauss (1777-1855) already
proclaimed that ’mathematics is the queen of science and arithmetic is the queen of mathematics’.
He himself contributed a lot to this new standing of number theory. In his famous Disquisitiones
Arithmeticae - abbreviated by D.A. - he summarised the number theory known then and included
several of his own results. One of these was a proof of the quadratic reciprocity law, a vital source
of motivation for Gauss for studying number theory. Among the many topics contained in this
monumental work we want to pick up the topic of binary quadratic forms, which is contained
in Chapter 5 of D.A. There he developed a notion of when two such forms are equivalent and
counted the number of equivalence classes corresponding to a fixed discriminant D, the so-called
class number h(D). For example, Gauss gave a list of negative discriminants with class number
one and claimed that this list is complete.

A connection between two worlds. In 1837, G.L. Dirichlet (1805-1859) picked up a conjec-
ture which Euler stated in 1783, namely that there are infinitely many primes in an arithmetic
progression, i.e. for two coprime numbers a and m there are infinitely many prime numbers con-
tained in the sequence (a+n ·m)n∈N. From a modern point of view the result is still interesting,
but what really made head-waves were the tools Dirichlet developed because in order to prove
the theorem he introduced Dirichlet characters and the Dirichlet L-function.

A question we have not asked yet is: What are the analytic properties of ζ(s) and where
can it be defined? In his only number-theoretic paper [Rie60] B. Riemann (1826-1866) showed
that ζ(s) has a meromorphic continuation to C with a simple pole at s = 1 and that there is
a functional equation.4 In analogy of the ζ-function R. Dedekind (1831-1916) defined a similar
function for a general number field K and showed that this function also has an Euler product
expansion,

ζK(s) =
∑
a

1

N (a)s
=
∏
p

(1−N (p)−s)−1, (1.3)

where N denotes the ideal norm, the sum ranges over all the non-zero integral ideals of the ring
of integers OK of K and the product over all the prime ideals p of OK . Dedekind also showed

3As one sees here for the first time exemplified, we will use modern notation and definitions throughout this
overview which were, most of the time, not known to the mathematicians we are talking about.

4A side note in the paper was that the zeroes of this ζ-function should be at negative even integers and complex
numbers that have real part 1/2.
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that this function has a simple pole at s = 1 and that it converges absolutely for Re(s) > 1. The
pinnacle of Dedekind’s work in this direction was that he succeeded in proving the analytic class
number formula in the 1870’s:

lim
s→1

(s− 1)−1ζK(s) = hKRK
2r1(2π)r2

wK |dK |1/2
, (1.4)

where RK is the regulator, wK the number of roots of unity, dK the discriminant and r1 and r2

the number of real and complex places of K, respectively.

Prehistory of cyclotomic fields. A classic problem going back to at least the ancient Greeks
is the possibility of the construction of a regular n-polygon solely with ruler and compass. In
1796, younger than 20 by then, Gauss showed this to be possible for n = 17. In D.A. he even
showed a sufficient condition for a general n: the odd prime factors of n are distinct Fermat
primes5. Although this is certainly an impressive result, the methods he used had even greater
impact. Gauss considered in Chapter 7 of D.A. what we nowadays would denote by Q(ζn), where
ζn is a root of the equation xn − 1 = 0, and call a cyclotomic field. He also showed that every
quadratic number field lies in such a cyclotomic field and also remarked that the cyclotomic
theory should have an analogue using the lemniscate and other transcendental functions.

Influx of analysis. Going beyond the results of Gauss, L. Kronecker (1823-1891) claimed in
1853 that every abelian extension of Q is contained in a cyclotomic field, an assertion nowa-
days called Theorem of Kronecker-Weber. Over the next years Kronecker obtained some re-
sults connecting complex multiplication of elliptic functions with abelian extensions of imaginary
quadratic number fields. This culminated in a letter to Dedekind in 1880 where he admitted that
it is his ’liebster Jugendtraum’ to prove that all abelian equations with coefficients in imaginary
quadratic number fields are exhausted by those which come from the theory of elliptic functions.

And there was hope for such a project because on the analytic side of the problem were also
major developments happening. Going back to 1847, G. Eisenstein (1823-1852) proved several
properties of the ∆-, φ- and j-functions and started what we today would call the theory of
Eisenstein series. In 1862, K. Weierstrass (1815-1897) defined his ℘-, ζ- and σ-functions and
expressed the ℘-function in terms of Eisenstein series. In 1877, Dedekind introduced his η-
function and proved a transformation formula for it. Also in an article about elliptic functions,
Kronecker discovered a limit formula: For τ = x+ y · i with y > 0 and s ∈ C we have6∑

(m,n)6=(0,0)∈Z2

ys

|mτ + n|2s
=

π

s− 1
+ 2π(γ − log(2)− log(

√
y|η(τ)|2)) +O(s− 1), (1.5)

where γ is the Euler constant and η(τ) is the value of the Dedekind eta function. This formula
is called Kronecker’s first limit formula.

Hilbert’s summary and predictions. In 1896, D. Hilbert (1862-1943) carefully studied the
known instances of algebraic number theory and wrote an exposition of almost all known results
of number theory in his own formulation. This exposition is known as ’Zahlbericht’. In this
work, led by analogies to Riemann surfaces, he conjectured that for any number field K there
is a unique extension L over K such that the Galois group of L/K is isomorphic to the class
group of K, L/K is unramified at all places, every abelian extension of K with this property is

5i.e. primes of the form 22
m

+ 1
6at first for Re(s) > 1 and then analytically continued to C
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a subfield of L, for any prime p of K, the residue field degree at p is the order of [p] in the class
group of K and every ideal of K is principal in L. A number field satisfying these properties is
now called a Hilbert class field.

Another consolidating effort of Hilbert was his list of 23 problems presented at the occasion
of the International Congress of Mathematicians in 1900. His 12th problem is concerned with
the explicit construction of an abelian extension of a number field, citing the model cases of Q
and imaginary quadratic number fields, but only one of these cases was proven at the time he
stated this problem.

Then the last two developments got entangled because after studying Hilbert’s ’Zahlbericht’
T. Takagi (1875-1960) decided that he wanted to do algebraic number theory. He started work-
ing on ’Kronecker’s Jugendtraum’ and accomplished some partial results in 1903 essentially
solving the case Q(i). In this direction R. Fueter (1880-1950) in [Fue14] proved ’Kronecker’s Ju-
gendtraum’ for abelian extensions of imaginary quadratic number fields of odd degree. Closely
connected to these results is a result of Fueter from 1910 in [Fue10], where he uses methods of
Dedekind and limit formulas like Kronecker’s in (1.5) to obtain class number formulas for abelian
extensions of imaginary quadratic number fields.

Takagi revolutionizes class field theory. Takagi also started thinking about generalizing
the properties of Hilbert class fields and even dared to contemplate that maybe every abelian
extension is a class field, which was originally only considered for imaginary quadratic base fields.
In giving a new definition of a class field using norms of ideals instead of splitting laws and also
incorporating infinite places into the modulus he was able to show this vast generalization of the
known ideas by then. Indeed, the main results of his work published in [Tak20] were his Existence
Theorem (which asserts that for an ideal group H there is a class field over K), the Isomorphism
Theorem (which says that if H is an ideal group with modulus m and class field L, and IK(m)
the group of all ideals coprime to m then there is an isomorphism Gal(L/K) ∼= IK(m)/H) and
the Completeness Theorem (which says that any finite abelian extension of K is a class field).
As if this had not been enough, Takagi fulfilled ’Kronecker’s Jugendtraum’ in this momentous
work as well. This was obviously a big breakthrough but not yet utterly satisfying. Takagi had
proved the Isomorphism Theorem by reducing the problem to the cyclic case and using the fact
that two cyclic groups of equal order are isomorphic, so there was no explicit isomorphism given.

Artin L-function. At about the same time E. Hecke (1887-1947) in [Hec17] showed that the
Dedekind ζ-function for a number field K has a meromorphic continuation to C, satisfies a
functional equation and has a simple pole at s = 1. So for an extension L/K the quotient ζL/ζK
is meromorphic on C. If the extension is abelian, one already knew that this quotient is even an
entire function, because it was possible to express it in terms of Weber7 L-functions of non-trivial
characters. But E. Artin (1898-1962) wanted to know if the same thing was true for non-abelian
extensions. On his path to discover L-functions of not necessarily abelian representations of
Galois groups he made a definition which was also helpful in the abelian case. In [Art24] he
defined an L-function for a finite abelian extension L/K with Galois group G: For χ ∈ Ĝ and
Re(s) > 1, define L(s, χ) =

∏
p(1− χ(Frp)N (p)−s)−1, where Frp is the Frobenius element and

the product ranges over all prime ideals p of K which are unramified in L. But now one has two
L-functions, from Weber and Artin, which are defined on characters of isomorphic groups, so it is
natural to ask for an explicit isomorphism which identifies possibly these L-functions. The first
thing that comes to one’s mind is the map p 7→ Frp. For this map, extended multiplicatively,
Artin in [Art27] was able to show that it gives an explicit isomorphism in the Isomorphism

7H. Weber (1842-1913)



1.1 A short, subjective history of number theory - from Fermat to the eTNC 5

Theorem. This theorem is called Artin reciprocity law because it also subsumes all the classical
reciprocity laws.

In [Art30], Artin gave a definition of a more general L-function: Let L/K be a Galois
extension of number fields with Galois group G and let (ρ, V ) be a representation of G. Then
we set

LL/K(ρ, s) =
∏
p

(det(1− FrPN (p)−s;V IP))−1, (1.6)

where the product ranges over all prime ideals of K, P is a prime ideal of L above p, FrP the
corresponding Frobenius element and IP the inertia group.8 Nowadays we call this an Artin
L-function.

On the shoulders of Hensel and Kummer. In the mathematical world of Dedekind and
Hilbert number theory had been the study of algebraic number fields and Hilbert’s ’Zahlbericht’
was a manifestation thereof. The ideas of E. Kummer (1810-1893) and Kronecker were somehow
eclipsed by the glory and success of the Dedekind-Hilbert approach to number theory. Though
there remained results and methods of Kummer that were not well-embedded in the existing
theories, as for example his famous Kummer’s Congruence: For p prime and l, k ∈ 2Z+ with
(p− 1) - l or (p− 1) - k we have

Bl/l ≡ Bk/k mod p if l ≡ k mod (p− 1), (1.7)

where Bi are again Bernoulli numbers. Or also the fact that a prime p is irregular, i.e. p does
not divide h(Q(ζp)), if and only if p divides one of the numerators of ζ(−1), . . . , ζ(4− p). Even
more generally, one can define generalized Bernoulli numbers Bm

χ and show that they occur as
values of Dirichlet L-functions L(s, χ) at odd negative integers:

L(1−m,χ) = −
Bm
χ

m
. (1.8)

For any prime p the generalized Bernoulli numbers satisfy certain p-adic congruences which are
called generalized Kummer congruences. T. Kubota and H.-W. Leopoldt (1927-2011) in [KL64]
observed that those congruences can be interpreted in such a way that the Bmχ

m are in a sense
p-adically continuous functions on m. More precisely: There is one and only one p-adically
continuous function Lp(s, χ) defined on Zp such that (for χ even and p > 2):

Lp(1−m,χ) = −
Bm
χ

m
(1− χ(p)pm−1), (1.9)

for negative integers 1 − m with (p − 1) | m. These numbers 1 − m are dense in Zp. But it
turns out that Lp(s, χ) is holomorphic in a region larger than Zp, at least if χ 6= 1, whereas for
χ = 1 there is one pole for s = 1. Based on these p-adic L-functions Leopoldt considered for any
abelian number field K the corresponding p-adic zeta function ζK,p(s) as a product of Lp(s, χ)
over all characters. He arrived at the p-adic class number formula which is an analogue of the
analytic class number formula given in (1.4).

One related problem is also to prove the non-vanishing of the p-adic regulator of a number
field K which appears in the p-adic class number formula. This regulator RK,p is obtained if
one replaces the ordinary logarithms in the classical regulator with p-adic logarithms. The non-
vanishing of RK,p means that the p-adic rank of the topological closure of the image under a
suitable diagonal embedding of the group of units of K equals the ordinary rank - this is now
known as Leopoldt’s conjecture. In [Bru67], A. Brumer with the help of a reduction of J. Ax
(1937-2006) in [Ax65] proved Leopoldt’s conjecture for arbitrary abelian extensions of Q or an
imaginary quadratic base field.

8One can show that this is well-defined and it only depends on the character.
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Iwasawa’s growth formula. One of the first number-theoretic results of K. Iwasawa (1917-
1998) is concerned with the growth of certain class numbers in [Iwa59a]. Indeed, let F be a finite
extension of Q and fix, from now on, for simplicity an odd prime p. Then a Zp-extension is a Ga-
lois extension F∞ of F such that Γ := Gal(F∞/F ) ∼= Zp. Furthermore, we set Γn := Γp

n as well
as Fn := FΓn

∞ and we easily see that Fn/F is a cyclic extension. Let now en be the largest natural
number such that pen | hFn , where hFn is the class number of Fn. Then Iwasawa proved the
existence of λ, µ, ν for sufficiently large n such that en = λn+µpn+ν. The main tool in the proof
is the usage of the compact Zp-module X = Gal(L∞/F∞), where Ln is the p-Hilbert class field
of Fn, i.e. the maximal abelian p-extension unramified at all primes, and L∞ :=

⋃
n Ln. In 1959,

J. P. Serre realised that one can view X as a module over the ring Λ = Zp[[T ]] and then derived
the Iwasawa growth formula from the structure theorem for Λ-modules. The latter asserts that
for a finitely-generated torsion Λ-module M there is a homomorphism M →

⊕t
i=1 Λ/(fi(T )ai),

where fi(T ) are irreducible elements of Λ, with finite kernel and cokernel9. Then we can define
the following invariants of M :

fM (T ) =

t∏
i=1

fi(T )ai , λ(M) = deg(fM (T )), µ(M) = max{m ∈ N0 : pm | fM (T )}, (1.10)

where fM (T ) is called characteristic polynomial. Now we have λ(X) = λ and µ(X) = µ, where
λ and µ are the same as in the growth formula above.

Herbrand’s Theorem. Until now we have only encountered the cardinality of the class group,
but also the structure is interesting. J. Herbrand (1908-1931) proved in [Her32] that for Q(ζp),
2 ≤ i, j ≤ p− 2, i+ j ≡ 1 mod (p− 1) and i odd, we have that if Aωi 6= 0, then p | Bj , where A
is the p-primary subgroup of Cl(Q(ζp)), Bj are the Bernoulli numbers and ω is defined below.

The Iwasawa Main Conjecture for cyclotomic fields. 10 In [Iwa59b], Iwasawa contin-
ued by studying the extension F∞ := Q(ζp∞). He defined M∞ as the maximal abelian exten-
sion of F∞ which is pro-p and such that only the primes lying over p are ramified, and set
Y := Gal(M∞/F∞). Now Galois theory gives a natural decomposition Gal(F∞/Q) = ∆×Γ and
we can define the Teichmüller character as ω : ∆→ µp−1 ⊂ Z×p given by the action of ∆ on µp∞ .
Moreover, for any Zp-module N on which ∆ acts we get a decomposition

N =

p−2⊕
k=0

Nωk with Nωk := {a ∈ N : δ(a) = ωk(δ)a ∀δ ∈ ∆}. (1.11)

Iwasawa showed that Xωi for odd i has no non-zero finite Λ-submodules and that for all k, Y ωk

has no non-zero, finite Λ-submodules.
Let now Q∞ be the unique subfield of Q(ζp∞) such that Gal(Q∞/Q) ∼= Zp. Then for any

number field F the extension F∞ := F ·Q∞ over F is called cyclotomic Zp-extension. Iwasawa
conjectured that for such extensions the µ-invariant is always zero11. This general conjecture
is still open, but B. Ferrero and L. Washington in [FW79] proved it for F/Q being an abelian
extension and later W. Sinnott in [Sin84] found another proof of this result by different methods.

9The value of t, fi(T ) and ai are uniquely determined by M , up to the order. Moreover, fi(T ) can be chosen
as a polynomial.

10This section is based on [Gre01] and we again assume that p is an odd prime.
11Meaning X corresponding to F∞/F has µ-invariant zero.
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In [Iwa64], Iwasawa went on to study the structure of class groups of Fn := Q(ζpn). He
defined

θ(i)
n =

−1

pn+1

pn+1∑
a=1

aω−i(a) 〈σa〉−1 and θ(i) := lim←−
n

θ(i)
n ∈ Λ = Zp[[Γ]], (1.12)

where σa ∈ Gal(Fn/Q) is determined by σa(ζpn+1) = ζapn+1 , 〈σa〉 is the projection to Gal(Fn/F )

in the decomposition Gal(Fn/Q) = ∆×Gal(Fn/F ) and ω−i(a) is determined by the projection
of σa to ∆, regarding ω−i as character of that group. It follows from Stickelberger’s theorem
that θ(i)

n annihilates Aωin . Iwasawa proved, under a cyclicity hypothesis, that for i odd and
3 ≤ i ≤ p− 2, we have

Xωi ∼= Λ/(θ(i)) as Λ-modules. (1.13)

For the proof we identify Λ with Zp[[T ]] and therefore θ(i) with a power series gi(T ). Moreover, we
set fi(T ) := f

Xωi (T ). As θ(i) annihilates Xωi , we have gi(T ) ∈ (fi(T )). Now it remains to show
that fi(T )/gi(T ) ∈ Λ×, which Iwasawa did under the above-mentioned cyclicity hypothesis. With
the help of some computations with Iwasawa invariants one can reduce proving (fi(T )) = (gi(T ))
to show that gi(T ) | fi(T ) even without the cyclicity hypothesis, which Iwasawa did in Chapter 7
in [Iwa72].

Let κ be the restriction of the cyclotomic character to Γ and define for s ∈ Zp a continuous
homomorphism κs by κ(γ)s for γ ∈ Γ and then extend it to a continuous Zp-algebra homomor-
phism ϕs : Λ→ Zp. Then Iwasawa proved in [Iwa69] that for j even with 2 ≤ j ≤ p− 3 we have
Lp(s, ω

j) = ϕs(θ
(i)) for all s ∈ Zp. Or, equivalently, gi(T ) satisfies the following interpolation

property:

gi(κ(γ0)1−m − 1) = −(1− pm−1)
1

m
Bm (1.14)

for all m ≥ 1 such that m ≡ j mod (p − 1), where γ0 is a generator of Γ. We see that the
interpolation property determines gi(T ) uniquely. Now we can state a version of the Iwasawa
Main Conjecture, abbreviated by IMC, for cyclotomic fields: For each i odd, 3 ≤ i ≤ p − 3 we
have

(fi(T )) = (gi(T )) as ideals of Λ. (1.15)

Let ġi(T ) := gi(κ(γ0)(1 + T )−1 − 1), Un denote the group of units in the completion (Fn)pn ,
where pn is the unique prime of Fn above p, and En resp. Cn the closure of the units En resp.
cyclotomic units12 Cn of Fn in Un. Then we can set X := lim←−En/Cn, Y := lim←−Un/Cn and
Z := lim←−Un/En and Iwasawa showed that there is an exact sequence

0→ X ωj → Yωj → Zωj → 0 (1.16)

of finitely generated torsion Λ-modules and that for even j, 2 ≤ j ≤ p − 3, there is an Λ-
isomorphism

Yωj ∼= Λ/(ġi(T )), where i+ j ≡ 1 mod (p− 1). (1.17)

One can give another formulation of the IMC, namely that for even j, 2 ≤ j ≤ p − 3, the
characteristic ideals of Xωj and X ωj are equal.

12For n 6≡ 2 mod 4 let VQ(ζn) be the multiplicative group generated by {±ζn, 1− ζan : 1 ≤ a ≤ n− 1}, then the
cyclotomic units of Q(ζn) are CQ(ζn) := VQ(ζn) ∩ O×Q(ζn).
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Going beyond Iwasawa. The Iwasawa Main Conjecture can also be stated in a more general
setting where F is a finite abelian extension of Q or a totally real field and F∞ = FQ∞.
The necessary p-adic L-functions were constructed by P. Deligne and K. Ribet in [DR80] using
Hilbert modular forms and by D. Barsky in [Bar78] and P. Cassou-Noguès in [CN79] using
explicit formulas of T. Shintani (1943-1980).

In 1976 [Rib76], Ribet proved the converse of Herbrand’s theorem mentioned above, namely
that for 2 ≤ i, j ≤ p−2, i odd and i+j ≡ 1 mod (p−1) it holds: If p | Bj then Gal(L0/F0)ω

i 6= 0.
Building on ideas of the proof of Ribet the IMC for cyclotomic fields was proven by B. Mazur
and A. Wiles in [MW84] and the IMC for totally real base fields was proved by Wiles in [Wil90]
using the theory of modular forms.13

Elliptic curves and the conjecture of Birch and Swinnerton-Dyer. There is a point of
view of number-theoretic problems we have not mentioned yet: the geometric perspective. We
will mainly focus on elliptic curves here, which are implicitly already contained in the work of
Diophantus.

A modern definition of an elliptic curve over a number field K would read: E is a projective
curve of genus 1 with a specific base point on the curve. We denote by E(K) the set of points
over K. It turns out that this is an abelian group and H. Poincaré (1854-1912) in [Poi01] defined
the rank of E(K) as the minimal number of generators of E(Q), which was not known to be
finite at that time. This was only shown 20 years later in [Mor22] by L. Mordell (1888-1972)
and then extended and simplified by Weil: For an elliptic curve E over K, E(K) is a finitely
generated abelian group, i.e. E(K) ∼= Zr⊕E(K)tors, where E(K)tors is a finite abelian group.14

So we have a well-defined rank r of E.
Let ∆ be the discriminant of the elliptic curve and define the integer ap by the equation

|E(Fp)| = p+ 1− ap, where E(Fp) is the number of solutions of the defining equation of E in Fp
plus the origin. Then we can define an incomplete Hasse-Weil L-function for an elliptic curve
E/Q by setting

L(E, s) :=
∏
p-2∆

(1− app−s + p1−2s)−1, (1.18)

where the product converges for the real part at least 3/2. H. Hasse (1898-1979) conjectured
that as a complex function in s it has a holomorphic continuation to C. This was only shown
as a consequence of the modularity theorem proved by C. Breuil, B. Conrad, F. Diamond and
R. Taylor in [BCDT01].15 Now the conjecture of B. Birch and P. Swinnerton-Dyer (BSD con-
jecture)16 based on [BSD63] and [BSD65] predicts that the Taylor expansion of L(E, s) at s = 1
has the form

L(E, s) = c(s− 1)r + higher order terms, with c 6= 0 and r = rank(E(Q)), (1.19)

which can be shortly stated as ords=1(L(E, s)) = rankZ(E(Q)). Now we can compare this to
the Dedekind ζ-function, where we have ords=0(ζK(s)) = rankZ(O×K). In [Tat68], J. Tate stated
the rank-BSD conjecture in the more general setting of abelian varieties over a number field
K, where it says that the rank of the group of K-rational points of an abelian variety A is the
order of the zero of an incomplete L-function at s = 1. This statement uses a generalization of
the Hasse-Weil L-function given by Serre [Ser65] or A. Grothendieck (1928-2014), where each of

13The approach uses 2-dimensional p-adic representations associated to Hilbert modular forms.
14Weil extended this result also to abelian varieties.
15For an important class of elliptic curves, the elliptic curves with complex multiplication, which we will discuss

below, this was already known beforehand.
16This is sometimes also called rank part of the BSD conjecture or weak BSD conjecture.
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them defines an L-function for arithmetic schemes17. We want to focus on the special case of an
elliptic curve over Q on a more refined conjecture given also in [Tat68].

In order to do that, one has to define Euler product factors for so-called bad primes, which
are those dividing 2∆. Although we skip a description of them here, we assume that from now
on L(E, s) is a complete Hasse-Weil L-function over E/Q. As we have seen above, Dedekind was
not only able to compute the order of the zero at s = 0, but also gave a description of the leading
term of the Taylor expansion at s = 1 in terms of arithmetic invariants (cf. Equation (1.4)). Now
in our special case, Tate’s conjecture mentioned above, which can be seen as a refinement of the
BSD conjecture, predicts that the leading term L∗(E, 1) of the complete Hasse-Weil L-function
E/Q is:

L∗(E, 1) =
ΩE ·RE ·#(X(E/Q)) ·

∏
p|∆ cE,p

#(E(Q)tors)2
(1.20)

where ΩE is the period Ω =
∫
E(R)

dx
|2y+a1+a3| ∈ R for the normal form18 of E, cE,p are small

positive integers that measure the reduction of E at p, the regulator RE measures the complexity
of a minimal set of generators of E(Q), and X(E/Q) measures the failure of the Hasse principle.
In order to have a well-defined conjecture one has to assume that X(E/Q) is a finite group.

We also want to define an important class of elliptic curves: For an elliptic curve over C the
endomorphism ring End(E) can now either be isomorphic to Z or an order O in an imaginary
quadratic number field k. If End(E) ∼= O, we say that E has complex multiplication.

Why imaginary quadratic number fields? It is not hard to understand why 19th century
mathematicians like Gauss, Kummer and Kronecker were drawn especially to the theory of
cyclotomic fields. The beauty and simplicity of the results those mathematicians could obtain
for cyclotomic fields is today as mesmerizing as it was then. But the theory served also as a
blueprint of what could be true in other situations. We have already mentioned that Gauss
foresaw the theory of complex multiplication by extrapolating from what he knew about the
cyclotomic theory and ’Kronecker’s Jugendtraum’ also falls in this category. These two instances
are evidence for the notion that looking at abelian extensions of imaginary quadratic number
fields is the obvious next thing to do after proving a result for cyclotomic fields. But one might
ask why. The most compelling reason is simply that it often works as we will see again below.

Elliptic units. So we want to look at another success story of this principle. There is the
classical result (e.g. Theorem 4.9 in [Was97]) that for an even non-trivial Dirichlet character χ
with conductor f we have

L(1, χ) =
−τ(χ)

f

f∑
a=1

χ(a) log |1− ζaf |, (1.21)

where τ(χ) is a Gauss sum. What is the corresponding result in the case of abelian extensions
of imaginary quadratic number fields? After preliminary results of Fueter in [Fue10], a complete
answer was given by C. Meyer (1919-2011) in [Mey57], as he succeeded in expressing L(1, χ) for
primitive ray/ring class characters.19 The main ingredient in the computations are the Kronecker
limit formulas, of which one instance is already mentioned in (1.5).

Probably a better known reference for these results are the lecture notes of C.L. Siegel (1869-
1981) ([Sie65]), where he wanted to introduce the students to ’some of the important and beautiful

17 a scheme of finite type over Z
18i.e. E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
19Meyer also obtained similar results for abelian extensions of real quadratic number fields in [Mey57].
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ideas which were developed by L. Kronecker and E. Hecke’. They contain an explicit description
of the value of L(1, χ) in the imaginary quadratic case as well as many other results, e.g. for
abelian extensions of real quadratic fields, where Hecke did some pioneering work. Based on
the content of these lectures K. Ramachandra (1933-2011) in [Ram64] constructed what is now
called Ramachandra invariants, which he used to express also the value of L(1, χ) using again
Kronecker’s limit formulas as main input in the proof. He did even more: he showed that his
invariants are algebraic, described when they are units and determined their Galois action. He
also used them to construct a subgroup of the global unit group of a class field with finite index
which he could give explicitly in terms of the class numbers of the class field and the base field
and some other arithmetic invariants.

In [Rob73], G. Robert picked up the topic again and constructed, with the same classical
modular functions, the invariants for each element of the ray class group Cl(f), which he called
elliptic units. He showed their relation to the Ramachandra invariants and that they satisfy
similar properties. With these units he also constructed a subgroup of finite index of O×k(f) and
computed this index.

BSD conjecture and elliptic units. Although these are certainly interesting results on their
own, they seem to help solving only a very particular problem. This changed when J. Coates and
Wiles in [CW77] established a link between the BSD conjecture and elliptic units as defined by
Robert. They showed that if an elliptic curve E/F has complex multiplication by Ok, where k is
imaginary quadratic with class number one, we have: E(F ) is infinite implies that L(E/F, 1) = 0
if F = Q or F = k. The problem can be reduced to showing that a certain number L∗(1) (treated
as an ’elliptic Bernoulli number’) is divisible by infinitely many prime ideals p of k. In order to
do that they showed that L∗(1) is divisible by a prime of degree 1 if and only if p is irregular in
an appropriate sense. This notion of irregularity arises from local properties of the elliptic units
of Robert.

In giving analogues of theorems of Iwasawa theory in cyclotomic fields elliptic units are also
recognized as being useful. In [CW78], Coates and Wiles gave an elliptic analogue of a result of
Iwasawa which described the quotient of local units modulo cyclotomic units in terms of p-adic
L-functions (cf. (1.17)): Let k be an imaginary quadratic number field with class number one,
and E an elliptic curve over k with CM by Ok, ψ a Größencharacter of E over k, pOk = pp with
p 6= p and p is not anomalous for E and not in a certain set S. Then for (p− 1) - i we have

lim←−
n

(Un/Cn)(i) ∼= Zp[[T ]]/(Gi(T )), (1.22)

where we first have to introduce some notation in order to understand this theorem: Gi(T ) is a
power series related to the Hecke L-series for ψ. For the definition of Un we fix one of the prime
factors p, a uniformizer π coming from p via the Größencharacter, let Eπn+1 be the kernel of the
endomorphism of πn+1 and set Fn := k(Eπn+1). Then p is totally ramified in Fn and we denote
the unique prime ideal above p by pn, so we can define Un as the local units of the completion of
Fn at pn which are congruent to 1 mod pn. Cn is the closure of Robert’s group of elliptic units
Cn in Un with respect to the pn-adic topology and (Un/Cn)(i) denotes the eigenspace of Un/Cn
on which Gal(F0/k) acts via χi, where χ is the canonical character of Gal(F0/k) on Eπ.

Prelude to Euler Systems. Usually the main desire of a mathematician is to prove new
results. But often finding a different proof of a known theorem can also induce striking develop-
ments. One instance of this is certainly the proof of F. Thaine [Tha88] of a result which could
also be deduced from the IMC for cyclotomic fields proved by Mazur-Wiles in [MW84]. The
result we are talking about is the following: Let F be a real abelian extension of Q of degree
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prime to p and G := Gal(F/Q). Let E be the group of global units of F , C be the subgroup
of cyclotomic units, and A be the p-Sylow subgroup of the ideal class group of F . If θ ∈ Z[G]
annihilates the p-Sylow subgroup of E/C, then 2θ annihilates A. The method of Thaine used
to prove this theorem was also independently found by V. Kolyvagin [Kol88], who applied it at
first when studying Selmer groups of modular elliptic curves using Heegner points.

Already in 1987 a paper of K. Rubin ([Rub87a]) was published which contained an extension
of the method of Thaine to the case of abelian extensions of imaginary quadratic number fields.
Now cyclotomic units were replaced with elliptic units and there was the additional condition
that the abelian extension F of the imaginary quadratic number field k had to contain the Hilbert
class field of k. In fact, Rubin defined special units of F and used them to construct elements
of Z[Gal(F/K)] which annihilate certain subquotients of the ideal class group of F . Cyclotomic
units and elliptic units are examples of such special units.

Why do we care about the method of proof for these annihilation results? Because now an
almost magical thing happens: Most of the things discussed so far suddenly fit together. Rubin
in [Rub87b] used the techniques developed in [CW77] and [CW78] to obtain results for the BSD
conjecture and the ideal class annihilators arising from elliptic units to prove the following: For an
elliptic curve E over an imaginary quadratic number field k he proved that the Tate-Shafarevich
group under certain conditions is finite or the p-part is trivial and that for an elliptic curve over
Q with CM it holds: If rankZ(E(Q)) ≥ 2, then ords=1L(E, s) ≥ 2.

One-variable main conjecture. At this point nobody will be surprised to find out that there
is also a generalization of the IMC for cyclotomic fields to abelian extensions over an imaginary
quadratic number field k.20 Let M∞ be the maximal abelian p-extension of F∞ :=

⋃
n Fn which

is unramified outside the primes above p and Y := Gal(M∞/F∞), with Y (i) the eigenspace of Y
on which Gal(F0/k) acts via χi. For split primes in k it was already mentioned in [CW78] that
for (p− 1) - i the assertion

Y (i) and lim←−
n

(Un/Cn)(i) have the same characteristic ideal, (1.23)

could be true, later called one-variable main conjecture, and that the case i ≡ 1 mod (p − 1)
would ’have deep consequences for the study of the arithmetic of elliptic curves’. It is also worth
recalling (1.13) and (1.17) for cyclotomic fields at this point. This conjecture, (1.23), was proved
by Rubin, under some hypotheses, in [Rub91] by controlling the size of certain class groups and
using the techniques described above. Also for non-split primes, a formulation of the conjecture
was given and proved under more restrictive hypotheses. These results again had applications
to the arithmetic of elliptic curves with CM, i.e. results surrounding the BSD conjecture.

Introduction of Euler Systems. So the main input to all these new results is the ability
to give an upper bound to the size of ideal classes of cyclotomic fields and Selmer groups of
certain elliptic curves. An Euler system was then defined in [Kol90] as a collection of certain
Galois cohomology classes satisfying conditions like a norm compatibility. The cyclotomic units,
elliptic units and Heegner points mentioned above are all examples of such an Euler system.
After preliminary work of Kolyvagin in [Kol90], Rubin in [Rub00], as well as K. Kato and
B. Perrin-Riou independently developed then an abstract cohomological machinery which uses
an axiomatically defined Euler system as an input and produces upper bounds for the sizes of
appropriate Selmer groups as an output.

20We resume here the notation of BSD conjecture and elliptic units.
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Coleman power series and applications. Picking up on a technique introduced in Theo-
rem 5 in [CW78] and [Wil78], Coleman showed in [Col79] the following: Let K be a local field
with local parameter π, H be a complete unramified extension, F a Lubin-Tate formal group,Wn

the n-division values and Hn := H(Wn). Then for each α ∈ Hn there exists an fα ∈ OH((T ))×

such that ϕifα(ωn) = Nn,i(α), where ωn is a generator of Wn as an OK-module, Nn,i : Hn → Hi

the norm, and ϕ the Frobenius for H over K. Such a series for a norm-coherent sequence (αn)n
satisfies a uniqueness property and is called a Coleman power series.

In [dS87], E. deShalit generalized Lubin-Tate theory and the theory of Coleman power series
to relative extensions in the context of abelian extensions of an imaginary quadratic field. He
used these theories to construct p-adic L-functions and proved a functional equation and an
analogue of ’Kronecker’s second limit formula’ for these p-adic L-functions. Then he applied his
results to the one-variable main conjecture and the BSD conjecture.

Inspired by [Tha88], D. Solomon in [Sol92] constructed cyclotomic p-units and computed
their valuation using the theory of Coleman power series. He applied this result to a ’weak
analogue’ of Stickelberger’s theorem for real abelian fields.

In the meantime there had also been some new developments in the basic theory of elliptic
units. Robert succeeded in constructing a function ψ that is a twelfth root of the function ϕ,
which is used to define elliptic units. Now using elliptic units defined via this function ψ and
the theory of Coleman series for relative Lubin-Tate extensions W. Bley constructed in [Ble04]
elliptic p-units and computed their valuation in the situation for split primes, under certain
hypotheses, in analogy to the result of Solomon.

Stark’s conjecture. As we have seen so far, Gauss’s D.A. had a major influence on the
algebraic number theory of the 19th century. It was possible to embed large parts of his results
into a more general framework. One of the more elusive questions coming from D.A. was certainly
the class number one problem, namely the question of how many quadratic number fields have
class number one. For imaginary quadratic number fields Gauss already suspected he had a
complete list of them.

In the 1960s H. Stark gave the first accepted proof ([Sta67]) of this fact and based on the
methods used he had the idea that it maybe was possible to evaluate a general Artin L-function
at s = 1. He later realized that looking at s = 0 is simpler and tried to find a theoretical
description of L′(0, χ) for an L-function with a first order zero at s = 0 with the help of numerical
computations. In 1970, he published his first ’very vague conjectures’ which were later tersely
presented by Tate (in [Tat84]) giving a Galois-equivariant conjectural link between the values
at s = 0 of the first non-vanishing derivative of the S-imprimitive Artin L-function LK/k,S(s, χ)
associated to a Galois extension of number fieldsK/k and certain Q[Gal(K/k)]-module invariants
of the group US of S-units in K, where S is a set of places of K satisfying certain conditions.
Siegel and Ramachandra proved the instances of the conjecture for imaginary quadratic number
fields via complex multiplication and the applications of the Kronecker limit formulas.

Now building on the work of Siegel and Ramachandra, Stark developed an integral refinement
of his conjecture for abelian extensions K/k and abelian S-imprimitive L-functions with order
at most 1 at s = 0 and under additional hypothesis on S: There exists a special v-unit ε, called
Stark unit, such that

L′K/k,S(0, χ) =
−1

wK

∑
σ∈G

χ(σ) log |εσ|w for each character χ of G, (1.24)

where v is a prime which splits completely in K and w a place above v. Stark proved the cases
of k = Q or k imaginary quadratic in [Sta80]. It has to be noted that a proof of the integral
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refinement would have far reaching applications to Hilbert’s 12th problem and already in the
1980’s B. Gross ([Gro81], [Gro88]) developed a refinement of Stark’s integral conjecture.

Rubin-Stark conjecture and beyond. Finding Euler systems is generally a difficult task,
so it is quite remarkable that Stark’s integral conjecture is a source for them. Motivated by
this observation Rubin generalized Stark’s integral conjecture to the case of abelian extensions of
number fieldsK/k and their S-imprimitive L-functions of order r ≥ 0 under certain conditions on
S. This conjecture is now called the Rubin-Stark conjecture. A conjectural Gross-type refinement
of Rubin-Stark conjecture was also found by work of Tate, Gross, D. Burns, C. Greither and
C. Popescu. This has led to a Gross-Rubin-Stark conjecture, which implies the Rubin-Stark
conjecture and Gross conjectures and predicts a subtle link between special values of derivatives
of global and p-adic L-functions.

Inspired by work of Gross in [Gro88], H. Darmon in [Dar95] formulated a refined class num-
ber formula which relates cyclotomic units to certain algebraic regulators in a very particular
situation. After proving the non-2-part of this conjecture using Kolyvagin systems, which were
developed from Euler systems, in [MR16] Mazur and Rubin generalized Darmon’s conjecture and
proved certain cases of it. The same conjecture was independently found by T. Sano and so is
known as Mazur-Rubin-Sano conjecture.

Deligne’s and Beilinson’s conjecture(s). One of the main themes so far is the interpretation
of values of L-series at integers by arithmetical objects. A conjecture of Deligne in [Del79] brings
some order to several results presented so far. He conjecturally describes the irrational part of
the L-values as determinants of a matrix whose coefficients are up to factor of 2πi periods at a
’critical integer’ for different L-functions.

In a more abstract setting Beilinson’s conjectures ([Bei84]) link the leading coefficients at
integral arguments of L-functions of algebraic varieties over number fields to the global arith-
metical geometry of these varieties. In particular, the leading term should be equal to a value
related to a certain regulator up to a rational factor. This should be compared to the leading
term of the Dedekind zeta function at s = 0 and the covolume of the image of the Dirichlet
regulator map. Beilinson’s conjectures also deal with the orders of vanishing of quite general
L-functions and regulators using the rank and the covolume of motivic cohomology in a very
abstract setting.

Tamagawa Number Conjecture and its equivariant refinements. If one would have to
summarize most of the number theory presented so far, one way of doing it would be to say that
L-functions are related to arithmetic invariants. Prominent instances of the phenomenon we have
seen so far are the analytic class number formula (1.4), the refinement of the BSD conjecture
(1.20) or the Iwasawa Main Conjecture (1.15).

Although we are far away from fully understanding all these results and conjectures there is
an incessant quest for a conjectural framework in a more general setting probably driven by a
popular view in mathematics that everything is as we expect it to be. We already encountered the
conjectures of Beilinson and Deligne which express the values at integer points of L-functions
of smooth projective varieties over number fields in terms of periods and regulator integrals.
But these conjectures only determine the special values of the L-functions up to a non-zero
rational number. The logical next step was done by S. Bloch and Kato in [BK90], in which they
generalized the refinement of the BSD conjecture to L-functions for arbitrary smooth projective
varieties over number fields. They were therefore removing the Q× ambiguity, which culminated
in a conjecture now known as Tamagawa Number Conjecture (TNC) or Bloch-Kato conjecture
for special values of L-functions. It is rather unsurprising that the first partial results Bloch and
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Kato showed concern the Riemann zeta function, e.g. they show the TNC up to a power of 2 for
the Tate motive Q(r) and r even as well as the elliptic curves with complex multiplication since
these are the classic test cases for conjectures in arithmetic geometry.

Kato in [Kat93a] refined the theory by defining for a variety X over a number field K
and a finite abelian extension L/K the Gal(L/K) 3 σ-part of the corresponding L-function and
relating special values of such partial L-functions to the Gal(L/K)-module structure on the étale
cohomology of Spec(OL) with coefficients in an étale sheaf coming from X. For the situation
K = Q, X = Q(r) and L being a cyclotomic extension of Q it can be shown that this conjecture
is equivalent to the IMC for cyclotomic fields. So Bloch and Kato described the value at zero
of L-functions attached to motives with negative weight. By using perfect complexes and their
determinants Kato and, independently, J.M. Fontaine (1944-2019) and Perrin-Riou ([FPR94],
[Fon92]) also took into account the action of the variety under consideration. This approach via
perfect complexes was then used by Burns and M. Flach in [BF96] to define invariants which
measure the Galois module structure of the various cohomology groups arising from a motive M
over a number field, which admits the action of a finite abelian Galois group. At the end of the
1996 paper they gave a formulation of the equivariant Tamagawa Number Conjecture (eTNC)
with abelian coefficients, which is Conjecture 4 in [BF96]. In [BF01] Burns and Flach also gave a
formulation of the eTNC with non-commutative coefficients and the work of Kato from [Kat93b]
on p-adic zeta functions was also generalized, e.g. by T. Fukaya and Kato [FK06], who dealt
with the non-abelian situation, too.

The abelian number fields case. So we now have surveyed a massive conjectural framework
but learned few about results so far except the testing cases around which the general conjectures
are built. But there are some proven instances of the eTNC, the most prominent one being the
case of Tate motives of weight ≤ 0 for abelian extensions over Q, i.e. the cyclotomic case proved
by Burns and Greither in [BG03] (and independently by A. Huber/G. Kings in [HK03] plus
work of M. Witte in [Wit06]). This result can, in a way, be seen as a (probably tentative) peak
of the study of cyclotomic fields initiated by Gauss in D.A. approximately 200 years ago. The
beauty of this result lies in the fact that it uses a lot of knowledge about cyclotomic fields we
have collected over the years. First of all, one can use the Theorem of Kronecker-Weber to
reduce to cyclotomic fields and Stark’s conjecture for the rationality part of the conjecture. It
used the computation of the evaluation of the Dirichlet L-function at s = 1, and the functional
equation to get the leading term at s = 0. The conjecture for a cyclotomic Iwasawa tower is
then proved by using the IMC for cyclotomic fields, the vanishing of the µ-invariant for abelian
extensions over Q and a reduction to the localization at height one prime ideals of an Iwasawa
algebra. From this result one descents to the finite level of interest with techniques described by
J. Nekovář. This descent procedure is quite delicate and uses the result of Solomon on cyclotomic
p-units mentioned above as well as a result of Ferrero and R. Greenberg ([FG79]) on the first
derivative of a p-adic L-function. Maybe the best way of describing the proof of this result is
due to Nekovář who wrote at the end of his review of the paper: ’This is what Iwasawa theory
should look like in the new millennium!’.

eTNC implies ... What makes the eTNC such a grand conjecture is that it subsumes a lot
of independently developed conjectures in algebraic number theory. For the motive M = Q(r)
it implies or generalizes Stark’s conjecture [Tat84], the Rubin-Stark conjecture [Rub96] and
its refinements, Popescu’s conjecture in [Pop02], the Mazur-Rubin-Sano conjecture of [MR16]
and [BKS16], the strong Stark conjecture of Chinburg from [Chi83], the ’Ω(3)’ conjecture of
T. Chinburg from [Chi83] and [Chi85], the Lifted Root Number Conjecture of K. Gruenberg
(1928-2007), J. Ritter and A. Weiss [GRW99], and many more. Proofs for this implications can
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be found in for example in [Bur10], [Bur07], [BKS16]. It certainly also generalizes the analytic
class number formula as alluded above and for M = h1(E)(1), the twisted motive associated
to an elliptic curve E, the eTNC (in fact already the TNC) implies the refinement of the BSD
conjecture. A proof of this is given in [Kin11]. The list given is only focussing on results discussed
above or very near to them by plugging in two classical motives with abelian coefficients. So one
may assume this is only the tip of the iceberg.

1.2 The thesis in a nutshell

1.2.1 What is the objective?

The goal of this thesis is to work towards proving the p-part of the eTNC for Tate motives at
s = 0 over abelian extensions of imaginary quadratic number fields k in which the prime p is
non-split in k.

1.2.2 What is the motivation?

First of all one could look at it historically as above: Gauss treated in his Disquisitiones Arith-
meticae the antecedent of cyclotomic theory and then somehow predicted that the theory of
complex multiplication, intimately related to imaginary quadratic number fields, should exist.
Kronecker dreamt about generalising the Kronecker-Weber Theorem to imaginary quadratic
number fields and Takagi proved Kronecker’s Jugendtraum. Mazur and Wiles proved the IMC
for cyclotomic fields, later Rubin and Greither gave an Euler system proof of this result which
also worked for the one-variable main conjecture of Coates and Wiles over imaginary number
quadratic fields and split primes. Then Rubin found a formulation of the main conjecture for all
primes and proved large parts of it under some additional hypotheses. The last step in our his-
torical treatment is the proof of the eTNC for ’untwisted’ (and negatively twisted) Tate motives
over abelian extensions of Q by Burns and Greither. So we have seen in many instances that
what can be done for cyclotomic fields can also be done in a similar way for abelian extensions of
imaginary quadratic number fields. From this perspective the logical next step is to look at the
eTNC for Tate motives at s = 0 over abelian extensions of imaginary quadratic number fields.

Another motivation, admittedly, is the hope to be able to prove something new, because
analogues to the main ingredients of the proof of Burns and Greither exist for abelian extensions
of imaginary quadratic number fields: There is the computation of the leading term of the abelian
L-function in the imaginary quadratic case via Kronecker’s limit formulas, Stark’s conjecture
and Leopoldt’s conjecture are valid for this case, the suitable main conjecture holds under some
hypotheses, we have an explicit class field theory and we know a lot about elliptic units which
are replacing cyclotomic units here. Moreover, there is an equivariant main conjecture proved
under a vanishing assumption by Johnson-Leung and Kings in [JLK11].

1.2.3 What was the starting point?

The idea of proving the eTNC for Tate motives at s = 0 via the approach of Burns and Greither
was already started by Bley in [Ble06]. He considered the case where we have an imaginary
quadratic number field k and an odd prime p which splits in k. For this situation he showed
the p-part eTNC for Tate motives at s = 0 over abelian extensions of k under the additional
hypothesis that p - 2hk. A main new ingredient in the proof was the main result of [Ble04] on
the construction of an elliptic p-unit and its valuation, which is an analogue of the main result in
[Sol92]. The proof also uses the corresponding main conjecture and the vanishing of a µ-invariant
in the corresponding situation to prove an Iwasawa-theoretic version of the eTNC, what we will
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call Limit Conjecture, for split primes as an intermediate step. As mentioned above, a very
similar assertion to this Limit Conjecture was given in [JLK11] for all primes p and a proof for
this conjecture was given assuming a certain vanishing result specified in Conjecture 6.3.13.

1.2.4 What are the main new results?

The first new result is an analogue of the main results of [Sol92] and [Ble04] for abelian extensions
L of imaginary quadratic number fields k and non-split primes in k under the hypotheses that
p, the prime ideal above the rational prime p in k, splits completely in L and p - hk as well
as p > 3 (in some special cases we have also results for p = 2, 3). This is joint work with
my advisor Werner Bley accepted for publication in the Proceedings of the Iwasawa conference
2017 appearing in the series ’Advanced Studies in Pure Mathematics’ and both authors have
contributed equally to this work.

Then we use this result to prove some special cases for non-split primes of the Iwasawa-
theoretic conjecture of Mazur, Rubin and Sano (Conjecture 5.1.14), which are Theorem 5.2.2
and Theorem 5.2.3.

Finally we apply the first result to make descent computations, as in [Fla04] and [Ble06] from
Limit Conjectures to the p-part of the eTNC for Tate motives at s = 0 over abelian extensions
of an imaginary quadratic number field k with p - 2hk and p inert in k. In order to do that we
have to use an assumption for explicitly computing the cohomology of the complex in question
after localizing at certain height one prime ideals. We call this assumption Condition (F) ,
which is a finiteness condition similar (but slightly stronger) then the homonymous assumption
in [BKS17](for details see Section 6.3.4).

1.2.5 How did we get there?

A common theme in Iwasawa theory and related topics for abelian extensions over imaginary
quadratic number fields could be summarized as follows: ’Your world is easier, when your primes
are split’. What makes the split situation pleasant is for example that if we choose a prime p
above p in k, there is a unique Zp-extension which is unramified outside the primes above p and in
which each finite subextension is cyclic. In the non-split case one gets a canonical Z2

p-extension,
which is also unramified outside of p but contains infinitely many Zp-extensions.

So the first idea was to find at least an assertion which could generalize the main result
of [Ble04] to non-split primes. It was not clear at all what that should be, because there is
a cyclic canonical extension to work with in the split case and the construction of the elliptic
p-unit heavily relies on the classical Hilbert’s Theorem 90 which requires a cyclic extension.
However, we simply chose two generators of the Z2

p-extension and constructed for each of the
corresponding Zp-extensions an elliptic p-unit. Then we conjectured in analogy to the split case
that the valuations at primes above p together should give the valuation of the p-adic logarithm
of the elliptic unit at a base level L.

In order to obtain some confidence in the conjecture, we computed for some examples both
sides of our conjecture modulo pn for p = 3, 5 and n = 1, 2, 3. The main input was an algo-
rithmic implementation of the work of Robert [Rob92] in MAGMA with which we computed
the approximate values and then the valuation of elliptic p-units as well as the p-logarithm of
the elliptic unit at the base level. We also tried to get to higher levels n by focussing on ring
class extensions with varying success. In all the cases where runtime and memory space would
allow it, the conjecture was corroborated. Moreover, we had some weak theoretical results for
our conjecture and for a ring class version of it.

Proving this result seemed out of reach mostly because the proof in the split case used the
theory of relative Lubin-Tate groups and in the non-split case one would get a Lubin-Tate group
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of height two, compared to an group of height one in the split case. It became clear that simply
translating the known proof is not an option, because we did not see a way of reproducing a
main ingredient in the proof of [Sol92] and [Ble04], namely the comparison of two Coleman power
series associated to two norm coherent sequences derived from the assertion of the conjecture.
But there was hope because after showing an equality containing the two power series, only the
constant term of them was used later on. So we thought it might be easier to compute only the
constant term, which is not at all a canonical strategy because one normally prefers to deal with
a power series not some evaluation of it.

But then we found an article of T. Seiriki in arXiv ([Sei17]) which claimed to reprove a result
on Euler systems for function fields by linking the constant term of a Coleman power series to a
pairing which is defined by taking the valuation of an element constructed by Hilbert’s theorem
90 in a local setting. We soon realized that if this result was correct, it would probably give us
what we needed. In trying to understand Seiriki’s work we reproved the needed parts and then
succeeded in proving our main result on the valuation of an elliptic p-unit in the non-split case.

Now we could tackle the problem which justified putting so much effort in the result men-
tioned above: the descent computation of the eTNC for abelian extensions of imaginary quadratic
number fields. At the very early stages of this dissertation project, at the Iwasawa conference
2015, we learned about the progress Burns, Kurihara and Sano made towards the descent com-
putations. They showed for an arbitrary abelian extension L/K of number fields that if the
extension is contained in a certain extension of Zp-rank one, they could do the descent compu-
tations for this general situation under several assumptions. The two major assumptions were a
Limit-Conjecture-type result, which they call higher-rank main conjecture of Iwasawa theory, and
the Iwasawa-theoretic MRS conjecture. They showed the usefulness of their result by reproving
the eTNC for Tate motives at s = 0 over abelian fields and remarked that similar arguments can
be given to reprove the main result of [Ble06].

Therefore, we decided to develop the results in two directions knowing that they are not
without intersection. First of all we tried which results we can show for the Iwasawa-theoretic
MRS conjecture using our new result about elliptic p-units in this case. Then we tried to show
what results could be obtained from translating the descent process from [Fla04] and [Ble06]
directly to the non-split case, where we decided - for the sake of clarity - to present only the
inert case in this dissertation. The experts will certainly object at this point that the descent
in [BKS17] is only a streamlined and more general version of the other descent procedures. But
the author thinks it is somewhat unnecessary to deal with Rubin-Stark elements in a case where
we have concrete realizations of them at our disposal.

1.2.6 Overview chapter by chapter

In Chapter 2 we introduce the basic objects we are going to work with: elliptic functions, elliptic
units and abelian L-functions. We compare different definitions of elliptic units and as conclusion
we recall the proof for expressing the leading terms of the L-function at s = 0 in terms of the
elliptic units we are going to use, mainly following [Lan73]. This chapter contains no new results,
but we hope the reader will find some benefit in a survey of all important results and definitions
we are using.

In Chapter 3 we present a pairing which is defined via the valuation of an element constructed
with Hilbert’s Theorem 90 and we recall the theory of relative Lubin-Tate groups and Coleman
power series. Then we prove Theorem 3.4.1 which links this pairing to the constant term of a
corresponding Coleman power series. This chapter relies on ideas of [Sei17] and the content of
this chapter is almost verbatim contained in the joint work [BH18] with Bley.

In Chapter 4 we give a version of the main theorems of [Sol92] and [Ble04] for non-split primes
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in the imaginary quadratic situation. We prove this new result with help of the assertions of
Chapter 3 and reprove the two older results with this new technique. Here the non-split result
is also contained in joint work [BH18] with Bley .

In Chapter 5 we introduce the reader to a conjecture of Mazur, Rubin and Sano, and an
Iwasawa-theoretic version of it. We use the main result of Chapter 4 to obtain new results
for the Iwasawa-theoretic MRS for non-split primes. This draws from ideas in the proof of
Theorem 4.10 in [BKS17].

Chapter 6 is concerned with the eTNC for Tate motives over abelian extensions of imagi-
nary quadratic number fields. We introduce the eTNC and the different versions of the Limit
Conjecture and study relations between them. We survey the descent computations of [BKS17]
and show what can be accomplished with the main result of Chapter 5 and Theorem 5.2 of
[BKS17]. Following this, we state our descent result as Theorem 6.5.1 and present the necessary
computations. As the computation is quite involved we start with a summary and a description
of what we are going to do. After some preliminaries we subdivide the computations into three
parts, where the non-trivial zeroes case is the most important one, because in order to be able
to finish the computations we need Theorem 4.1.16 of Chapter 4.

1.3 Notation
The following notations will be used throughout this thesis, more specific notation will be intro-
duced as soon as we need it. Let k be a number field, Ok its ring of integers and hk its class
number. For a place v of k we denote by N (v) the cardinality of the residue class field of v. We
denote a set of places of k which lie above the infinite place ∞ in Q (resp. a prime p) by S∞(k)
(resp. Sp(k)). For a Galois extension L/k, the set of places of k that ramify in L is denoted
by Sram(L/k) and for any set S of places of k, we denote by SL or S(L) the set of places of L
which lie above the places of S. Let L/k be an abelian extension with Galois group G. For a
place v of k, we denote the decomposition group by Gv or Dv and the inertia group by Iv. If v
is unramified in L, the Frobenius automorphism is denoted by Frv or σv. We denote by fL the
conductor of L and if c is an integral ideal relatively prime to the conductor fL, then we write
σ(c) or (c, L/k) for the associated Artin automorphism.

For an ideal f in Ok we denote by Cl(f) the ray class group modulo f, by k(f) the ray class
field of conductor f and by k(1) the Hilbert class field. Moreover, we denote by w(f) the number
of roots of unity congruent to 1 modulo f, where w(1) equals the number wk of roots of unity in k.
As we will mention imaginary quadratic number fields constantly we abbreviate them sometimes
to ’i.q. fields’, ’i.q. number fields’ or ’imaginary quadratic fields’.
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Chapter 2

Elliptic units and L-functions

As we have seen in the introduction, the main goal of this dissertation is to work towards proving
an assertion about the non-zero leading term of an equivariant L-function using special units
called elliptic units. The main objective of this chapter is to carefully define elliptic units and
L-functions and present classical results about the relation between these two objects sometimes
called Kronecker’s first (resp. second) limit formula. Our interest in this results stems from the
fact that it is the most important analytical input in our computations later on. It is certainly
no coincidence that the two cases where we have results of this sort (i.e. the cyclotomic and
elliptic case) are also the cases where we have the most impressive results for the eTNC for Tate
motives.

This chapter is structured as follows: In the first section we define classical elliptic functions,
some of them already known by Dedekind and Weber. Then we use them to define elliptic units,
where we introduce several variants contained in the literature and compare them.

The second section serves as a brief introduction to the theory of L-functions used in this
manuscript. We define the classical abelian L-function, Artin L-functions and conclude the sec-
tion by presenting the functional equation for the leading terms at s = 0 and s = 1, respectively.

The third section first presents the Kronecker limit formulas and then uses them to prove
relations between L-functions and elliptic units. Indeed, we compute L(1, χ) with the help of
the Kronecker limit formulas and then use the functional equation in order to get an expression
of the leading term L∗(0, χ) using elliptic units. This section ends with the description of an
approach that does not require to compute the value of the L-function at s = 1 first. This is
done in [Sta80] and hinted at in [Kat04].

We want to stress that nothing in this chapter is new and that it is based on several beautiful
treatments of this topic like [Lan73], [Mey57], [Sta80], [Sie65] and [Ram64]. One justification
for presenting these classical results in depth is that, although there exist several treatments of
these topics, it is sometimes not easy to pin down the arguments used in proving the assertions.

A similar survey has been done by Flach as a part of [Fla09] and our survey can be seen as
an expanded version of that. For the reader well-versed in these topics it should be enough to
look at Definition 2.1.24 and Theorem 2.1.27, i.e. the definition of elliptic units and their norm
relation, as well as Proposition 2.3.9 and Corollaries 2.3.5 and 2.3.7, i.e. the expression of the
leading term of the L-function at s = 0 in terms of these elliptic units, in order to be able to
continue with the next chapters.

Notation In this chapter we denote by H the upper half plane of C. Furthermore, in order to
efficiently write down product expansions of elliptic functions we set qz = e2πiz for z ∈ C. Let L
be a lattice in C. If ω1, ω2 is a basis of the lattice L over Z we write L = [ω1, ω2]. We say that a
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lattice L (resp. an elliptic curve E) has complex multiplication if the endomorphism ring of C/L
(resp. of E) is isomorphic to an order in the ring of integers of an imaginary quadratic field k.

Sometimes we sum over sets containing a ’zero-element’, so in order to get a sum that has
the chance to be convergent we exclude them from the summation and denote this by

∑′
for

the summation over all the elements without this zero-element. For example, if we sum over
(m,n) ∈ Z2 \ {(0, 0)} we would write

∑′

(m,n). The same applies to product symbols.

2.1 Elliptic functions and elliptic units

2.1.1 Elliptic functions

Recall that a lattice in C is a free subgroup of rank 2 over Z, which generates C over R. Let
L = [ω1, ω2] be a lattice. Unless otherwise specified, we always assume ω2/ω1 ∈ H, which is
the convention of [Rob73], [Rob90] and [Ram64] but different from [Lan73]. We first summarize
some classical definitions.

Definition 2.1.1. a) The Weierstrass ℘-function is defined by

℘(z, L) =
1

z2
+
∑
ω∈L

′
(

1

(z − ω)2
− 1

ω2

)
.

b) We define the Weierstrass σ-function, which has zeros of order 1 at all lattice points, by
the Weierstrass product

σ(z, L) = z
∏
ω∈L

′
(

1− z

ω

)
ez/ω+ 1

2
(z/ω)2 .

c) Formally taking the logarithmic derivative yields the Weierstrass ζ-function

ζ(z, L) =
σ′(z, L)

σ(z, L)
.

d) There is also a constant ηω such that

ζ(z + ω,L) = ζ(z, L) + ηω for all z ∈ C.

If L = [ω1, ω2], then one uses the notation η1 = ηω1 and η2 = ηω2 .

e) We define the Dedekind η-function by

η(z) = q1/24
z

∞∏
n=1

(1− qnz ).

f) We define the Delta function by ∆(z) = (2π)12η24(z).

g) For t ∈ C and z ∈ H we set

θ1(t, z) = 2q1/8
z sin(πt)

∞∏
n=1

(1− qnz )(1− 2qnz cos(2πt) + q2n
z ).

Remark 2.1.2. a) The Dedekind η-function is holomorphic on H.
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b) By setting ∆(L) := ω−12
1 ∆(ω2/ω1) we get a definition of the Delta function independent

of the choice of the basis of L.

c) The function t 7→ θ1(t;w) is entire, the zeroes are points of [1, w] each of order 1 and we
have

d

dt
θ1(t;w)|t=0 = 2πη3(w).

d) For z ∈ H, Ramachandra defines in [Ram64]

Φ0

((
v
u

)
, z

)
= e−πiu(v−uz) θ1(v − uz, z)

η(z)
.

Definition 2.1.3. Let L and L be two lattices satisfying L ⊆ L and the index N := [L : L] is
odd. Then we define the Klein function K(z;L,L) as the product

K(z;L,L) =
∏

(µ)L∈T

(℘(z, L)− ℘(µ,L))−1,

where the class (µ)L of µ modulo L runs through the finite set T of (N − 1)/2 torsion points of
the torus C/L such that T ∪ (−T ) = (L/L) \ {(0)L}.

In order to be able to compare different constructions properly, we also recall the definition
of the classical ϕ-function. The following definition stems from [Rob73].

Definition 2.1.4. We define the following functions:

a)

ϑ(t;ω1, ω2) = exp
(

πt2ω1
2ω1a(L)

) θ1(t/ω1, ω2/ω1)

η(ω2/ω1)
with a(L) =

ω2ω1 − ω1ω2

2i
,

b)

ϕ(t;ω1, ω2) = exp

(
−H(t, t)

2

)
ϑ(t;ω1, ω2) with H(t, t′) =

πtt′

a(L)
,

c)

η(2)(ω1, ω2) =
2π

w1
η2(ω2/ω1).

Remark 2.1.5. a) The function t 7→ ϑ(t;ω1, ω2) is entire, the zeros are the points of the
lattice L = [ω1, ω2] each of order one. It is the unique reduced theta function with divisor
(0) relative to C/L such that

d

dt
ϑ(t;ω1, ω2)|t=0 =

2πη2(ω2/ω1)

ω1
.

b) The function t 7→ ϑ12(t;ω1, ω2) is the unique reduced theta function with divisor 12(0)
relative to C/L such that

lim
t→0

ϑ12(t;ω1, ω2)

t12
= ∆(L).
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c) The functions t 7→ ϑ12(t;ω1, ω2) and t 7→ ϕ12(t;ω1, ω2) are independent of the choice of
basis of L and it makes sense to write ϑ12(t;L) and ϕ12(t;L), respectively. Moreover, let
f > 0 be an integer. If t ∈ C is such that ft ∈ L, then ϕ12f (t;L) = ϕ12f (t;ω1, ω2) only
depends on the class t modulo L. This is Lemma 2 in [Rob73, §1].

d) For a ∈ C× Lemma 1 in [Rob73, §1] shows that

ϑ(at; aω1, aω2) = ϑ(t;ω1, ω2) and ϕ(at; aω1, aω2) = ϕ(t;ω1, ω2).

e) One can check that

ϕ(t;ω1, ω2) = iq
1/12
ω2/ω1

q
−1/2
t/ω1

(1− qt/ω1
)e

πt(ω1t−ω1t)
2ω1a(L)

∞∏
n=1

(
1− qt/ω1

qnω2/ω1

)(
1− q−1

t/ω1
qnω2/ω1

)
,

which is the definition of the ϕ-function given in [Rob90] in our notation.

f) If we set

K(z, L) =
ϕ(z;ω1, ω2)

η(2)(ω1, ω2)
,

then as a function in t, K(t, L) is independent of the choice of basis of L.

g) Assume we are in the situation as in Definition 2.1.3. Then on page 237 in [Rob90] it is
shown that

K(z;L,L) =
K(z, L)[L:L]

K(z, L)
.

Elliptic functions in [Lan73] Let a = (a1, a2) ∈ Q2 not both integers. Then we say that N
is a precise denominator of a, if it is the least common multiple of the denominators of a1 and
a2.

Definition 2.1.6. a) We define

ϕ̃(z;ω1, ω2) = e−
1
2
η1ω1(z/ω1)2 · q

1
2

z/ω1
· σ(z, L).

b) We define the function

f(z;ω1, ω2) =
2πi

ω1
· q−

1
2

z/ω1
· η2(ω2/ω1) · ϕ̃(z;ω1, ω2)

and for L = [1, τ ] we set f(z; τ) := f(z; 1, τ)

c) For u, v ∈ R we define

θ(u, v; τ) = θ

((
u
v

)
; τ

)
= f(u− vτ ; τ)eπiv(vτ−u).

d) Let (a1, a2) ∈ Q2 not both integers, abbreviated by a = (a1, a2) and suppose N is the
precise denominator of a. We define Siegel functions of primitive level N by

H(a; τ) = H

((
a1

a2

)
; τ

)
= Ha(τ) = θ(a; τ)12N .

Remark 2.1.7. By Theorem 4’ in [Lan73] we have the following q-expansion:

ϕ̃(z;ω1, ω2) =
ω1

2πi
(qz/ω1

− 1)

∞∏
n=1

(1− qnω2/ω1
qz/ω1

)(1− qnω2/ω1
q−1
z/ω1

)

(1− qnω2/ω1
)2

.
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Work of Robert in [Rob90] The main result of this section is needed later on to define our
elliptic units is Theorem 2.1.11. As in [Rob90], for a lattice L = [w1, w2] we are going to call a
basis satisfying w2/w1 ∈ H a positively oriented basis and we write now often ω for a basis of a
lattice L.

Definition/Lemma 2.1.8. [Rob90, p. 236]

a) If M ∈ SL2(Z) and ω̃ = (w̃1, w̃2) is a basis of L with the identity(
w̃2

w̃1

)
= M

(
w2

w1

)
,

there exists a 12-th root of unity ρ(2)(M) such that η(2)(w̃1, w̃2) = ρ(2)(M)η(2)(w1, w2).

b) Let L and L be lattices such that L ⊂ L. For each of these choose a positively oriented
basis ω = (w1, w2) and ω = (w1, w2), respectively. The matrix identity(

w1

w2

)
= B

(
w1

w2

)
defines a matrix B = β(ω, ω) ∈M>0

2 (Z) satisfying det(β(ω, ω)) = [L : L].

Definition 2.1.9. [Rob90, p. 237] Assume we are in the situation as in Definition/Lemma 2.1.8
b). Then we define FBω as the function

FBω : z 7−→ ϕ(z;ω)det(B)

ϕ(z;ω)
.

Lemma 2.1.10. [Rob90, p. 237] Assume we are in the situation as in Definition/Lemma 2.1.8
b) and that det(B) is odd. Then we have the equality

FBω (z) =
η(2)(ω)det(B)

η(2)(ω)
K(z;L,L).

Theorem 2.1.11. [Rob90, Théorème principal, (15), p. 238] Let L and L be two complex
lattices with bases ω and ω (pos. oriented) such that L ⊂ L and the index [L : L] is prime to 6.
Then there exists a ρ(ω, ω) ∈ C× which has the following three properties:

a) The quotient

δ(L,L) := ρ(ω, ω)−1 η
(2)(ω)[L:L]

η(2)(ω)

is independent of the choice of bases.

b) The holomorphic function

F̃ (z;L,L) := ρ(ω, ω)−1FBω (z)

with B = β(ω, ω) does not depend on the choice of bases.

c) Let L,L, L′, L′ be four lattices satisfying the following conditions:

i) the inclusions L′ ⊂ L ⊂ L, L′ ⊂ L′ ⊂ L;
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ii) the isomorphisms L/L ∼= L′/L′, L/L′ ∼= L/L′;
iii) L′ ∩ L = L′;

which can be illustrated by the following diagram:

L

L′

L

L′

Furthermore, let {zj}, 1 ≤ j ≤ [L : L′], be a system of representatives of the quotient L/L′.
Then we have the distribution relation

F̃ (z;L,L) =

[L:L′]∏
j=1

F̃ (z + zj , L
′, L′).

Remark 2.1.12. a) The number ρ(ω, ω) is unique and a 12-th root of unity.

b) Let N := [L : L] be prime to 6. Then we have

F̃ (z;L,L)12 =
∆(L)N

∆(L)K(z;L,L)12
and δ(L,L)12 =

∆(L)N

∆(L)

with K(z;L,L) from Definition 2.1.3 as well as ∆(L) and ∆(L) from Remark 2.1.2 b).
This follows from Lemma 2.1.10 and Corollaire 1 on page 218 in [Rob92], respectively.

Elliptic functions in [dS87] Let L = [ω1, ω2] be a lattice of C with τ = ω2/ω1 ∈ H. In [dS87]
de Shalit defines

η(z, L) :=
ω2η1 − ω1η2

2πiA(L)
z +

ω1η2 − ω2η1

2πiA(L)
z

with A(L) := (2πi)−1(ω2ω1 − ω2ω1) = π−1a(L), which is an invariant of the lattice, as well as
η1 := ω1

∑
n

∑′
m(mω1 +nω2)−2 and η2 := ω2

∑
m

∑′
n(mω1 +nω2)−2. Using this he defines what

he calls the fundamental theta function

θ̃(z, L) := ∆(L) · e−6η(z,L)z · σ(z, L)12,

where one uses Definition 2.1.1 b) and Remark 2.1.2 b).
With the help of [Wei76, Ch. IV §3 (15)] one can show for τ = ω2

ω1
and L = [1, τ ]:

θ̃(z;L) = e6A(L)−1z(z−z) · qτ · (q
1
2
z − q

−1
2
z )12 ·

∞∏
n=1

(
(1− qnτ qz)(1− qnτ q−1

z )
)12

θ̃(z;L) = ϕ12(z; 1, τ), (2.1)

with the ϕ-function defined in Definition 2.1.4 b).

Definition 2.1.13. Let L be a lattice with complex multiplication by Ok. Let a be an integral
ideal of k. The function

Θ(z;L, a) =
θ̃(z, L)N (a)

θ̃(z, a−1L)

is an elliptic function with respect to L.
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Approach of Kato in [Kat04] Kato proves in [Kat04] the following proposition.

Proposition 2.1.14. [Kat04, Prop. 1.3 i)] Let E be an elliptic curve over a scheme S. Let c be
an integer which is prime to 6. Then there exists a unique element cθE ∈ O(E \ cE)× satisfying
the following conditions

i) cθE has the divisor c2(0) − cE, where (0) denotes the zero section of E regarded as the
Cartier divisor on E and cE = ker(c : E → E), where c is the multiplication by c, is also
regarded as a Cartier divisor on E.

ii) Na(cθE) = cθE for any integer a which is prime to c, where Na is the norm map from
O(E \ acE)× to O(E \ cE)× associated to the pull back homomorphism from O(E \ acE)
to O(E \ cE) by the multiplication a : E \ acE → E \ cE.

For τ ∈ H and z ∈ C \ c−1(Zτ + Z), let cθ(τ, z) be the value at z of cθ of the elliptic curve
C/(Zτ + Z) over C. Then

cθ(τ, z) = q
1
12

(c2−1)
τ (−qz)

1
2

(c−c2) · γqτ (qz)
c2γqτ (qcz)

−1,

where again we set qx := e2πix and γqτ (qz) =
∏
n≥0(1− qnτ qz)

∏
n≥1(1− qnτ q−1

z ).

Let k be an imaginary quadratic number field and fix an embedding k → C.

Definition 2.1.15. [Kat04, p. 251] Let m be a non-zero ideal of Ok such that O×k → (Ok/m)×

is injective. For a field k′ over k, by a CM-pair with modulus m over k′ we mean a pair (E,α),
where E is an elliptic curve over k′ endowed with an isomorphism Ok ∼= End(E) such that the
composite map

Ok
∼=−→ End(E)→ Endk′(Lie(E)) ∼= k′

coincides with the inclusion map, and α is a torsion point in E(k′) such that the annihilator of
α in Ok coincides with m.

In Section 15.4 in [Kat04] Kato makes the following construction: Let k′ be a field over k
and let E be an elliptic curve over k′ such that End(E) ∼= Ok. We normalize this isomorphism
in such a way that the composite map

Ok
∼=−→ End(E)→ Endk′(Lie(E)) ∼= k′

is the inclusion map. He argues that, similar as in the proof of Proposition 2.1.14, for an ideal
a of Ok which is prime to 6, there is a unique element aθE ∈ O(E \ E[a])× having the following
properties:

a) div(aθE) = N (a)(0)−
∑

P∈E[a](P ).

b) Nb(aθE) = aθE for any integer b which is prime to a. Furthermore, if a = (c) for an integer
c, we have aθE = cθ for a suitable E.

Proposition 2.1.16. [Kat04, p. 253] Let m be a non-zero ideal of Ok such that O×k → (Ok/m)×

is injective, and let (E,α) be a CM-pair of modulus m over k(m). Then for ideals a, b which are
prime to 6m we have

(bθE(α))N (a)σa(bθE(α))−1 = (aθE(α))N (b)σb(aθE(α))−1
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Now in his survey [Fla09] Flach formulates a lemma in an even more general setting than
above. Part iv) of the following lemma is of special interest to us because it gives a direct link
between the treatments of Robert in [Rob90] and of Kato in [Kat04] summarized above.

Lemma 2.1.17. [Fla09, Lemma 2.1] Let E/S be an elliptic curve over a base scheme S and
c : E → Ẽ an S-isogeny of degree prime to 6. Then there is a unique function

cΘE/S ∈ Γ(E \ ker(c),O×)

satisfying

i) div(cΘE/S) = deg(c) · (0)−
∑

P∈ker(c)(P )

ii) For any morphism g : S′ → S we have g∗E(cΘE/S) = c′ΘE′/S where gE : E′ := E×S S′ → E
and c′ is a base change of c.

iii) For any S-isogeny b : E → E′ of degree prime to deg(c) we have b∗(cΘE/S) = c′ΘE′/S ,
where b∗ is the norm map associated to the finite flat morphism

E \ ker(c)→ E′ \ ker(c′).

Here c′ is the isogeny E′ → E′/b(ker(c)).

iv) For S = Spec(C), the elliptic curve E = C/L and c : C/L → C/L̃ for lattices L ⊆ L̃ we
have

cΘE/S(z) = F̃ (z;L, L̃),

with F̃ (z;L, L̃) from Theorem 2.1.11.

2.1.2 Elliptic units

We shall give here a short survey of different definitions of elliptic units in the literature. We
refrain from stating all interesting properties they satisfy and only go into detail for the elliptic
units defined in [Ble04] because these are the ones we are working with later on. In this section
we assume that k is an imaginary quadratic field with discriminant dk. Furthermore, let d be
the different of k over Q.

Invariant defined in [Ram64] Here we present the construction of Ramachandra given in
[Ram64] but only for the special case we are interested in (i.e. for the case g = (1) and b0 = (1)
in the notation of [Ram64]).

For a positive integer f and (v, u) ∈ Q2 not both integers and having f as a common
denominator we define

Φ

((
v
u

)
, z

)
= Φ0

((
v
u

)
, z

)12f

,

with Φ0 from Remark 2.1.2 d).
Fix an integral ideal f of k and choose a γ ∈ k such that γd has exact denominator f, i.e.

such that γdf is integral and (γdf, f) = (1). The existence of such a γ follows for example from
an application of the strong approximation theorem. Let b be an ideal of Ok with b = [b1, b2]
such that b2

b1
∈ H. Then we define

Φγ(b) =

Φ

((
Tr(γb2)

Tr(γb1)

)
, b2/b1

)
if f - b,

|(2π)−12f (N (b))6f∆(b)f | if f | b.
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Now choose an ideal b1 coprime to f in the ray class inverse to that of γdf mod f.
For C ∈ Cl(f) we can then define

Φf,(1)(C) := Φγ(b1c) for c ∈ C.

Ramachandra shows in [Ram64] that Φf,(1)(C) is

a) independent of the choice of γ and b1 as well as

b) an invariant of the class C ∈ Cl(f).

Ramachandra invariant in [Lan73] Recall that d−1 := {λ ∈ k : Tr(λOk) ⊂ Z}. Fix a
non-zero integral ideal f of k with f 6= (1).

Definition 2.1.18. Let h be a fractional ideal of Ok. If h = [z1, z2] with z2/z1 ∈ H, we put

H(h) = H

((
Tr(z2)
Tr(z1)

)
; z2/z1

)
,

using Definition 2.1.6 d). It can be shown that this definition is independent of the chosen basis
of h.

Furthermore, let b be an integral ideal which is prime to f. We define the Ramachandra
invariant as

Φf(b) = H(bd−1f−1).

Remark 2.1.19. It is easy to see that if N is the smallest positive integer contained in f and
h = bd−1f−1 = [z1, z2], then N is also the precise denominator of the pair

(u, v) = (Tr(z2),Tr(z1)).

A lemma in [Lan73, Ch. 19, §3] shows now that the value Φf(b) depends only on the ray class
of b modulo f, so it makes sense to denote the Ramachandra invariant by Φf(C), for C ∈ Cl(f)
containing b.

For the case f = (1) and C ∈ Cl(1) we set

Φ(1)(C) := |(2π)−12N (c)6∆(c)| for a c ∈ C,

which is also independent of the choice of c. In [Lan73] this invariant is denoted by g(c) = g(C).
As the names are already suggesting, the Ramachandra invariant of [Lan73] and the invariant

of Ramachandra coincide in the cases we have treated.

Lemma 2.1.20. Let f be a non-zero integral ideal in Ok and C ∈ Cl(f). Then we have

Φf,(1)(C) = Φf(C).

Proof. For f = (1) this follows directly from the definitions. In the case f 6= (1), for Φf,(1)(C)
we have to choose a γ such that γdf has exact denominator f and then an integral ideal b1 in
[γ−1d−1f−1]f ∈ Cl(f), where we use [ · ]f as notation for a class in Cl(f). Now take an integral
ideal b ∈ C and choose a basis of the integral ideal c := bb1 = [c1, c2] such that c2/c1 ∈ H so we
get by the definitions

Φf,(1)(C) = Φ0

((
Tr(γc2)
Tr(γc1)

)
, c2c1

)12f

= e
−12fπiTr(γc1)(Tr(γc2)−Tr(γc1)

c2
c1

) θ1(Tr(γc2)− Tr(γc1) c2c1 ,
c2
c1

)12f

η( c2c1 )12f
,
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where f is the smallest integer contained in f.
For the other side we take the same b ∈ C as above, and we get Φf(C) = Φf(b) = H(bd−1f−1).

We see that [c]f = [bb0]f = [bγ−1d−1f−1]f by definition. But we also have [γc]f = [bd−1f−1]f, so by
changing b ∈ C above, if necessary, we can get bd−1f−1 = [γc2, γc1]. With the Definition 2.1.18
and Definition 2.1.6 we then obtain

Φf(C) = H

((
Tr(c2)
Tr(c1)

)
, c2/c1

)
= f

(
Tr(c2)− Tr(c1)

c2

c1
,
c2

c1

)12f

e
12fπiTr(c1)(Tr(c1)

c2
c1
−Tr(c2))

.

Now with Definitions 2.1.1 and 2.1.6 as well as Remark 2.1.7 we can compute for L = [ω1, ω2]

θ1(z/ω1, ω2/ω1)

η(ω2/ω1)
= −i · f(z;ω1, ω2).

Considering that u and v are switched in the definitions of θ and Φ0 as well as that (−i)12f = 1,
we obtain the result.

Elliptic units of Robert in [Rob73] Recall that k is an imaginary quadratic field and let f
be a non-zero ideal of Ok.

Let f ∈ N be the smallest integer contained in f. We set

A(f) := {(t, b) | t ∈ C and b s. t. f = {α ∈ Ok | αt ∈ b} = Ok ∩ t−1b}.

We say that (t, b) and (t′, b′) are equivalent if there exists a u ∈ k× such that (t′/ut) is in the
ray modulo f and b′ = ub. There exists a v ∈ O×k such that t′ ≡ vut mod b′ and one obtains for
two equivalent pairs (t, b) and (t′, b′) in A(f) ([Rob73, §2.2, Lemma 3])

ϕ12f (t; b) = ϕ12f (t′; b
′
),

where we use the ϕ-function defined in Definition 2.1.4 b) and these expressions are well-defined
because of Remark 2.1.5 c).

For each pair (t, b) ∈ A(f), the ideal tfb−1 is an integral ideal prime to f; letting C(t,b) ∈ Cl(f)
be the class of tfb−1 we get the following ([Rob73, §2.2, Lemma 4]): the map (t, b) 7→ C(t,b)

defines an isomorphism of groups between A(f)/ ∼ and Cl(f). So one can make the following

Definition 2.1.21. a) If f 6= (1), then we set for each class C ∈ Cl(f):

ϕf(C) := ϕ12f (t; b), where (t, b) ∈ A(f) such that C(t,b) = C.

b) If f = (1), then we set for each class C ∈ Cl(1)

ϕ(1)(C) = |(2π)−12N (b)6∆(b)|, where b ∈ C−1.

So with the above, we have seen that ϕf(C) does only depend on f and the class C ∈ Cl(f).

Remark 2.1.22. For C ∈ Cl(1) we have ϕ(1)(C) = Φ(1)(C), which follows from Proposition 2
in [Rob73, §2] and Lemma 2.1.20.

We collect some properties of these invariants. Assume f 6= (1) and C,C ′ ∈ Cl(f). Then we
have by Theorem 1 in [Rob73, §2.3]

a) ϕf(C) ∈ Ok(f).

b) ϕf(C)/ϕf(C
′) ∈ O×k(f).

c) ϕf(C)σ(C′) = ϕf(CC
′).
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Siegel units in the Hilbert class field in [dS87] For any ideal a of Ok we define

u(a) :=
∆(Ok)
∆(a−1)

and it is a classical result that we have: u(a) ∈ k(1), u(ab) = u(a)σb ·u(b) and (u(a)) = a−12Ok(1).

Elliptic units in [Ble04]

Definition 2.1.23. Let L ⊆ C denote a Z-lattice of rank 2 with complex multiplication by Ok.
For any integral Ok-ideal a satisfying (N (a), 6) = 1 we define a meromorphic function

ψ(z;L, a) := F̃ (z;L, a−1L), z ∈ C,

where F̃ is defined in Theorem 2.1.11 b).

The following object is the main object we are going to use in the following chapters.

Definition 2.1.24. Let f be an integral ideal of Ok and a be an integral ideal of Ok satisfying
(N (a), 6f) = 1, then we call ψ(1; f, a) an elliptic unit.

Remark 2.1.25. The function ψ is periodic with respect to L and satisfies the relation

ψ(λz;λL, a) = ψ(z;L, a) for all λ ∈ C×.

Proposition 2.1.26. [Ble04, Prop. 2.2] Let m be an integral Ok-ideal such that (m, a) = 1 and
let τ ∈ C denote a primitive m-division point of C/L. Let c denote an integral Ok-ideal such
that (m, c) = 1. Then:

a) ψ(τ ;L, a) ∈ k(m).

b) ψ(τ ;L, a)σ(c) = ψ(τ ; c−1L, a).

Theorem 2.1.27. [Ble04, Thm. 2.3]

a) Let f denote a non-trivial integral ideal of k and let p be any prime ideal of k. Suppose
that (a, 6fp) = 1. If τ ∈ C denotes a primitive fp-division point of C/fp, then

Nk(fp)/k(f)

(
ψ(τ ; fp, a)w(f)/w(fp)

)
=

{
ψ(τ ; f, a), if p | f,
ψ(τ ; f, a)1−σ(p)−1

, if p - f.

b) Let p be a prime ideal such that (a, 6p) = 1 and let τ ∈ C denote a primitive p-division
point of C/p. Then

Nk(p)/k(1)

(
ψ(τ ; p, a)w(1)/w(p)

)
=
δ(Ok, a−1)

δ(p, a−1p)
,

where δ is the function of lattices defined in Theorem 2.1.11 a).
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Remark 2.1.28. We also want to discuss the Galois action on an object appearing in Theo-
rem 2.1.27 b). So assume the same conditions as in Theorem 2.1.27 b). Furthermore, let c be an
integral ideal coprime to 6ap. Then we get with Equation (?) [sic] on p. 226 in [Rob92], the fact
that s 7→ Λ(s, L) (where Λ is defined (loc. cit.) as a function with s an idele and L a suitable
lattice) only depends on the commensurability class of L and a translation between class field
theory based on ideles and based on ideals that

δ(Ok, a−1)

δ(p, pa−1)

σ(c)

=
δ(c−1, a−1c−1)

δ(pc−1, a−1pc−1)
. (2.2)

Moreover, for a fixed a we will sometimes shorten the notation to

δp :=
δ(Ok, a−1)

δ(p, pa−1)
. (2.3)

Using now (2.2) we can see that for another prime ideal q satisfying the conditions we obtain

δ
1−σ(q)−1

p = δ
1−σ(p)−1

q . (2.4)

Proposition 2.1.29. Let f denote a non-trivial integral ideal of k and let p be any prime ideal
of k. Moreover, let a1 and a2 be two integral ideals such that (a1, 6fp) = 1 = (a2, 6fp). If τ ∈ C
denotes a primitive fp-division point of C/fp, then

ψ(τ, pf, a1)σ(a2) = ψ(τ ; a−1
2 fp, a1) = ψ(τ ; fp, a1a2)ψ(τ ; fp, a2)−Na1 .

and
ψ(τ ; fp, a1)σ(a2)−N (a2) = ψ(τ ; fp, a2)σ(a1)−N (a1).

Proof. The proof of the first part works analogously to the proof of Proposition 2.4 ii), Chp. II
in [dS87]. Then for the second part we use the first part to obtain:

ψ(τ ; fp, a1)σ(a2) · ψ(τ ; fp, a2)N (a1) = ψ(τ ; fp, a1a2)

ψ(τ, fp, a2)σ(a1) · ψ(τ ; fp, a1)N (a2) = ψ(τ ; fp, a2a1)

which implies the second assertion.

Proposition 2.1.30. [Ble04, Thm. 2.4] Let f be a non-trivial integral Ok-ideal and let τ ∈ C
be a primitive f-division point of C/L.

a) If f is composite, then
ψ(τ ;L, a) ∈ O×k(f).

b) If f is a prime power, then

ψ(τ ;L, a)Ok(f) =
(
pOk(f)

)(N (a)−1)/Φ(pn)
,

where Φ is the Euler Φ-function.
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Cyclotomic numbers It is instructive to compare the assertions presented for the elliptic case
with the classical results of the cyclotomic theory.

Let m ∈ N and let µm be the group of m-th roots of unity. For each m we fix a generator ζm
of µm, which should satisfy

ζddm = ζm for all m, d ∈ N

Let m ∈ N and p be a rational prime and write Q(m) for Q(µm). With [Sol92, Lemma 2.1]

NQ(mp)/Q(m)(1− ζmp) =

{
1− ζm if p | m,
(1− ζm)1−σ(p)−1 if p - m.

Furthermore, we have

NQ(p)/Q(1− ζp) = p if p is odd, also NQ(4)/Q(1− ζ4) = 2,

and it is easy to show that (see [Sol92, Cor. 2.1]) if m is not a prime power, we have

1− ζm ∈ O×Q(m).

Comparing these results now with Theorem 2.1.27 and Proposition 2.1.30 one has to recognize
the striking similarity to the elliptic situation.

Elliptic units in [Kat04] and [JLK11] Recall that in Definition 2.1.15 we already defined
a CM-pair and discussed some properties surrounding them. In order to be able to give the
definition of elliptic units in [Kat04] and [JLK11] we summarize some additional properties of
CM-pairs in the following remark.

Remark 2.1.31. [Kat04, pp. 251/252]

a) If (E,α) and (E′, α′) are isomorphic CM-pairs of the same modulus m over k′, the isomor-
phism (E,α)→ (E′, α′) is unique by the injectivity of O×k → (Ok/m)×

b) There exists a CM-pair of modulus m over k(m) which is isomorphic to (C/m, 1 mod m)
over C. This CM-pair is unique up to isomorphism. We call this CM-pair of modulus m
over k(m) the canonical CM-pair over k(m).

c) Let k′ be a field over k and let (E,α) be a CM-pair of modulus m over k′. Then there
exists a unique homomorphism k(m)→ k′ for which (E,α) is obtained from the canonical
CM-pair over k(m) by base change.

d) Let k′ be a finite abelian extension of k, let a be a non-zero prime ideal of Ok whose prime
divisors are unramified in k′ and let σa = (a, k′/k) ∈ Gal(k′/k).

Let (E,α) be a CM-pair of modulus m over k′ and let (Eσa , σa(α)) be the CM-pair of
modulus m over k′ obtained from (E,α) by base change σa : k′ → k′. Then (Eσa , σa(α)) is
isomorphic to (E/E[a], α mod E[a]) where E[a] is the part of E which is annihilated by a.

We will denote the unique isomorphism as

ηa : (E/E[a], α mod E[a])→ (Eσa , σa(α)).
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Definition 2.1.32. Let m be a non-zero ideal of Ok such that O×k → (Ok/m)× is injective, let
(E,α) be the canonical CM-pair over k(m), and let a be an ideal of Ok which is prime to 6m.
Then we define the following element:

azm := aθE(α)−1 ∈ k(m)×.

On page 253 in [Kat04] Kato argues that the following properties hold:

a) The element aθE(α) is a q-unit for any q of Ok which is prime to m, and is a unit if m has
at least two prime divisors.

b) Letm be a non-zero ideal ofOk and fix a prime p. Then for n ≥ 1 such thatO×k → (Ok/pn)×

is injective and for an ideal a of Ok which is prime to 6pm, we have

Nk(pn+1m)/k(pnm)(azpn+1m) = azpnm.

Definition 2.1.33. (cf. [JLK11, Def. 3.2]) Fix a prime p and let m be a non-zero ideal of Ok.
Then for n ≥ 1 such that O×k → (Ok/pn)× is injective and for an ideal a of Ok which is prime
to 6pm we define

ζm := aζm := Nk(pnm)/k(m)(aθE(α)−1) ∈ k(m)×

and if k ⊂ F ⊂ k(m) has conductor m, we set

ζF := Nk(m)/F (ζm).

Comparison of the different definitions Let k be an imaginary quadratic field and f be a
non-zero integral ideal in Ok. For C ∈ Cl(f) we have already shown in Lemma 2.1.20 that

Φf,(1)(C) = Φf(C),

i.e. the construction of Ramachandra in [Ram64] and Lang [Lan73] coincide. Robert shows in
Proposition 2 [Rob73, §2] that

ϕf(C) = Φf,(1)(C). (2.5)

Let a be an ideal coprime to 6f. Then we have by Definition 2.1.13 and (2.1) above

Θ(z; f, a) =
θ̃(z; f)N (a)

θ̃(z; fa−1)
=
ϕ12N (a)(z; f)

ϕ12(z; fa−1)

Since ρ in Theorem 2.1.11 is a 12-th root of unity, we have by Definition 2.1.9

ψ12(z; f, a) =
ϕ12N (a)(z; f)

ϕ12(z; fa−1)
. (2.6)

So in particular we have ψ(1; f, a)12 = Θ(1; f, a).
Assume f 6= (1). For a given C ∈ Cl(f) and c ∈ C coprime to f one can always choose the

tuple (1, fc−1) ∈ A(f) because f = fc−1 ∩ Ok. So we obtain

ϕf(C) = ϕ12f (1; fc−1) (2.7)

and also

Θ(1; f, a)f = ψ12f (1; f, a) =
ϕ12fN (a)(z; f)

ϕ12f (z; fa−1)
= ϕf(1)N (a)−σ(a).
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Let a be integral ideals of Ok with (a, 6f) = 1. With Lemma 2.1.17 iv) we have

ψ(1;m, a) = cΘE/S(1) (2.8)

for E = C/f and the map c : C/f → C/fa−1. For the canonical CM-pair (C/f, 1 mod f) and for
the f where both are defined we have

ζf = ψ(1; f, a)−1 (2.9)

with ζf from Definition 2.1.33.

2.2 L-functions

We briefly recall some properties of basic L-functions. Our treatment here is based on [Tat84]
and [Tat11].

2.2.1 Abelian L-functions

Let k be, for the moment, a general number field and let χ be a (generalized) Dirichlet character.
Then L(s, χ) is a complex function, defined for Re(s) > 1 by

L(s, χ) =
∏
p

(
1− χ(p)N (p)−s

)−1
=
∑
a

χ(a)

N (a)s
,

where the product is taken over all nonzero prime ideals and the sum is taken over all non-zero
integral ideals a.

This function can be analytically continued to C if χ 6= 1. For χ = 1, the zeta function
ζk(s) := L(s, 1) has an analytic continuation to the complex plane except for a simple pole at
s = 1. By abuse of notation the analytic (resp. meromorphic) continuation will also be denoted
by L(s, χ) and ζk(s), respectively.

For each infinite place v of k, using the the well-known Γ-function we define

γv(s, χ) :=


Γ( s2) if v is real and v - fχ,
Γ( s+1

2 ) if v is real and v | fχ,
Γ( s2)Γ( s+1

2 ) if v is complex.

Then we can set Λ(s, χ) :=
∏
v|∞ γv(s, χ)L(s, χ).

The function ξ(s, χ) := A
s/2
χ Λ(s, χ) satisfies the functional equation

ξ(1− s, χ) = Wχξ(s, χ) with Aχ =
|dk|N (fχ)

π[k:Q]
,

and a Wχ ∈ C× which is called Artin root number and satisfies |Wχ| = 1 and Wχ = Wχ. We
also have the analytic class number formula, which asserts that the Dedekind zeta function ζk(s)
has a simple pole at s = 1 with residue

2r1(2π)r2hkRk√
|dk|wk

,

where Rk is the regulator of k, wk the number of roots of unity contained in k, r1 the number
of real places and r2 the number of complex places of k. Using the functional equation and the
analytic class number formula we get that the Taylor expansion of ζk(s) at s = 0 is

ζk(s) =
−hkRk
wk

sr1+r2−1 + . . .
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Let K/k be an abelian extension of number fields with Galois group G. Fix a non-empty set
S of places of k, containing Sram(K/k) and S∞. If v is unramified in K/k, we denote by σv the
Frobenius automorphism at v in G.

Definition 2.2.1. The S-imprimitive L-function LS(s, χ) associated to χ ∈ Ĝ is defined as the
meromorphic extension to the whole complex plane of the holomorphic function given by the
product ∏

v/∈S

(1− χ(σv)N (v)−s)−1 for Re(s) > 1.

Remark 2.2.2. a) If χ 6= 1, then the L-function LS(s, χ) is holomorphic everywhere on C.

b) If χ = 1, then ζk,S(s) := LS(s, 1) is holomorphic outside s = 1 and has a simple pole of
order 1 at s = 1.

c) For G = Gal(k(f)/k) and a proper character χ modulo f, we have

LS∞∪Sram(s, χ) = L(s, χ).

We let rS(χ) denote the order of vanishing of LS(s, χ) at s = 0 and L∗S(0, χ) the leading term
in the Taylor expansion at s = 0.

By [Tat84, Chap. I, Prop 3.4] we know that

rS(χ) =

{
|{v ∈ S : χ(Gv) = 1}| if χ 6= 1,

|S| − 1 if χ = 1.

Let T now be a set of places disjoint to S, then we can define the S-imprimitive T -modified
L-function as

Lk,S,T (s, χ) :=
∏
v∈T

(1− χ(σv)N (v)1−s) · LS(s, χ).

Special notation in [Lan73] Fix an imaginary quadratic number field k. Lang defines in
[Lan73] the following two L-functions, where we have to assume that Re(s) > 1. They trivially
coincide with (analytic resp. meromorphic continuations of) the L-functions from above on the
defined region.

Let O be an order in Ok with [Ok : O] = c. A proper O-ideal is an ideal a of O for which it
holds that O = {β ∈ k : βa ⊂ a}. We collect some well-known properties of proper O-ideals:

a) Principal ideals are proper.

b) For a fractional ideal a, a is proper if and only if a is invertible.

c) All ideals in the maximal order are proper.

d) An irreducible proper O-ideal prime to the conductor is a prime ideal.

We denote by IO the group of proper O-ideals and by PO the group of principal fractional O-
ideals. Then the group of proper O-ideal classes is defined by GO = IO/PO. Let JO be the
group of invertible O-ideals, Ik(c) the group of fractional ideals of Ok coprime to c and

PZ(c) := {(α) : α ∈ k, α ≡ a mod cOk for some a ∈ Z with (a, c) = 1}.

With these definitions one has the following isomorphisms:

Pic(O) := JO/PO ∼= GO ∼= Ik(c)/PZ(c).

For O = Ok we get directly from the definitions: GOk = Clk ∼= Gal(k(1)/k).
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Remark 2.2.3. Unfortunately, after submitting this thesis, the author became aware of a mis-
take made in Chapter 21 of [Lan73] concerning L-functions of orders which is sometimes cited
below. But everything is still true for the maximal order and this is the case which we are going
to use in our applications. So we decided to keep the paragraph above about proper ideals but
assume from now on that we work with maximal orders. This means when we ask for an ideal to
be proper this is automatically fulfilled. This is also the resolution chosen by Lang in the second
edition [Lan87].

We assume from now on that O is the maximal order Ok.
Let A be a proper O-ideal class. Then we define the zeta function ζ(s,A) =

∑
aN (a)−s by

taking the sum over all proper O-ideals in the class. Let χ be a character of the proper O-ideal
class group GO. We define the L-series

LO(s, χ) =
∑
A

χ(A)ζ(s,A) =
∏
b

(
1− χ(b)

N (b)s

)−1

(2.10)

with the product taken over all proper irreducible O-ideals.
Let k be an imaginary quadratic number field, g an integral ideal of Ok and χ a character of

Cl(g). Then we set

Lg(s, χ) =
∑

(a,g)=1

χ(a)

N (a)s
, (2.11)

where the sum is taken over all the ideal coprime to g.

2.2.2 Artin L-functions

This section and the next section are based on Chapter 0 and Chapter 1 in [Tat84], where the
reader can find some details and further references for the assertions stated here.

Let K/k be a finite Galois extension with Galois group G. Let χ : G→ C be the character of
a complex representation G → GL(V ). For each finite place P of K, the element σP of GP/IP
acts on V IP . So we can set for Re(s) > 1:

L(s, V ) :=
∏
p

(
det(1− σPN (p)−s | V IP)

)−1
,

where the product is taken over all the finite places p of k, and P is an arbitrarily chosen place
of K above p. Furthermore, let S be a finite set of places of k containing S∞. The S-imprimitive
Artin L-function is defined for Re(s) > 1 as

LS(s, χ) =
∏
v/∈S

(
det(1− σwN (v)−s | V Iw)

)−1
,

where the product ranges over all the places v of k not contained in S and w is again an arbitrary
place above v in K. It follows directly from the definitions that L(s, V ) = LS∞(s, V ).

It can be shown that the definition is independent of these choices. Furthermore, it can be
shown that LS(s, V ) remains unchanged if we replace V with an isomorphic representation, so
it is also well-defined to write LS(s, χ) instead of LS(s, V ). If χ(1) = 1 the Artin L-function
coincides with the primitive abelian L-function.

In order to avoid confusion, we will also include the Galois extension K/k in the notation by
writing LK/k,S(s, χ), if necessary.
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2.2.3 Leading terms at s = 0 and s = 1

Let K/k be a Galois extension of number fields with Galois group G := Gal(K/k). Given
an S-imprimitive Artin L-function LS(s, χ) we can write in the neighbourhood of s = 0 the
expansion:

LS(s, χ) = cS(χ)srS(χ) + . . .

where rS(χ) is the order of vanishing at s = 0 and cS(χ) denotes the leading term of the Laurent
expansion. This is the notation of [Tat84], but we will often use the alternative notation L∗S(0, χ)
for the leading term. If S = S∞ we reduce the notation to c(χ) or alternatively L∗(0, χ).

For the first non-zero term of the Laurent expansion of L(s, χ) at s = 1 we write c1(χ) or
alternatively L∗(1, χ). So for a character of G = Gal(K/k) we have Equation (6.8) in [Tat84]

c1(χ)

c(χ)
= (−1)r1(χ) · 2r2χ(1)+a1(χ) (πi)(a2(χ)+r2χ(1))

τ(χ)ir2χ(1)
√
|dk|

χ(1)

where τ(χ) is the Gauss sum defined on page 19 in [Tat84] and

a1(χ) =
∑
v real

dim(V Gw), a2(χ) =
∑
v real

codim(V Gw),

r1 = # of real places, r2 = # of complex places,
r1(χ) = order of vanishing of L(s, χ) at s = 1.

Now let k be an imaginary quadratic field, f an ideal in Ok and χ a non-trivial ray class character
modulo f. For this situation we obtain the following equality which we are going to use later:

c1(χ)

c(χ)
=

2πi

τ(χ)
√
dk
. (2.12)

In contrast, for the trivial character we get

c1(χ)

c(χ)
=
−2πi

τ(χ)
√
dk
. (2.13)

2.3 Kronecker’s limit formulas and applications

2.3.1 Kronecker’s limit formulas

In this section we present results which can be traced back to Kronecker (cf. [Kro29a] and
[Kro29b]). Later we will use them to prove the relation of the elliptic units and values of L-
functions.

Kronecker’s first limit formula Let τ = x+ iy ∈ H and set

E(τ, s) :=
∑

(m,n)

′ ys

|mτ + n|2s
, for Re(s) > 1.

This (Eisenstein) series has a simple pole at s = 1 with residue π and is holomorphic everywhere
else on the complex plane. We are interested in the constant term at s = 1. Kronecker proved
the following

Theorem 2.3.1. Let η(τ) be as defined in Definition 2.1.1 e) and γ be the Euler constant. Then
we have

E(τ, s) =
π

s− 1
+ 2π(γ − log(2)− log(

√
y)|η(τ)|2) +O(s− 1).
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Kronecker’s second limit formula Let u, v be real numbers which are not both integers and
τ = x+ iy ∈ H. We define

Eu,v(τ, s) =
∑

(m,n)

′
e2πi(mu+nv) ys

|mτ + n|2s
, for Re(s) > 1.

Theorem 2.3.2. The function Eu,v(τ, s) can be continued to an entire function of s, and one
has

Eu,v(τ, 1) = −π log |(f(u− vτ ; τ)qv
2/2
τ )|2

with f defined in Definition 2.1.6 b) and qτ = e2πiτ .

A proof of both theorems can be found in Chapter 20, §4 (resp. §5) in [Lan73] in fairly modern
language and also in [Mey57] in a more classical language.

Putting now together Definition 2.1.6 d) of H
((

u
v

)
; τ

)
and Theorem 2.3.2, an easy com-

putation gives us the following

Corollary 2.3.3. Let u, v ∈ Q with exact denominator N > 1 and τ ∈ H. Then we obtain

Eu,v(τ, 1) =
−π
6N

log

∣∣∣∣H ((uv
)

; τ

)∣∣∣∣ .
2.3.2 An application of Kronecker’s first limit formula

In this section we follow the treatment contained in Chapter 21 in [Lan73] respectively [Lan87]
(cf. Remark 2.2.3).

Let k be an imaginary quadratic field and O the maximal order in k. Then for a proper
O-ideal class A ∈ Cl(O) we set ζ(s,A) :=

∑
aN (a)−s, where the sum ranges over all non-zero

proper O-ideals in the class A and N (a) is the unique positive integer which generates aa.
Fix b ∈ A−1, then ab = (ξa) is principal. This way we get with a 7→ ξa a bijection between

the proper O-ideals in A and the O-equivalence classes of the elements of b, where two elements
are equivalent if their quotient is a unit in O.

We assume b = [1, τ ] because any proper O-lattice is equivalent to a lattice of this type. We
know that N (a)N (b) = N ((ξa)) so

ζ(s,A) =
N (b)s

w(O)

∑
ξ∈b
N (ξ)−s =

N (b)s

w(O)

∑
(m,n)

′ |mτ + n|−2s

For the discriminant D we compute

D(b) =


det

((
1 τ

1 τ

))2

= −(2y)2 if τ = x+ iy ∈ H,

(N (b))2D(O) always.

So we obtain

ζ(s,A) =
1

w(O)

(
2√
|dO|

)s ∑
(m,n)

′ ys

|mτ + n|2s
,

where we denote by |dO| the absolute value of the discriminant of O with dO := D(O).
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We set g(b) := |(2π)−12N (b)6∆(b)| (cf. Definition 2.1.21). This is an invariant of the
equivalence class of b, so we can write g(B) for g(b), where B is the proper O-lattice class of b.

By using the beginning of the exponential series of
(

2√
|dO|

)s−1

we obtain

ζ(s,A) =
1

w(O)

2π√
|dO|

(
1

s− 1
+ 2γ − log(|dO|) +

1

6
log(g(A−1))

)
+O(s− 1).

For a non-trivial character χ of GO, the sum over all χ(A) for the proper O-ideals classes A is
zero, so all the terms not depending on A vanish and we obtain the following theorem

Theorem 2.3.4. [Lan73, Ch. 21, §1, Thm. 1] Let χ be a non-trivial character of GO for the
maximal order O. Then

LO(1, χ) = − π

3w(O)
√
|dO|

∑
A∈GO

χ(A) log(g(A−1)),

If χ is the trivial character, then

LO(s, 1) =
2πhO

w(O)
√
|dO|

1

s− 1
+ · · · ,

where hO is the order of GO

Recall that we have GO = Cl(1), ϕ(1)(C) = g(C) for a class C ∈ Cl(1) and that for a
character χ modulo (1) we get τ(χ) = 1. Then with Theorem 2.3.4 and (2.13) we can show

Corollary 2.3.5. Let χ = 1 be the trivial character. Then we obtain

L∗(0, 1) =
−hk
w(1)

.

Proposition 2.3.6. Let χ be a non-trivial character of Cl(1). Then we have

L∗(0, χ−1) =
−1

6w(1)

∑
C∈Cl(1)

χ(C) log
(
ϕ(1)(C

−1)
)
.

Proof. From (2.12) we obtain

L∗(1, χ) = L∗(0, χ−1)
2πi

τ(χ)
√
dk

and therefore with Theorem 2.3.4 for GOk = Cl(1) we obtain

L∗(0, χ−1) =
−1

6w(1)

∑
C∈Cl(1)

χ(C) log(ϕ(1)(C
−1)).

Corollary 2.3.7. Let χ be a character of Cl(1). For a fixed prime ideal p choose an auxiliary
integral ideal a such that (a, 6p) = 1. Then we have

(
1− χ(p)−1

)
L∗(0, χ−1) =

−2

w(1)

1

N (a)− χ(a)

∑
C∈Cl(1)

χ(C) log

∣∣∣∣∣
(
δ(Ok, a−1)

δ(p, pa−1)

)σ(C)
∣∣∣∣∣ ,

where here we used the absolute value |z| = (z · z)1/2 for z ∈ C.
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Proof. We can compute

12 ·
∑

C∈Cl(1)

log

∣∣∣∣∣
(
δ(Ok, a−1)

δ(p, pa−1)

)σ(C)
∣∣∣∣∣χ(C) =

∑
C∈Cl(1)

log

∣∣∣∣∣∆(c−1)N (a)∆(a−1c−1p)

∆(a−1c−1)∆(c−1p)N (a)

∣∣∣∣∣χ(C)

= N (a)
∑

C∈Cl(1)

log
(
ϕ(1)(c)

)
χ(C) +

∑
C∈Cl(1)

log
(
ϕ(1)(acp

−1)
)
χ(C)

−N (a)
∑

C∈Cl(1)

log
(
ϕ(1)(p

−1c)
)
χ(C)−

∑
C∈Cl(1)

log
(
ϕ(1)(ac)

)
χ(C)

= (N (a)− χ(a))(1− χ(p)−1)
∑

C∈Cl(1)

χ(C) log
(
ϕ(1)(C

−1)
)

where for the first equality we have used Remark 2.1.12 b) and after choosing an integral c in each
C ∈ Cl(f) we use Proposition 3 in [Rob73, §3.1], for the second the fact that

∑
c∈Cl(1)D ·χ(c) = 0

for a constant D and for the third that ϕ(1)(C) for a class C ∈ Cl(1) is a class invariant. So
with Theorem 2.3.4 we obtain the result.

2.3.3 An application of Kronecker’s second limit formula

Let k be an imaginary quadratic number field and f be a non-zero ideal of Ok. In this section
we follow the treatment contained in Chapter 21 in [Lan73].

In order to express the value of a L-series at s = 1 in this case we again use, among other
things, the concept of a Gauss sum. For the convenience of the reader we recall the definition
and some facts used later on.

Recall that d−1 := {λ ∈ k | Tr(λOk) ⊆ Z} and that Tr(λOk) ⊂ Z if and only if e2πiTr(λOk) = 1.
Let γ ∈ k× be such that (γfd, f) = 1, that γd has exact denominator f. Then we define for a
character χ modulo f a Gauss sum

Tγ(χ, α) =
∑

x mod f

χ(x)e2πiTr(xαγ), (2.14)

which has the following properties:

(G1) If χ is a character modulo f and λ is prime to f, then

Tγ(χ, αλ) = χ(λ)Tγ(χ, α).

(G2) If χ is induced by a ray class character, one has that χ(γdf)
Tγ(χ,1) is independent of the choice

of γ.

(G3) For a proper character χ modulo f and α ∈ Ok we have

|Tγ(χ, α)| =

{
0 if α is not prime to f,√
N (f) if α is prime to f.

A proof of these properties can be found in Chapter 21 of [Lan73] and we want to stress that for
property (G3) we use that we are working with a proper character.

Now let A ∈ Clk and bA be an ideal in A−1 prime to f. Then we have for each a ∈ A that
abA = (ξA) for some ξA and we obtain a bijection between the elements of A prime to f and the
non-zero principal subideals of bA coprime to f via the map a 7→ (ξa).
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Recall the definition of Lf(s, χ) in (2.11). Now from N (abA) = N ((ξA)) and by denoting the
set of non-zero elements of bA coprime to f by bA(f) we obtain

Lf(s, χ) =
1

w(f)

∑
A∈Cl(f)

N (bA)sχ(bA)
∑

ξ∈bA(f)

χ(ξ)

N (ξ)s
.

Now with the help of properties (G1) and (G3), we obtain for a proper character χ of Cl(f)

Lf(s, χ) =
1

w(f)Tγ(χ, 1)

∑
A∈Cl(f)

χ(bA)N (bA)s
∑
ξ∈bA

′
e2πiTr(ξγ) 1

N (ξ)s
, (2.15)

where we have chosen γ such that γfd is integral and prime to f. Details of the proof of this
assertion can be found in [Lan73, Ch. 22, §2, Lemma 1].
Now let A be a ray class of Cl(f) and b an ideal of A prime to f. Then we define

Ef(A, s) := N (bd−1f−1)s
∑

λ∈bd−1f−1

e2πiTr(λ)N (λ)−s.

With this definition we obtain for a proper character χ of Cl(f) that

Lf(s, χ) =
χ(γdf)

w(f)Tγ(χ, 1)

∑
A∈Cl(f)

χ(A)Ef(A, s).

This equality is Theorem 1 in [Lan73, Ch. 22, §2] and a detailed proof can be found there.
Let b be an ideal in A prime to f and let bd−1f−1 = [z1, z2] with τA = z2/z1 = x + iy ∈ H.

The non-zero elements λ ∈ bd−1f−1 can be written as mz1 + nz2 with (m,n) ∈ Z2 \ {(0, 0)}.
Moreover, we have

D(Ok)N (bd−1f−1) = D(bd−1f−1) = det

((
z2 z2

z1 z1

))2

= −N (z2
1)(2y)2

so we get N (z1) =
N (bd−1f−1)

√
|dk|

2y and hence N (λ) = N (z1)|m+ nτA|2. It follows that

Ef(A, s) =
2s

|dk|s/2
Eu,v(τA, s) with u := Tr(z2) and v := Tr(z1).

If f is the smallest integer contained in f, we obtain with Kronecker’s second limit formula (to
be precise with Corollary 2.3.3) that

Ef(A, 1) =
−2π

6f
√
|dk|

log |H(bd−1f−1)| = −2π

6f
√
|dk|

log |Φf(A)|

and therefore the following

Theorem 2.3.8. [Lan73, Ch. 22, §2, Thm. 2] Let f 6= (1) be an ideal of Ok. If χ is a proper
character of Cl(f), then

Lf(1, χ) =
−2πχ(γdf)

w(f)Tγ(χ, 1)
√
|dk|6f

∑
A∈Cl(f)

χ(A) log |Φf(A)|.
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Proposition 2.3.9. Let f 6= (1) be a non-zero ideal of Ok and χ a proper character of Cl(f).
Then we obtain

L∗(0, χ−1) =
−2

(N (a)− χ(a)) · w(f)

∑
C∈Cl(f)

χ−1(C) log |ψ(1; f, a)σ(C)|,

where we use the absolute value |c| = (c · c)1/2 and an integral ideal a coprime to 6f.

Proof. Recall that from (2.7) it follows for a C ∈ Cl(f):

ϕf(C) = ϕ12f (fc−1),

where c is a representative in C, so we can compute

log

∣∣∣∣∣∣
(
ϕ12N (a)(1; f)

ϕ12(1, f)σ(a)

)σ(c)
∣∣∣∣∣∣ eχ = (N (a)− χ(a)) log |ϕ12(1; f)σ(c)|eχ

= (N (a)− χ(a))
1

f
log |ϕ12f (1, fc−1)|eχ

= (N (a)− χ(a))
1

f
log |ϕf(C)|eχ

where for the Galois group G isomorphic to Cl(f) we set eχ := 1
|G|
∑

g∈G χ(g)g−1 and f denotes
the smallest positive integer contained in f.

With (2.6) we obtain

1

12

∑
C∈Cl(f)

χ−1(C) log |ψ(1; f, a)12σ(C)| = 1

12

∑
C∈Cl(f)

χ−1(C) log

∣∣∣∣∣∣
(
ϕ12N (a)(1; f)

ϕ12(1; f)σ(a)

)σ(C)
∣∣∣∣∣∣ .

Because of (2.5) we have |Φf(C)| = |ϕf(C)|. Now with Theorem 2.3.8, (2.12) and the properties
of Gauss sums (to see this one has to compare our definition with the one given on p. 19 in
[Tat84]) we obtain

L∗(0, χ−1) =
−2

(N (a)− χ(a)) · w(f)

∑
C∈Cl(f)

χ−1(C) log |ψ(1; f, a)σ(C)|.

2.3.4 Other strategy for proving these results

There is another strategy for obtaining the main results of the last two sections. Instead of
computing the value of the L-function at s = 1 and then using a functional equation, one can
try to express the leading term of the L-function at s = 0 in terms of Eisenstein series and then
use facts about these series.

This strategy is used for example by Stark in [Sta80] in order to prove Theorem 2 (loc. cit.)
which is a different variant of our Proposition 2.3.9 for f 6= (1).

Similarly, Kato in (3.8.2) of Section 3 in [Kat04] claims that

log(| cθE |) = c2E(0)(τ, z)− E(0)(τ, cz),
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where he used the notation defined above and

E(k, τ, z, s) =
∑

(m,n)

(z +mτ + n)−k|z +mτ + n|−s as well as E(0)(τ, z) := lim
s→0

s−1E(0, τ, z, s).

Unfortunately, there is however no proof for this result in [Kat04], he only mentions at the
beginning of Section 3 that all the proofs can be found in [KM85], [Kat76] and [Wei76].

We assume now that g is an ideal of Ok such that O×k → (Ok/g)× is injective or, equivalently,
that w(g) = 1. Let (E,α) be the canonical CM-pair over k(g), a an ideal prime to 6f and
G := Gal(k(g)/k). In this situation Kato states in Chapter 15 on page 253 in [Kat04] that for
any homomorphism χ : G→ C× we have:∑

h∈G
χ(h) log | azhg | = (N (a)− χ(σa)

−1) lim
s→0

s−1Lg(s, χ) for azg = aθ
−1
E (α).

He continues saying that this is deduced from (3.8.2) in [Kat04] by taking a suitable element of
k as τ in (3.8.2). As we were not able find a proof of (3.8.2) in the given literature, we have
chosen to present the deduction of the applications of the limit formulas as we have done above.

In order to get our version from the assertion above, we have to recall (2.8), (2.9) and that
Kato sets azg := aθ

−1
E (α) with (E,α) being the canonical CM-pair over k(g), whereas Flach sets

azg := ψ(1; g, a) = cΘE/S(1) with S = Spec(C), L = g, L̃ = ga−1, E = C/L and c : C/L→ C/L̃.



Chapter 3

Computing the constant term of a
Coleman power series

In this chapter we use a recent result of T. Seiriki [Sei17] who describes the constant term of a
Coleman power series in terms of a pairing which is defined in the local setting of Lubin-Tate
extensions in a way similar to Solomon’s construction in [Sol92]. We have to slightly adapt
Seiriki’s result for the setting of relative Lubin-Tate extensions.

For the reader’s convenience we give a self-contained proof of Seiriki’s result. We follow his
strategy but adapt some of his arguments and fill in some details whenever we feel that this is
necessary. The content of this chapter is, up to small modifications and corrections, a part of
[BH18], which is joint work with my advisor Werner Bley and both authors have contributed
equally to this work. In a little more detail this chapter contains the following:

In Section 3.1 we define a pairing in the local setting, using Hilbert’s Theorem 90 and the
valuation map, show some properties for this pairing and prove Proposition 3.1.5 which can be
viewed as an assertion generalizing Hilbert’s Theorem 90 under restrictive conditions. In Section
3.2 we recall some facts about relative Lubin-Tate groups and Coleman power series. In Section
3.3 we collect some auxiliary results we need in order to prove the main theorem of this chapter.
In Section 3.4 we prove Theorem 3.4.1 which allows us to relate a Coleman power series to the
pairing defined in Section 3.1, which is a theorem of T. Seiriki in the case of classical Lubin-Tate
groups. From this theorem we derive Corollary 3.4.5 which we are going to use in the next
chapter.

3.1 Definition and basic properties of Seiriki’s pairing

Let K be a p-adic number field and L/K a finite abelian Galois extension with Galois group G
unless specified otherwise. Let vK be the normalized valuation of K (i.e., vK(K×) = Z). We
put UL/K := ker(NL/K) and write Ĝ := Hom(G,Q/Z) for the group of characters of G in this
chapter.

Definition 3.1.1. For a character χ ∈ Ĝ we set Kχ := Lker(χ). Then Gχ := Gal(Kχ/K)
is a cyclic group whose order is denoted by dχ (so dχ = ord(χ)). Let σ ∈ G be such that
χ(σ) = 1/dχ + Z. For each element u ∈ UL/K we define uχ := NL/Kχ(u) and observe that
NKχ/K(uχ) = 1. Therefore, by Hilbert’s Theorem 90, there exists an element bχ ∈ K×χ such that

uχ = bσ−1
χ
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which is unique up to elements of K×. We then define

(·, ·)L/K : UL/K × Ĝ −→ Q/Z,
(u, χ) 7→ vK(bχ) + Z.

The pairing is obviously multiplicative in the first variable. Moreover, from the very definition
we obtain

(u, χ)L/K = (NL/Kχ(u), χ)Kχ/K .

The proof of multiplicativity in the second variable is more involved. In the following we give
an expanded and corrected version of Seiriki’s proof of [Sei17, Prop. 2.2].

For a finite extension L/K we write fL/K for the degree of the residue class field extension.

Lemma 3.1.2. For α ∈ L×, τ ∈ G and χ ∈ Ĝ one has(
τ(α)

α
, χ

)
L/K

= fL/KvL(α)χ(τ) = [L : K]vK(α)χ(τ).

Proof. By our definitions 〈σ|Kχ〉 = Gχ, so that we may fix s ∈ Z>0 such that σs |Kχ= τ |Kχ .
If we set αχ := NL/Kχ(α), then

NL/Kχ
(
τ(α)

α

)
=
τ(αχ)

αχ
=
σs(αχ)

αχ
=

s−1∏
j=0

σ(σj(αχ))

σj(αχ)

and we obtain from the definition of the pairing and multiplicativity in the first variable

(
τ(α)

α
, χ

)
L/K

=
s−1∑
j=0

(
σ(σj(αχ))

σj(αχ)
, χ

)
Kχ/K

=
s−1∑
j=0

vK(σj(αχ)) = svK(αχ).

Let πL be a uniformizing element in L and set πχ := NL/Kχ(πL). Then vKχ(πχ) = fL/Kχ . We
write α = πaLβ with a = vL(α) and β ∈ O×L . Then

vK(αχ) = avK(πχ) = afL/Kχ
1

eKχ/K
= afL/K

1

eKχ/KfKχ/K
= afL/K

1

dχ
.

Hence we obtain (
τ(α)

α
, χ

)
L/K

= vL(α)fL/K
s

dχ

and noting χ(τ) = χ(σs) = s
dχ

+ Z the first equality of the lemma follows. The second equality
is then immediate from vL = eL/KvK and eL/KfL/K = [L : K].

Proposition 3.1.3. Assume that L/K is a totally ramified finite abelian extension. Then for
any u ∈ UL/K and any χ, χ′ ∈ Ĝ one has

(u, χχ′)L/K = (u, χ)L/K + (u, χ′)L/K .



3.1 Definition and basic properties of Seiriki’s pairing 45

Proof. LetKnr denote the maximal unramified extension ofK. Then Lnr := LKnr is the maximal
unramified extension of L and we may identify Gal(Lnr/Knr) with G via restriction. By [Ser79,
Ch. V.4, Prop. 7] the norm map NLnr/Knr

: L×nr −→ K×nr is surjective. By [Ser79, Ch. X.7,
Prop. 11] the G-module L×nr is cohomologically trivial, in particular, Ĥ−1(G,L×nr) = 0.

Hence there exist elements α1, . . . , αr ∈ L×nr and automorphisms σ1, . . . , σr ∈ G such that
u =

∏r
i=1

σi(αi)
αi

. Set L′ := L(α1, . . . , αr) and K ′ := L′ ∩Knr. Then

(u, χ)L/K = (u, χ)L′/K′ =
r∑
i=1

(
σi(αi)

αi
, χ

)
L′/K′

and Lemma 3.1.2 implies (u, χ)L/K =
∑r

i=1 vL′(αi)χ(σi). Replacing χ by χ′ and χχ′, respec-
tively, we obtain similar expressions for (u, χ′)L/K and (u, χχ′)L/K and the result follows.

Lemma 3.1.4. Let L/K be a totally ramified finite abelian extension of degree n.
Let {u1, . . . , ur} ⊆ O×K be a finite set of units in K, let K ′/K be the unramified extension of
degree n and put L′ := K ′L. Then there exist units u′1, . . . , u′r ∈ O

×
L′ such that ui = NL′/K′(u′i)

for i = 1, . . . , r.

Proof. It suffices to prove the lemma for r = 1. In this case we can simply follow the proof of
[Sei17, Lemma 2.4]. We briefly recall the argument.

We write G0(L/K) and G0(L′/K ′) for the inertia subgroups of L/K and L′/K ′, respectively.
Then

G0(L′/K ′)
'←− O×K′/NL′/K′(O

×
L′)

NK′/K−−−−→ O×K/NL/K(O×L )
'−→ G0(L/K),

where the left and the right isomorphisms are induced by the reciprocity maps of local class
field theory. Furthermore, the middle map is surjective by [Ser79, Ch. V.2], hence it is ac-
tually an isomorphism of groups of order n. Since NK′/K(u) = un ∈ NL/K(O×L ) we deduce
u ∈ NL′/K′(O×L′).

Proposition 3.1.5. Let L/K be a totally ramified finite abelian extension. Assume that u ∈
UL/K satisfies (u, χ)L/K = 0 for all characters χ ∈ Ĝ. Then there exist

a) a finite unramified extension K ′ of K,

b) an integer r,

c) units β′1, . . . , β′r ∈ O
×
L′ with L

′ := LK ′ and

d) σ′1, . . . , σ′r ∈ Gal(L′/K ′)

such that

u =

r∏
i=1

(β′i)
σ′i−1.

Proof. We follow the proof of [Sei17, Lemma 2.5] and prove the proposition by induction on the
number of generators of G. If G is trivial, the claim is clear. For a non-trivial group G we write
G = G̃×H with a cyclic subgroup H and apply the inductive hypothesis to the extension M/K
where M := LH . To that end we put uM := NL/M (u). Then uM ∈ UM/K and we first note

that (uM , ψ)M/K = 0 for all ψ ∈ Ĝ/H because by the very definition of the pairing we have
(u, χ)L/K = (uM , χ)M/K for all χ ∈ Ĝ with H ⊆ ker(χ).
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By induction we obtain a finite unramified extension K ′/K, an integer r′, units β′1, . . . , β′r′
in O×M ′ (where M

′ = MK ′) and automorphisms σ′1, . . . , σ′r′ ∈ Gal(M ′/K ′) such that

uM = NL/M (u) =
r′∏
i=1

(β′i)
σ′i−1. (3.1)

By applying Lemma 3.1.4 to β′1, . . . , β′r′ and the extension L′/M ′ we obtain an unramified ex-
tension M ′′/M ′, elements β′′1 , . . . , β′′r′ ∈ O

×
L′′ (where L

′′ = L′M ′′) such that

β′i = NL′′/M ′′(β′′i ) (3.2)

With K ′′/K ′ denoting the unramified extension of degree [M ′′ : M ′] we have the following
diagram

L′′

L′ M ′′

L M ′ K ′′

M K ′

K

As a consequence, restriction induces a canonical epimorphism Gal(L′′/K ′′) � Gal(M ′/K ′) and
we may choose lifts σ′′1 , . . . , σ′′r′ ∈ Gal(L′′/K ′′) of the elements σ′1, . . . , σ′r′ ∈ Gal(M ′/K ′). We set

u′′ := u ·

(
r′∏
i=1

(β′′i )σ
′′
i −1

)−1

∈ O×L′′ .

Then a straightforward computation using (3.1) and (3.2) shows that u′′ ∈ UL′′/M ′′ . We let τ
denote a generator of H and apply Hilbert’s Theorem 90 to obtain an element b′′ ∈ (L′′)× such
that u′′ = (b′′)τ−1, and hence

u = (b′′)τ−1 ·
r′∏
i=1

(β′′i )σ
′′
i −1.

Since we can adapt b′′ by elements of (M ′′)×, this proves the proposition, provided that we can
show the following claim.

Claim. There exists an element a′′ ∈ (M ′′)× such that a′′b′′ ∈ O×L′′ .

For the proof of the claim we first note that

(u′′, ψ)L′′/M ′′ = 0 for all ψ ∈ ̂Gal(L′′/M ′′). (3.3)

Indeed, if we define ψ̃ ∈ ̂Gal(L′′/K ′′) by ψ̃|H = ψ and ψ̃|G̃ = 1, then Lemma 3.1.6 below shows
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that (u′′, ψ)L′′/M ′′ = (u′′, ψ̃)L′′/K′′ . Furthermore,

(u′′, ψ̃)L′′/K′′ = (u, ψ̃)L′′/K′′ −
r′∑
i=1

(
σ′′i (β′′i )

β′′i
, ψ̃

)
L′′/K′′

= (u, ψ̃)L/K −
r′∑
i=1

(
σ′′i (β′′i )

β′′i
, ψ̃

)
L′′/K′′

= 0,

where the second equality holds because K ′′/K is unramified and the last equality follows from
(u, ψ̃)L/K = 0 (by assumption) and Lemma 3.1.2.

We are finally ready to prove the above claim.
Let χ ∈ Gal(L′′/M ′′) be defined by χ(τ) = 1

[L′′:M ′′] + Z. We write eL′′/M ′′ for the ramification
index of L′′/M ′′. By (3.3) and the definition of the pairing we get

0 = (u′′, ψ)L′′/M ′′ = vM ′′(b
′′) + Z =

1

eL′′/M ′′
vL′′(b

′′) + Z

in 1
eL′′/M′′

Z/Z and this implies that eL′′/M ′′ divides vL′′(b′′). This, in turn, guarantees the exis-
tence of a′′ as in the above claim.

Lemma 3.1.6. Let L/K be a totally ramified finite abelian extension. Suppose that G = G̃×H
with a cyclic subgroup H. Set M := LH and M̃ := LG̃. For ψ ∈ Ĥ we define ψ̃ ∈ Ĝ by ψ̃|H = ψ

and ψ̃|G̃ = 1. Then (w, ψ̃)L/K = (w,ψ)L/M for all w ∈ UL/M and all ψ ∈ Ĥ.

Proof. Let 〈τ〉 = H and define χ ∈ Ĥ by χ(τ) = 1
|H| +Z. By Proposition 3.1.3 it suffices to show

that (w, χ̃)L/K = (w,χ)L/M for all w ∈ UL/M .
Let β ∈ L× such that τ(β)

β = w. Then (w,χ)L/M = vM (β) in Q/Z. Since ker(χ̃) = G̃ we
have Kχ̃ = M̃ and

wχ̃ = NL/M̃ (w) =
τ(NL/M̃ (β))

NL/M̃ (β)
.

Therefore, by definition of the pairing, (w, χ̃)L/K = vK(NL/M̃ (β)) and a straightforward com-
putation with valuations shows that vK(NL/M̃ (β)) = vM (β).

Later we will need the following definition.

Definition 3.1.7. Let H be a local field and H∞/H an infinite abelian extension. Let
(uN )N ∈ lim←−N N

×, whereN/H varies over the finite subextensions ofH∞/H, be a norm-coherent
sequence with NN/H(uN ) = 1. Furthermore, let χ be a character of finite order of Gal(H∞/H).
Choose N such that Hχ ⊂ N . Then we set

uχ := NN/Hχ(uN )

and define a pairing for the extension H∞/H by

(u, χ)H∞/H := (uχ, χ)Hχ/H .

It is easy to see that multiplicativity in both variables follows from the finite dimensional case.
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3.2 Relative Lubin-Tate Groups and Coleman power series

In this section we introduce the notion of relative Lubin-Tate formal groups and also recall some
results of the theory of Coleman power series. All results presented here can be found in [dS87].

Let H be a finite extension of Qp, let OH and pH be its valuation ring and valuation ideal,
respectively. We let q denote the cardinality of the residue class field OH/pH . We fix an integer
d > 0 and let H ′ be the unramified extension of H of degree d. We write ϕ ∈ Gal(H ′/H) for
the arithmetic Frobenius element.

We write OH′ and pH′ for the valuation ring and valuation ideal in H ′ and fix an element
ξ ∈ H× with vH(ξ) = d. We set

Fξ := {f ∈ OH′ [[T ]] : f ≡ π′T (mod deg 2), NH′/H(π′) = ξ, f ≡ T q(modpH′)}

and recall from [dS87, Ch. I, Thm. 1.3] that for each f ∈ Fξ there exists a unique one-dimensional
commutative formal group law Ff ∈ OH′ [[X,Y ]] satisfying Fϕf ◦ f = f ◦ Ff . We call Ff a relative
Lubin-Tate group (relative to the extension H ′/H). The case d = 1 corresponds to classical
Lubin-Tate formal groups.

Let f, g ∈ Fξ with f = π1T + . . . and g = π2T + . . .. For an element a ∈ OH′ such that
aϕ−1 = π2/π1 there is a power series [a]f,g ∈ OH′ [[T ]] uniquely determined by the properties
of [dS87, Ch. I, Prop. 1.5]. If f = g we write [a]f in place of [a]f,f and note that the map
OH −→ End(Ff ), a 7→ [a]f , is an injective ring homomorphism.

Let Hc be the algebraic closure of H and write pHc for its valuation ideal. Then we get an
OH -module structure on pHc by setting

x+f y := Ff (x, y) and a · x := [a]f (x)

for x, y ∈ pHc and a ∈ OH .
For an integer n ≥ 0 and f ∈ Fξ we set f (n) := ϕn−1(f) ◦ · · · ◦ ϕ(f) ◦ f . Let π be a prime

element of OH . We define

Wn
f := {ω ∈ pHc | [πn]f (ω) = 0} = {ω ∈ pHc | f (n)(ω) = 0}

and call Wn
f the group of division points of level n of Ff . We also set W̃n

f := Wn
f \W

n−1
f and

Wf =
⋃
nW

n
f . So Wf is the subgroup of all torsion points of Ff .

We fix f ∈ Fξ and set H ′n := H ′(Wn+1
f ). Note that H ′n does not depend on the choice

of f ∈ Fξ. It is a totally ramified finite abelian extension of H ′ of degree (q − 1)qn. Any
ωn+1 ∈ W̃n+1

f generates H ′n over H ′ and, in addition, is a prime element in OH′n . For the ring of
integers in H ′n we obtain OH′n = OH′ [ωn+1] for each ωn+1 ∈ W̃n+1

f . The reciprocity map recH

induces a group isomorphism
(
OH/pn+1

)× ∼=−→ Gal(H ′n/H
′), u 7→ σu with σu(ω) = [u−1]f (ω) for

all ω ∈Wn+1
f , see [dS87, Ch. I, Prop. 1.8].

In the following we introduce the Coleman norm operator and recall some of its properties.
Let R = OH′ [[T ]] be the ring of power series with coefficients in OH′ . By [dS87, Ch. I, Prop. 2.1]
there exists a unique multiplicative operator N = Nf : R→ R such that

Nh ◦ f =
∏
ω∈W 1

f

h(T +f ω)

for all h ∈ R.

Proposition 3.2.1. ([dS87, Ch. I, Prop. 2.1]) The Coleman norm operator has the following
properties:
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a) Nh ≡ hϕ(mod pH′).

b) Nϕ(f) = ϕ ◦ Nf ◦ ϕ−1.

c) Let N (i)
f := Nϕi−1(f) ◦ · · · ◦ Nϕ(f) ◦ Nf . Then(

(N (i)
f h) ◦ f (i)

)
(T ) =

∏
ω∈W i

f

h(T +f ω).

d) If h ∈ R, h ≡ 1 mod (pH′)
i for i ≥ 1, then Nfh ≡ 1

(
mod(pH′)

i+1
)
.

Let α = (αn) ∈ lim←−n(H ′n)× be a norm-coherent sequence. We fix ωi ∈ W̃ i
ϕ−i(f)

such that

(ϕ−i(f))(ωi) = ωi−1. There is a unique integer ν(α) such that αnOH′n = p
ν(α)
H′n

for all n ≥ 0. By
[dS87, Ch. I, Thm. 2.2] there exists a unique power series Colα ∈ T ν(α) · OH′ [[T ]]× such that

(ϕ−(i+1)Colα)(ωi+1) = αi (3.4)

for all i ≥ 0. The power series Colα is called the Coleman power series associated to α. We
recall that by [dS87, Ch. I, Cor. 2.3 (i)] Coleman power series are multiplicative in α, i.e.

Colαα′ = Colα · Colα′

for norm-coherent sequences α, α′ ∈ lim←−n(H ′n)×.

Remark 3.2.2. If we fix ωn ∈ W̃n
ϕ−n(f) such that (ϕ−n(f))(ωn) = ωn−1 for 1 ≤ n <∞, then we

call ω = (ωn)n≥0 a generator of the Tate module of Ff . Note that each ωn is a division point on
Fϕ−n(f) = Fϕ

−n

f .

We set H ′∞ :=
⋃
nH

′
n and let u = (un) ∈ lim←−nO

×
H′n

be a norm-coherent sequence of units.
For later reference we recall the following lemma.

Lemma 3.2.3. For σ ∈ G := Gal(H ′∞/H), there exits a unique isomorphism h : Ff ' Fσ(f)

such that h(ω) = σ(ω) for all ω ∈Wf . This h is of the form [κ(σ)]f,σ(f) for a unique κ(σ) ∈ O×H′ ,
and κ(σ)ϕ−1 = f ′(0)σ−1. The map κ : G → O×H′ is a 1-cocycle, i.e. κ(τσ) = κ(σ)τ · κ(τ) for all
σ, τ ∈ G, and Colu and Colσ(u) are related by

Colσ(u) = Colσu ◦ [κ(σ)]f,σ(f).

Proof. This is a generalization of [dS87, Ch. I, Cor. 2.3] or (15) on page 21 in [dS87, Ch. I.3].

3.3 Auxiliary results

We continue to use the notation introduced in the previous section.
We fix f ∈ Fξ. For this section we fix an integer m ∈ Z>0 but usually suppress m in our

notations. Let π := πH be a uniformizing element and define

R := RH′ :=
OH′ [[T ]]

([πm+1]f )
=
OH′ [[T ]](
f (m+1)

) .
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We write ι := ιH′ for the injective ring homomorphism

ιH′ : R −→ OH′ ⊕
m⊕
l=0

OH′l ,

ḡ 7→
(
g(0),

(
(ϕ−(l+1)g)(ωl+1)

)
l=0,...,m

)
.

We let r := rH′ : R −→ OH′m be the composite of ι and the projection to the last component.
If F/H ′ is a finite unramified extension, we set RF := R⊗OH′OF and Fl := FH ′l and note

that OFl = OFOH′l . Let ιF : RF −→ OF ⊕
⊕m

l=0OFl and rF : RF −→ OFm denote the base
change of ι and r along OF over OH′ . Since OFm = OF [ωm+1] the ring homomorphism rF
is surjective. In addition, as it is actually a homomorphism of local rings, we conclude that
rF : R×F −→ O

×
Fm

is surjective as well.
The Galois group Gal(F∞/F ) naturally acts on OF ⊕

⊕m
l=0OFl . The following lemma shows

that we can transport this action to RF via ιF .

Lemma 3.3.1. For ḡ ∈ RF and σ ∈ Gal(F∞/F ) the element σ(ιF (ḡ)) is contained in the image
ιF (RF ).

Proof. We identify Gal(F∞/F ) and Gal(H ′∞/H
′) via restriction and let u ∈ O×H such that

σ = recH(u−1). Recall that ωl+1 is a torsion point for Fϕ−(l+1)(f) = Fϕ
−(l+1)

f and hence,

σ(ωl+1) = recH(u−1)(ωl+1) = [u]ϕ
−(l+1)

f (ωl+1) (3.5)

by [dS87, Ch. I, Prop. 1.8].
We thus obtain

σ(ιF (ḡ)) =

(
σ(g(0)),

(
σ((ϕ−(l+1)g)(ωl+1))

)
l=0,...,m

)
=

(
g(0),

(
(ϕ−(l+1)g)([u]ϕ

−(l+1)

f (ωl+1))
)
l=0,...,m

)
=

(
g(0),

(
(ϕ−(l+1)(g ◦ [u]f ))(ωl+1)

)
l=0,...,m

)
= ιF

(
g ◦ [u]f

)
,

where we use (3.5) for the second equality.

For ḡ ∈ RF we define NRF /OF (ḡ) to be the norm of the OF -linear endomorphism of RF given
by multiplication by ḡ.

Lemma 3.3.2. Let ḡ ∈ RF . Then:

a)

NRF /OF (ḡ) = g(0)
m∏
l=0

(
NFl/F ((ϕ−(l+1)g)(ωl+1)

)ϕl+1

.

b)
NRF /OF (ḡ) =

∏
ω∈Wm+1

f

g(ω).
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Proof. For the proof of a) we first define a modified OF -module structure on OF ⊕
⊕m

l=0OFl by

a ∗ (β−1, β0, . . . , βm) := (aβ−1, ϕ
−1(a)β0, . . . , ϕ

−(m+1)(a)βm)

for a, β−1 ∈ OF and βl ∈ Fl, l ∈ {0, . . . ,m}. With respect to this OF -module structure ιF is a
homomorphism of OF -modules.

In the same way we define a newOF -module structure on each of the fields Fl for l ∈ {0, . . . ,m}.
Explicitly, a ∗ α := ϕ−(l+1)(a)α for a ∈ OF and α ∈ Fl.

We fix l ∈ {0, . . . ,m} and let α1, . . . , αs with s := [Fl : F ] denote an OF -basis of OFl
with respect to the usual OF -module structure given by multiplication. Then, for β ∈ OFl and
i ∈ {1, . . . , s}, there exist elements aij ∈ OF such that

βαi =

s∑
j=1

aijαj =

s∑
j=1

ϕl+1(aij) ∗ αj . (3.6)

Multiplication by β is OF -linear with respect to both OF -module structures on OFl and we write
NFl/F , respectively N

∗
Fl/F

, for the induced norm maps. Then (3.6) implies

NFl/F (β)ϕ
l+1

= det
(

(aij)i,j=1,...,s

)ϕl+1

= N ∗Fl/F (β).

Hence part a) of the lemma follows from

NRF /OF (ḡ) = g(0)

m∏
l=0

(
N ∗Fl/F ((ϕ−(l+1)g)(ωl+1))

)
,

which in turn is immediate from OF -linearity of ιF with respect to the modified OF -module
structure.

In order to prove b) we fix an element τ ∈ Gal(F∞/H) such that τ |F = ϕ. Then we obtain
from a)

NRF /OF (ḡ) = g(0)
m∏
l=0

(
NFl/F ((ϕ−(l+1)g)(ωl+1)

)τ l+1

= g(0)
m∏
l=0

NFl/F (g(ωτ
l+1

l+1 )).

Since Gal(Fl/F ) acts simply transitive on W̃ l+1
f the result easily follows.

3.4 Seiriki’s theorem on the constant term of a Coleman power
series

We let Ff be a Lubin-Tate formal group relative to the unramified extension H ′/H and resume
the notations of Section 3.2. Recall thatH ′n = H ′(Wn+1

f ) for n ≥ 0. We also setH ′∞ :=
⋃
n≥0H

′
n.

If χ is a character of finite order of Gal(H ′∞/H
′) we set H ′χ := (H ′∞)ker(χ). For a norm-coherent

sequence u = (un)n≥0 ∈ lim←−nO
×
H′n

we set uH′ := NH′n/H′(un) for any n ≥ 0.

Theorem 3.4.1. Let χ be a character of finite order of Gal(H ′∞/H
′) and let u = (un)n≥0 in

lim←−nO
×
H′n

be a norm-coherent sequence with uH′ = 1. In addition, we assume Colu(0) ∈ O×H .
Then

(u, χ)H′∞/H′ = −χ(recH(Colu(0))). (3.7)
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Remark 3.4.2. In the case H = H ′ this is essentially Corollary 2.8 in [Sei17], but there is a
minus missing in the statement of this corollary.

Remark 3.4.3. a) The right hand side does not depend on the choice ω = (ωn)n≥1 of a
generator of the Tate module. Indeed, if ω′ = (ω′n)n≥1 is another such generator, then
there is a unique σ ∈ Gal(H ′∞/H

′) such that σ(ωn) = ω′n for all n ≥ 1. By local class field
theory there exists a unique v ∈ O×H′ with recH′(v) = σ. Then ω′n = σ(ωn) = [v−1]ϕ

−n

f (ωn)
(since ωn is a torsion point of Fϕ−n(f)).

If Col′u denotes the Coleman power series with respect to ω′, then Col′u = Colu ◦ [v]f and
thus Col′u(0) = Colu(0).

b) Without loss of generality we may assume that the sequence ω = (ωn)n≥1 is norm-coherent.
To show this we apply [Ble04, Lemma 4.1] and proceed as follows: We fix a norm-coherent
sequence β = (βn)n≥1 of prime elements of H ′n and let Colβ ∈ TO′[[T ]] be the associated
Coleman power series. Let Col−1

β ∈ TO′[[T ]] be such that Colβ ◦ Col−1
β = T . If we set

f ′ := Colϕβ ◦ f ◦ Col
−1
β , then f ′ ∈ Fξ and the proof of [Ble04, Lemma 4.1 b)] shows that β

is a generator of the Tate module for Ff ′ . With respect to Ff ′ and β the Coleman power
series associated to u is equal to Colu ◦ Col−1

β and (Colu ◦ Col−1
β )(0) = Colu(0), so that

we may prove the theorem for f replaced by f ′ and ω replaced by β.

Proof. We fix m > 0 and note that it suffices to prove the theorem for an arbitrary character χ
of Gal(H ′m/H

′). We write Gal(H ′m/H
′) as a direct product of cyclic subgroups,

Gal(H ′m/H
′) = G1 × . . .×Gs,

with s ≥ 1 and for each i ∈ {1, . . . , s} we set Ui :=
∏
j 6=iGj with the subscript j ranging over

{1, . . . , s}. For each j we fix a generator σj of Gj and define a character χj ∈ Ĝj by χj(σj) =
1
|Gj | + Z. Then the characters χ1, . . . , χs generate the group of characters of Gal(H ′m/H

′).
Claim 1: For j = 1, . . . , s there exist units bu,χj ∈ O×H such that

(uχj , χj)H′χj /H
′ = χj(recH(b−1

u,χj )) and recH(bu,χj ) ∈ Gj .

For the proof of Claim 1 we fix aj ∈ Z>0 such that (uχj , χj)H′χj /H
′ =

aj
|Gj | + Z. Since

recH induces an isomorphism
(
OH/pm+1

H

)× ' Gal(H ′m/H
′) there exists bu,χj ∈ O×H such that

recH(b−1
u,χj ) = σ

aj
j . Claim 1 is now immediate from χj(σj) = 1

|Gj | + Z.
By Remark 3.4.3 we may, without loss of generality, assume that the generator ω = (ωn)n≥1

of the Tate module is norm coherent. We set bu :=
∏s
j=1 bu,χj ∈ O

×
H and define

u′n :=
recH(b−1

u )(ωn+1)

ωn+1
.

Then u′ := (u′n)n≥0 is a norm coherent sequence of units in lim←−nO
×
H′n

and it is clear that
NH′n/H′(u

′
n) = 1.

Claim 2: Colu′(T ) =
[bu]f (T )

T , and thus Colu′(0) = bu.

For the proof of Claim 2 we recall that ωn+1 is a torsion point of Fϕ−(n+1)(f) = Fϕ
−(n+1)

f . We

have recH(b−1
u )(ωn+1) = [bu]ϕ−(n+1)(f)(ωn+1) = [bu]ϕ

−(n+1)

f (ωn+1). Put g :=
[bu]f (T )

T and observe
that

(ϕ−(n+1)(g))(ωn+1) =
[bu]ϕ

−(n+1)

f (ωn+1)

ωn+1
=

recH(b−1
u )(ωn+1)

ωn+1
= u′n,
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so that g =
[bu]f (T )

T satisfies the defining equality (3.4) for all n ≥ 0.
We now set u′′ := u/u′ and obtain from Claim 2 that Colu′′(0) · bu = Colu(0). In particular,

since we assume that Colu(0) is contained in O×H , it follows that Colu′′(0) ∈ O×H .
The right hand side of (3.7) is obviously multiplicative in the character, for the left hand

side this is shown in Proposition 3.1.3. Thus, it suffices to prove the theorem for each of the
characters χi, i = 1, . . . , s.

We henceforth fix i ∈ {1, . . . , s}. We observe that by Claim 1 χi(recH(bu)) = χi(recH(bu,χi))
and (u, χi)H′∞/H′ = −χi(recH(bu,χi)). It is now easy to see that for χ := χi the equality (3.7) is
equivalent to χ(recH(Colu′′(0))) = 0. Since χi is a character of Gal(H ′m/H

′) and recH induces
an isomorphism

(
OH/pm+1

H

)× ' Gal(H ′m/H
′) it thus suffices to show that

Colu′′(0) ≡ 1 (mod pm+1
H ). (3.8)

Claim 3: (u′′m, ψ)H′m/H′ = 0 for all characters ψ of Gal(H ′m/H
′).

Because of the multiplicativity result of Proposition 3.1.3 it suffices to show that for j = 1, . . . , s
we have (u′′m, χj)H′m/H′ = 0. We fix j and compute

(u′′m, χj)H′m/H′ = (um, χj)H′m/H′ − (u′m, χj)H′m/H′ =
aj
|Gj |

+ Z− (u′m, χj)H′m/H′

with aj ∈ Z>0 as in the proof of Claim 1. Hence it suffices to show that the equality
(u′m, χj)H′m/H′ =

aj
|Gj | + Z is valid.

We set ηm+1 := NH′m/H′χj (ωm+1) and note that H ′χj = (H ′m)Uj . By Claim 1 and its proof
this implies

NH′m/H′χj (u
′
m) =

recH(b−1
u )(ηm+1)

ηm+1
=

(∏s
l=1 recH(b−1

u,χl
)
)

(ηm+1)

ηm+1

=
recH(b−1

u,χj )(ηm+1)

ηm+1
=
σ
aj
j (ηm+1)

ηm+1
.

By definition of the pairing and Lemma 3.1.2 we conclude further(
u′m, χj

)
H′m/H

′ =

(
σ
aj
j (ηm+1)

ηm+1
, χj

)
H′χj /H

′

= vH′χj
(ηm+1)χj(σ

aj
j ) + Z = χj(σ

aj
j ) + Z =

aj
|Gj |

+ Z,

as required.
The following two claims now conclude the proof of (3.8), and hence also the proof of Theo-

rem 3.4.1. We will use the notation and results of Section 3.3.
Claim 4: There exists a finite unramified extension F/H ′ and an element ũ′′m ∈ R×F such

that rF (ũ′′m) = u′′m and NRF /OF (ũ′′m) = 1.
Claim 5: For any x̄ ∈ R×F with rF (x̄) = 1 one has NRF /OF (x̄) ≡ 1 (mod pm+1

F ).
Indeed, by Lemma 3.3.2, the defining equality (3.4) for Coleman power series and the fact

that NFl/F (u′′l ) = NH′l/H′(u
′′
l ) = 1 for all l we have

NRF /OF (Colu′′) = Colu′′(0)
m∏
l=0

(
NFl/F

(
(ϕ−(l+1)Colu′′)(ωl+1)

))ϕl+1

= Colu′′(0)
m∏
l=0

(
NFl/F (u′′l )

)ϕl+1

= Colu′′(0).
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Since rF (Colu′′) = u′′m = rF (ũ′′m) we thus conclude from Claims 4 and 5 that

Colu′′(0) ≡ 1 (mod pm+1
F ).

Moreover, with Colu′′(0) ∈ OH and pm+1
F ∩OH = pm+1

H (since F/H is unramified) the equality
of (3.8) follows.

For the proof of Claim 4 we first note that by Claim 3 all assumptions of Proposition 3.1.5 for
u′′m and H ′m/H ′ are satisfied. Hence we conclude that there exists a finite unramified extension
F/H ′, an integer r > 0, units β1, . . . , βr ∈ O×Fm and automorphisms σ1, . . . , σr ∈ Gal(Fm/F )
such that

u′′m =
r∏
j=1

σj(βj)

βj
.

Since we know from Section 3.3 that rF : R×F −→ O
×
F is surjective, we can choose elements

β̃j ∈ R×F such that rF (β̃j) = βj . Recall also from Lemma 3.3.1 that we have a natural action of
Gal(Fm/F ) on RF and set

ũ′′m :=

r∏
j=1

σj(β̃j)

β̃j
∈ R×F .

So ũ′′m is a unit in RF which by construction and Lemma 3.3.2 a) satisfies NRF /OF (ũ′′m) = 1.
It finally remains to prove Claim 5. If rF (x̄) = 1 for a power series x ∈ OF [[T ]], then it is

straightforward to see that x(ω) = 1 for all torsion points ω ∈ W̃m+1
f .

We set h := f (m+1)

f (m) = (ϕmf)(f (m))

f (m) . Then h = π̃+h1(f (m)) with a power series h1 ∈ TOH′ [[T ]]

and π̃ := ϕm(π′), a uniformizing element in H ′. The set of zeroes of h is given by W̃m+1
f , so

that a straightforward application of the Weierstrass preparation theorem shows that h divides
x− 1. We write x = 1 + hg with a power series g ∈ OF [[T ]].

By part a) of Lemma 3.3.2 we obtain

NRF /OF (x̄) = x(0)

m∏
l=0

NFl/F
(

(ϕ−(l+1)x)(ωl+1)
)ϕl+1

= x(0)
m−1∏
l=0

NFl/F
(

(ϕ−(l+1)x)(ωl+1)
)ϕl+1

where the second equality holds because of (ϕ−(m+1)x)(ωm+1) = rF (x̄) = 1. As in the proof of
part b) of Lemma 3.3.2 we derive

NRF /OF (x̄) =
∏

ω∈Wm
f

x(ω) =
∏

ω∈Wm
f

(1 + g(ω)h(ω)).

Since h = π̃ + h1(f (m)) and f (m)(ω) = 0 for all ω ∈Wm
f we further deduce

NRF /OF (x̄) =
∏

ω∈Wm
f

(1 + g(ω)π̃).

Set j(T ) := 1+g(T )π̃ ∈ OF [[T ]]. We note that f ∈ FξF with ξF := ξ[F :H′] and with respect to the
unramified extension F/H, so that the formal group Ff can also be considered as a Lubin-Tate
extension relative to F/H. By Proposition 3.2.1 c) we therefore obtain(

(N (m)
f j) ◦ f (m)

)
(T ) =

∏
ω∈Wm

f

j(T +f ω).
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As a consequence
N (m)
f (j)(0) =

∏
ω∈Wm

f

j(ω) = NRF /OF (x̄).

Moreover, we have j ≡ 1 mod pF . Applying Proposition 3.2.1 d) inductively we obtain
N (m)
f (j) ≡ 1 mod pm+1

F and hence NRF /OF (x̄) ≡ 1 mod pm+1
F .

For the proofs of Theorems 4.1.14, 4.1.15 and 4.1.16 we will need a variant of Theorem 3.4.1.
Let u = (un)n≥0 ∈ lim←−nO

×
H′n

be a norm-coherent sequence. The proof of [Ble04, Lemma 4.2]
shows that NH′n/H(un) = 1 for all n ≥ 0. We fix a set of representatives {τ1, . . . , τd} of
Gal(H ′∞/H) modulo Gal(H ′∞/H

′) and define for all n ≥ 0

wn :=
d∏
i=1

τi(un). (3.9)

Note that wn depends on the choice of the set {τ1, . . . , τd}, however, we will suppress this
dependency in our notation.

Lemma 3.4.4. For the elements wn constructed above, we obtain

a) NH′m/H′n(wm) = wn for m ≥ n ≥ 0.

b) NH′n/H′(wn) = 1 for all n ≥ 0.

c) Colw(0) = NH′/H(Colu(0))

Proof. The proofs of a) and b) are immediate from the definitions. Since

ϕ−(j+1)

(
d∏
i=1

Colτi(u)

)
(ωj+1) =

d∏
i=1

τi(uj) = wj

for all j ≥ 0 we know by (3.4) that
∏d
i=1Colτi(u) = Colw. By Lemma 3.2.3 we have

Colτi(u) = (Colτiu ) ◦ [κ(τi)]f,τi(f), and as a consequence Colτi(u)(0) = τi(Colu(0)) and so the result
of c) obviously follows.

Corollary 3.4.5. Let u = (un)n≥0 ∈ lim←−nO
×
H′n

be a norm-coherent sequence of units. Then we
have for each character χ of Gal(H ′∞/H) of finite order

(u, χ)H′∞/H = −χ(recH(NH′/H(Colu(0)))).

Proof. We set Hχ := (H ′∞)ker(χ) and H ′χ := (H ′∞)ker(χ)∩Gal(H′∞/H
′). This is summarized in the

following diagram of fields.

H ′∞

H ′χ

H ′

Hχ

•

H

ker(χ)

〈ϕt〉

〈σ|Hχ〉t
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Choose an element σ ∈ Gal(H ′∞/H) such that χ(σ) = 1
[Hχ:H] +Z. We set t := [Hχ ∩H ′ : H]

and fix τ ∈ Gal(H ′∞/H) such that τ |Hχ = 1 and τ |H′ = ϕt. Recall that d = [H ′ : H]. It is
easy to see that the set {σiτ j |0 ≤ i < t, 0 ≤ j < d/t} constitutes a set of representatives of
Gal(H ′∞/H) modulo Gal(H ′∞/H

′). For all n ≥ 0 we define wn as in (3.9) with respect to this
set of representatives.

Then χ(σt) = 1
[H′χ:H′] + Z. Let n be large enough so that H ′χ ⊆ H ′n. By Lemma 3.4.4 b) and

Hilbert’s Theorem 90 there exists an element β ∈ (H ′χ)× such that βσt−1 = NH′n/H′χ(wn). By
the definition of the pairing we derive

(w,χ)H′∞/H′ = vH′(β) + Z. (3.10)

If β̃ ∈ H×χ is such that β̃σ−1 = NH′n/Hχ(un), then

(u, χ)H′∞/H = vH(β̃) + Z. (3.11)

Now we compute

β̃σ
t−1 = β̃(σ−1)(1+σ+...+σt−1)

= NH′n/Hχ(un)(1+σ+...+σt−1)

=

d/t−1∏
j=0

τ j
(
NH′n/H′χ(un)

)(1+σ+...+σt−1)

= NH′n/H′χ

d/t−1∏
j=0

t−1∏
i=0

σiτ j(un)


= NH′n/H′χ (wn) .

It follows that β/β̃ ∈ (H ′)× and hence vH′(β) ≡ vH′(β̃) (mod Z). Since H ′/H is unrami-
fied we obtain furthermore vH′(β̃) = vH(β̃), which combined with (3.10) and (3.11) leads to
(w,χ)H′∞/H′ = (u, χ)H′∞/H . The result is now immediate from Theorem 3.4.1 applied for the
norm-coherent sequence w together with Lemma 3.4.4, part c).



Chapter 4

Construction of p-units and
computation of their valuation

The objective of this chapter is to reprove the main results of Solomon [Sol92, Thm. 2.1] and
[Ble04, Thm. 3.4] with the tools developed in Chapter 3 and to present a proof of the main
theorem of [BH18], which is one of the main results of this thesis. The latter result was obtained
in joint work with my advisor Werner Bley and so parts of this chapter are based on our article
[BH18].

In a little more detail this chapter contains the following: In Section 4.1 we construct cyclo-
tomic resp. elliptic p-units with the help of Hilbert’s Theorem 90 and formulate theorems which
describe the valuation above p in terms of the p-adic logarithm of cyclotomic resp. elliptic units.
In Section 4.2 and Section 4.3 we reprove the main theorems of [Sol92] and [Ble04] as well as
Theorem 4.1.16 with the help of Corollary 3.4.5 from Chapter 3.

4.1 Formulation of the main theorems

Let k be Q or an imaginary quadratic field, where the first case is called the cyclotomic case and
the second case is called the elliptic case.

Let L denote a finite abelian extension of k. We fix a prime ideal p of Ok above a rational
prime p in the elliptic case and set p = (p) in the cyclotomic case. We write H for the completion
kp of k at p.

The elliptic case is subdivided in two sub-cases: we call the case, where the rational prime p
splits in k the split case and the case where p is inert or ramifies in k is called the non-split case.
The main hypotheses we are going to assume in the theorems of this chapter are as follows:

Hypotheses.

(H1) p splits completely in L.

(H2) p does not divide the class number of k.

Remark 4.1.1. Hypothesis (H1) is crucial when constructing the ’p-units’. But in the main
application of Solomon [Sol92, Thm. 2.1] resp. of [Ble04, Thm. 3.4], namely the descent com-
putation in the proof of the eTNC in the cyclotomic case (see [BG03] and [Fla04]) resp. the
elliptic split case (see [Ble06]), it turns out that they constitute no obstruction to proving an
unconditional result because in these cases the assertions are used in a situation where (H1) is
naturally satisfied. We will see in Chapters 5 and 6 that the same is true for the elliptic non-split
case.
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It is obvious that in the cyclotomic case the condition (H2) is automatically fulfilled. In the
elliptic case condition (H2) is actually needed, but we are convinced that it should be possible
to weaken this restriction or to avoid it entirely.

Setting in the cyclotomic case Let s be the smallest integer such that s > 1/(p−1). So for
p ≥ 3 we have s = 1 and for p = 2 we have s = 2. This condition comes from the convergence
of the p-adic logarithm (for details see for example [Coh00, Ch. 4.3]).

As condition (H2) is always fulfilled in the cyclotomic case the only hypothesis in this case
is (H1).

Remark 4.1.2. Let m ∈ N and m = (m). By abuse of notation we denote in the cyclotomic
case the field Q(µm) by Q(m) in order to be able to present the following more smoothly and
then it is trivial to translate the notation of [Sol92] to ours. This notation can be justified
by the conventions used in [Neu99]. In our usual notation one would have Q(m∞) = Q(µm)
(cf. Proposition 6.7 in [Neu99, Ch. VI] and Satz 7.10 in [Neu11]).

In the elliptic case we have to be slightly more restrictive.

Setting in the elliptic case Here the integer s is defined to be the smallest integer such that
s > e/(p − 1) with e denoting the ramification index of p in k/Q. So for p > 3 we have s = 1
and here is an overview for p = 2 or 3:

p split inert ramified
2 s = 2 s = 2 s = 3

3 s = 1 s = 1 s = 2

For primes p > 3 we will have no further assumptions on p and k besides hypotheses (H1)
and (H2). However, for p = 2 or p = 3 we need to impose the following conditions:

• If p = 2 we assume that either a2) or b2) holds:

a2) p is split in k.

b2) p is ramified in k and H = Q2(ζ4), where ζ4 is a primitive fourth root of unity in Qc
2.

• If p = 3 we assume that either a3), b3) or c3) holds:

a3) p is split in k.

b3) p is inert in k.

c3) p is ramified in k and H = Q3(ζ3), where ζ3 is a primitive third root of unity in Qc
3.

Remark 4.1.3. One can see that for p = 2 in the non-split case the conditions are quite
restrictive. The same is true for p = 3 when p ramifies.

Now we continue to treat all cases at once. Let fL be the conductor of L and fix an integral
ideal f of Ok such that fL | f, p - f and w(f) = 1. We set

F := k(f), k(p∞) :=
⋃
n≥0

k(pn) and K∞ :=
⋃
n≥0

k(fps+n).

We write T for the torsion subgroup of Gal(k(p∞)/k) and let k∞ := k(p∞)T be the fixed field
of T .



4.1 Formulation of the main theorems 59

Then k∞/k is a Zdp-extension with d = 1 in the cyclotomic case and in the split case and
d = 2 in the non-split case. By (H1) p is unramified in F , and thus (H2) implies F ∩ k∞ = k.

We now investigate the extension K∞/F . We set F∞ := Fk∞ and L∞ := Lk∞. Since
Gal(K∞/F∞) is finite and Gal(F∞/F ) is torsion-free we see that Gal(K∞/F∞) is the torsion
subgroup of Gal(K∞/F ). By class field theory we obtain

Gal(K∞/F ) ∼= lim←−
n

(Ok/pn)× ' O×H = µ′H × (1 + pH)

with µ′H denoting the roots of unity of order N (p)− 1 in H. With our definition of s the p-adic
exponential expp converges on psH , so that 1 + psH is torsion-free.

Lemma 4.1.4. With s as above we have K0 = k(fps) . Then K0 ∩ F∞ = F and K0F∞ = K∞.

Proof. In each case one can show that

|(1 + pH)tors| =
∣∣∣∣1 + pH
1 + psH

∣∣∣∣ ,
where we write (1 + pH)tors for the subgroup of torsion elements of 1 + pH . For s = 1 this is
trivial. In the cyclotomic case for p = 2 recall that we have |(1 + pH)tors| = 2 and that µ′H is
trivial.
For the special cases in the elliptic setting, we have, for example, if p = 2 is ramified and
H = Q2(ζ4), then |(1 + pH)/(1 + psH)| = 4 and (1 + pH)tors = 〈ζ4〉. The other special cases can
be treated similarly.

It is then easily shown that (1 + psH)× (1 + pH)tors = 1 + pH . In summary, we have a direct
product decomposition

Gal(K∞/F ) ∼= µ′H × (1 + pH)tors × (1 + psH)

and the lemma follows because the fixed field of 1 + psH (resp. µ′H × (1 + pH)tors) is k(fps) = K0

(resp. F∞).

In each case we thus obtain the following diagram of fields (with Kn, Fn, Ln and kn defined
below)

K∞

F∞ Kn

L∞ Fn K0

k∞ Ln F

kn L

k

Γ

∆

We set Γ := Gal(K∞/K0) and identify Γ via restriction with each of the Galois groups Gal(F∞/F ),
Gal(L∞/L) and Gal(k∞/k). We letKn, Fn, Ln and kn denote the fixed field of Γp

n ofK∞, F∞, L∞
and k∞, respectively.
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Units in the cyclotomic case Let m ∈ N and let µm be the group of m-th roots of unity,
for each m we fix a primitive root of unity ζm of µm satisfying

ζddm = ζm for all m, d ∈ N.

Let m ∈ N, p be a rational prime and set m = (m) as well as p = (p). Recall that we have
with [Sol92, Lemma 2.1]

Nk(mp)/k(m)(1− ζmp) =

{
1− ζm if p | m,
(1− ζm)1−σ−1

p if p - m.
(4.1)

It is easy to show that [Sol92, Cor. 2.1] if m is not a prime power we have

1− ζm ∈ O×k(m).

Recall that f is the conductor of L and so we have k ⊆ L ⊆ k(f) ⊆ K0 and we set

εcycn := Nk(fpn+s)/Ln(1− ζfpn+s) ∈ L×n ,

where it is clear from the above that εcycn is a unit.
Since Γ has Zp-rank one, we can choose a topological generator γ of Γ such that it corresponds

to a c ∈ 1 + psZp \ 1 + ps+1Zp via 1 + psZp → Γ, a 7→ (γa : ζ 7→ ζa for all ζ ∈ µp∞) inducing an
isomorphism Zp → Γ, a 7→ γa. By abuse of notation we also write γ for each of the restrictions
of γ to Kn, Fn, Ln or kn.

Units in the elliptic case Recall that f is an ideal coprime to p. We fix an auxiliary integral
ideal a of Ok with (a, 6fp) = 1. The main difference to the cyclotomic case is, that we have to
exchange the cyclotomic elements with elliptic elements from Chapter 2.

Units in the split case So by using Definition 2.1.24 we can set

εsplitn := NKn/Ln(ψ(1; fps+n, a)) ∈ L×n .

Since p splits in k, we have that 1+psOH ∼= 1+psZp and we can identify Γ := Gal(K∞/K0) ∼= Zp
with 1 + psZp via a 7→ γa, where γa is uniquely determined by (γa)|Kn = σ(an) with an ∈ Ok
such that

an ≡ 1 mod f,

an ≡ a mod ps.

So as in [Ble04, Sec. 3] after fixing a c ∈ 1 + psZp \ 1 + ps+1Zp we get a topological generator
γ := γc of Γ.

But here we want to choose a topological generator γ first, which then corresponds to a c
as described above. By abuse of notation we also write γ for each of the restrictions of γ to
Kn, Fn, Ln or kn.

Units in the non-split case We fix topological generators γ1 and γ2 of Γ and by abuse
of notation we also write γi, i = 1, 2, for each of the restrictions of γi to Kn, Fn, Ln or kn. We
write e for the ramification index of p in k/Q. It is not difficult to see that Kn = k(fps+en) for
all n ≥ 0.
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Definition 4.1.5. Let i ∈ {1, 2} and set ∆ := Gal(K∞/L∞) ' Gal(K0/L0). We define

Ki,n := K〈γi〉n Li,n := K∆
i,n

and set

εnsi,n :=

{
NKn/Li,n(ψ(1; fps+n, a)), if p is inert in k/Q,
NKn/Li,n(ψ(1; fps+2n, a)), if p is ramified in k/Q.

Remark 4.1.6. The groups Gal(Ki,n/K0) ∼= Gal(Li,n/L) are cyclic groups of order pn generated
by the image of γj where j ∈ {1, 2}, j 6= i.

So in order to get an overview of the elliptic non-split situation, we can look at the following
diagram of fields.

K∞

L∞ Kn

Ln K1,n K2,n

L1,n L2,n K0

L

Γp
n∆

Γp
n ∆

∆

∆

∆

Figure 4.1: Situation elliptic non-split case

Now we will treat all three cases at once since the arguments used for proving the results go
through without changes. The reader has to keep in mind that by abuse of notation the number
fields and Galois groups are different in each case although they are abbreviated with the same
letters.

By the norm relations in (4.1) and in Theorem 2.1.27 together with condition (H1) (because
it implies σp|L = 1) we obtain the following lemma

Lemma 4.1.7. cf. [Sol92, Lemma 2.2] For m,n ∈ N0 with m ≥ n ≥ 0:

a)
NLm/Ln(εcycm ) = εcycn and NLm/L(εcyc) = 1

b)
NLm/Ln(εsplitm ) = εsplitn and NLm/L(εsplit) = 1

c) For i ∈ {1, 2}

NLi,m/Li,n(εnsi,m) = εnsi,m and NLi,n/L(εnsi,n) = 1,

According to Hilbert’s Theorem 90 there exist(s)...
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a) ... a unique element (βcyc)n ∈ L×n /L× such that

(βcyc)γ−1
n = εcycn .

b) ... a unique element (βsplit)n ∈ L×n /L× such that

(βsplit)γ−1
n = εsplitn .

c) ... for i, j ∈ {1, 2} with i 6= j unique elements (βns)i,n ∈ (Li,n)× /L× such that

(βns)
γj−1
i,n = εnsi,n.

Remark 4.1.8. We have to keep in mind, that all the β’s constructed above depend on f, on
the choice of generators of Γ and in the elliptic cases also on the choice of the auxiliary ideal a.

Definition 4.1.9. We define

a)
κcycn = κcycn (L, γ, f) := NLn/L((βcyc)n) ∈ L×/

(
L×
)pn

.

b)
κsplitn = κsplitn (L, γ, f, a) := NLn/L((βsplit)n) ∈ L×/

(
L×
)pn

.

c) For i ∈ {1, 2}

κnsi,n = κnsi,n(L, γ1, γ2, f, a) := NLi,n/L((βns)i,n) ∈ L×/
(
L×
)pn

.

For a prime Q of a number field N we write vQ : N× −→ Z for the normalized valuation
map.

Lemma 4.1.10. Let Q be a prime ideal of L relatively prime to p. Then

a)
vQ(κcycn ) ≡ 0 mod pnZ.

b)
vQ(κsplitn ) ≡ 0 mod pnZ.

c)
vQ(κnsi,n) ≡ 0 mod pnZ.

Proof. We give here the proof of part c) which is similar to the proof of parts a) and b)
cf. [Sol92, Prop. 2.2]. Let bn ∈ L×i,n be a representative of (βns)i,n, γn := γi,n a genera-
tor of Gal(Li,n/L) and set cn := NLi,n/L(b). Then cn is a representative of κnsi,n. If we set
Dn :=

∑pn−1
k=1 kγkn, an easy computation shows that in Z[Gal(Li,n/L)] we have

(γn − 1)Dn = pn −NLi,n/L. (4.2)

Applying the operator Dn to bγn−1
n = εnsi,n we obtain from (4.2) the equality

cn = NLi,n/L(bn) = bp
n

n /ε
Dn
i,n .
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Let now Qn be an ideal in Li,n above Q. Since Q does not divide p the ideal Q is unramified
in Li,n, and hence vQ(cn) = vQn(cn). Furthermore, since cn ∈ κnsi,n

vQ(κnsi,n) ≡ vQ(cn) (mod pnZ)

and
vQ(κnsi,n) ≡ −vQn((εnsi,n)Dn) ≡ 0 (mod pnZ),

where the last congruence follows because εnsi,n is a unit.

As in [Sol92, Lemma 2.3] it is not difficult to see that if m ≥ n ≥ 0 then the natural quotient
map

L×/
(
L×
)pm → L×/

(
L×
)pn (4.3)

takes κcycm to κcycn , resp. κsplitm to κsplitn , resp. κnsi,m to κnsi,n.

Definition 4.1.11. a)

κcyc := κcyc(L, γ, f) := (κcyci,n )∞n=0 ∈ lim←−
n

L×/
(
L×
)pn

.

b)
κsplit := κsplit(L, γ, f, a) := (κspliti,n )∞n=0 ∈ lim←−

n

L×/
(
L×
)pn

.

c) For i ∈ {1, 2} we define

κnsi := κnsi (L, γ1, γ2, f, a) := (κnsi,n)∞n=0 ∈ lim←−
n

L×/
(
L×
)pn

.

Recall that O×L,Sp
denotes the group of Sp-units of L with Sp = Sp(L) denoting the set of

prime ideals of L above p. We then have a natural injection

O×L,Sp
⊗ZZp ' lim←−

n

O×L,Sp

/(
O×L,Sp

)pn
−→ lim←−

n

L×/
(
L×
)pn

.

Proposition 4.1.12. a) κcyc ∈ O×L,Sp
⊗Z Zp

b) κsplit ∈ O×L,Sp
⊗Z Zp

c) For i ∈ {1, 2} we have κnsi ∈ O
×
L,Sp
⊗Z Zp

Proof. We give here the proof of part c) which is similar to the proof of parts a) and b)
cf. [Sol92, Prop. 2.3]. We fix i and set κ := κi and κn := κi,n. We recall that κn ∈ L×/(L×)p

n

and note that it suffices to show κn ∩O×L,Sp
6= ∅ for all n ≥ 0. Let m be the order of the Sp-class

group ClL,Sp and recall that
ClL,Sp ' IL/〈P1, . . . ,Pr, PL〉,

where IL denotes the group of fractional ideals of L, PL the subgroup of principal ideals and
P1, . . . ,Pr the prime ideals of L lying over p. Write m = ptm′ with a natural number t and
p - m′ and choose c ∈ κn+t. By Lemma 4.1.10 we obtain

(c) = Pa1
1 · · ·P

ar
r ap

n+t
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with integers a1, . . . , ar and a fractional ideal a which is coprime to p. Hence apn+t is an element
of 〈P1, . . . ,Pr, PL〉. Clearly am ∈ 〈P1, . . . ,Pr, PL〉 and hence apt ∈ 〈P1, . . . ,Pr, PL〉. Therefore,
there exists an element x ∈ L× and integers b1, . . . , br such that

ap
t

= Pb1
1 · · ·P

br
r (x).

We conclude that
(c) = Pa1+pnb1

1 · · ·Par+pnbr
r

(
xp

n)
.

It follows that cx−pn ∈ O×L,Sp
and since the natural quotient map in (4.3) takes κn+t to κn we

obtain cx−pn ∈ κn.

In order to be able to formulate the main theorems of this chapter we need some additional
notation.
For each primeP of L above p the valuation map vP : L× −→ Z induces a natural homomorphism,
also denoted by vP,

vP : lim←−
n

L×/
(
L×
)pn → Zp.

The restriction of vP to O×L,Sp
⊗ZZp obviously coincides with the Zp-linear extension of

vP : O×L,Sp
→ Z.

By our assumption (H1) each prime P ∈ Sp corresponds to a unique embedding

jP : L ↪→ kp.

Definition 4.1.13. We define the cyclotomic (resp. elliptic) character as the map

χcyc : Γ→ 1 + psH resp. χell : Γ→ 1 + psH

induced by the inverse of the global Artin map.

Now we have an isomorphism given by the following composition

Γ
χcyc−−→
χell

1 + psH
logp−→ psH

∼=

{
Zp in the cyclotomic and split case
Z2
p in the non-split case.

(4.4)

So we can set

ωcyc := logp(χcyc(γ)) ωsplit := logp(χell(γ)) ωi := logp(χell(γi)) for i ∈ {1, 2}

In the elliptic non-split case we obtain a Zp-basis ω1, ω2 of psH . The set {ω1, ω2} is also a Qp-basis
of H and we write πωi : H −→ Qp for the projection maps. Explicitly, we have for each α ∈ H
the equality α = πω1(α)ω1 + πω2(α)ω2.

First of all, we now want to restate the main theorems of [Sol92] and [Ble04].

Theorem 4.1.14. [Sol92, cf. Thm. 2.1] Let p be a rational prime and let L be a finite abelian
extension of Q in which p splits completely, i.e. condition (H1). Let P be a prime ideal in L
above p. Then we have

vP(κcyc) =
1

ωcyc
logp

(
jP(NQ(f)/L(1− ζf ))

)
in Zp.

Let k now be an imaginary quadratic number field.
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Theorem 4.1.15. [Ble04, cf. Thm. 3.4] Let p be a prime which splits in k/Q and assume (H1)
and (H2). Then for each prime ideal P in L above p we have

vP(κsplit) =
1

ωsplit
logp

(
jP(Nk(f)/L(ψ(1; f, a)))

)
in Zp.

And we can also formulate our main theorem of this chapter:

Theorem 4.1.16. Let p be a prime which does not split in k/Q and assume (H1) and (H2).
If p = 2 (resp. p = 3) we assume in addition that either b2) (resp. b3) or c3)) holds.
Then for each prime ideal P in L above p we have

vP(κnsj ) = πωi
(
logp(jP(Nk(f)/L(ψ(1; f, a))))

)
in Zp,

where i, j ∈ {1, 2} with i 6= j.

Remark 4.1.17. Theorem 4.1.16 is equivalent to

logp(jP(Nk(f)/L(ψ(1; f, a)))) = vP(κns2 )ω1 + vP(κns1 )ω2.

It is often convenient to work on finite levels.

Remark 4.1.18. Theorems 4.1.14, 4.1.15 and 4.1.16 are valid, if and only if for all n ≥ 1

a)

vP(κcycn ) ≡ 1

ωcyc
logp

(
jP(NQ(f)/L(1− ζf ))

)
mod pn

b)

vP(κsplitn ) ≡ 1

ωsplit
logp

(
jP(Nk(f)/L(ψ(1; f, a)))

)
mod pn

c) and for i, j ∈ {1, 2} with i 6= j:

vP(κnsj,n) ≡ πωi
(
logp

(
jP(Nk(f)/L(ψ(1; f, a)))

))
mod pn.

Before we present the proofs of the theorems above we want to introduce some additional nota-
tion:

Let P be a prime of F above p. Let ι : Qc ↪→ Qc
p be a field embedding defining P. Via ι we

view elements of Qc as elements of Qc
p, but we sometimes omit ι in our notation. Furthermore,

for any finite extension M/k we write M̃ for the completion of ι(M).

4.2 Proof of the cyclotomic case (Theorem 4.1.14)

We fix a rational prime p and we denote by p the ideal (p). Recall that L is an abelian extension
of Q in which p splits completely, i.e. (H1) holds. Let f be the conductor of L and because of
(H1) we have that p - f. Recall that in the cyclotomic situation we use the class field theoretical
conventions of Neukirch’s book [Neu99] (see also Remark 4.1.2).

So in this case F = Q(f) and we denote a prime ideal of L above p by P. It is well-known
that F (µpn) is an abelian extension of F and even of Q for all n ∈ N. Let Ĝm be the formal
group law F (X,Y ) = (1 +X)(1 + Y )− 1. Then Ĝm can be defined over the completion O

F̃
of

OF,P. It is easy to show that Ĝm is a relative Lubin-Tate group of height one with respect to the
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unramified extension F̃ /k̃. From [Neu99, Ch. VI, Prop 6.7] we can deduce that F (µpn) = Q(fpn)

for all n ≥ 0. We now set H := kp = k̃ = L̃ = Qp, H ′ := F̃ and we resume the notation of
Chapter 3. In particular, Ĝm is a formal Lubin-Tate group relative to the unramified extension
H ′/H. Similar as in Chapter 3 we denote by Wn = {ζ − 1 | ζ ∈ Qc

p, ζ
pn = 1} the n-division

points of the multiplicative group Ĝm. Then class field theory implies that

˜Q(fpn+1) = H ′(Wn+1) = H ′n for n ≥ 0.

We set un := ι(1− ζfpn+1) for n ≥ 0 and get a norm-coherent sequence

u := (un)∞n=0 ∈ lim←−
n

O×H′n

with an associated Coleman power series Colu ∈ OH′ [[T ]] depending on a choice of a generator
ω = (ωn)n≥0 of the Tate module of Ĝm. In particular, we note that as described in [Sol92, Ch.
3] there are several choices of a sequence (ρi)

∞
i=0 of elements of (Qc

p)
× such that ρi is a primitive

ps+i-th root of unity, such that ρpi+1 = ρi for all i, where πi = ρi− 1 is a uniformizer of ˜Qp(ps+i).
On pages 343 and 344 in [Sol92] it is shown how to choose (ρi)

∞
i=0 in a way that the unique

Colu ∈ Zp[[T ]] satisfying
Colu(ρi − 1) = ui

can be explicitly determined. So these computations show that there is a choice of ω = (ωn)n≥0

such that we have
Colu(0) = jP(NQ(f)/L(1− ζf )). (4.5)

Now in order to prove Theorem 4.1.14 we will fix n ≥ 0 and show the congruence a) of Re-
mark 4.1.18.

We first consider the special case where L is the full decomposition field of p in F/k. Addi-
tionally we have

H ′∞ = K̃∞ and K̃n = H ′s−1+n,

where we recall that we have s = 1 (resp. s = 2) for p 6= 2 resp. (p = 2).
By a slight abuse of notation we write Γ (resp. ∆) for the Galois group of H ′∞/H ′s−1 (resp.

H ′∞/L̃∞). Furthermore, let π be a uniformizer of pH and we have ω′cyc := 1
πsωcyc ∈ Z×p since it

comes from a generator in Γ. Then we can define a character χn : Gal(H ′∞/H) −→ Q/Z by

χn : Gal(H ′∞/H) = ∆× Γ � Γ
χcyc−→ 1 + psHOH �

1 + psHOH
1 + ps+nH OH

logp−→
psHOH
ps+nH OH

1/πs−−−→ OH
pnHOH

1/ω′cyc−−−−→ Zp/pnZp
∼=−→ 1

pn
Z/Z,

where the factor ω′cyc is a unit in Zp and is necessary to make the definition independent of the
choice of γ.

By construction ker(χn) = Gal(H ′∞/L̃n) and χn(γ) = 1

[L̃n:H]
+ Z = 1

pn + Z.

Remark 4.2.1. We emphasize that χcyc arises as the inverse of the projective limit of global
Artin isomorphisms 1+fpsZ

1+fps+nZ −→ Gal(Q(fps+n)/Q(fps)). The computations in case (γ) of
[Gra03, Ch. II.4.4.3] show that the composite

1 + psZp
recH−→ Γ

χcyc−→ 1 + psZp

is given by α 7→ α−1.
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By Corollary 3.4.5 we obtain the following equality in Q/Z

(u, χn)H′∞/H = −χn(recH(NH′/H(Colu(0)))).

We first compute the right hand side of this equality. By construction of χn, (4.5) and Remark
4.2.1 we get

−χn(recH(NH′/H(Colu(0)))) =
1

pn

(
1

ωcyc
logp(NH′/H(Colu(0)))

)
=

1

pn

(
1

ωcyc
logp(ι(NF/L(1− ζf )))

)
. (4.6)

For the computation of the left hand side we note that ι((βcyc)n)γ−1 = ι(εcycn ) = N
K̃n/L̃n

(us−1+n),
so that by Definition 3.1.1 we obtain

(u, χn)H′∞/H =
1

pn
v
L̃n

(ι((βcyc)n)). (4.7)

Combining (4.6) and (4.7) we derive congruence a) of Remark 4.1.18. This concludes the proof
of Theorem 4.1.14 in the case that L is the full decomposition field of p in F/k.

The general case follows from the special case precisely in the same way as in [Ble04, Sec. 4.3].

4.3 Proofs of the elliptic cases (Theorems 4.1.15 and 4.1.16)

Recall that p is a prime ideal of Ok over a rational prime p. Moreover, recall that F = k(f) with
an ideal f such that fL | f, w(f) = 1 and p - f. By [dS87, Ch. II, Lemma 1.4] there exists an
elliptic curve E defined over F with complex multiplication by Ok and such that F (Etor) is an
abelian extension of k. The associated Größencharacter is of the form ψE/F = ϕ ◦ NF/k with a
Größencharacter ϕ of k of infinity type (1, 0) and conductor f. Note that E has good reduction
at all primes of F above p.

Since E has good reduction at P, we may and will fix a Weierstraßmodel over the localization
OF,P of OF at P such that the associated discriminant ∆E is a unit in OF,P. Replacing E by
one of its conjugates, if necessary, we may assume that the period lattice associated with the
standard invariant differential of our fixed Weierstraßmodel is given by Ωf with Ω ∈ C×.

Let Ê be the one-parameter formal group law of E with respect to the parameter t = −2x/y.
Then Ê is defined over the completion OF̃ of OF,P. By [dS87, Ch. II, Lemma 1.10] this formal
group Ê is a relative Lubin-Tate group of height one in the split case resp. of height two in the
non-split case with respect to the unramified extension F̃ /k̃.

For any integral ideal c of k we write E[c] for the subgroup of E(Qc) annihilated by all
elements α ∈ c. From [dS87, Ch. II, Prop. 1.6, Prop. 1.9 (i)] we deduce that F (E[pn]) = k(fpn)
for all n ≥ 0.

We set H := k̃ = L̃, H ′ := F̃ and resume the notation of Section 3.2. In particular, Ê is a
Lubin-Tate formal group relative to the unramified extension H ′/H. Similarly as in Section 3.2
we let Wn(Ê) denote the group of division points of level n in Ê. Then [dS87, Ch. II, Prop. 1.6,
Prop. 1.8] implies that ˜k(fpn+1) = H ′(Wn+1(Ê)) = H ′n for n ≥ 0.

We set un := ι(ψ(1; fpn+1, a)) for n ≥ 0 and get a norm-coherent sequence u := (un)∞n=0 which
is an element of lim←−nO

×
H′n

with an associated Coleman power series Colu ∈ OH′ [[T ]] depending
on a choice of a generator ω = (ωn)n≥0 of the Tate module of Ê.

As explained in [dS87, Ch. II.4.4] or [Ble04, Sec. 4.3] one can choose a generator of the Tate
module of Ê such that Proposition 4.3.1 below holds. Note that in [dS87, Ch. II.4] it is assumed
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that p is split in k/Q. However, one can show that this assumption is not needed for proving the
following result.

Proposition 4.3.1. Let P (z) ∈ C[[z]] be the Taylor series expansion of ψ(Ω− z; Ωf, a) at z = 0.
Let λÊ denote the formal logarithm associated with Ê normalized such that λ′

Ê
(0) = 1. Then

P (z) ∈ F [[z]] ⊆ H ′[[z]], and moreover:

a) P (λÊ(T )) ∈ OH′ [[T ]].

b) Colu(T ) = P (λÊ(T )).

c) Colu(0) = ι(ψ(1; f, a)).

In order to prove Theorems 4.1.15 and 4.1.16 we will fix n ≥ 0 and show the congruences b)
and c) of Remark 4.1.18. We first consider the special case where L is the full decomposition
field of p in F/k. Let e denote the ramification index of H/Qp. We have

k̃ = L̃ = H, F̃ = H ′, K̃∞ = H ′∞ and K̃n = H ′s−1+en.

Remark 4.3.2. We emphasize that χell arises as the inverse of the projective limit of global
Artin isomorphisms 1+fps

1+fps+n
−→ Gal(k(fps+n)/k(fps)). The computations in case (γ) of [Gra03,

Ch. II.4.4.3] show that the composite

1 + psHOH
recH−→ Γ

χell−→ 1 + psHOH

is given by α 7→ α−1.

By a slight abuse of notation we write Γ (resp. ∆) for the Galois group of H ′∞/H ′s−1 (resp.
H ′∞/L̃∞).

Character in the split case Let π be a uniformizer of pH and we have ω′split := 1
πsωsplit ∈ Z×p

since the element comes form a generator of Γ. Then we can define a character χn by

χn : Gal(H ′∞/H) = ∆× Γ � Γ
χell−→ 1 + psHOH �

1 + psHOH
1 + ps+nH OH

logp−→
psHOH
ps+nH OH

1/πs−−−→ OH
pnHOH

1/ω′split−−−−−→ Zp/pnZp
∼=−→ 1

pn
Z/Z,

where the factor ω′split is a unit in Zp and is necessary to make the definition independent of the
choice of γ.

By construction ker(χn) = Gal(H ′∞/L̃n) and

χn(γ) =
1

[L̃n : H]
+ Z =

1

pn
+ Z.

Character in the non-split case For i ∈ {1, 2} we define a character χn by

χi,n : Gal(H ′∞/H) = ∆× Γ � Γ
χell−→ 1 + psHOH �

1 + psHOH
1 + ps+enH OH

logp−→
psHOH

ps+enH OH

πωj−→ Zp/pnZp ∼=
1

pn
Z/Z.

By construction ker(χi,n) = Gal(H ′∞/L̃i,n) and χi,n(γj) = 1

[L̃i,n:H]
+ Z = 1

pn + Z.
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Rest of the proof for Theorems 4.1.15 and 4.1.16 By Corollary 3.4.5 we obtain the
following equality in Q/Z

(u, χn)H′∞/H = −χn(recH(NH′/H(Colu(0)))).

in the split case, resp.

(u, χi,n)H′∞/H = −χi,n(recH(NH′/H(Colu(0)))).

in the non-split case.
We first compute the right hand side of this equality. By construction of χn resp. χi,n, Proposi-
tion 4.3.1 and Remark 4.3.2 we get in the split case:

−χn(recH(NH′/H(Colu(0)))) =
1

pn
1

ωsplit

(
logp(NH′/H(Colu(0)))

)
=

1

pn
1

ωsplit

(
logp(ι(NF/L(ψ(1; f, a)))

)
. (4.8)

resp. in the non-split case:

−χi,n(recH(NH′/H(Colu(0)))) =
1

pn
πωj

(
logp(NH′/H(Colu(0)))

)
=

1

pn
πωj

(
logp(ι(NF/L(ψ(1; f, a)))

)
. (4.9)

For the computation of the left hand side we note that

ι((βsplit)n)γ−1 = ι(εsplitn ) = N
K̃n/L̃n

(us−1+n),

resp. in the non-split case

ι((βns)i,n)γj−1 = ι(εnsi,n) = N
K̃n/L̃i,n

(us−1+en),

so that by Definition 3.1.1 we obtain in the split case

(u, χn)H′∞/H =
1

pn
v
L̃n

(ι((βsplit)n)). (4.10)

resp. in the non-split case

(u, χi,n)H′∞/H =
1

pn
v
L̃i,n

(ι((βns)i,n)). (4.11)

Combining in the split case (4.8) and (4.10) resp. in the non-split case (4.9) and (4.11) we derive
the congruences b) and c) of Remark 4.1.18. This concludes the proofs of Theorems 4.1.15 and
4.1.16 in the case that L is the full decomposition field of p in F/k.

The general case in the split situation is proved in [Ble04, Sec. 4.3]. For the non-split case
we can give a similar argument:

Indeed, let D denote the decomposition subfield of F/k with respect to p. By our hypothesis
(H1) we have L ⊆ D. For a fixed prime P of L we write P1, . . . ,Pr, r = [D : L], for the primes
of D lying over P. Let {g1 = id, g2, . . . , gr} denote a set of representatives of Gal(F/L) modulo
Gal(F/D) such that P` = Pg`

1 , ` = 1, . . . , r. One can verify that

κnsi,n(L) ≡ ND/L(κnsi,n(D)) mod (L×)p
n
,
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where κnsi,n(L) := κnsi,n(L, γ1, γ2, f, a) and κnsi,n(D) := κnsi,n(D, γ1, γ2, f, a). So one obtains

vP(κnsi,n(L)) ≡ vP(ND/L(κnsi,n(D))) =
r∑
`=1

vP`(κ
ns
i,n(D)) mod pnZ.

Without loss of generality we may assume that the fixed embedding ι defines the prime P1 of
D. Then jP` := ι ◦ g−1

` defines P` for ` = 1, . . . , r. We obtain

πωj
(
logp(ι(NF/L(ψ(1; f, a))))

)
= πωj

(
logp(ι(ND/L(NF/D(ψ(1; f, a)))))

)
= πωj

(
logp(ι(

r∏
`=1

NF/D(ψ(1; f, a))g`))

)

= πωj

(
r∑
`=1

logp(jP1(NF/D(ψ(1; f, a))g`))

)

=

r∑
`=1

πωj
(
logp(jP`(NF/D(ψ(1; f, a))))

)
.

Hence, the general case follows immediately from the special case.



Chapter 5

Application to the Iwasawa-theoretic
MRS conjecture

The main reference for this chapter is the work of Burns, Kurihara and Sano [BKS17], which
was preceded by [BKS16], [San14] and [MR16]. The main purpose of this chapter is to prove
an Iwasawa-theoretic version of a conjecture of Mazur, Rubin and Sano for imaginary quadratic
base fields. The possibility to do this was already hinted at in [BKS17, Rem. 5.10] for the case
where the rational prime p splits in the imaginary quadratic field k. We now write down a proof
for the split case and show some new results for non-split primes (in k) by using the main results
of Chapter 4.

In the first section we present the framework in order to be able to formulate a conjecture of
Mazur, Rubin and Sano, which we will call MRS conjecture from now on, for finite extensions
as well as the Iwasawa-theoretic version. Moreover, we summarize some useful properties of the
Iwasawa-theoretic assertion which have been shown in [BKS16] and [BKS17].

Following the ideas presented in [BKS17] for abelian fields, we obtain in the second section
results for imaginary quadratic base fields k and odd primes p with p - hk for cases where p splits
in k as well as where p does not split in k.

5.1 Rubin-Stark conjecture and MRS conjecture

Let L/k be an abelian extension of a number field k with Galois group G and we denote by Ĝ
the group of homomorphisms G→ C× of finite order. Let S be a finite set of places of k which
contains S∞(k) ∪ Sram(L/k). We fix a labelling S := {v0, . . . , vn}. We order the places so that
v1, . . . , vr split completely in L and that there are no other places with this property in S. So
we assume that at least one place does not split completely in L. We put V := {v1, . . . , vr}.
Moreover, let S(L) or SL be the set of places of L which lie above the places in S and OL,S be
the ring of S(L)-integers of L. For any set W of places of k, we put

YL,W :=
⊕
w∈WL

Zw and XL,W :=

{ ∑
w∈WL

aww ∈ YL,W :
∑
w∈WL

aw = 0

}
.

Here we denote by Lk,S(s, χ) the usual S-imprimitive L-function for χ ∈ Ĝ, i.e.

Lk,S(s, χ) :=
∏
v/∈S

(
1− χ(Frv)N (v)−s

)−1
,

where Frv ∈ G is the Frobenius of the (unramified) prime v and we put

rS(χ) := ords=0Lk,S(s, χ).
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We know (by the Dirichlet unit theorem) that the homomorphism of R[G]-modules

λL,S : RO×L,S → RXL,S

x 7→ −
∑
w∈SL

log |x|w · w

is an isomorphism. By [Tat84, Chap. I, Prop 3.4] we know that

rS(χ) = dimC(eχCO×L,S) =

{
|{v ∈ S : χ(Gv) = 1}| if χ 6= 1,

|S| − 1 if χ = 1,

where eχ := 1
|G|
∑

g∈G χ(g)g−1. So we see that r ≤ rS(χ).

Moreover, for χ ∈ Ĝ we set Lχ := Lker(χ) and Gχ := Gal(Lχ/k). Take Vχ,S ⊂ S so that all
v ∈ Vχ,S split completely in Lχ (i.e. χ(Gv) = 1) and |Vχ,S | = rS(χ). Note that if χ 6= 1, we have

Vχ,S = {v ∈ S : χ(Gv) = 1}.

Let T be a finite set of places of k which is disjoint from S. Recall that the S-truncated
T -modified L-function is defined by

Lk,S,T (s, χ) :=

(∏
v∈T

1− χ(Frv)N (v)1−s

)
Lk,S(s, χ).

The (S, T )-unit group of L is defined by

O×L,S,T := ker(O×L,S →
⊕
w∈TL

κ(w)×),

where κ(w) is here the residue class field of L at w. Note that O×L,S,T is a subgroup of O×L,S of
finite index and we have

r ≤ rS(χ) = ords=0Lk,S,T (s, χ) = dimC(eχCO×L,S,T ).

We put
L

(r)
k,S,T := lim

s→0
s−rLk,S,T (s, χ)

and
θ

(r)
L/k,S,T :=

∑
χ∈Ĝ

L
(r)
k,S,T (0, χ−1)eχ ∈ R[G]. (5.1)

Definition 5.1.1. Let

λ̃L,S : R
r∧

Z[G]

O×L,S,T → R
r∧

Z[G]

XL,S

be the isomorphism induced by λL,S . Then we define the (r-th order) Rubin-Stark element

εVL/k,S,T ∈ R
r∧

Z[G]

O×L,S,T

such that

θ
(r)
L/k,S,T · (w1 − w0) ∧ . . . ∧ (wr − w0) = λ̃L,S(εVL/k,S,T ) in R

r∧
Z[G]

XL,S .
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Recall that Y ∗L,S = HomZ[G](YL,S ,Z[G]). There is a pairing

r∧
Z[G]

XL,S ×
r∧

Z[G]

Y ∗L,S → Z[G].

If η ∈
∧r

Z[G] Y
∗
L,S we can define a map

Rη :
r∧

Z[G]

O×L,S,T
λ̃L,S−−−→ R

r∧
Z[G]

XL,S
η−→ R[G].

If w ∈ SL define w∗ ∈ Y ∗L,S by

w∗(w′) =
∑
gw=w′

g for w′ ∈ SL.

Remark 5.1.2. Recall that in [Rub96] the absolute value | |w : Lw → R+ ∪ {0} is normalized
so that

|α|w =


±α if Lw = R,
αᾱ if Lw = C,
N (w)−ordw(α) if Lw is non-archimedean.

Lemma 5.1.3. [Rub96, Lemma 2.2] If u1, . . . , ur ∈ O×L,S,T , w1, . . . , wr ∈ SL and η = w∗1∧. . .∧w∗r ,
then

Rη(u1 ∧ . . . ∧ ur) = det

∑
g∈G

log |ugi |wjg
−1


i,j

.

From now on we assume that O×L,S,T is Z-free (T can always be chosen such that this condition
is fulfilled).

Definition 5.1.4. We define the Rubin lattice as
r⋂

Z[G]

O×L,S,T :=

{
a ∈ Q

r∧
Z[G]

O×L,S,T : Φ(a) ∈ Z[G] for all Φ ∈
r∧

Z[G]

HomZ[G](O×L,S,T ,Z[G])

}
.

The ’classical’ Rubin-Stark conjecture asserts:

Conjecture 5.1.5. RS(L/k, S, T, V )

εVL/k,S,T ∈
r⋂

Z[G]

O×L,S,T .

Remark 5.1.6. The Rubin-Stark conjecture RS(L/k, S, T, V ) is known to hold in the following
cases:

a) The case r = 0: This is Theorem 3.3 in [Rub96] which is essentially the work of Deligne
and Ribet in [DR80].

b) The case L = k: This is Theorem 3.2 in [Rub96].
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c) The case [L : k] = 2: This is Corollary 3.5 in [Rub96].

d) The case L is an abelian extension over Q: This is part of Theorem A in [Bur07], where it
is shown that the conjecture is implied by the leading term conjecture which is known by
[BG03] and [Fla11].

e) If there exists an imaginary quadratic number field F with hF = 1 such that F ⊆ k, L/F
a finite abelian extension and [L : k] is both odd and divisible only by primes which split
completely in F/Q. This is also part of Theorem A in [Bur07] which uses in this case the
work of [Ble06] to show the leading term conjecture.

f) The case r = 1 and k an imaginary quadratic number field: This follows from Proposition
2.5 in [Rub96] and Proposition 3.9 in [Tat84, Ch. IV], which is based on [Sta80].

g) For a large class of multi-quadratic extensions L/k and r = 1: This was done in [DST03].

Now we define the ’p-part’ of the Rubin-Stark conjecture. For that we set UL,S,T := ZpO×L,S,T
and fix an isomorphism C ∼= Cp. From this we regard

εVL/k,S,T ∈ Cp
r∧

Zp[G]

UL,S,T .

We define
r⋂

Zp[G]

UL,S,T :=
{
a ∈ Qp

r∧
Zp[G]

UL,S,T : Φ(a) ∈ Zp[G] for all Φ ∈
r∧

Zp[G]

HomZp[G](UL,S,T ,Zp[G])
}

and note that there is a natural isomorphism Zp
⋂r

Z[G]O
×
L,S,T

∼=
⋂r

Zp[G] UL,S,T . So one can
formulate what in [BKS17] is called the p-component version of the Rubin-Stark conjecture

Conjecture 5.1.7. RS(L/k, S, T, V )p

εVL/k,S,T ∈
r⋂

Zp[G]

UL,S,T .

Remark 5.1.8. The classical Rubin-Stark conjecture RS(L/k, S, T, V ) implies the p-component
version RS(L/k, S, T, V )p for all primes p.

Remark 5.1.9. From now on we will sometimes suppress Zp[G] from the notation
⋂r

Zp[G] if it
is clear form the context.

Let k be a number field andM∞/k be a Galois extension such that G := Gal(M∞/k) ∼= ∆×Γ,
where ∆ is a finite abelian group and Γ ∼= Zp. With the isomorphism fixed above we identify ∆̂

with HomZ(∆,Q×p ).
Furthermore, we set

M := MΓ
∞ k∞ := M∆

∞

Mn : n-th layer of M∞/M kn := n-th layer of k∞/k
Gn := Gal(Mn/k).
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and for χ ∈ Ĝ we also set

Lχ := Mker(χ)
∞ Lχ,∞ := Lχ · k∞

Lχ,n := n-th layer of Lχ,∞/Lχ
Gχ := Gal(Lχ,∞/k) Gχ,n := Gal(Lχ,n/k)

Γχ := Gal(Lχ,∞/Lχ) Γχ,n := Gal(Lχ,n/Lχ)

Vχ := {v ∈ S : v splits completely in Lχ,∞} rχ := |Vχ|.

Let S be a finite set of places of k which contains S∞(k)∪ Sram(M∞/k)∪ Sp(k), where Sp(k) is
the set of primes of k above p, and T a finite set of places which is disjoint from S.

Now we fix a character χ ∈ Ĝ and we take a proper subset V ′ ⊂ S so that all v ∈ V ′ split
completely in Lχ and that Vχ ⊂ V ′ and we put r′ := |V ′|. To simplify we set:
Ln := Lχ,n, L := Lχ, Gn := Gχ,n, G := Gχ = Gal(Lχ/k), Γn := Γχ,n, V := Vχ, r := rχ and
e := r′ − r. Let I(Γn) be the augmentation ideal of Zp[Γn] and In be the kernel of the natural
map Zp[Gn]→ Zp[G].

Remark 5.1.10. From [San14, Lemma 2.11] we know that there exists a canonical injection

r⋂
UL,S,T ↪→

r⋂
ULn,S,T

which induces the injection

νn :

(
r⋂
UL,S,T

)
⊗Zp I(Γn)e/I(Γn)e+1 ↪→

(
r⋂
ULn,S,T

)
⊗Zp Zp[Γn]/I(Γn)e+1.

Remark 5.1.11. For v ∈ V ′ \ V we denote by

recw : L× → Γn

the local reciprocity map at w (a place above v) and so we can define a Z[G]-homomorphism

Recw : L× −→ In/I
2
n

a 7−→
∑
g∈G

(recw(ag)− 1) g−1

It is shown in [San14, Prop. 2.7] that
∧
v∈V ′\V Recw induces a homomorphism

Recn :
r′⋂
UL,S,T →

r⋂
UL,S,T ⊗Zp I(Γn)e/I(Γn)e+1.

Since lim←−n I(Γn)e/I(Γn)e+1 ∼= Zp the map

lim←−
n

Recn :

r′⋂
UL,S,T →

r⋂
UL,S,T ⊗Zp lim←−

n

I(Γn)e/I(Γn)e+1

uniquely extends to give a Cp-linear map

Rec∞ : Cp
r′∧
UL,S,T → Cp

(
r∧
UL,S,T ⊗Zp lim←−

n

I(Γn)e/I(Γn)e+1

)
.
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Definition 5.1.12. We define

Nn :
r⋂
ULn,S,T −→

r⋂
ULn,S,T⊗ZpZp[Γn]/I(Γn)e+1

a 7−→
∑
γ∈Γn

γ(a)⊗γ−1.

Then there are the following two conjectures as stated in [BKS17]:

Conjecture 5.1.13. MRS(Ln/L/k, S, T, V, V
′)p

Assume Conjectures RS(Ln/k, S, T, V )p and RS(L/k, S, T, V ′)p. Then we have

Nn(εVLn/k,S,T ) = (−1)re νn

(
Recn

(
εV
′

L/k,S,T

))
(5.2)

which is an equality in
⋂r ULn,S,T⊗Zp[Γn]/I(Γn)e+1.

Conjecture 5.1.14. MRS(M∞/k, S, T, χ, V
′)p

Assume that Conjecture RS(Ln/k, S, T, V )p is valid for all n. Then there exists a (unique)

ξ = (ξn)n ∈
r⋂
UL,S,T ⊗Zp lim←−

n

I(Γn)e/I(Γn)e+1

such that
νn(ξn) = Nn(εVLn/k,S,T ) (5.3)

for all n and that

eχξ = (−1)reeχRec∞(εV
′

L/k,S,T ) in Cp

(
r∧
UL,S,T ⊗Zp lim←−

n

I(Γn)e/I(Γn)e+1

)
(5.4)

In [BKS17] there is a summary of some properties of Conjecture 5.1.14, which we want to
recall:

Proposition 5.1.15. [BKS17, Prop. 4.4, Cor. 4.5 and 4.6]

a) If V = V ′, then MRS(M∞/k, S, T, χ, V
′) holds.

b) If V ⊂ V ′′ ⊂ V ′, then MRS(M∞/k, S, T, χ, V
′) implies MRS(M∞/k, S, T, χ, V

′′).

c) Suppose that χ(Gv) = 1 for all v ∈ S and |V ′| = |S| − 1. Then, for any V ′′ ⊂ S with
V ⊂ V ′′ and |V ′′| = |S| − 1, MRS(M∞/k, S, T, χ, V

′) and MRS(M∞/k, S, T, χ, V
′′) are

equivalent.

d) If v ∈ V ′\V is a finite place which is unramified in L∞, then MRS(M∞/k, S\{v}, T, χ, V ′\
{v}) implies MRS(M∞/k, S, T, χ, V

′).

e) If |V ′| 6= |S| − 1 and v ∈ S \ V ′ is a finite place which is unramified in M∞, then
MRS(M∞/k, S \ {v}, T, χ, V ′) implies MRS(M∞/k, S, T, χ, V

′).

f) If every place v in V ′ \ V is both non-archimedean and unramified in M∞, then
MRS(M∞/k, S, T, χ, V

′) holds.

g) If χ(Gp) 6= 1 for all p ∈ Sp(k) which ramify in Lχ,∞, then MRS(M∞/k, S, T, χ, V
′) holds,

Remark 5.1.16. The validity of MRS(Ln/L/k, S, T, V, V
′)p for all n implies the validity of

MRS(M∞/k, S, T, χ, V
′)p.
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5.2 Iwasawa-theoretic MRS conjecture for imaginary quadratic
base fields

Let k be an imaginary quadratic field, p be an odd rational prime and p a prime ideal of Ok
above p. For simplicity we also exclude p = 3 in the case where p is ramified in k. We assume
for this section the following hypothesis:

(H2) p - hk.

Recall that if p splits in k, we call this situation the split case and if p is non-split in k, we call
this situation the non-split case.

Let f be a non-zero integral ideal in Ok coprime to p. Furthermore, let K ′∞ := k(fp∞) and
G′ := Gal(K ′∞/k). Now we have

Γ′ := lim←−
n

Gal(k(fpn+1)/k(fp)) ∼= lim←−
n

1 + pOk
1 + pn+1Ok

∼=

{
Zp in the split case,
Z2
p in the non-split case.

We have G′ ∼= Γ ×∆, where ∆ ∼= Gal(K0/k) and Γ = Zdp. If K∞ is a Zp-extension of K0 in
K ′∞ then we set k∞ := K∆

∞
For a finite character χ of G′ we set:

L := Lχ := K
ker(χ)
∞ L∞ := Lχ,∞ := L · k∞ Ln := Lχ,n the n-th layer of L∞/L

Gn := Gal(Ln/k) Γn := Gal(Ln/L)

Moreover, we set S to be a finite set of places of k, which contains S∞(k), Sram(K∞/k) and
Sp(k) and T to be a finite set of places of k disjoint from S and such that UK∞/k,S,T is a free
module.

The goal of this section is to prove the following theorems, which are analogues of Theo-
rem 4.10 in [BKS17] for imaginary quadratic fields:

Theorem 5.2.1. Let p be an odd prime that splits in k and assume p - hk.
Then MRS(K ′∞/k, S, T, χ, V

′)p holds for each finite character of G′.

Theorem 5.2.2. Let p be an odd inert prime in k or a ramified prime in k with p 6= 2, 3 and
assume that p - hk. Let χ be a finite character of G′ and let K∞ be a Zp-extension of K0 in
K ′∞ such that Lχ ⊆ K∞. If no finite prime in S splits completely in Lχ,∞/k and Assumption
(DimAss) (Assumption 5.2.15) holds, then MRS(K∞/k, S, T, χ, V

′)p holds.

Theorem 5.2.3. Let p be an odd prime that is inert in k and assume p - hk. Let χ be a finite
character of G′ and let K∞ be a Zp-extension of K0 in K ′∞ such that Lχ ⊆ K∞. Assume that no
finite prime in S splits completely in Lχ,∞/k. Then MRS(K∞/k, S, T, χ, V

′)p holds for all but
one explicitly defined Zp-extension determined by the Rubin-Stark element at Lχ.

Remark 5.2.4. We want to recall that for r = |V | = 1 and k an imaginary quadratic number
field RS(Ln/k, S, T, V )p holds for all n because of Remark 5.1.6 f) and Remark 5.1.8.
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Reduction of the problem With Proposition 5.1.15 b) we can assume that V ′ is maximal,
i.e.

r′ = min{|{v ∈ S : χ(Gv) = 1}|, |S| − 1}

and with Proposition 5.1.15 g) we can assume χ(Gp) = 1.

If χ = 1, then we have r′ = |S|−1 and so we can assume that p /∈ V ′ by Proposition 5.1.15 c).
In this case every prime of v ∈ V ′ \ V is unramified in L∞, so the assertion follows from
Proposition 5.1.15 f).

For simplicity we assume that there is more than one ramified place in S \ {p} that does not
split completely in L.

So in total we may assume, with Proposition 5.1.15 d) and e), that

S = {∞} ∪ {p} ∪ Σ and V ′ = {∞, p},

where Σ is the subset of S\{p} of ramified places that do not split completely in L and V := {∞}
as well as χ(Gp) = 1.

Remark 5.2.5. We have for a Zp[G]-lattice M that
⋂rM =

∧rM if r ≤ 1 with [Rub96,
Prop. 1.2 ii)]. Now after the reductions above we can make the following simplifications:

a) The map νn defined with the help of [San14, Lemma 2.11] reduces to

UL,S,T ⊗Zp I(Γn)/I(Γn)2 ↪→ ULn,S,T ⊗Zp Zp[Γn]/I(Γn)2

which is induced by the inclusion UL,S,T ↪→ ULn,S,T

b) Now we use [San14, Prop. 2.7] with G := Gn, H := Γn and G/H = Gal(L/k). Then we
have that M := UL,S,T is a Gal(L/k)-lattice, r′ = 2 and Φ := Recw|UL,S,T

and we get the
map

Recn :

2⋂
UL,S,T → UL,S,T ⊗Zp I(Γn)/I(Γn)2

m1 ∧m2 7→ m2 ⊗ Φ(m1)−m1 ⊗ Φ(m2).

Lemma 5.2.6. [San14, Prop 3.5] Let Ω(k, T ) be a set of triples (M,S, V ), where M is a finite
abelian extension of k, S is an admissible set of places and V is a subset of S where v ∈ V
splits completely in M and |S| ≥ |V |+ 1. Let (M,S, V ), (M ′, S′, V ) ∈ Ω(k, T ) and suppose that
M ⊂M ′ and S ⊂ S′. Then we have

N r
M ′/M (εVM ′/k,S′,T ) =

 ∏
v∈S′\S

1− Fr−1
v

 εVM/k,S,T

where NM ′/M = NGal(M ′/M) and if r = 0, then we regard N r
M ′/M as the natural map

Z[Gal(M ′/k)]→ Z[Gal(M/k)].
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Elliptic units and Rubin-Stark elements Here we show that for k imaginary quadratic and
r = |V | = 1 elliptic units can be used to describe the Rubin-Stark elements explicitly therefore
connecting the results of Chapter 4 with this concepts developed earlier in this chapter. This is
well-known since the Rubin-Stark conjecture coincides with the abelian Stark conjecture in rank
one and in this situation it was proved using the properties of elliptic units already in [Sta80]
and [Tat84]. Our treatment contains more details and also considers the ’T -modification’. It
is instructional for the reader to compare this to the cyclotomic situation treated in [Pop11,
Sec. 4.2].

Lemma 5.2.7. Let m be a non-zero integral ideal of Ok. Then there are infinitely many integral
ideals a of Ok such that

i) (a, 6m) = 1,

ii) σa = (a, k(m)/k) = id.

Proof. With the Čebotarev density theorem (e.g. [Neu99, Ch. VII, Thm. 13.4]) we know that
there are infinitely many prime ideals of k such that (a, k(m)/k) = id. Excluding all the prime
ideals dividing 6m we find infinitely many prime ideals such that i) and ii) are fulfilled.

Definition 5.2.8. Let f be an integral ideal in Ok, q be a prime ideal and let a be an integral
ideal coprime to 6f. For each character χ of Cl(f), we set

S(χ, f) :=

{∑
C∈Cl(f) χ(C) log |ψ(1; f, a)σ(C)| if f 6= (1),∑
C∈Cl(1) χ(C) log |δσ(C)

q | if f = (1),

where we recall that δq for a fixed a and a fixed prime ideal q is defined in Remark 2.1.28.

Lemma 5.2.9. Let f be a non-zero integral ideal in Ok, χ a character of Gal(k(f)/k), fχ the
conductor of χ and χp the primitive character associated to χ. Then we have

cp · w(fχ) · S(χ, f) = w(f) ·
∏

q|f,q-fχ

(1− χ−1
p (q)) · S(χp, fχ),

where cp := 1 if fχ 6= (1) or f = (1), and cp := 1− χ−1
p (p) if fχ = (1) and f 6= (1).

Proof. In order to shorten the notation we set L := k(f), L′ := k(fχ), G := Gal(L/k),
H := Gal(L/L′) and G′ := Gal(L′/k). So with the definitions above we have that χp is a
primitive character of G′. So we have Cl(f) ∼= G and Cl(fχ) ∼= G′. For f = fχ = (1) the equality
is trivially correct. Hence, we assume f 6= (1). We compute:

S(χ, f) =
∑
g∈G

χ−1(g) log |ψ(1; f, a)g|

=
∑
h∈H

∑
g′∈G′

χ−1(g′h) log
∣∣∣ψ(1; f, a)hg

′
∣∣∣

=
∑
h∈H

∑
g′∈G′

χ−1(g′) log
∣∣∣ψ(1; f, a)hg

′
∣∣∣

=
∑
g′∈G′

χ−1(g′) log
∣∣∣NL/L′(ψ(1; f, a))g

′
∣∣∣



80 5. Application to the Iwasawa-theoretic MRS conjecture

Assuming fχ 6= (1) and using Theorem 2.1.27 a) we obtain:

S(χ, f) =
w(f)

w(fχ)
·
∏

q|f,q-fχ

(1− χ−1
p (q)) · S(χp, fχ),

where the product ranges over all the prime ideals q dividing f but not fχ.
Assuming fχ = (1) and using Theorem 2.1.27 a) and b) we obtain:

S(χ, f) =
w(f)

w(1)
·
∏

q|f,q6=b

(1− χ−1
p (q)) ·

∑
g′∈G′

χ−1
p (g′) log |δg

′

b |

 ,

where the product ranges over all prime ideal q dividing f with exception of arbitrarily chosen
prime ideal b. From this we obtain by multiplying (1− χ−1

p (p)) and recalling Equation (2.4) we
obtain:

cp · S(χ, f) =
w(f)

w(1)
·
∏
q|f

(1− χ−1
p (q)) · S(χp, (1)),

where the product ranges over all prime ideals q dividing f and so we have shown the assertion.

Lemma 5.2.10. Let f 6= (1) be a non-zero integral ideal of Ok, G := Gal(k(f)/k), χ a character
of G, S = S∞ ∪ Sram(k(f)/k). Then we have

L∗S(0, χ−1) =
−1

w(f)(N (a)− χ(a))

∑
g∈G

χ−1(g) log |ψ(1; f, a)g|2 .

Proof. In order to shorten the notation, for the chosen ideal a in Ok with (a, 6fp) = 1 we denote
by ca the expression N (a) − χ(a) ∈ Z[G] and set G′ := Gal(k(fχ)/k). Furthermore, we define
the set S′ = S∞ ∪ Sram(k(fχ)/k).

Since S′ ⊆ S we have for the induced primitive character χp of Gal(k(fχ)/k) and r ≤ rS(χ):

L
(r)
S (0, χp) =

∏
v∈S\S′

(1− χp(v)) · L(r)
S′ (0, χp). (5.5)

For fχ 6= (1) we get with Proposition 2.3.9:

L∗S′(0, χ
−1
p ) =

−2

ca · w(fχ)

∑
g∈G′

χ−1
p (g) log |ψ(1; fχ, a)g|,

and with (5.5) we get

L∗S(0, χ−1
p ) =

−2

caw(fχ)
·
∏

q|f,q-fχ

(1− χ−1
p (q)) · S(χp, fχ).

Using Lemma 5.2.9 we obtain

L∗S(0, χ−1
p ) =

−2

ca · w(f)
· S(χ, f)

and using the functoriality properties of S-imprimitive Artin L-functions we get the assertion of
the lemma for fχ 6= (1).
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Assume that fχ = (1), then we get with Corollary 2.3.7

(
1− χ−1

p (p)
)
L∗S′(0, χ

−1
p ) =

−2

w(1) · ca

∑
g∈G′

χ(g) log
∣∣δgp ∣∣ ,

Now with (5.5) we obtain

cp · L∗S(0, χ−1
p ) =

−2

w(1) · ca
·
∏
q|f

(1− χ−1(q))S(χp, (1))

and with Lemma 5.2.9 we get

L∗S(0, χ−1
p ) =

−2

w(1) · ca
· S(χ, f)

and with the same argument as in the previous case we have proven the lemma.

Lemma 5.2.11. Let f be a non-zero integral ideal ofOk, G := Gal(k(f)/k), S = S∞ ∪ Sram(k(f)/k),
V = {∞} and a be an integral ideal from Lemma 5.2.7.

a) For p | f there is an admissible set T and an element C(T, a, f) ∈ Zp[G] such that

εVk(f)/k,S,T = ψ(1; f, a)C(T,a,f).

b) For f = (1) and S′ = S∪{p} there is an admissible set T and an element C(T, a, (1)) ∈ Zp[G]
such that

εVk(1)/k,S′,T = δ
C(T,a,(1))
p .

Proof. First of all, it is easy to see that

L∗S,T (0, χ) =
∏
v∈T

(1− χ(v)N (v))L∗S(0, χ). (5.6)

Recall that we are in a case with r = 1. We fix a v ∈ S and a w ∈ SL above that. Then with
Definition 5.1.1 and Lemma 5.1.3 the Rubin-Stark element εVk(f)/k,S,T is defined by

w∗(λ̃k(f),S(εVk(f)/k,S,T )) = θ
(1)
k(f)/k,S,T (0)

This is equivalent to
eχw

∗(λ̃k(f),S(εVk(f)/k,S,T )) = L∗S,T (0, χ−1)eχ (5.7)

for all χ ∈ Ĝ.
Let T be an admissible set which contains a and χ be a non-trivial character.
For the case where w(f) = 1 we set

C(T, a, f) :=
∏

v∈T\{a}

(1−N (v)σv) ∈ Z[G].

For w(f) 6= 1 we have to multiply by w(f)−1, but the product is in Zp[G] because we assumed
p > 3 and we know that w(f) | 6 in the imaginary quadratic case.
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In part a) we assume for simplicity that w(f) = 1, so we can compute with Lemma 5.1.3

eχw
∗(λ̃k(f),S(ψC(T,a,f)

n )) = eχ
∑
g∈G

log
∣∣∣g(ψ(1; f, a)C(T,a,f))

∣∣∣2 g−1

=
∑
g∈G

χ−1(g) log
∣∣∣g(ψ(1; f, a)C(T,a,f))

∣∣∣2 eχ
=

∏
v∈T\{a}

(1−N (v)χ(v))
∑
g∈G

χ−1(g) log |ψ(1; f, a)g|2 eχ.

Moreover, with (5.6) and with Lemma 5.2.10 we obtain

eχL
∗
S,T (0, χ−1) =

−(1− χ(a)N (a))

(N (a)− χ(a))

∏
v∈T\{a}

(1− χ(v)N (v)) ·

∑
g∈G

χ−1(g) log |ψ(1; f, a)g|2
 eχ

=
∏

v∈T\{a}

(1− χ(v)N (v)) ·

∑
g∈G

χ−1(g) log |ψ(1; f, a)g|2
 eχ.

Now for the trivial character χ = 1, we get the result at once for |S| > 3 since ζ(1)
k,S(0) = 0 in

this case and by the norm relation of Theorem 2.1.27 a) we have on the left side of (5.7) also a zero.
For |S| = 2 we have a non-zero right hand side of Equation (5.7) given by Corollary 2.3.5 and
Lemma 2.1 in [Tat84, Ch. 1]. On the other side we use the norm relation of Theorem 2.1.27 b)
and then checking the equality boils down to computing Nk(1)/k(δp). For case b) one makes the
same computations as above with the difference that we replace ψ(1; f, a) by δp. In this case it
is unavoidable to have coefficients in Zp[G] since w(1) = 2, 4 or 6.

So from Lemma 5.2.6 we get immediately

Corollary 5.2.12. For Ln defined at the beginning of the section let fLn and fL be the conductor
of Ln and L, respectively. Then we have

εVLn/k,S,T = Nk(fLn )/Ln(εVk(fLn )/k,S,T ),

where S = {∞, p} ∪ Sram(L/k) because of the construction of Ln. Moreover, we have

εVL/k,S\{p},T = Nk(fL)/L

(
εVk(fL)/L,S\{p},T

)
.

From now on, we will use the notation εVLn := εVLn/k,S,T and εVL := εVL/k,S\{p},T , respectively.

As in Chapter 4 we obtain

Lemma 5.2.13. Let s ≥ n ≥ 1. Then we have

a) NLs/Ln(εVLs) = εVLn .

b) NLn/L(εVLn) = 1.

c) There exists a βn ∈ L×n /L× such that

βγ−1
n = εVLn .

Moreover, we set κn := NLn/L(βn) ∈ L×/(L×)p
n .
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Proof. For part a) and b) we can use Lemma 5.2.6, where for b) we use additionally the assump-
tion that p splits completely in L. Part c) follows directly from Hilbert’s Theorem 90.

Now we set Γn := Gal(Ln/L) and by abuse of notation we denote by γ a generator of Γn.

Lemma 5.2.14. The equality (5.3) of Conjecture 5.1.14 holds in our situation, i.e.

Nn(εVLn) = νn(ξn)

with ξn := κn ⊗ (γ − 1), where κn is defined in Lemma 5.2.13.

Proof. We compute

Nn(εVLn) =
∑
τ∈Γn

τ(εVLn)⊗τ−1

=
∑
τ∈Γn

τ(εVLn)⊗(τ−1 − 1) +

(∑
τ∈Γn

τ(εVLn)

)
⊗1

=
∑
τ∈Γn

τ(εVLn)⊗(τ−1 − 1),

where the last equality holds because Lemma 5.2.13 b), i.e. NLn/L(εVLn) = 1. Then we compute
by using (4.2) for the Kolyvagin operator Dγ :

Nn(εVLn) =

pn−1∑
i=0

γi(εVLn)⊗(γ−i − 1)

= −
pn−1∑
i=0

γi(εVLn)⊗i(γ − 1)

= −
pn−1∑
i=0

iγi(εVLn)⊗(γ − 1)

= −
pn−1∑
i=0

iγi(γ − 1)(βn)⊗(γ − 1)

= −Dγ(γ − 1)(βn)⊗(γ − 1)

= (NLn/L − p
n)(βn)⊗(γ − 1)

= κn⊗(γ − 1)− βn⊗pn(γ − 1)

= κn⊗(γ − 1) = ξn.

So as in Proposition 4.1.12, we obtain κ := (κn)∞n=0 ∈ UL,S,T .

Assumption 5.2.15. (DimAss) The set

{eχεVL , eχκ}

is a Cp-basis of eχCpUL,S .
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Before we proceed we fix a prime w of L above p and if we are in a local setting we embed
the global elements via the embedding corresponding to w without explicitly mentioning it.
Furthermore, we define the map

Ordw : L× → Zp[G]

a 7→
∑
σ∈G

ordw(σ(a))σ−1.

Proposition 5.2.16. With Assumption 5.2.15 we obtain

Recn(eχε
V ′

L/k,S,T ) = −eχκ⊗ (γ − 1) ∈ Cp
(
UL,S,T ⊗ I(Γn)/I(Γn)2

)
.

Proof. By abuse of notation we will denote by Ordw also the isomorphism

Ordw : eχCp
2∧
UL,S −→ eχCpUL,S ,

eχu1 ∧ u2 7−→ χ(Ordw(u1))eχu2 − χ(Ordw(u2))eχu1,

which is the map denoted by ΦV ′,V in [San14]. By [San14, Prop. 3.6] or [Rub96, Prop. 5.2] we
have

Ordw(eχε
V ′

L/k,S,T ) = −eχεVL .

Now we know from Assumption 5.2.15 that {eχεVL , eχκ} is a Cp-basis of eχCpUL,S . On the other
hand we compute

Ordw(eχε
V
L ∧ κ) = χ(Ordw(εVL ))eχκ− χ(Ordw(κ))eχε

V
L

= −χ(Ordw(κ))eχε
V
L ,

where the last equality holds because εVL is a unit at w. We conclude that

eχε
V ′

L/k,S,T =
1

χ(Ordw(κ))
eχ(εVL ∧ κ).

We obtain that Recw(κ) vanishes because recw(σ(κn)) = recw(σ(NLn/L(βn))) = 1 and using the
same convention for Recw as for Ordw above we can get

Recw(eχ(εVL ∧ κ)) =
∑
σ∈G

(
recw(σ(εVL ))− 1

)
σ−1eχκ−

∑
σ∈G

(recw(σ(κ))− 1)σ−1eχε
V
L

=
∑
σ∈G

(
recw(σ(εVL ))− 1

)
σ−1eχκ

= χ(Recw(εVL ))eχκ.

In summary we have

Recw(eχε
V ′

L/k,S,T ) =
1

χ(Ordw(κ))
Recw(eχ(εVL ∧ κ))

=
1

χ(Ordw(κ))
χ(Recw(εVL ))eχκ.

So it remains to compute Recw(εVL ) ∈ In/I2
n, where

0 −→ In −→ Zp[Gn] −→ Zp[G] −→ 0.
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We recall from [San14, (3)] that

Zp[G]⊗ZpI(Γn)/I(Γn)2 '−→ In/I
2
n,

σ⊗ā 7−→ σ̃a,

Now depending on the case we are in we use Lemma 5.2.18 or Lemma 5.2.19 below to compute
the following:

Recw(εVL ) =
∑
σ∈G

(recw(σ(εVL ))− 1)σ−1

=
∑
σ∈G

σ−1 ⊗ (γ−ordw(σ(κ)) − 1)

=
∑
σ∈G
−ordw(σ(κ))σ−1 ⊗ (γ − 1)

= −Ordw(κ)⊗ (γ − 1).

So in total we get
Recw(eχε

V ′

L/k,S,T ) = −eχκ⊗ (γ − 1).

and with Remark 5.2.5 b) and the isomorphism above we obtain the wanted equality:

Recn(eχε
V ′

L/k,S,T ) = −eχκ⊗ (γ − 1).

Before presenting the Lemmas 5.2.18 and 5.2.19 as well as showing in which cases Assump-
tion 5.2.15 holds, we want to show how to finish the proof of the main theorems of this section
assuming the other results. We set ξ := κ ⊗ (γ − 1) and so we have ξ = lim←−n ξn. With this
notation we obtain from Proposition 5.2.16 that

eχξ = −eχRec∞(εV
′

L/k,S,T )

and therefore we finished the proof of Theorems 5.2.1, 5.2.2 and 5.2.3 assuming we can show the
assertions mentioned above.

Computations with the local reciprocity map Recall that with our reductions we are in
a case where χ(Gp) = 1, i.e. p - fχ and therefore L := Lχ ⊆ K0.

Remark 5.2.17. We note that Lw = kp. In Lemmas 5.2.18 and 5.2.19, in order to be formally
correct, we always have to substitute in the computations, when necessary, σ(εVL ) by δ ∈ 1+pOkp
with σ(εVL ) ≡ δ mod ker(recw). But for this δ one can show that logp(σ(εVL )δ−1) = 0, so in the
following computations, by abuse of notation, we will continue writing σ(εVL ).

The split case

Lemma 5.2.18. For the situation of Theorem 5.2.1 we have that recw(σ(εVL )) = γ−ordw(σ(κ)).
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Proof. We also denote by recw : L× → Gal(L∞/L) the local reciprocity map. So we have the
following equivalences:

recw(σ(εVL )) = γs(σ) ⇔ σ(εVL )−1 = χell(γ
s(σ))⇔ − 1

logp(χell(γ))
logp(σ(εVL )) = s(σ),

where s(σ) is the exponent corresponding to γ.
Now we set ω := logp(χell(γ)). Now Theorem 4.1.15 shows that

1

ω
logp(σ(εVL )) = ordw(σ(κ))

so that we have s(σ) = −ordw(σ(κ)) and we get recw(σ(εVL )) = γs(σ) = γ−ordw(σ(κ)).

The non-split case Let γ1, γ2 ∈ Γ′ be such that K∞ = (K ′∞)〈γ1〉 =: K1,∞, γ2 |K∞= γ and
〈γ1, γ2〉 = Γ′. With this we set

k′∞ = (K ′∞)∆, k∞ := k1,∞ := K∆
∞, k2,∞ := K∆

2,∞,

L′∞ := L · k′∞, L∞ := L1,∞ := L · k1,∞, L2,∞ := L · k2,∞.

Moreover, we set ωi := logp(χell(γi)) and, a little bit different than before, we denote by κγ2
or κγ what we up to now called κ being the element constructed in K∞ and by κγ1 the analogous
element in K2,∞.

By Theorem 4.1.16 and Remark 4.1.17 as well as Lemma 5.2.11 we obtain

logp(ε
V
L ) = ordw(κγ2)ω2 + ordw(κγ1)ω1, (5.8)

Lemma 5.2.19. For the situation of Theorems 5.2.2 and 5.2.3 we have that

recw(σ(εVL )) = γ
−ordw(σ(κγ2 ))
2 .

Proof. Recall the local reciprocity map rec′w : L× → Gal(L′∞/L). Now considering Remark 5.2.17
we have the following equivalences:

rec′w(σ(εVL )) = γ
s1(σ)
1 γ

s2(σ)
2 ⇔ σ(εVL )−1 = χell(γ

s1(σ)
1 γ

s2(σ)
2 )

⇔ − logp(σ(εVL )) = s1(σ) logp(χell(γ1)) + s2(σ) logp(χell(γ2)),

where s1(σ) and s2(σ) are the exponents corresponding to γ1 and γ2. So with Equation (5.8)
and considering the commutative diagram

L× Gal(L′∞/L)

Gal(L∞/L)

rec′w

recw

we obtain recw(σ(εVL )) = γ
s2(σ)
2 = γ

−ordw(σ(κγ2 ))
2 .
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Assumption (DimAss) in the split case The next two arguments are based on Lemma 4.11
[BKS17] and pp. 108-110 in [Ble06]. Recall that we have set

UL := O×L ⊗Z Zp
UL,S := O×L,S ⊗Z Zp

UL∞,S := lim←−
n

(
O×Ln,S,T ⊗Z Zp

)
εVL∞ := εVL∞/k,S := (εVLn)∞n=0 ∈ UL∞,S

Let Λ := Zp[[G]] and regard Cp as a Λ-algebra via χ. With the Bockstein map of
[BKS17, Sec. 5B] we have that

eχCpUL,S = eχCpUL ⊕ (UL∞,S ⊗Λ Cp)

Because eχεVL is non-zero, this is a basis of eχCpUL because eχCpUL = eχCpUL,S\{p}. It is left
to show that eχκ is a basis of UL∞,S ⊗Λ Cp. Exactly as in Lemma 5.9 in [Ble06] we can see that

0→ UL∞,S
γ−1−−→ UL∞,S

g−→ UL,S

is an exact sequence, where g is the canonical projection. We have g(εVL∞) = 1, so there is a
unique α ∈ UL∞,S ⊗Qp such that

(γ − 1)α = εVL∞

Now let pχ := ker(χ : Λ → Cp) and Λpχ the localization at the prime ideal pχ. In the split
case one can now show with the Iwasawa Main Conjecture proved in Theorem 3.1 in [Ble06] for
p - 2hk that α is a basis of UL∞,S ⊗Λ Λpχ (cf. Lemma 5.5 and p. 110 in [Ble06]). Now by looking
at the image of α under the map

UL∞,S ⊗Λ Λpχ
χ−→ UL∞,S ⊗Λ Cp ↪→ eχCpUL,S

we see that it is equal to eχκ ∈ UL∞,S ⊗ Cp, so we shown that it is a basis, as needed.

Remark 5.2.20. One vital ingredient of the proof of Assumption 5.2.15 in the split case is
a one-variable main conjecture. Unfortunately, to the knowledge of the author there are no
unconditional proofs of this conjecture in the non-split case, only some partial results by Rubin
in [Rub91]. Another result in this direction is the result of Johnson-Leung and Kings in [JLK11]
presented in Chapter 6, but no unconditional result for the non-split case can be implied from
their assertions because they have to assume a vanishing of a µ-invariant which is open for this
case.

The case of Theorem 5.2.3 As the relevant main conjecture is not proven for the non-split
cases, we want to present a variant which does not use a main conjecture but is less general.

Recall that we are now in a situation where p is odd and inert in k, and χ is a non-trivial
character with χ(Gp) = 1.

Lemma 5.2.21. Assume ordw(κγ2) 6= 0 then we have that

{eχεVL , eχκγ2}

is a Cp-basis of eχCpUL,S .
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Proof. We set S′ := {∞, p}. First of all with the Dirichlet regulator map and the definition of
YL,S we see that:

eχCpUL,S ∼= eχCpXL,S
∼= eχCpYL,S ∼= eχCp

⊕
v∈S

Zp[G/Gv]

∼= eχCp
⊕
v∈S′

Zp[G/Gv] ∼= eχCpYL,S′ ∼= eχCpXL,S′
∼= eχCpUL,S′ ,

where we used that by assumption no prime in S \ {∞, p} splits completely in L/k.
Now we know that dimCp(eχCpUL,S′) = 2 and so eχCpUL,S has Cp-dimension 2.

As eχκγ2 , eχεVL 6= 0 it is left to show that eχκγ2 and eχε
V
L are linearly independent. To show

this assume that they are linearly dependent, i.e. that there exists an a ∈ C×p such that
eχκγ2 = (eχε

V
L )a. But ordw(κγ2) 6= 0 by assumption and ordw(εVL ) = 0, which is a contra-

diction.

Now the non-vanishing of LS\{p}(1, χ) (by the functional equation linked to the definition of
the Rubin-Stark elements) implies that

logp(ε
V
L ) 6= 0. (5.9)

Indeed, because εVL comes from the element ψk(f) it is a unit away from f (which is coprime to
p), so the embedding of εVL in kp has no factor πn, where π is a uniformizer in pOkp . It also is
not some root of unity ζ because that would contradict the non-vanishing. Because logp(a) = 0

if and only if a ∈ πZ × µ, where µ are the roots of unity, the assertion follows.
In particular, we directly see from Equation (5.9) and Theorem 4.1.15 that this strategy used

here in the non-split case can also be used in the split case to show (DimAss) without using the
Iwasawa main conjecture.

So from Equation (5.9) we directly get the following

Lemma 5.2.22. Let γa be a fixed element of Γ′. Then the following assertions are equivalent:

i) ordP(κγb) 6= 0 for all γb such that 〈γb, γa〉 = Γ′,

ii) ordP(κγb) 6= 0 for one γb with 〈γb, γa〉 = Γ′,

iii) Qp logp(ε
V
L ) 6= Qp logp(χell(γa)).

Therefore, all (K ′∞)〈γa〉 have to be excluded for which we have

Qp logp(ε
V
L ) = Qp logp(χell(γa)).

Lemma 5.2.23. We have

Qp logp(χell(γa)) = Qp logp(χell(γ
′
a))⇔ (K ′∞)〈γa〉 = (K ′∞)〈γ

′
a〉.

Proof. For the direction from left to right, let upr logp(χell(γa)) = vpt logp(χell(γ
′
a)) with u, v in

Z×p . Without loss of generality we assume t ≥ r so we get

logp(χell(γa)) =
v

u
pt−r logp(χell(γ

′
a)).

If now d := t − s > 0 we complete to bases γb, γa and γ′b, γ
′
a. So with the notation from above

we obtain (
ωb
ωa

)
=

(
∗ ∗
0 v

up
d

)(
ω′b
ω′a

)
,
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which is a contradiction because both are Zp-bases of ps. Therefore, we obtain

logp(χell(γa)) = logp(χell((γ
′
a)
u/v))

and so 〈γa〉 = 〈(γ′a)u〉 = 〈γ′a〉.
For the other direction we assume that (K ′∞)〈γa〉 = (K ′∞)〈γ

′
a〉 which is equivalent to γa = (γ′a)

u

with u ∈ Z×p and therefore we get

logp(χell(γa)) = u logp(χell(γ
′
a)).

This finishes the proof of Theorem 5.2.3 and therefore this chapter.





Chapter 6

Application to the eTNC for abelian
extensions of imaginary quadratic fields

In this chapter we want to present applications of the main results of Chapter 4 to the equivariant
Tamagawa Number Conjecture. A successful strategy for proving the eTNC for Tate motives over
abelian fields was developed in [BG03] and further explained in [Fla04]. It can be summarized as
follows: One uses the Iwasawa Main Conjecture for cyclotomic fields (originally proved by Mazur
and Wiles [MW84] and later reproved using the Euler-system-method by Rubin and Greither
(see e.g. in [Rub00] or [Gre92])) to prove an equivariant version of the Iwasawa Main Conjecture,
which we call Limit Conjecture. In the proof of the Limit Conjecture a classical result of Ferrero
and Washington ([FW79]) concerning the µ-invariant of the cyclotomic Zp-extension is used.
Because of the Theorem of Kronecker-Weber for each absolutely abelian field L there exists a
natural number f ∈ N such that L ⊆ Q(ζf ) and by functoriality properties of the eTNC it is
enough to consider the cyclotomic field. So for a fixed prime p we use the Limit Conjecture for
the infinite extension Q(ζfp∞) over Q.

Now one descends from this Limit Conjecture to the finite extension by ’taking coinvariants’.
A main feature of this descent is that it can be done characterwise, where in the cyclotomic
case we have to consider odd and even characters. For odd characters a result of Ferrero and
Greenberg ([FG79]) is used for the cases where the associated p-adic L-function has trivial zeroes.
For even characters, a result of Solomon ([Sol92]), namely Theorem 4.1.14 in Chapter 4, is used.
Using all of this an unconditional proof of the eTNC for Tate motives over abelian fields was
established after some problems at prime 2 had been resolved in [Fla11].

Using the methods developed for the cyclotomic case Bley (in [Ble06]) was able to show
the p-part of the eTNC for ’untwisted’ Tate motives over abelian extensions L of an imaginary
quadratic field k for all odd p which split in k and p - hk. This was done by using the main
conjecture for split primes proved by Bley also in [Ble06] with the help of the Euler-system-
method. Then, as in the cyclotomic case, one proves a Limit Conjecture for the tower of fields⋃
n k(pn+1fL), where p is a prime ideal in Ok over a rational prime p which splits in k. In this

proof the vanishing of the µ-invariant of a certain Iwasawa module is used, which holds true in
the split case by a result of Gillard [Gil85] for p 6= 2, 3 and by a result in [OV16] for p = 2, 3. By
class field theory and functoriality of the eTNC it is again enough to consider ray class fields.

Once again one can do now the descent computations characterwise, where in this case all
the characters behave like even characters in the cyclotomic case. In the descent an analogue of
the result of Solomon in the elliptic case for split primes is used. The latter was proved by Bley
in [Ble04] and is our Theorem 4.1.15.

In 2011 a paper of Johnson-Leung and Kings was published ([JLK11]) which presents a re-
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sult about a variant of the Limit Conjecture stated by Flach as Conjecture 8 in [Fla09] for all
p in the situation of imaginary quadratic base fields. Moreover, they show that under the as-
sumption that a certain cohomology module vanishes after localization at singular primes (see
Section 6.3.3), their variant of the Limit Conjecture holds for all primes p. These Limit Conjec-
tures are analogues of the known Limit Conjectures in the cyclotomic and the split imaginary
quadratic case.

Both situations presented above have in common that they use special explicit ’units’ (cyclo-
tomic or elliptic) which are related to torsion points of a ’geometric object’. These, in turn, are
related to L-functions by classical results computing L(1, χ) with the help of cyclotomic units
or applications of the first and second Kronecker limit formula (Corollary 2.3.7 and Proposi-
tion 2.3.9). As we have seen in Chapter 5, these ideas can be generalized to define Rubin-Stark
elements.

By using these Rubin-Stark elements Burns, Kurihara and Sano (mainly in [BKS17], but see
also [BKS16]) generalized, inspired by the known cases, the descent computations to establish
a framework to prove the eTNC for ’untwisted’ Tate motives over an abelian extension L/K of
number fields supposing several rather strong assumptions.

One of the main insights of [BKS17] was that an Iwasawa-theoretic version of a conjecture of
Mazur, Rubin and Sano (which is presented in Chapter 5 as Conjecture 5.1.14) can be seen as the
crucial input into the descent, aside from what they call higher-rank main conjecture of Iwasawa
theory. The other computations generalize rather easily to Rubin-Stark elements, although some
additional assumptions have to be imposed. To demonstrate the usefulness of their work, they
show the eTNC for Tate motives at s = 0 over abelian extensions of Q by proving the Iwasawa-
theoretic MRS conjecture, where the main input is the result of Solomon (Theorem 4.1.14), and
then applying their descent machinery. It is also remarked [BKS17, Remark 5.10] that similarly
the main result of [Ble06] can be reproved.

The main results of this chapter are as follows:

• We outline a proof of the p-part of the eTNC for Tate motives at s = 0 over abelian
extensions of k for split primes with p - hk using the techniques developed in [BKS17].
Moreover, we present the consequences of Theorems 5.2.2 and 5.2.3 when using these
techniques.

• We show a result concerning the p-part of the eTNC for inert primes (Theorem 6.5.1) by
using the new results obtained in Chapter 4 directly, i.e. that appropriate Limit Conjectures
imply the eTNC for Tate motives at s = 0 over abelian extensions of an imaginary quadratic
number field k assuming a finiteness condition described in Section 6.3.4 and p - hk.

Unfortunately, we are not able to obtain any unconditional results for the p-part of the
eTNC for non-split primes. One major obstacle is the lack of a result similar to that of Gillard
in [Gil85] on the µ-invariant in the non-split case. A substitute for this is Conjecture 6.3.13
(stated in [JLK11]), which we call (VanishAss). In the split case the result of Gillard implies
this conjecture which is Corollary 5.12 in [JLK11].

Another obstruction is that one has to prove that the Limit Conjecture for an appropriate rank
two extension (Conjecture 6.3.2) implies the Limit Conjecture for particular Zp-subextensions
(Conjecture 6.3.3). This problem looks approachable, however we are at the moment not able
to prove that, so we formulated Conjecture 6.3.5.

The third obstruction is a finiteness condition we are going to call Condition F(L∞/k) for
rank one Zp-extensions L∞/k as described in Section 6.3.4, which is slightly stronger than the
homonymous condition assumed in the main result of [BKS17]. This is used to compute the
cohomology modules of the complex in question after localizing at height one prime ideals. It is
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a sufficient condition which delivers what we need in the computations. Moreover, we have for
each character a certain choice for the Zp-extension we want to work with and this is necessary
because Condition F(L∞/k) is known to fail in certain examples. But with a little more work one
should be able to replace Condition F(L∞/k) with a weaker hypothesis which is conjecturally
always true (see Remark 6.5.3 for more details on this topic).

Overview of this chapter First of all, we recall some prerequisites which are needed to
formulate the eTNC for Tate motives. This is largely based on the treatment in [BG03].

Then we will formulate several versions of the eTNC for Tate motives at s = 0 over abelian
extensions of number fields.

The third section formulates the Limit Conjectures of Johnson-Leung/Kings and of Flach
and shows a relation between those two. It formulates Limit Conjectures for some special
Zp-extensions which are used in the next sections. Furthermore, it introduces the higher-rank
main conjecture of Iwasawa theory from [BKS17], which is the starting point of the descent in
loc. cit.

The fourth section presents the main theorem (Theorem 5.2) of [BKS17] and how it is con-
nected with the main results of Chapter 5.

The last section is concerned with the formulation and the proof of the main result (Theo-
rem 6.5.1) of this chapter.

6.1 Preliminaries

This section will state some basic definitions and results and follows very closely the treatment
in [BG03].

Let R be any commutative ring and let P(R) denote the category of graded invertible R-
modules, where a graded invertible R-module is a pair (L,α) consisting of an invertible R-module
L and a locally constant function α : Spec(R)→ Z and isomorphisms of such. The tensor product
is defined as

(L,α)⊗ (M,β) := (L⊗RM,α+ β)

and the unit object is (R, 0). We define (L,α)−1 := (HomR(L,R),−α) and we extend this
definition to a covariant functor P(R)→ P(R) by setting h−1 := HomR(h,R)−1.

Definition 6.1.1. For a finitely generated projective R-module P we define

DetR(P ) :=

(
rankR P∧

R

P, rankR P

)
∈ Ob(P(R))

and for a bounded complex P • of such modules we set

DetR(P •) :=
⊗
i∈Z

Det
(−1)i

R (P i),

where the tensor product is of graded invertible R-modules and the sign convention is different
from [BG03], but consistent with [Fla09] and [JLK11]. We sometimes write Det−1

R (−) in place
of DetR(−)−1.

We write Dp(R) for the category of perfect complexes of R-modules and Dpis(R) for the subcat-
egory in which the objects are the same but the morphisms are restricted to quasi-isomorphism.
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We say that an R-module is perfect if the associated complex X[−1] belongs to Dp(R), and for
such X we set

DetR(X) := DetR(X[−1]).

In the next proposition we recall some standard properties (see [KM76] or [BG03]) of the deter-
minant functor:

Proposition 6.1.2. a) If R is reduced, then DetR extends to a functor from Dpis(R) to P(R)
in such a way that for every distinguished triangle

C1 → C2 → C3 in Dp(R)

there is an isomorphism in P(R)

Det−1
R (C1)⊗DetR(C2) ∼= DetR(C3),

which is functorial in the triangle.

b) If C is bounded and each cohomology module is perfect, then C belongs to Dp(R) and
there is a canonical isomorphism

DetR(C) ∼=
⊗
i∈Z

Det
(−1)i

R (H i(C)).

In particular, if C is acyclic, this gives a canonical isomorphism in P(R)

DetR(C) ∼= (R, 0).

c) If X is a finitely generated torsion R-module which has projective dimension at most one,
then its first Fitting ideal FittR(X) is an invertible ideal of R and one has

DetR(X) = (FittR(X), 0).

In particular, if
0→ · · · → Xi → Xi+1 → · · · → 0

is any bounded exact sequence of finitely generated torsion R-modules which are each of
projective dimension at most one, then one has an equality∏

i∈Z
Fitt

(−1)i

R (Xi) = R.

Let G be any finite abelian group. For any commutative ring Z we write x 7→ x# for the
Z-linear involution of the group ring Z[G] which satisfies g# = g−1 for each g ∈ G. If X is any
(complex of) Z[G]-module(s), then we write X# for the scalar extension of X with respect to
the morphism x 7→ x#.

Let Z be any commutative ring. For any finitely generated projective Z[G]-module X, resp.
object X in Dp(Z[G]), we set

X∗ := HomZ(X,Z), resp. X∗ := RHomZ(X,Z)

which we regard as endowed with the contragredient G-action. We observe that if X is a finitely
generated projective Z[G]-module, resp. an object X in Dp(Z[G]), then so is X∗. We also recall
that for any Z[G]-module X one has a canonical isomorphism

X∗ ∼= HomZ[G](X,Z[G])#
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and that this induces for each object X of Dp(Z[G]) a canonical isomorphism

DetZ[G]X
∗ ∼= Det−1

Z[G]X
#.

Assume R is regular. For any isomorphism of finitely generated R-modules V α−→W we let

αtriv : DetR(V )⊗Det−1
R (W )

∼=−→ (R, 0)

denote the isomorphism in P(R) which is obtained by composing DetR(α)⊗ 1 with the natural
evaluation pairing eval : DetR(W )⊗Det−1

R (W )
∼=−→ (R, 0).

We now fix an abelian extension L/k of number fields with Galois group G, an odd prime p
and a set of places S of k which contains S∞, Sram(L/k) and Sp(k) and by abuse of notation we
write also S for all the places in L lying above the places in S. So we write

π : Spec(OL,S)→ Spec(Ok,S)

for the morphism of spectra which is associated with Ok,S ⊆ OL,S .
For any commutative ring Z and any étale sheaf F on Spec(Z) we write RΓ(Z,F) and

H i(Z,F) instead of
RΓ(Spec(Z)ét,F) and H i(RΓ(Spec(Z)ét,F)).

If F is any (p-adic) étale sheaf on Spec(Ok,S), then the cohomology with compact support is
defined to lie in a canonical distinguished triangle

RΓc(Ok,S ,F)→ RΓ(Ok,S ,F)→
⊕
v∈S

RΓ(kv,F).

We recall that π∗ is exact and hence that there is a canonical identification

RΓ?(Ok,S ,FL) ∼= RΓ?(OL,S , π∗F),

where RΓ?(−,−) denotes either RΓ(−,−) or RΓc(−,−) and we set FL := π∗π
∗F .

Let Σ(k) bet the set of embeddings of k into C and for any Gal(C/R)-module X we write
X+, resp. X−, for the submodule of X on which the non-trivial element c ∈ Gal(C/R) acts as
multiplication by 1, resp. −1.

If Tp is any lisse Zp-sheaf of Zp[G]-modules on Spec(Ok,S)ét for which each stalk is projective
over Zp[G], then the complexes

RΓc(Ok,S , Tp), RΓ(Ok,S , T ∗p (1))∗ and

∏
Σ(k)

Tp

+

[0]

belong to Dp(Zp[G]), which is shown in [Fla00, Prop. 5.2].
Artin-Verdier duality on the level of complexes combined with Lemma 16 in [BF98] induces

a canonical distinguished triangle in Dp(Zp[G]):

RΓc(Ok,S , Tp)→ RΓ(Ok,S , T ∗p (1))∗[−3]→

∏
Σ(k)

Tp

+

[0].

Proposition 6.1.3. [BG03, Lemma 3.2]

a) RΓ(Ok,S ,Zp(1)L) is acyclic outside of degrees 1 and 2.
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b) There is a canonical isomorphism of Zp[G]-modules

ι1L : H1(Ok,S ,Zp(1)L) ∼= O×L,S ⊗ Zp.

c) We also have a short exact sequence

0→ Pic(OL,S)⊗ Zp → H2(Ok,S ,Zp(1)L)→ XL,S\S∞ ⊗ Zp → 0.

where XL,S\S∞ is defined in Definition 6.2.2.

Lemma 6.1.4. [Fla04, Lemma 5.3] Let R be a Noetherian Cohen-Macaulay ring with total
ring of fractions Q(R). Suppose R is a finite product of local rings. If I and J are invertible
R-submodules of some invertible Q(R)-module M , then I = J if and only if Iq = Jq (inside Mq)
for all height one prime ideals q of R.

6.2 Formulation of the eTNC for Tate motives at s = 0

We fix a number field k and let L be an abelian extension of k with Galois group G. We set

M = h0(Spec(L))(0) A = Q[G] A = Z[G],

where h0(Spec(L))(0) is an ’untwisted’ Tate motive and we will suppress (0) from now on.
Furthermore, we set AM as M considered over k with an action of A and Ap (resp. Ap) as
A⊗Qp (resp. A⊗ Zp).

We define a G×Gal(C/R)-module

Y0(L) :=
∏
Σ(L)

Z,

where Σ(L) is the set of embeddings of L into C and Gal(C/R) acts on Σ(L).

Definition 6.2.1. For the fundamental line one sets

Ξ(AM) := Det−1
A (O×L ⊗Q)# ⊗DetA(Q)⊗DetA(Y0(L)+ ⊗Q)#.

Definition 6.2.2. For any set S of places of k we define

YL,S = YS(L) :=
⊕

v∈S(L)

Z,

and XL,S = XS(L) to be the kernel of the homomorphism YS → Z which sends each place w in
S to 1. Observe that both YL,S and XL,S have natural G-actions.
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Definition of Aϑ∞ The space Y +
0 (L)⊗Q identifies naturally with YL,S∞ ⊗Q, hence there is

a canonical isomorphism

ιL : DetA(Q)⊗DetA(Y +
0 (L)⊗Q) ∼= DetA(XL,S∞ ⊗Q).

For each place w in L we let | · |w denote the absolute value with respect to w. We write

RL : O×L ⊗ R
∼=−→ XL,S∞ ⊗ R

for the R[G]-equivariant isomorphism which satisfies

RL(u) = −
∑

w∈S∞(L)

log |u|w · w for each u ∈ O×L .

Definition 6.2.3. We let
Aϑ∞ : (R[G], 0)

∼=−→ Ξ(AM)# ⊗ R
denote the isomorphism induced by (RL)triv and ιL.

The motivic L-function We set Ĝ := Hom(G,C×). For each set S of places of k which
contains S∞ and each character χ ∈ Ĝ we let LS(s, χ) denote the generalized Dirichlet S-
imprimitive L-function defined in Chapter 2.

We write LS(AM, s) for the S-truncated C[G]-valued L-function for the motive AM as defined
in [BF96, Def. 2.1] or [Del79]. Then, with respect to the canonical identification C[G] ∼=

∏
Ĝ
C,

one has an equality of functions (cf. [BF96, Lemma 2.2])

LS(AM, s) = (LS(s, χ))
χ∈Ĝ .

We set L(AM, s) := LS∞(AM, s) and L(s, χ) := LS∞(s, χ). We also write L∗S(0, χ) resp. L∗(AM, 0)
for the leading term in the Laurent expansion of LS(s, χ) resp. L(AM, s) at s = 0. Moreover, we
recall (see [BF96, Def. 2.1]) that

L∗(AM, 0) ∈ (A⊗ R)×.

Let r(AM) := ords=0(L(AM, s)) ∈ H0(Spec(A ⊗ R),Z), i.e. a locally constant function on
Spec(A⊗ R).

Definition of Aϑp For each prime p, let Mp be the p-adic realization of M . There exists a
canonical Qp[G]-equivariant isomorphism

Aϑp : Ξ(AM)# ⊗Qp
∼=−→ DetAp (RΓc(Ok,S ,Mp))

# ,

which is the isomorphism in (4) in [BF98, Sec. 2], which we will describe in more detail later in
the special case we are going to consider. So we can give the formulation of the eTNC for Tate
motives at s = 0 (cf. [BF96, Conj. 4]):

Conjecture 6.2.4. eTNC(AM,A, p)
The following statements hold for the triple (AM,A, p):

Rationality: One has
Aϑ∞(L∗(AM, 0)−1) ∈ Ξ(AM)⊗ 1.

Integrality: Let S be any finite set of k which contains S∞, Sram(L/k) and Sp(k), and
let Tp denote any projective GQ-stable Ap-lattice in Mp. Then one has an equality:

Aϑp(Aϑ∞(L∗(AM, 0)−1)) · Ap = DetAp(RΓc(Ok,S , Tp)).
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Remark 6.2.5. a) Rationality and integrality part of Conjecture 6.2.4 are Conjectures 2 and
3 (equivariant version) in [Fla04] in our situation, which can also be found as Conjecture 4
iii) and iv) in [BF96]. The usage of L∗(AM, 0) instead of L∗(AM, 0)−1 in the formulation
in [BF96] stems from the fact that a different sign convention is used for the definition of
the determinant of a complex.

b) In order to be a well posed conjecture two additional conditions have to be satisfied which
are Conjecture 4 i) and ii) in [BF96]:

i) The function L(AM, s) can be analytically continued to s = 0, and

ii) r(AM) = dimA(H1
f (M∗(1)))− dimA(H0

f (M∗(1))).

These are satisfied in the case we are looking at because i) is a classical result and ii) is
proved in [Fla04, Thm. 7.1 a)] or in [BF03].

c) There are also more general formulations of the eTNC. One of them also allows non-
commutative coefficients. This formulation can be found in [BF01] as Conjecture 4 iii)
and iv) and from the arguments there one can see that the formulation specializes to our
formulation when considering commutative coefficients.

d) Even for the more general situation we mention in c) it is shown as Theorem 2.2.4 in
[Bur01] that Stark’s conjecture is equivalent to the rationality part of Conjecture 6.2.4.

e) The equality of the integrality part of Conjecture 6.2.4 behaves functorially with respect
to change of extension. If it is valid for a prime p for any given extension L/k, then it is
also valid for p for any extension F/E with k ⊆ E ⊆ F ⊆ L. This follows directly from
Proposition 4.1 in [BF01].

f) Lemma 5 in [BF01] implies that the conjecture is independent of the choice of S and Tp as
long as the choice is admissible. Example b) on page 524 in [BF01] guarantees that such a
Tp exists in our situation.

g) In Section 4.3 in [BF01] it is argued that the validity of the integrality part of Conjecture
6.2.4 for all p is equivalent to Conjecture iv) of [BF01] in the case in question.

Preparations for explicit computations Recall that L/k is a finite abelian extension of
number fields. We set here S = Sram(L/k) ∪ S∞(k) ∪ Sp(k), Sf := S \ S∞(k). By abuse of
notation we denote the set of places above the places of S resp. Sf in an extension of k also by
S resp. Sf . We define

∆(L) := RHomZp (RΓc(OL,S ,Zp),Zp) [−3] as in [Ble06]. (6.1)

Then the following holds:

a) ∆(L) is a perfect complex of Ap-modules.

b) There is a natural isomorphism

DetAp(∆(L)) ∼= DetAp(RΓc(OL,S ,Zp))# (6.2)

and with Tate-Poitou duality, the Kummer sequence and ideas from [BF98, Prop. 3.3]
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c) one has
H i(∆(L)) = 0 for i 6= 1, 2,

a canonical isomorphism

H1(∆(L)) ∼= H1(OL,S ,Zp(1)) ∼= O×L,S ⊗ Zp =: UL,S

and a short exact sequence

0→ Pic(OL,S)⊗ Zp → H2(∆(L))→ XL,S ⊗ Zp → 0.

Definition 6.2.6. [BF98, cf. Lemma 2] For every χ ∈ Ĝ and every finite place v of k we
introduce the following notation: For x ∈ Q×, resp. a ∈ A, let ∗x ∈ A×, resp. a∗ ∈ A, be the
element such that χ(∗x) = x, resp. χ(a∗) = 0, if χ(Gv) = 1 and χ(∗x) = 1, resp. χ(a∗) = χ(a)
otherwise. Now set

Ev := ∗|Gv/Iv| · (1− Fr∗v)−1 ∈ A×, (6.3)

where Frv ∈ Q[G/Iv] ∼= Q[G]Iv ⊂ A is the Frobenius automorphism at v and Iv ⊆ Gv ⊆ G are
the inertia and decomposition group for a place w | v in L/k, respectively.

The isomorphism

Aϑp : Ξ(AM)# ⊗Qp → DetAp(∆(L)⊗Qp)

is given by the composite

Det−1
Ap

(O×L ⊗Z Qp)⊗DetAp(XS∞ ⊗Z Qp) (6.4)
ϕ1−→Det−1

Ap
(O×L,S ⊗Z Qp)⊗DetAp(XS ⊗Z Qp) (6.5)

ϕ2−→Det−1
Ap

(O×L,S ⊗Z Qp)⊗DetAp(XS ⊗Z Qp) (6.6)
ϕ3−→DetAp(∆(L)⊗Qp), (6.7)

where we have the following maps: ϕ1 is induced by the split short exact sequences

0→ O×L ⊗Qp → O×L,S ⊗Qp → YL,Sf ⊗Qp → 0

0→ XL,S∞ ⊗Qp → XL,S ⊗Qp → YL,Sf ⊗Qp → 0.

The isomorphism ϕ2 is the multiplication with the Euler factor
∏
v∈Sf E

#
v ∈ A×, where we have

Ev =
∑

χ(Gv)=1

|Gv/Iv|eχ +
∑

χ(Gv) 6=1

(1− χ(fv)
−1)eχ, (6.8)

where fv ∈ Gv denotes a lift of the Frobenius element in Gv/Iv and we use the ring isomorphism
A ∼=

∏
χ∈Ĝ/∼Q

Q(χ).

The isomorphism ϕ3 arises from the explicit description of the cohomology groups ofH i(∆(L))
for i = 1, 2, (6.2) and the canonical isomorphism

DetAp(∆(L)⊗Qp) ∼=
⊗
i∈Z

Det
(−1)i

Ap
(H i(∆(L)⊗Qp)).
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6.2.1 The eTNC for Tate motives at s = 0 in [BKS17]

In this subsection we present a formulation of the eTNC for Tate motives at s = 0 which is given
in [BKS17]. The main motivation for that is that in loc. cit. they show how to descend from a
’higher-rank main conjecture of Iwasawa theory’ to this formulation using the MRS conjecture
for which we proved special cases in Chapter 5. Moreover, this is a neat way to present the
conjecture. We partly adopt the notation of their paper by writing CpM and ZpM instead of
Cp ⊗M and Zp ⊗M , respectively, for an appropriate module M .

Let L/k be a finite abelian extension of number fields with Galois group G. Fix a prime p
and assume that Sp(k) ∪ S∞(k) ∪ Sram(L/k) ⊂ S and that T is disjoint from S. Consider the
complex

CL,S := RHomZp(RΓc(OL,S ,Zp),Zp)[−2]

i.e. the complex is shifted here only by −2 instead of −3 as we did above. A complex CL,S,T
which lies in the distinguished triangle

CL,S,T → CL,S →
⊕

w∈T (L)

Zpκ(w)×[0]

can be constructed as in Proposition 2.4 in [BKS16].

Remark 6.2.7. a) CL,S is a perfect complex of Zp[G]-modules, which is acyclic outside of
degree zero and one.

b) We have a canonical isomorphism

H0(CL,S,T ) ∼= UL,S,T := ZpO×L,S,T .

c) We have a canonical exact sequence

0→ ATS (L)→ H1(CL,S,T )→ XL,S → 0,

where ATS (L) is the p-part of the ray class group of OL,S with modulus
∏
w∈T (L)w and, by

abuse of notation, XL,S := ZpXL,S .

We fix an isomorphism C ∼= Cp and we regard θ∗L/k,S,T (0), which is the leading term of the Taylor
expansion of the equivariant abelian L-function at s = 0 defined in (5.1) in Chapter 5, as an
element of Cp[G]×.

The zeta element for Gm

zL/k,S,T ∈ CpDetZp[G](CL,S,T )

is defined to be the element which corresponds to θ∗L/k,S,T (0)

CpDetZp[G](CL,S,T )
∼=−→ DetCp[G](CpUL,S,T )⊗Cp[G] Det−1

Cp[G](CpXL,S)

∼=−→ DetCp[G](CpXL,S)⊗Cp[G] Det−1
Cp[G](CpXL,S)

∼=−→ Cp[G],

where the second isomorphism is induced by the regulator map λL,S and the third isomorphism
by the evaluation map.

Then the eTNC for the ’untwisted’ Tate motive h0(Spec(L)) and with coefficients Zp[G] can
be formulated as follows
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Conjecture 6.2.8. eTNC(h0(Spec(L)),Zp[G])

Zp[G] · zL/k,S,T = DetZp[G](CL,S,T ).

Remark 6.2.9. One can show that as long as one takes admissible sets S and T , meaning S
and T satisfy the conditions specified above, the validity of the conjecture is independent of the
choice of S and T .

Take χ ∈ Ĝ and suppose that rS(χ) < |S|. We set Lχ := Lker(χ) and Gχ := Gal(Lχ/k). Take
Vχ,S ⊂ S, such that all v ∈ Vχ,S split completely in Lχ (i.e. χ(Gv) = 1) and |Vχ,S | = rS(χ).
Note that if χ 6= 1, we have Vχ,S = {v ∈ S | χ(Gv) = 1}.

As presented in [BKS17] one gets a non-canonical isomorphism

eχ

(
DetCp[G](CpUL,S,T )⊗Cp[G] Det−1

Cp[G](CpXL,S)
)
∼= eχCp

rS(χ)∧
ULχ,S,T

Proposition 6.2.10. [BKS17, Prop. 2.5]
Suppose rS(χ) < |S| for every χ ∈ Ĝ. Then eTNC(h0(Spec(L),Zp[G]) holds if and only if there
is a Zp[G]-basis LL/k,S,T of DetCp[G](CL,S,T ) such that, for every χ ∈ Ĝ, the image of eχLL/k,S,T
under the isomorphism

eχCpDetZp[G](CL,S,T ) ∼= eχ

(
DetCp[G](CpUL,S,T )⊗Cp[G] Det−1

Cp[G](CpXL,S)
)
∼= eχCp

rS(χ)∧
ULχ,S,T

coincides with eχε
Vχ,S
Lχ/k,S,T

.

6.3 Limit Conjectures

In this section we want to present conjectures which are used as the basis for the descent procedure
which can be viewed as IMC-type conjectures. In fact, in the cases where this conjecture is known,
the main input are the main conjectures in the appropriate situations.

6.3.1 Limit Conjectures as in [Fla04], [Ble06] and [Fla09]

Let p be an odd rational prime and k be a number field. Furthermore, let F∞/k be an abelian
extension with Zp-rank d such that there is a finite (abelian) extension F of k with Gal(F∞/F ) ∼=
Zdp and a direct decomposition

Gal(F∞/k) ∼= Γ×H with H ∼= Gal(F/k) and Γ := Gal(F∞/F ) ∼= Zdp.

Then we denote by

ΛF∞/k := lim←−
k⊆fM⊂F∞

Zp[Gal(M/k)] ∼= Zp[H][[T1, . . . , Td]]

the completed group ring. The elements Ti = γi−1 depend on the choice of topological generators
γ1, . . . , γd of Γ.

We fix an embedding Qc
p ↪→ C and identify Hom(H,C×) with the Qc

p-valued characters. The
total ring of fractions Q(ΛF∞/k) of ΛF∞/k is the product of fields indexed by the Qc

p-valued
characters of H which are associated with the set of Qp-irreducible representations of H, i.e.

Q(ΛF∞/k)
∼=

∏
α∈Ĥ/∼Qp

Q(α).
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Moreover, we work in the derived category Dp(ΛF∞/k) and define

∆F∞/k := lim←−
F⊆fM⊂F∞

∆(M),

where we use the definition given in (6.1). Moreover, we set for an admissible set S

UF∞/k,S := lim←−
F⊆fM⊂F∞

O×M,S ⊗ Zp,

PF∞/k,S := lim←−
F⊆fM⊂F∞

Pic(OM,S)⊗ Zp,

XF∞/k,S := lim←−
F⊆fM⊂F∞

XS(M)⊗ Zp,

where the limit over the Picard groups is taken with respect to the norm maps and the transition
maps for XF∞/k,S are defined by sending each place to its restriction.
From now on we assume that k is an imaginary quadratic field.

As in Proposition 5.1 in [BG03] one can show the following proposition

Proposition 6.3.1. a) ∆F∞/k is a perfect complex.

b) H i(∆F∞/k) = 0 for i 6= 1, 2.

c) H1(∆F∞/k) = UL∞/k,S .

d) There exists a short exact sequence

0→ PF∞/k,S → H2(∆F∞/k)→ XF∞/k,S → 0.

Let p > 3 be a rational prime and f be a non-zero ideal of Ok with w(f) = 1 and (f, p) = 1.
We also assume the hypothesis

(H2) p does not divide the class number of k.

Then we set K ′n := k(fpn+1) and K ′∞ := k(fp∞). So we get that

G′ := Gal(K ′∞/k) ∼= Γ′ ×H with H ∼= (G′)tor and Γ′ := Gal(K ′∞/K
′
0) ∼= Z2

p.

Let a be an integral ideal prime to 6fp and we set ca := Na − σa. Then we have defined in
Definition 2.1.24 the elliptic unit ψ(1; fpm, a) for m ∈ N0. Moreover, let τ be an embedding from
Qc → C. Then we set

ψf,a := {ψ(1; fpn+1, a)}n≥0 ∈ UK′∞/k,S , τK′∞ := {τ|K′n}n≥0 ∈ YK′∞/k,S .

As on p. 277 in [Fla09] we obtain

L := ca · (ψ−1
f,a ⊗ τK′∞)

is a Q(ΛK′∞/k)-basis of
DetΛK′∞/k

(∆K′∞/k
)⊗Q(ΛK′∞/k).

We can now state Conjecture 8 of [Fla09], which we call Limit Conjecture1:

Conjecture 6.3.2. LC(K ′∞/k, p)
There is an identity of invertible ΛK′∞/k-submodules

L · ΛK′∞/k = DetΛK′∞/k
(∆K′∞/k

)

of DetQ(ΛK′∞/k
)

(
∆K′∞/k

⊗Q(ΛK′∞/k)
)
.

1in [Fla09] it is called Iwasawa Main Conjecture
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Rank one Limit Conjectures Let K ′∞ be as above and let K∞ be such that k ⊂ K∞ ⊂ K ′∞
and Γ1 := Gal(K ′∞/K∞) ∼= Zp. Let Γ2 be a subgroup of Gal(K∞/k) with Γ2

∼= Zp. Then we set
K0 := KΓ2

∞ and we denote by Kn the intermediate levels of K∞/K0. Let m(n) be the smallest
natural number such that Kn ⊆ K ′m(n). So we can now set:

ψf,a,K∞ := {NK′
m(n)

/Knψ(1; fpm(n), a)}n≥0 ∈ UK∞/k,S , τK∞ := {τ|Kn}n≥0 ∈ YK∞/k,S .

Now similar to the reasoning in the rank two case as well as in [Ble06, p. 94] and in [Fla04, p.
11] we have that

LK∞ := ca · (ψ−1
f,a,K∞

⊗ τK∞)

is a Q(ΛK∞/k)-basis of
DetΛK∞/k

(∆K∞/k)⊗Q(ΛK∞/k).

Then one can state the following conjecture for an ’intermediate level’:

Conjecture 6.3.3. LC(K∞/k, p)
There is an identity of invertible ΛK∞/k-submodules

LK∞ · ΛK∞ = DetΛK∞/k
(∆K∞/k)

of DetQ(ΛK∞/k)

(
∆K∞/k ⊗Q(ΛK∞/k)

)
.

Remark 6.3.4. Let p > 3 be a rational prime which splits completely in k, i.e. (p) = pp
with p 6= p, and let f be an integral ideal of Ok Furthermore, assume that p - hk. We set
K∞ := k(fp∞) which is a Zp-extension of K0 in K ′∞ := k(fp∞). Then Theorem 5.1 in [Ble06]
shows that LC(K∞/k, p) holds.

Descent to an intermediate level On the one hand, as we will see below, Johnson-Leung
and Kings are presenting a proof of a variant of Conjecture 6.3.2 in [JLK11] by assuming that
certain cohomology groups vanish after localizing at singular prime ideals of height one. On the
other hand, the descent formalism developed in [BG03], [Fla04] (and used in [Ble06] for the split
i.q. case) is valid for rank one extensions. Therefore, we would be interested in proving the
following conjecture:

Conjecture 6.3.5. The conjecture LC(K ′∞/k, p) implies LC(K∞/k, p) for extensions K∞/k as
constructed above.

6.3.2 Limit Conjecture of Johnson-Leung/Kings in [JLK11]

Now we introduce parts of the notation of [JLK11]. Let p be a prime number and k be an imagi-
nary quadratic field. For a non-zero ideal f of Ok we define K ′∞ := k(fp∞) and Gf := Gal(K ′∞/k).
We denote by H ⊂ Gf the torsion subgroup of Gf and we fix a splitting

Gf ∼= Γ′ ×H.

Let Λ(Γ′) be the Iwasawa algebra of Γ′. Then we know that Λ(Γ′) is non-canonically isomorphic
to Zp[[T1, T2]]. Furthermore, let Λ(Gf) be the Iwasawa algebra of Gf. Then we know that Λ(Gf)
is non-canonically isomorphic to Zp[H][[T1, T2]]. Furthermore, we set
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Ω := Λ(Gf) and Ω(1) := Ω⊗Zp Zp(1)

and we have
H i(Ok[1/pf],Ω(1)) = lim←−

k⊂F⊂K′∞

H i(OF [1/pf],Zp(1)).

Recall the notation of Chapter 2 and let a be an auxiliary ideal which is coprime to 6pf. We
have the following notation

ζ(f) := c−1
a aζ(f) ∈ H1(Ok[1/pf],Ω(1))⊗Q(Ω), aζ(f) := lim←−

n

(aζ
−1
fpn) ∈ H1(Ok[1/pf],Ω(1)),

aζ f := Nk(prf)/k(f) aθE(α)−1, JΩ := AnnΩ(Zp[H](1)),

where here (E,α) is the CM-pair of modulus prf defined over k(prf) and r is an integer r ≥ 1
such that O×k → (Ok/prOk)× is injective.

Remark 6.3.6. We have defined aζ(f) differently from [JLK11] (with an inverse) but this is
compensated by the fact that they use the Dirichlet regulator map without a minus sign contrary
to [Fla04], [Ble06] and [Fla09].

As we are trying to avoid introducing even more notation we state only the assertion Johnson-
Leung and Kings give under ’In particular,...’ of their equivariant main conjecture in [JLK11]
because this is what we are going to use.

Conjecture 6.3.7. LCJoKi(K
′
∞/k, p)

Let κf be the inclusion of perfect complexes as defined on p. 101 in [JLK11]. Then κf induces
an isomorphism of Ω-modules

DetΩ(H1(Ok[1/pf],Ω(1))/JΩ(ζ(f)))) ∼= DetΩ(H2(Ok[1/pf],Ω(1))).

6.3.3 Vanishing assumptions

Definition of the µ-invariant and λ-invariant Let Λ be an Iwasawa algebra for which
Λ ∼= Zp[[T ]] and letM be a finitely generated torsion Λ-module. Then there exists an elementary
torsion module EM of the form

s⊕
i=1

Λ/(pni)⊕
t⊕

j=1

Λ/(fj(T ))lj ,

where fj is an irreducible and distinguished polynomial, and EM is pseudo-isomorphic to M .
Then one sets

µ(M) :=
s∑
i=1

ni and λ(M) :=

t∑
j=1

lj · deg(fj).

Vanishing of µ-invariant of class groups for split primes Let k be an imaginary quadratic
field, p be an odd split prime in k/Q, p a prime ideal above p and f be an integral ideal of Ok
with (p, f) = 1 and w.l.o.g. w(f) = 1.

We set K∞ := k(fp∞), Kn := k(fpn+1), G := Gal(K∞/k) and PK∞/k := PK∞/k,∅. Assume
that Gal(K∞/k) is isomorphic to Γ×H, with Γ ∼= Zp andH ∼= Gal(K0/k), e.g. this is guaranteed
if we are assuming that p - hk.
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Let Mn be the maximal abelian pro-p extension of Kn unramified outside the primes above
p and Ln the maximal unramified abelian p-extension Ln of Kn. With M∞ :=

⋃
nMn and

L∞ :=
⋃
n Ln we can define X (f) := Gal(M∞/K∞) and W(f) := Gal(L∞/K∞), which are

topological Zp[[G]]-modules. As Ln is the p-Hilbert class field of Kn we obtain W(f) ∼= PK∞/k.

Theorem 6.3.8. [Gil85, Thm. 3.4], [OV16] Let p be a rational prime. The group X (f) has no
Zp-torsion. In particular, it is a finitely generated Zp-module.

Corollary 6.3.9. PK∞/k is a finitely generated Zp-module, i.e. the µ-invariant of PK∞/k van-
ishes.

Proof. By Theorem 6.3.8 we know that X (f) is a finitely generated Zp-module. Furthermore,
we know that W(f) ∼= PK∞/k is a quotient of X (f) by global class field theory, so the result
follows.

µ-invariant and singular prime ideals of height one This part follows closely Section 3C2
in [BKS17]. Fix a prime p > 3. Let F∞/k be an extension such that G := Gal(F∞/k) is
isomorphic to Γ×H, with Γ ∼= Zp and H a finite abelian group. Moreover, set Λ := Zp[[G]].

Definition 6.3.10. We call a height one prime ideal q of Λ regular if p /∈ q and singular if p ∈ q.

If q is a regular height one prime ideal of Λ, since we have

Λ[1/p] =
⊕

χ∈Ĥ/∼Qp

Λχ[1/p]

with Λχ := Zp[im(χ)][[Γ]] we obtain Q(Λq) = Q(Λχq) for a χq ∈ Ĥ/ ∼Qp .
We also have the decomposition

Λ =
⊕

χ∈Ĥ′/∼Qp

Zp[im(χ)][Hp][[Γ]]

where Hp is the p-Sylow subgroup of H, and H ′ is the unique subgroup of H which is isomorphic
to H/Hp. One can show that there is a 1-1 correspondence between all the singular primes of Λ

and the set Ĥ ′/ ∼Qp and for such a singular q we denote such a character by χq and obtain that

Q(Λq) =
⊕

χ∈Ĥ/∼Qp ,
χ|H′=χq

Q(Λχ).

For any height one prime ideal q of Λ, we define a subset Yq ⊂ Ĥ/ ∼Qp by

Yq :=

{
{χq} if q is regular,
{χ ∈ Ĥ/ ∼Qp : χ |H′= χq} if q is singular.

Lemma 6.3.11. [BKS17, Lemma 3.8] Let M be a finitely generated torsion Λ-module and let
q be a singular prime ideal. Then the following are equivalent:

a) The µ-invariant of the Zp[[Γ]]-module eχqM vanishes.

b) For any χ ∈ Yq, the µ-invariant of the Zp[im(χ)][[Γ]]-module M ⊗Zp[H′] Zp[im(χ)] vanishes.
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c) Mq = 0.

So with Corollary 6.3.9 and Lemma 6.3.11 we obtain in the imaginary quadratic split prime
situation from above the following:

Lemma 6.3.12. The µ-invariant of PK∞/k ⊗Zp[H′] Zp(χ) vanishes for all characters in Yq with q
a singular prime ideal of Λ. In particular, for all singular ideals q of Λ we have PK∞/k,q = 0.

Vanishing of the second cohomology after localization at singular height 1 prime
ideals The following conjecture from [JLK11] is an analogue/generalization for Lemma 6.3.12
which makes sense for the split and the non-split case. But only the split case is proven and it
uses Corollary 6.3.9 in a crucial way. We use the notation of [JLK11] which we have introduced in
Section 6.3.2, in particular k is an imaginary quadratic number field and S = S∞∪Sram(K ′∞/k).

Conjecture 6.3.13. (VanishAss) For each height one prime ideal q of Ω with p ∈ q we have

H2(Ok,S ,Ω(1))q = 0.

We want to sketch the proof of Corollary 5.12 in [JLK11] which states:
Let p be a split prime in k and f an integral ideal of Ok. Then (VanishAss) holds, i.e. for any
singular height one prime ideal q of Ω, we have

H2(Ok,S ,Ω(1))q = 0. (6.9)

Sketch of the proof of (6.9) Let E be a finite extension of Q, O := OE its ring of
integers. In fact, in [JLK11] E is an extension which contains all values of the characters of
Gal(k(f)/k) and Op := O ⊗ Zp. So we can set ΩO := Ω⊗Op.

Recall that K ′∞ := k(fp∞), pOk = pp with p 6= p and G := Gal(K ′∞/k) = Γ′ ×H with H the
torsion subgroup of G. Then we set K ′0 := (K ′∞)Γ′ .

Let k1,∞ resp. k2,∞ be the Zp-extension of k which is unramified outside of p resp. p. We
set K1,∞ := K ′0k1,∞ resp. K2,∞ := K ′0k2,∞ and H := Gal(K ′∞/K1,∞).

Then with Corollary 6.3.9 one can show that H2(OS ,ΩO(1)) is a finitely generated Λ(H)-
module, which is Corollary 5.10 in [JLK11]. Then they prove the following lemma, which finishes
the proof of (6.9).

Lemma 6.3.14. [JLK11, Lemma 5.11]. Let M be an ΩO-module which is finitely generated as
ΛO(H)-module. Then for any singular height one prime ideal q in ΩO one has Mq = 0.

6.3.4 Finiteness assumption - Condition (F)

The terminology Condition (F) we adopted here stems from [BKS17], where it is one of their
assumptions for their descent result (Theorem 5.2 in [BKS17]). We will see below that this
condition can be shown in the split imaginary quadratic case (as is done in [Ble06]). In both
instances it is used in order to determine the second cohomology of the complex in more detail
after localizing at height one prime ideals (cf. Lemma 5.12 in [BKS17]).

Let M be a number field and M∞/M be a Zp-extension with Galois group Γ and we denote
the n-th level by Mn. Let Σ be a finite set of places of M . Furthermore, we denote by PM∞,Σ
the projective limit lim←−M⊆Mn⊆M∞

Pic(OMn,Σ)⊗Z Zp.
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Condition (F) The module of Γ-coinvariants of PM∞,Σ is finite.
We abbreviate this condition by F(M∞/M,Σ). As we will see below Condition (F ) does not

hold in general for arbitrary finite sets S, but it is conjectured to always hold if S contains the
places in M above p and the infinite places.

Case Σ = S∞ There are some known cases where F(M∞/M,S∞(M)) holds, where we
abbreviate this condition to F(M∞/M) from now on.

i) Let M be a totally real abelian extension of Q and M∞ be the cyclotomic Zp-extension of
M . Then F(M∞/M) is shown in [Gre73].

ii) Let M be a totally imaginary abelian extension of Q and M∞ be the cyclotomic Zp-
extension of M . Let M+ be the maximal totally real subfield of M . Assume that no prime
above p in M+ splits completely in M . Then F(M∞/M) is also shown in [Gre73].

iii) Let k be an imaginary quadratic field, p ≥ 5 be a prime which splits k and p be a prime
ideal of Ok above p. Let f be a non-zero ideal of Ok coprime to p. We set M∞ := k(fp∞)
and M := k(fp). We will show in Lemma 6.3.15 that F(M∞/M) holds.

But there is also an example where F(M∞/M) fails to hold:

i) Let M be an totally imaginary abelian extension of Q and M∞ be the cyclotomic Zp-
extension of M . Let M+ be the maximal totally real subfield of M . Assume that all
primes above p in M+ split completely in M . Then it can be easily seen from the results
in [Gre73] that F(M∞/M) does not hold.

Case Σ contains places S∞ and Sp For the cyclotomic Zp-extension M∞/M and Σ =
Sp(M) ∪ S∞(M) Condition F(M∞/M,Σ) is known as Gross-Kuzmin conjecture. More gen-
erally, it is conjectured that F(M∞/M,Σ) holds for any Zp-extension M∞/M and this as-
sertion is sometimes called generalized Gross-Kuzmin conjecture. In particular, if Σ contains
S∞(M) and Sp(M) , as is often an assumption below, the generalized Gross-Kuzmin conjecture,
i.e. F(M∞/M,Sp(M) ∪ S∞(M)), implies F(M∞/M,Σ). In the following cases this conjecture is
known.

i) It is easily seen that F(M∞/M) implies F(M∞/M,Σ). So we get all the cases of the list
for Σ = S∞(M).

ii) Let M be an abelian extension of Q, M∞/M be the cyclotomic Zp-extension of M . Then
[Gre73] shows that F(M∞/M,Σ) holds.

iii) Let M be a number field in which there are at most two primes above p and M∞/M be
the cyclotomic Zp-extension of M . Then it is shown in [Kle19] that F(M∞/M,Σ) holds.

iv) Let M be a totally real field and assume that Leopoldt’s conjecture is true for M at p.
Then for the cyclotomic Zp-extensionM∞/M we know by [Kol91] that F(M∞/M,Σ) holds.

Lemma 6.3.15. Let k be an imaginary quadratic field, p ≥ 5 be a prime which splits k, p be
a prime ideal of Ok above p and f a non-zero ideal of Ok coprime to p. Then F(k(p∞f)/k(pf))
holds.
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Proof. In this proof we are following ideas from the proof of Theorem 1.4 in [Rub88].
LetM∞ be the maximal abelian p-extension of K∞ := k(fp∞) which is unramified outside the

primes above p, Mn be the maximal abelian p-extension of Kn := k(fpn+1) which is unramified
outside the primes above p, L∞ the maximal abelian extension of K∞ inside M∞ which is
everywhere unramified and L the maximal abelian extension ofK0 insideM∞ which is everywhere
unramified. Then by class field theory we get Gal(L∞/k(fp∞)) ∼= PK∞ and that Gal(L/K∞) is
isomorphic to (PK∞)Γ with Γ = Gal(K∞/K0).

We claim that rkZp(Gal(M0/K0)) = 1. Then if we assume that Gal(L/K∞) is not finite,
because it is finitely generated over Zp, we obtain that the rkZp(Gal(L/K0) ≥ 1, but this is a
contradiction to rkZp(Gal(M0/K0)) = 1.

So what is left to do is to show that rkZp(Gal(M0/K0)) = 1, where we are using ideas of
Section 2 in [Coa83]. Let v be a place of Kn above p, let Un,v denote the local units which are
congruent to 1 modulo v of the completion of Kn at v. Let En be the global units of Kn which
are congruent to 1 modulo v for each place v in Kn and ιn be the diagonal embedding of En in∏
v|p Un,v. Then by the Artin map we obtain the exact sequence

0 −→

∏
v|p

Un,v

 /ιn(En) −→ Gal(Mn/Kn) −→ An −→ 0, (6.10)

where ιn(En) is the p-adic closure of ιn(En). Now we can compute that rkZp(
∏
v|p Un,v) is

equal to [Kn : k]. By Leopoldt’s conjecture, which is valid for abelian extensions of imaginary
quadratic fields, we know that rkZp(ιn(En)) = [Kn : k]− 1. As An is finite the claim follows now
directly by looking at the exact sequence (6.10).

Recall the situation from [BKS17]. Let G := Gal(F∞/k) ∼= Γ × H with Γ ∼= Zp and H a
finite abelian group. Let L be a finite extension in F∞/k such that Gal(F∞/L) is a Zp-extension,
G := Gal(L/k). Let Σ be any finite set of places of k.

By abuse of notation we denote the Condition F(F∞/L) (resp. F(F∞/L,Σ)) in Section 6.5
by F(F∞/k) (resp. F(F∞/k,Σ)) if the L we are using is clear from the context.

Let χ ∈ Ĝ and recall that we then set Lχ := Lker(χ), F0 := FΓ
∞, k∞ := FH∞ , Lχ,∞ := Lχk∞

and Γχ := Gal(Lχ,∞/Lχ). Let S be an admissible set of places of k, in particular it contains S∞
and Sp and T a finite set of places disjoint from S. For any intermediate field F in F∞/k, where
F runs over all intermediate fields of F/k that are finite over k we denote by PF,S,T the inverse
limit of the p-primary part of the ray class group of OF,S with modulus

∏
w∈T (F )w with respect

to the norm maps.

Condition (F) in [BKS17] For every χ ∈ Ĝ, the module of Γχ-coinvariants of PLχ,∞,S,T
is finite.

Remark 6.3.16. One can show that Condition (F) in [BKS17] is equivalent to F(Lχ,∞/Lχ, S)

for each χ ∈ Ĝ.

6.3.5 Higher-rank main conjecture of Iwasawa theory in [BKS17]

In [BKS17] there are yet several other formulations of IMC-type conjectures which are the starting
points of the descent to the eTNC(h0(Spec(L)),Zp[G]) and we want to present here two of them.
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Here k is a general number field. Fix a prime p and an isomorphism C ∼= Cp. Let F∞/k be a
Galois extension with

G := Gal(F∞/k) ∼= Γ×H such that Γ ∼= Zp and H finite abelian.

Then we set F := FΓ
∞ and k∞ := FH∞ and for each character χ ∈ Ĝ :

Lχ := F ker(χ)
∞ Lχ,∞ := Lχ · k∞ Lχ,n := n-th layer of Lχ,∞/Lχ

Gχ := Gal(Lχ,∞/k) Gχ := Gal(Lχ/k) Γχ := Gal(Lχ,∞/Lχ)

We let S be a finite set of places of k which contains S∞(k)∪Sram(F∞/k)∪Sp(k) and T be a finite
set of places of k which is disjoint from S. We set Vχ := {v ∈ S : v splits completely in Lχ,∞}
and let rχ be the cardinality of Vχ.

Furthermore, we set Λ := Zp[[G]], for χ ∈ Ĥ we put Λχ := Zp[imχ][[Γ]] and for CF∞,S,T we
take the inverse limit of the complex CM,S,T with respect to norm maps over all intermediate
fields M that are finite over k in F∞/k.

First formulation For any χ ∈ Ĝ there is a natural homomorphism

λχ : DetΛ(CF∞,S,T )→ DetZp[Gχ](CLχ,S,T )

↪→ DetCp[Gχ](CpCLχ,S,T )

∼= DetCp[Gχ](CpULχ,S,T )⊗Det−1
Cp[Gχ](CpXLχ,S)

∼= DetCp[Gχ](CpXLχ,S)⊗Det−1
Cp[Gχ](CpXLχ,S)

∼= Cp[Gχ]
χ−→ Cp.

Conjecture 6.3.17. (hIMC(F∞/k, S, T, p))
There exists a Λ-basis LLχ,S,T of the module DetΛ(CF∞,S,T ) for which at every χ ∈ Ĥ and every
ψ ∈ Ĝχ for which rS(ψ) = rχ one has

λψ(LF∞,S,T ) = Lk,S,T (0, ψ−1).

Remark 6.3.18. The validity of (hIMC) is independent of the choice of T . Therefore, we can
choose T such that UF,S,T is torsion-free.

Remark 6.3.19. The assertion of Conjecture 6.3.17 is valid if and only if there is a Λ-basis
LF∞,S,T of DetΛ(CF∞,S,T ) for which for every character χ ∈ Ĥ and every n ∈ N we have

j
Vχ
Lχ,n

(LF∞,S,T ) = ε
Vχ
Lχ,n,S,T

,

where we set

j
Vχ
Lχ,n

: DetΛ(CF∞,S,T )→ DetZp[Gχ,n](CLχ,n,S,T )
π
Vχ
Lχ,n,S,T−−−−−−→ Cp

rχ∧
ULχ,n,S,T .

and πVχLχ,n,S,T is a map from DetZp[G](CLχ,n,S,T ) to Cp
∧rχ ULχ,n,S,T as described in Section 2D.

in [BKS17].
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For each character χ ∈ Ĥ there is a natural ring homomorphism

Zp[[Gχ]]
χ−→ Λχ

and we define
rχ⋂

ULχ,∞,S,T := lim←−
n

rχ⋂
ULχ,n,S,T

and

ε
Vχ
Lχ,∞,S,T

:= lim←−
n

ε
Vχ
Lχ,n,S,T

∈
rχ⋂
ULχ,∞,S,T

Second formulation For this formulation we assume that p is odd and that the following
condition holds:

(SplitAss) Vχ contains no finite places for every χ ∈ Ĥ, i.e. no finite place of S splits completely
in Lχ,∞.

Remark 6.3.20. Let q be a singular prime ideal of Λ. Then Vχ is independent of χ ∈ Yq.
In particular, for any χ ∈ Yq, then Q(Λq)-module UF∞,S,T ⊗ Q(Λq) is free of rank rχ. This is
Lemma 3.9 in [BKS17]. So we can set for the height one prime ideal q of Λ: Vq := Vχ and
rq := rχ by choosing some χ ∈ Yq.

Assume RS(Lχ,n/k, S, T, Vχ)p holds for all χ ∈ Ĥ and n. Then we define

εqF∞/k,S,T ∈

( rq∧
UF∞,S,T

)
⊗Q(Λq)

as the image of (
ε
Vχ
Lχ,∞/k,S,T

)
χ∈Yq

∈
⊕
χ∈Yq

rq⋂
ULχ,∞,S,T

under the map

⊕
χ∈Yq

rq⋂
ULχ,∞,S,T →

⊕
χ∈Yq

( rq⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ]] Q(Λχ) =

( rq∧
UF∞,S,T

)
⊗Q(Λq).

Lemma 6.3.21. [BKS17, Lemma 3.10] Let q be a height one prime ideal of Λ. When q is
singular, assume that µ-invariant of eχqPF∞,S,T vanishes.

a) The Λq-module (UF∞,S,T )q is free of rank rq.

b) If RS(Lχ,n/k, S, T, Vχ)p holds for all χ ∈ Ĥ and n ∈ N, then there is an inclusion

εqF∞/k,S,T · Λq ⊂

( rq∧
UF∞,S,T

)
q

Lemma 6.3.22. [BKS17, Prop. 3.11, Rem. 3.12] Assume that

i) RS(Lχ,n/k, S, T, Vχ)p holds for all χ ∈ Ĥ and n large enough, and
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ii) for each χ ∈ Ĥ ′/ ∼Qp we have that the µ-invariant of eχqPF∞,S,T vanishes.

Then hIMC(F∞/k, S, T ) holds if and only if

εqF∞/k,S,T · Λq = FittΛq(PF∞,S,T,q)FittΛq(XF∞,S\Vq,q)

( rq∧
UF∞,S,T

)
q

for every height-one prime ideal q of Λ.

Remark 6.3.23. Let k be an imaginary quadratic field, p > 3 be a split prime in k/Q, p a fixed
prime ideal of Ok over p, f an integral ideal of Ok with (f, p) = 1.

Furthermore, let S = S∞(k) ∪ Sram(K∞/k) ∪ Sp(k), set K∞ := k(fp∞), τ := τK∞ , let a be
an integral ideal of Ok coprime to 6fp, T a set of primes containing a disjoint from S.

Assumption i) in Lemma 6.3.22 holds because of Remark 5.1.6 f) and Remark 5.1.8 as
(SplitAss) holds in this case. Assumption ii) holds because of Lemma 6.3.12.

If one transfers the proof of the Limit Conjecture (Theorem 5.1 in [Ble06]) to a T -version
of the Limit Conjecture by defining a T -version ψTf,a of ψf,a, one obtains for regular height one
prime ideals q

ca · FittΛq(UK∞,S,T,q/ψ
T
f,aΛq) = FittΛq(PK∞,S,T,q) · FittΛq(YK∞,S/τΛq)

and with (SplitAss) we get Vχ = {∞} and so YK∞,S,q/τΛq
∼= XK∞,S\Vq,q and therefore

ca · FittΛq(UK∞,S,T,q/ψ
T
f,aΛq) = FittΛq(PK∞,S,T,q) · FittΛq(XK∞,S\Vq,q).

In the case where q is a singular prime ideal of height one of Λ, we should obtain

H0(CK∞,S,T,q) = UK∞,S,T,q = c−1
a ψTf,a · Λq and H1(CK∞,S,T,q) = τΛq

so CK∞,S,T,q has perfect cohomology and

FittΛq(PK∞,S,T,q) = Λq and FittΛq(XK∞,S\Vq,q) = Λq.

So a proof of hIMC(K∞/k, S, T ) seems attainable considering Lemma 5.2.11.

6.3.6 A relation between the Limit Conjectures

The main result of Johnson-Leung and Kings in [JLK11] can be stated as follows:

Theorem 6.3.24. If (VanishAss) holds, then LCJoKi(K
′
∞/k, p) holds. In particular, if p splits

in k we have an unconditional result.

Remark 6.3.25. As we mentioned in Remark 6.3.6 we normalized the element ζ(f) differently
as in [JLK11], but as they also use a different Dirichlet regulator map (without a minus sign)
our formulation of Conjecture 6.3.7 should still hold with the same proofs as in [JLK11].

So it is natural to ask about the relation between the Limit Conjectures LC(K ′∞/k, p) and
LCJoKi(K

′/k, p). The following remark outlines a strategy how one could possibly prove the
implication that would be most interesting to us.
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Remark 6.3.26. The assertion we are interested in can be formulated as follows: If (VanishAss)
holds, then

LCJoKi(K
′
∞/k, p) implies LC(K ′∞/k, p)

for all the cases where both are defined.
Now working towards a proof of this assertion we let S′ := {v places in k with v | fp} and

S := {v places in k with v | fp∞}. Recall that we have for the cohomology of ∆∞

a) H i(∆∞) = 0 for i 6= 1, 2.

b)
H1(∆∞) = UK′∞,S .

c) We also have a short exact sequence

0→ PK′∞,S → H2(∆∞)→ XK′∞,S → 0

and similarly for the cohomology of [JLK11].

a)
H1(Ok,S ,Ω(1)) = UK′∞,S

b)
0→ PK′∞,S → H2(Ok,S ,Ω(1))→ XK′∞,S

′ → 0

which is essentially Proposition 5.1 of [BG03] with small adaptations, because the base field is k
instead of Q.

As in (22) on p. 96 in [Ble06] we obtain

0→ X∞{v|fp} → X∞{v|fp∞} → Y∞{v|∞} → 0 (6.11)

and from the definition of τ it follows that

DetΩ(τ · Ω) = DetΩ(Y∞{v|∞}). (6.12)

Combining (6.11) and (6.12) as well as Proposition 6.1.2 we get

DetΩ(XK′∞,S) = DetΩ(τ · Ω)⊗DetΩ(XK′∞,S
′). (6.13)

Recall that we have for an integral ideal a of k prime to 6fp

aζ
−1
fpn = ψ(1; fpn, a) (6.14)

by (2.9) and by our definition of ζ(fpn) we obtain ψf,a = aζ(f).
We also have that Ω = ΛK′∞/k. As in Lemma 6.6 in [JLK11] one obtains

DetΩ(ζ(f)Ω) = c−1
a DetΩ(aζ(f)Ω) = DetΩ(JΩζ((f))). (6.15)

With Lemma 6.1.4 it suffices to show the assertion after localising at each q.
To shorten the notation we set U∞S := UK′∞,S and P∞S , X∞S analogously; also L := LK′∞ .
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Case: localization at regular prime ideal Let q now be a regular prime ideal of height
1. For this case it suffices to show that

L · Ωq = Det−1
Ωq

(H1(∆∞q ))⊗DetΩq(H
2(∆∞q ))

and therefore that

L · Ωq = Det−1
Ωq

(U∞S,q)⊗DetΩq(P
∞
S,q)⊗DetΩq(X

∞
S,q)

and with (6.13) that

L · Ωq = Det−1
Ωq

(U∞S,q)⊗DetΩq(P
∞
S,q)⊗DetΩq(τΩq)⊗DetΩq(X

∞
S′,q).

Using the definition of L it suffices to show that

caψ
−1
f,a Ωq = Det−1

Ωq
(U∞S,q)⊗DetΩq(P

∞
S,q)⊗DetΩq(X

∞
S′,q). (6.16)

So assume now that LCJoKi(K
′
∞/k, p) holds, i.e.

DetΩ(H1(Ok,S ,Ω(1))/JΩ(ζ(f))) = DetΩ(H2(Ok,S ,Ω(1)))

we can use the computation of the cohomology, Proposition 6.1.2 a) and localize at q to get

DetΩq(U
∞
S,q/JΩ(ζ(f))q) = DetΩq(P

∞
S,q)⊗DetΩq(X

∞
S′,q).

Next we consider the short exact sequence

0→ JΩζ(f)→ U∞S → U∞S /(JΩζ(f))→ 0

and Proposition 6.1.2 a) to get

DetΩ(U∞S ) = DetΩ(JΩ(ζ(f)))⊗DetΩ(U∞S /(JΩζ(f)))

to obtain
Det−1

Ωq
(JΩ(ζ(f))q)⊗DetΩq(U

∞
S,q) = DetΩq(P

∞
S,q)⊗DetΩq(X

∞
S′,q)

and with (6.15) we obtain

DetΩq(U
∞
S,q) = c−1

a DetΩq(aζ(f)Ωq)⊗DetΩq(P
∞
S,q)⊗DetΩq(X

∞
S′,q).

as ψf,a = aζ(f) so one gets

caψ
−1
f,a Ωq = Det−1

Ωq
(U∞S,q)⊗DetΩq(P

∞
S,q)⊗DetΩq(X

∞
S′,q)

as we wished.

Case: localization at singular prime ideals Let q now be a singular height 1 prime
ideal. So assume now that LCJoKi(K

′
∞/k, p) holds, i.e.

DetΩq(U
∞
S,q/JΩq(ζ(f))) = DetΩq(H

2(Ok,S ,Ω(1))q).

Since we are also assuming (VanishAss), i.e.

H2(Ok,S ,Ω(1))q = 0.
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and using (6.15) we get that
H1(∆∞q ) = U∞S,q = c−1

a ψf,aΩq. (6.17)

So we can conclude that ∆∞q has perfect cohomology, i.e.

DetΩq(∆
∞
q ) = Det−1

Ωq
(H1(∆∞q ))⊗DetΩq(H

2(∆∞q )).

So one has to check that

L · Ωq = Det−1
Ωq

(U∞S,q)⊗Det(P∞S,q)⊗DetΩq(τΩq)⊗Det(X∞S,q)

which is equivalent to checking

caψ
−1
f,a · Ωq = Det−1

Ωq
(U∞S,q)⊗DetΩq(H

2(Ok,S ,Ω(1))q)

but this holds because of (VanishAss) and (6.17).
This is labelled a sketch because there a still some delicate details, concerning the isomorphism

from [JLK11] etc., one has to consider in order to obtain a rigorous proof.

Remark 6.3.27. We give here a proof strategy for: LC(K ′∞/k, p) implies LCJoKi(K
′
∞/k, p)

under certain (rather strong) conditions. In fact, assume H i(∆∞q ) are free Ωq-modules for each
singular height one prime ideal q and all i. Then we can show that

LC(K ′∞/k, p)⇒ LCJoKi(K
′
∞/k, p)

for all the cases where both are defined.
For regular prime ideals of height 1 we assume LC(K ′∞/k, p) and get (6.16), with the considera-
tions above one obtains again for each regular height 1 prime ideal q:

DetΩq(H
1(Ok,S ,Ω(1))/JΩ(ζ(f)))q = DetΩ(H2(Ok,S ,Ω(1))q).

For singular prime ideals of height 1 we assume that LC(K ′∞/k, p) holds and with the assumption
that the cohomology modules of ∆∞q are free Ωq-modules the complex has perfect cohomology, so
under these assumptions one can treat this case as the case of regular prime ideals. We note that
for the complex ∆∞K∞/k in the split case with K∞ := k(fp∞) it can be shown that the freeness
assumption we need is fulfilled.
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6.4 Descent to finite levels as in [BKS17]

We continue to use the notation of Section 6.3.5 and we recall that we have an extension F∞/k
with

G := Gal(F∞/k) = Γ×H with Γ ∼= Zp and H a finite abelian group.

Let F be a finite extension over k in F∞ with Galois group G := Gal(F/k). We set

V := Vχ = {v ∈ S : v splits completely in Lχ,∞} r := |V |
V ′ := V ′χ := a maximal set s.t. |V ′χ| = min{|{v ∈ S : χ(Gv) = 1}|, |S| − 1} r′ := #V ′, e := r′ − r

Fix a representative of CF∞,S,T :

ΠF∞
ψ∞−−→ ΠF∞ ,

where the first term is in degree zero, and ΠF∞ is a free Λ-module with basis b1, . . . , bd. This
representative is chosen so that the natural surjection

ΠF∞ → H1(CF∞,S,T )→ XF∞,S

sends bi to wi − w0 for every i ∈ {1, . . . , r′}.
We define the height one prime ideal p := ker(Λ

χ−→ Qp(χ)) and the discrete valuation ring Λp.
We write P for its maximal ideal and we see that χ induces an isomorphism E := Λp/P ∼= Qp(χ).
We call S and T admissible sets if S contains S∞(k) ∪ Sram(F∞/k) ∪ Sp(k) and two places of
unequal residue characteristics, respectively. The main result of [BKS17] reads as follows:

Theorem 6.4.1. [BKS17, Thm. 5.2] Fix a prime p. Let F be a finite extension of k in F∞ and
S and T admissible sets. Assume that the following conditions hold:

(R) For every χ ∈ Ĝ, we have rS(χ) < |S|.

(S) No finite place splits completely in k∞.

(hIMC) The conjecture hIMC(F∞/k, S, T ) holds.

(F) For every χ ∈ Ĝ, the module of Γχ-coinvariants of PLχ,∞/k,S,T is finite.

(MRS) For every χ ∈ Ĝ, the conjecture MRS(F∞/k, S, T, χ, V
′) is valid for a maximal set V ′, so

that
|V ′| = min{|{v ∈ S | χ(Gv) = 1}|, |S| − 1}.

Then the conjecture eTNC(h0(Spec(F )),Zp[G]) holds.

Overview of the proof of Theorem 5.2 in [BKS17] Fix a character χ ∈ Ĝ. Assuming
Condition (F) holds, Lemma 5.12 in [BKS17] computes the cohomology of CF∞,S,T ⊗ Λp:

H0(CF∞,S,T ⊗ Λp) ∼= UF∞,S,T ⊗ Λp, H1(CF∞,S,T ⊗ Λp) ∼= XF∞,S ⊗ Λp,

H1(CF∞,S,T ⊗ Λp)tors ∼= XF∞,S\V ⊗ Λp, H1(CF∞,S,T ⊗ Λp)tors is ann. by P,

H1(CF∞,S,T ⊗ Λp)/H
1(CF∞,S,T ⊗ Λp)tors ∼= YF∞,V ⊗ Λp, dimE(H1(CF∞,S,T ⊗ Λp)tors) = e.

The Bockstein map

β : H0((CF∞,S,T ⊗ Λp)⊗ E)→ H1(CF∞,S,T ⊗ Λp ⊗Λp P )

= H1(CF∞,S,T ⊗ Λp)⊗Λp P

→ H1((CF∞,S,T ⊗ Λp)⊗ E)⊗E P/P 2
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is induced by the exact triangle

CF∞,S,T ⊗ Λp ⊗Λp P → CF∞,S,T ⊗ Λp → (CF∞,S,T ⊗ Λp)⊗ E.

The Bockstein map β itself is then induced by the map

ULχ,S,T → XLχ,S ⊗ I(Γχ)/I(Γχ)2

a 7→
∑

w∈S(Lχ)

w ⊗ (recw(a)− 1)

which is Proposition 5.14 in [BKS17].
For any intermediate fieldM of F∞, we denote by LM/k,S,T the image of the element LF∞/k,S,T

of DetΛ(CLχ,S ,S,T ) under the isomorphism

Zp[Gal(M/k)]⊗Λ DetΛ(CF∞,S,T ) ∼= DetZp[Gal(M/k)](CM,S,T ).

Furthermore, Proposition 5.16 in [BKS17] and Lemma 5.17 in [BKS17] show that:

a) eχRec∞ is injective.

b)
ν−1
n (Nn(πVLχ,n(LLχ,n,S,T ))) = (−1)reRecn

(
πV
′

Lχ/k,S,T
(LLχ,n,S,T )

)
As we have assumed condition (R) it suffices, by Proposition 6.2.10, to show that there exists

a Zp[G]-basis LF,S,T of DetZp[G](CF,S,T ) such that the image of eχLF,S,T under the isomorphism

gχ : eχCpDetZp[G](CF,S,T ) ∼= eχCp
rS(χ)∧

ULχ,S,T

coincides with eχεV
′

Lχ,S,T
with V ′ places of S which split completely in Lχ, i.e.

gχ(eχLF,S,T ) = eχε
V ′
Lχ,S,T . (6.18)

With Remark 6.3.19 we deduce from hIMC(F∞/k, S, T )

jVLχ,n(LF∞,S,T ) = εVLχ,n,S,T

so we can write this as
πVLχ,n(LLχ,n,S,T ) = εVLχ,n,S,T

so with b) from above we obtain

ν−1
n (Nn(εVLχ,n)) = (−1)reRecn(πV

′
Lχ,S,T (LLχ,S,T )).

Now we set κn := ν−1
n (Nn(εVLχ,n)) and κ := lim←−n κn = (−1)reRec∞(πV

′
Lχ,S,T

(LLχ,S,T )).
Recall that MRS(F∞/k, S, T, χ, V

′) with χ ∈ Ĝ implies

eχκ = (−1)reeχRec∞(εV
′

Lχ/k,S,T
)

and so this implies

(−1)reeχRec∞(εV
′

Lχ/k,S,T
) = (−1)reeχRec∞(πV

′
Lχ,S,T (LLχ,S,T )).

With b) eχRec∞ is injective, so we get

εV
′

Lχ,S,T = πV
′

Lχ,S,T (LLχ,S,T ).

So because εV ′Lχ,S,T = πV
′

Lχ,S,T
(LLχ,S,T ) implies gχ(eχLF,S,T ) = eχε

V ′
Lχ,S,T

, (6.18) is shown and
therefore the theorem follows.
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Applications to abelian extensions of imaginary quadratic fields Let k be an imaginary
quadratic field and fix a prime p > 3. Let f be an integral ideal of Ok with (f, p) = 1 and w(f) = 1
and let p be a prime ideal above p in Ok. Assume that (H2) holds, i.e. that p - hk. Then we set
K ′∞ := k(fp∞), K0 := k(fp) and we obtain the direct decomposition

G := Gal(K ′∞/k) ∼= Γ′ ×H

with H ∼= Gal(K0/k) and (K ′∞)H ∼= Z2
p. Now let K∞ be a Zp-extension of K0. Then there are

topological generators γ1, γ2 of Γ′ such that (K ′∞)〈γ1〉 = K∞.
Now we want to state the following corollary of Theorem 6.4.1 by combining results from

above.

Corollary 6.4.2. Let (K∞/k, p) be as above and let F be a finite extension of k in K∞ with
Galois group G := Gal(F/k) and assume the following conditions:

(S) No finite place splits completely in k∞.

(F) For every χ ∈ Ĝ, the module of Γχ-coinvariants of PLχ,∞/k,S,T is finite.

(hIMC) The conjecture hIMC(K∞/k, S, T ) holds.

(DimAss) The set {eχεVL , eχκ} is a Cp-basis of eχCpULχ,S for each character described on page
78, i.e. the ones remaining after the reduction of the problem in the proof of Theo-
rems 5.2.1, 5.2.2 and 5.2.3.

Then eTNC(h0(Spec(F )),Zp[G]) holds.

Proof. Obviously we want to use Theorem 6.4.1. First of all we choose an admissible set S such
that (R) holds, i.e. S ⊃ {∞} ∪ Sp(k) ∪ Sram(K∞/k). According to Theorem 5.2.2 (DimAss)
implies that MRS(K∞/k, S, T, χ, V

′) holds and as we assume the other conditions of Theorem
6.4.1 the result follows.

Remark 6.4.3. The condition (DimAss) is known in certain cases by Lemma 5.2.21 for non-split
primes.

Outline of a ’new’ proof strategy of the main result in [Ble06]. Recall that we assume
p ≥ 5 is prime and splits in k with p - hk. Let F be some finite abelian extension of k with
Galois group G. Then we want to show that eTNC(h0(Spec(F )),Zp[G]) holds.

First of all by global class field theory we always find an f and an integer n such that
F ⊆ k(fpn) with f satisfying the necessary conditions. From the proof of Theorem 5.2.1 we know
that Condition (DimAss) holds in this case and Condition (F) by Lemma 6.3.15, Remark 6.3.16
and the well-known properties of the generalized Gross-Kuzmin conjecture. Considering Re-
marks 6.3.4 and 6.3.23 one should be able to show that hIMC(K∞/k, S, T ) is valid in this
particular situation, and then with Corollary 6.4.2 we would get the result.
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6.5 Descent for abelian extensions of imaginary quadratic fields
in the inert case

6.5.1 Statement of the main result of this chapter

Theorem 6.5.1. Let L be a finite abelian extension of an imaginary quadratic field k with
Galois group G. Let p be an odd inert prime in k such that p - hk. If for each χ ∈ Ĝ/ ∼Qp there
is a Zp-extension L∞, in which no finite prime dividing pfL splits completely and which satisfies
LC(L∞/k, p) and Condition F(L∞/k), then eTNC(h0(Spec(L)),Zp[G]) holds.

Remark 6.5.2. a) For split primes p ≥ 3 with p - hk we know eTNC(h0(Spec(L),Zp[G]) by
work of Bley in [Ble06]. In fact our treatment relies heavily on the methods used in [Ble06]
and can be seen as adaptation of the methods for inert primes. The main new ingredient
is Theorem 4.1.16 in Chapter 4.

b) The main result of Chapter 4 also holds for ramified primes p > 3 and it is not too hard
to adapt the descent computations to the ramified case. But for the sake of clarity of the
presentation we do not present these descent computations.

c) For p = 3 in the ramified case and especially p = 2 the situation is more complicated
because we do only have partial results for these primes in Chapter 4 and similar reasons
restricting us there, would also create problems in the descent computations.

d) The condition p - hk should not be necessary, but nevertheless we were unable to remove this
condition. It should certainly be possible to relax the condition at least to only assuming
k(1) ∩K = k, where K is the composite of all Zp-extensions of k.

e) With the functoriality properties of the integrality part of the eTNC (Remark 6.2.5 e)) it
is easy to see that the problem can be reduced to considering only ray class fields.

Remark 6.5.3. Condition F(L∞/k) is an assumption based on what is true for the the split
imaginary quadratic case (see Lemma 6.3.15). But as we have already seen in Section 6.3.4 it
is not true for each cyclotomic Zp-extension, so it is very likely that it does not hold for each
extension as constructed in Corollary 6.5.19. In order to hedge against this possibility we remark
that first of all we have a certain choice for each character. Moreover, Condition F(L∞/k) is
sufficient for our computations, but what we really use is

(
PL∞/k

)
qχ

= 0 so that we obtain with
(6.26) an exact sequence

0→ UL∞/k,qχ → UL∞/k,S,qχ → YL∞/k,{w|p},qχ → 0. (6.19)

for each choice of an extension L∞ corresponding to a character that has trivial zeroes.
But as proposed by one of the referees, with a finer analysis of the computations in the

trivial zeroes case one should be able to replace Condition F(L∞/k) with Condition F(L∞/k, S)
by introducing an auxiliary module and therefore get a four term exact sequence instead of (6.19).
This extra term introduced here should then cancel out in the computations. Evidence that this
should work is that [BKS17] also only assumes Condition F(L∞/k, S) for doing essentially the
same descent in a more general context.

The rest of this chapter is now devoted the proof of Theorem 6.5.1. We fix an imaginary
quadratic field k, an odd rational prime p and a prime ideal p above p. Because of Remark 6.5.2 e)
we can assume without loss of generality that L := k(f) for f an integral ideal with w(f) = 1. We
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denote the Galois group of L/k by G and by f0 the part that is coprime to p. Furthermore, we
set

M = h0(Spec(L)) A = Q[G] A = Z[G].

The rest of this section is organized as follows:

Sec. 6.5.2 contains the computation of the χ-component of Aϑ∞(L∗(AM, 0)−1).

Sec. 6.5.3 contains the strategy of the descent as well as some important lemmas from [Fla04]
which we need for our computation.

Sec. 6.5.4 contains some preparations for the descent computations.

Sec. 6.5.5 treats the no trivial zeroes case.

Sec. 6.5.6 treats the trivial zeroes case, which is the key part.

Sec. 6.5.7 finishes the proof by treating the case of the trivial character.

6.5.2 Computation of the χ-component of Aϑ∞(L∗(AM, 0)−1)

For each χ ∈ Ĝ/ ∼Q we have eχ =
∑

η∈χ eη ∈ Q[G] and we denote by Q(χ) the field generated
by the values of η for any η ∈ χ. Furthermore, we have Q[G] ∼=

∏
χ∈Ĝ/∼Q

Q(χ).
There is a canonical isomorphism

Ξ(AM)# ∼= Det−1
A (O×L ⊗Q)⊗DetA(XL,S∞ ⊗Q)

∼=
∏
χ

Det−1
Q(χ)(O

×
L ⊗Q(χ))⊗DetQ(χ)(XL,S∞ ⊗Q(χ)) (6.20)

By abuse of notation we denote one of the elements of χ ∈ Ĝ/ ∼Q also by χ. Let a be an ideal
of Ok such that (a, 6pf) = 1, Lχ := Lker(χ) and fχ the conductor of χ, i.e the ’smallest’ ideal such
that Lχ ⊂ k(fχ). Let L′ be such that Lχ ⊆ L′ ⊆ k(fχ). Then we set

ψχ :=

{
Nk(fχ)/L′(ψ(1; fχ, a)) if fχ 6= (1),

Nk(1)/L′

(
δ(Ok,a−1)
δ(p,pa−1)

)
if fχ = (1).

Proposition 6.5.4. The χ-component of Aϑ∞(L∗(AM, 0)−1) is equal to


(N (a)− χ(a)) · w(fχ) · [k(f) : L′] · ψ−1

χ ⊗ τ|L′ , fχ 6= (1),

(N (a)− χ(a))(1− χ(p)−1) · w(1) · [k(f) : L′] · ψ−1
χ ⊗ τ|L′ , fχ = (1), χ 6= 1,

−w(1)
hk

, χ = 1.

Proof. Assume first that fχ 6= (1) and that we are in the situation that can be illustrated as
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follows:
k(f)

k(fχ)

L′

Lχ

k

GL′

Gχ

G′

Then we can compute that

R(eχψχ) = −eχ
∑
w∈S∞

log |ψχ|w · w = −
∑
g∈G

log |ψgχ|χ−1(g)eχw

= −
∑
τ∈G′

∑
σ∈GL′

χ−1(τ) log |ψστχ |eχw = −[k(f) : L′]
∑
τ∈G′

χ−1(τ) log |ψτχ|eχw

Furthermore, using Lχ ⊆ L′ ⊆ k(fχ) it is easy to see that∑
τ∈G′

χ−1(τ) log |ψτχ| =
∑
g∈Gχ

χ−1(g) log |ψ(1; fχ, a)g|

and from Proposition 2.3.9 we obtain

L∗(0, χ−1) = − 1

N (a)− χ(a)

1

w(fχ)

∑
g∈Gχ

χ−1(g) log |ψ(1; fχ, a)g|

So we obtain
R(eχψχ) = w(fχ)(N (a)− χ(a))[k(f) : L′]L∗(0, χ−1)

and then Definition 6.2.3 implies that

eχ Aϑ∞(L∗(AM, 0)−1)) = [k(f) : L′]w(fχ)(N (a)− χ(a))eχψ
−1
χ ⊗ τL′

In the other cases the proofs are similar, where one uses as main input Corollary 2.3.7 resp.
Corollary 2.3.5. Moreover, the proof for fχ = (1) and χ 6= 1 is also treated on page 91 in
[Ble06].

6.5.3 Strategy of the descent

In this section we want to present the strategy for the descent. In order to do that we start by
presenting a key lemma which will be used in a crucial way later.

Definition 6.5.5. Let R be a discrete valuation ring with uniformizer ω. For an R-module Q
we put

Qω := {q ∈ Q : ωq = 0} and Q/ω := Q/ωQ.

Lemma 6.5.6. [Fla04, Lemma 5.7] Let R be a DVR with fraction field Q(R), residue field κ
and uniformizer ω. Suppose that:
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i) ∆ is a perfect complex of R-modules.

ii) ω ·H i(∆)tors = 0 for all i.

We define free R-modules M i by the short exact sequence

0→ H i(∆)ω → H i(∆)→M i → 0.

a) The exact triangle in the derived category of R-modules:

∆
ω−→ ∆→ ∆⊗L

R κ→ ∆[1]

induces an exact sequence of κ-vector spaces

0→ H i(∆)/ω → H i(∆⊗L
R κ)→ H i+1(∆)ω → 0.

b) There is an isomorphism

Detκ(H i(∆⊗L
R κ)) ∼= Detκ(H i(∆)/ω)⊗κ Detκ(H i+1(∆)ω)

∼= Detκ(H i(∆)ω)⊗κ Detκ(M i/ω)⊗κ Detκ(H i+1(∆)ω).

and hence an isomorphism

φω : Detκ(∆⊗L
R κ) ∼=

⊗
i∈Z

Detκ(M i/ω)(−1)i

c) For each i fix an R-basis βi of DetR(M i). Let e ∈ Z be such that

bω := ωe
⊗
i∈Z

(βi)
(−1)i

is an R-basis of

DetR(∆) ⊆ DetQ(R)(∆⊗R Q(R)) ∼=
⊗
i∈Z

(DetQ(R)(M
i ⊗R Q(R)))(−1)i .

Then the isomorphism

DetR(∆)⊗R κ ∼= Detκ(∆⊗L
R κ)

φω−−→
⊗
i∈Z

Detκ(M i/ω)(−1)i

maps bω ⊗ 1 to ⊗i∈Zβ
(−1)i

i .

Assume the same setting as in Lemma 6.5.6 including the assumptions i) and ii). Moreover,
assume that ∆⊗L

R κ is concentrated in degrees 1 and 2. Then φω from Lemma 6.5.6 is induced
by the exact sequence of κ-vector spaces

0→M1/ω → H1(∆⊗L
R κ)

βω−→ H2(∆⊗L
R κ)→M2/ω → 0, (6.21)

where βω, a so called Bockstein map, is the composite

H1(∆⊗L
R κ)→ H2(∆)ω → H2(∆)/ω → H2(∆⊗L

R κ). (6.22)

Let N∞ be either a rank one extension in K ′∞ such that L is in N∞/k, or K ′∞ itself.
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Remark 6.5.7. Set Λ to be ΛN∞/k.

a) There is a ring homomorphism

Λ→ Ap ⊆ Ap =
∏

χ∈Ĝ/∼Qp

Qp(χ).

b) There are canonical isomorphisms of complexes

∆N∞/k ⊗
L
Λ Ap ∼= ∆(L).

c) There are canonical isomorphisms of determinants

DetΛ(∆N∞/k)⊗Λ Ap ∼= DetAp(∆(L)).

We assume from now on that p is inert in k.
Let K ′∞ be as above and let L∞ be a rank one extension in K ′∞, with k(f) ⊂ L∞ and

G := Gal(L∞/k) ∼= Gal(L∞/L0)×Gal(L0/K0)×Gal(K0/k),

as constructed below in Corollary 6.5.19.

Remark 6.5.8. We denote a topological generator of Gal(L∞/L0) by γ. We also sometimes
write p or simply p for pOk.

Let Λ := ΛL∞/k and by abuse of notation χ : Λ → Qp(χ). For this χ we set qχ := ker(χ),
Lχ := Lker(χ) and κχ = Qp(χ). Then we know that the following assertions hold:

a) qχ is a regular prime ideal of Λ.

b) Λqχ is a discrete valuation ring with field of fractions κχ.

Remark 6.5.9. Now with the proof of Lemma 5.11 in [BKS17] one can show that form := [L : L0]
the element γpm is a generator of Gal(L∞/L) and that ω := 1 − γpm is the uniformizer of Λqχ .
Analysing our construction below we then can see that for f := f0p

ν this m is equal to ν − 1 if
ν ≥ 1.

We set for the objects of Lemma 6.5.6: R := Λqχ and ∆ := (∆L∞/k)qχ and recall that ∆ is a
perfect complex.

Definition 6.5.10. For any prime divisor l | f0 we write Il ⊂ Gl ⊂ G for the inertia and
decomposition subgroups at l. Let l | f0 then Frl is a lift of the Frobenius of Gl/Il to Gl.

We view ψ ∈ ̂Gal(K0/k) as a character of G by inflation and we denote by d the (prime to
p)-part of the conductor of ψ. Note that if l - d, i.e. ψ |Il= 1, then Frl is a well-defined element
in Λqχ .

Moreover, we define for l | f0, fl as the residue degree at l of L/k.

Definition 6.5.11. For l | f0 the element cl,γ ∈ Zp is defined by

γcl,γ ·p
m

= Fr−fll .

For p we set

cp,γ := πγ

(
1

p
logp

(
χell(γ

pm)
))
∈ Zp,
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where πγ is the projection map corresponding to the generator γ via

Γ
χell−−→∼= 1 + pOkp

logp−−→∼= pOkp
1
p−→∼= Okp

πγ−→ Zp.

Definition 6.5.12. Let K be any finite abelian extension of k. For a place w | p in K/k and
u ∈ K we write uw = jw(u), where

jw : Qc → Qc
p.

Recall the following lemma which we will use for the datum: H = πét1 (Spec(OL,S)), Γ = Gal(L∞/L),
γ0 = γp

m and M = Zp(1).

Lemma 6.5.13. [Fla04, Lemma 5.9] Let Γ be a free Zp-module of rank one with generator γ0

and H → Γ be a surjection of profinite groups.
Denote by θ ∈ H1(H,Zp) the unique homomorphism factoring through Γ for which θ(γ0) = 1

and put Λ = Zp[[Γ]].
For any continuous Zp[[G]]-module M we have an exact triangle in the derived category of

Λ-modules

RΓ(H,M ⊗ Λ)
1−γ0−−−→ RΓ(H,M ⊗ Λ)→ RΓ(H,M ⊗ Λ)⊗L

Λ Zp ∼= RΓ(H,M).

Then the Bockstein map
βi : H i(H,M)→ H i+1(H,M)

arising from the triangle coincides with the cup product θ ∪ −.

Lemma 6.5.14. Let N be a finite extension of Qp. Then we have the following isomorphisms:

H1(N,Qp(1)) ∼= Ñ× ⊗Zp Qp and H2(N,Qp(1))
inv−−→∼= Qp,

where inv is the invariant map and Ñ× is the p-adic completion of N×.

Proof. Using the Kummer sequence we obtain

H1(N,µpn) ∼= N×/(N×)p
n

and by passing to the inverse limit therefore

H1(N,Zp(1)) ∼= Ñ×.

Now by tensoring with Qp we obtain the first result. Also from the Kummer sequence we obtain

H2(N,µpn) = ker(H2(N, (N c)×)
pn−→ H2(N, (N c)×))

and so by using the invariant map we obtain H2(N,µpn) ∼= 1
pnZ/Z. By taking the inverse limit

and tensoring with Qp our result follows.
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Let N again be a finite extension of Qp. Then we have for ξ ∈ H1(N,Qp(1)) and η ∈
Homcont(Gal(N c/N),Qp):

invN (ξ ∪ η) = η(recN (ξ)) (6.23)

Let K be a number field and S be a finite set of places of K. We denote by KS the maximal
extension of K which is unramified outside of S and GS := Gal(KS/K). Then we have that
GS = πét1 (Spec(OK,S)) and H1

ét(K,F) = H1(GS ,F) for an admissible sheaf F .

Proposition 6.5.15. cf. [Fla04, Lemma 5.8] Let S = Sram(L/k) ∪ S∞ ∪ Sp(k). The Bockstein
map βω is induced by the map

H1(∆(L))⊗Qp = O×L,S → XS ⊗Qp = H2(∆(L))⊗Qp

given by

u 7→

{
cl · ordw(u) for a place w | l | f0,
c−1
p,γ · πγ(1

p(logp(NLw/kp(uw)))) for a place w | p,

where we read the right hand side componentwise.

Proof. We adapt the arguments of Lemma 5.8 in [Fla04] to our situation.
We have an exact triangle

RΓ(Ok,S , T ∗p (1))→ ∆(L)→ YL,S∞ ⊗ Zp[−2]

and by passing to the inverse limit we obtain an exact triangle

RΓ(Ok,S , T ∗p (1)∞)→ ∆L∞/k → YL∞/k[−2]

which induces, after localization at qχ, the following commutative diagram of Bockstein maps:

H1(OL,S ,Zp(1))⊗Qp(χ) H1(∆(L))⊗Qp(χ) 0

H2(OL,S ,Zp(1))⊗Qp(χ) H2(∆(L))⊗Qp(χ) YS∞ ⊗Qp(χ)

β′ βω

So the image of βω has no components at the infinite places. Now by Lemma 6.5.13
the Bockstein map βω is induced by the cup product of θ over the field L as defined in Lemma 6.5.13.

The projection formula for cup products now shows that βω is induced by the cup product:

H1(OL,S ,Qp(1)) = O×L,S
θ∪−→ XSram∪{p} ⊗Qp = H2(OL,S ,Qp(1))

For any place w in L we now have a commutative diagram:

H1(OL,S ,Qp(1)) H2(OL,S ,Qp(1))

H1(OLw ,Qp(1)) H2(Lw,Qp(1))

θ∪

res(θ)∪

Recall that H2(Lw,Qp(1)) ∼= Qp by Lemma 6.5.14. We have L ⊂ L∞ ⊂ LS and we set
GS := Gal(LS/L). Let θ ∈ H1(GS ,Zp) which factors through Gal(L∞/L) (with generator γ0)
such that γ0 maps to 1.
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We begin by treating the case where l | f0 and w := wl is a place above l:
Let u ∈ L×w . We know that recw(u) = Fr

ordw(u)
w . Then it follows from (6.23) and the skew

commutativity of the cup product that

Resw(θ) ∪Resw(u) = −θ(recw(u)) = θ(Fr−1
w ) · ordw(u).

Now γclp
m

= Fr−fll = Fr−1
w with cl ∈ Zp and fl the residue degree of w in L/k, so we get

θ(Fr−1
w ) · ordw(u) = θ(Fr−fll ) · ordw(u) = cl · ordw(u).

The other case we are interested in is when w | p. Now θ = c−1
p,γ · πγ(1

p(logp(χell(·)))) and by
construction we have θ(γpm) = 1. Then it follows that

Resw(θ) ∪Resw(u) = −θ(recw(u)) = −c−1
p,γ · πγ

(
1

p
(logp(χell(recw(u))))

)
= −c−1

p,γ · πγ
(

1

p
(logp(χell(recp(NLw/kp(u)))))

)
= c−1

p,γ · πγ
(

1

p
(logp(NLw/kp(u)))

)
,

where we obtain the first equality with the same arguments as in the other case, the third equality
follows from the well-known properties of the reciprocity map and for the fourth equality recall
Remark 4.3.2.

Let N∞ be either a rank one extension in K ′∞ such that L is in N∞/k, or K ′∞ itself. Let α
be the isomorphism given by Remark 6.5.7:

α : DetΛ(∆N∞/k)⊗Ap ∼= DetAp(∆(L)) ⊂ DetAp(∆(L)⊗Qp).

Assume that we have LC(K ′∞/k, p). Then we know that α(LK′∞ ⊗ 1) is a Ap-generator of
DetAp(∆(L)). So what is left to show is that

Aϑp(Aϑ∞(L∗(AM, 0)−1)) = α(LK′∞ ⊗ 1).

Now to shorten the notation we set, for the moment, Λ := ΛK′∞/k. Furthermore, let
G := Gal(L/k) and let δ be the morphism such that the following diagram

DetQ(Λ)(∆
∞ ⊗Q(Λ))⊗Ap DetQ(Λ)(H

•(∆∞ ⊗Q(Λ)))⊗Ap

DetAp(∆(L)⊗Qp) DetAp((H
•(∆(L)⊗Qp))

α1

α2

δ

α3

commutes and the maps α1, α2, α3 as well as δ are isomorphisms. Furthermore, we know that
Ap =

∏
χ∈Ĝ/∼Qp

Qp(χ).

Definition 6.5.16. We define the isomorphism

φχ : DetQp(χ)(∆(L)⊗Ap Qp(χ)) ∼= Det−1
Qp(χ)(O

×
L ⊗Ap Qp(χ))⊗Qp(χ) DetQp(χ)(XL,S∞ ⊗Ap Qp(χ))

as induced by ϕ−1
1 , ϕ−1

2 and ϕ−1
3 from (6.5), (6.6) and (6.7). Moreover, we define the isomorphism

φ′χ : DetQp(χ)(∆(L)⊗Ap Qp(χ)) ∼= Det−1
Qp(χ)(O

×
L ⊗Ap Qp(χ))⊗Qp(χ) DetQp(χ)(XL,S∞ ⊗Ap Qp(χ))

as induced by ϕ−1
1 and ϕ−1

3 .
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We have that

DetAp(∆(L)⊗Qp) −→ DetAp(H
•(∆(L)⊗Qp))

−→
∏
χ

DetQp(χ)(H
•(∆(L)⊗Qp(χ)))

−→
∏
χ

Det−1
Qp(χ)(O

×
L ⊗Ap Qp(χ))⊗Qp(χ) DetQp(χ)(XL,S∞ ⊗Ap Qp(χ))

and with (6.20) and by abuse of notation we obtain:

Aϑ∞ : R[G] −→ Ξ(AM)# ⊗ R

−→

(∏
χ

Det−1
Q(χ)(O

×
L ⊗Q(χ))⊗DetQ(χ)(XL,S∞ ⊗Q(χ))

)
⊗ R

So because we know the rationality part of the eTNC by Remark 6.5.2 d) and the known
validity of Stark’s conjecture for abelian extensions of k we get

Aϑ∞(L∗(AM, 0)−1) ∈
∏
χ

Det−1
Q(χ)(O

×
L ⊗Q(χ))⊗DetQ(χ)(XL,S∞ ⊗Q(χ)).

Since we have already computed the χ-component of Aϑ∞(L∗(AM, 0)−1) explicitly in Propo-
sition 6.5.4 it is enough to show that, where we use from now on the reduced notation τ for the
embedding at the correct level,

φχ(δ(α(LK′
∞
⊗ 1))χ) =


(N (a)− χ(a)) · w(fχ) · [k(f) : k(fχ)] · eχψ−1χ ⊗ τ, fχ 6= (1),

(N (a)− χ(a)) · (1− χ(p)−1) · w(1) · [k(f) : k(fχ)] · eχψ−1χ ⊗ τ, fχ = (1), χ 6= 1,
−w(1)
hk

, χ = 1.

(6.24)

Now in order to be able to use the descent techniques used in [Fla04] and [Ble06] the idea is
now to descend in two steps:
Let χ and K ′∞ be as above. For each χ we construct below in Corollary 6.5.19 a rank one
extension L∞ in K ′∞ with k(f) ⊂ L∞ and we use then this extension for the descent to the
χ-component.

We set ΛL∞ := ΛL∞/k and ∆L∞ := ∆L∞/k. Now LC(L∞/k, p) asserts that there is an
identity of invertible ΛL∞-submodules

LL∞ · ΛL∞ = DetΛ (∆L∞)

of DetQ(Λ) (∆L∞ ⊗Q(Λ)). Formally, we have now the isomorphisms

∆K′∞ ⊗ Zp[G] ∼= ∆L∞ ⊗ Zp[G]

so it is enough to show that

φχ(δ(α(LL∞ ⊗ 1))χ) =


(N (a)− χ(a)) · w(fχ)[k(f) : k(fχ)] · ψ−1χ ⊗ eχτ, fχ 6= (1),

(N (a)− χ(a))(1− χ(p)−1) · w(1) · [k(f) : k(fχ)] · eχψ−1χ ⊗ τ, fχ = (1), χ 6= 1,
−w(1)
hk

, χ = 1.

(6.25)
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Summary of the strategy of the descent Now we can present the strategy for proving
(6.25), which is based on the strategy used in [Fla04] and [Ble06].

We again set Λ := ΛL∞/k, L := LL∞ and R := Λqχ . So we have to

A) Check the conditions for Lemma 6.5.6.

B) Compute M1 and M2 as defined in Lemma 6.5.6.

C) Find an R-basis β1 and β2 of DetR(M1) and of DetR(M2), respectively.

D) Compute β1 ∈ Detκ(M1/ω) and β2 ∈ Detκ(M2/ω), respectively.

E) Write L in Det(∆∞)qχ and express it in the form of

B · ωeβ−1
1 ⊗ β2

for an e ∈ Z, i.e. that ωeβ−1
1 ⊗ β2 is an R-basis of DetR(∆∞qχ).

F) Compute
A := φ′χ ◦ φ−1

ω (β
−1
1 ⊗ β2).

Now Lemma 6.5.6 gives us that

φω(B−1(L ⊗ 1)) = β
−1
1 ⊗ β2

and hence
φ′χ(L ⊗ 1) = B ·A.

So the last step is

G) Check if the second equality of the following holds:

φχ(δ(L ⊗ 1)) = E−1S ·B ·A =


(N (a)− χ(a)) · w(fχ)[k(f) : k(fχ)] · eχ(ψ−1χ ⊗ τ), fχ 6= (1),

(N (a)− χ(a)) · w1 · [k(f) : k(fχ)] · eχ(ψ−1χ ⊗ τ), fχ = (1), χ 6= 1,
−w(1)
hk

, χ = 1,

where ES are the Euler factors defined in (6.8).

In order to use this strategy efficiently we divide the problem into three cases according to
properties of χ if the other things are fixed.

Case I: χ|Dp
6= 1.

Case II: χ 6= 1 and χ|Dp
= 1.

Case III: χ is the trivial character, i.e. χ = 1.

6.5.4 Preparations for the descent

Recall that K ′∞ := k(fp∞) and f = f0p
ν with (p, f0) = 1. We fix an integral ideal a of k such that

(a, 6pf) = 1, but we suppress this a from the notation for an elliptic unit, e.g. we write ψ(1; f)
instead of ψ(1; f, a). Furthermore, we set L := k(f), G := Gal(L/k), Lχ := Lker(χ), L′ := k(fχ)

for χ from Ĝ/ ∼Qp . Without loss of generality we assume that L ⊃ K0.
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Lemma 6.5.17. For a given prime ideal q - f there is at most one rank one Zp-extension Z
in K ′∞ with Gal(Z/k) ∼= Gal(Z/K0) × Gal(K0/k) such that primes above q split completely in
Z/K0.

Proof. We recall from Proposition 1.9 iii) in [dS87, Ch. 2] that for a prime ideal Q above q in
K0 the order of the decomposition group of Q in Gal(K ′n/K0) is asymptotic to cpn for n large
and c being a constant.

Moreover, it is well-known that if a prime ideal Q in K0 is completely split in two different
Zp-extensions of K0 it is completely split in the compositum.

So assume now that Q was completely split in two different Zp-extensions as described above.
Then it would be completely split in the compositum, which is K ′∞, but this is a contradiction
to the fact we recalled at the beginning of the proof. So there can be at most one Zp-extension
of the given form.

Lemma 6.5.18. Fix a χ and therefore Lχ. There are infinitely many rank one extensions of k
which contain Lχ.

Proof. Let us choose two topological generators γ1 and γ2 of Γ′ := Gal(K ′∞/K0) and we set L′ :=
K0Lχ. By using the elementary divisor theorem we can get t1, t2 ∈ Zp such that Gal(K ′∞/L

′) =〈
γt11 , γ

t2
2

〉
. Now since Gal(Lχ/k) is cyclic, Gal(L′/K0) is cyclic, but this implies that w.l.o.g.

t1 = 1. So L′ = (K ′∞)H for H =
〈
γ1, γ

t2
2

〉
. We can also assume that t := t2 6= 1 because

otherwise Lχ is already contained in K0 and then it is obvious that there are infinitely many
rank one extension extensions of k which contain Lχ and are contained in K ′∞. Now since the
determinant of (

1 bt
0 1

)

for all b ∈ Zp \ {0} is 1, tuples (γ1γ
bt
2 , γ2) also generate Γ′ and each fixed field of

〈
γ1γ

bt
2

〉
⊂ H

is a rank one extension of k. So there are infinitely many of them containing Lχ and that are
contained in K ′∞.

Now combining Lemma 6.5.17 and Lemma 6.5.18 we get the following corollary:

Corollary 6.5.19. There are Zp-extensions K1,∞ of K0 contained in K ′∞ and containing Lχ for
which no q | f0 splits completely. Let γ1 be such that K1,∞ = (K ′∞)〈γ1〉 for a fixed K1,∞. Then

we can set L∞ := (K ′∞)

〈
γp
m

1

〉
, where m := ν − 1 from above. In particular, we have k(f) ⊂ L∞.

This can be illustrated as follows, where L0 := K2,m and the significance of the dotted line will
become clear later.
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K ′∞

L∞ k′∞

K1,∞ • K2,∞

k(f)

k1,∞ K1,m L0 k2,∞

K0 •

k(dp)

k

From the construction ofK1,∞ and L∞, using condition p - hk, we have a direct decomposition

Gal(L∞/k) ∼= Gal(L∞/L0)×Gal(L0/K0)×Gal(K0/k),

where Gal(L∞/L0) ∼= Zp and the n-th level of that extension is denoted by Ln.
Now for this L∞ we can set the following notation

S := Sram(L/k) ∪ S∞ ∪ Sp(k) Sr := Sram(L/k) \ {p}
Sp := Sp(k) Srp := Sram(L/k) ∪ Sp(k)

and for Z ∈ {Sr, S, Sp, Spr, ∅} :

U∞Z := UL∞,Z P∞Z := PL∞,Z

X∞Z := XL∞,Z Y∞Z := YL∞,Z

G := Gal(L∞/k) Λ := Zp[[G]]

Remark 6.5.20. a) If nothing else is specified we use the restriction as the transition maps
in the projective limit.

b) We want to caution the reader that our definition of Sp does not coincide with the definition
in the literature e.g. in [Ble06] or [Fla04].

Now let
Y∞Srp,β := lim←−

n

YSrp(Ln)⊗ Zp

with respect to the transition maps

YSrp(Ln+1)
βn+1/n−−−−→ YSrp(Ln)

induced by w 7→ fw|v · v, if w ∈ Srp(Ln+1) and v ∈ Srp(Ln) is the restriction of w and fw|v is the
residue degree. So we have an exact sequence of Λ-modules

0→ U∞ → U∞S → Y∞Srp,β → P∞ → P∞S → 0
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Let now q be a prime divisor of f0 and n0 ∈ N such that no further splitting of primes above
q in K1,∞/K1,n0 occurs. Such an n0 exists per construction in our K1,∞ so also in L∞ (see
Lemma 6.5.17). Then for m ≥ n ≥ n0, βm|n(w) is of the form pf(m,n)w|Ln with f(m,n) a
function which tends to infinity if m goes to infinity. So Y∞Sr,β = 0 and so we get an exact
sequence

0→ U∞ → U∞S → Y∞Sp,β → P∞ → P∞S → 0. (6.26)

Furthermore, one can get

0→ X∞Sr → X∞S → Y∞Sp ⊕ Y
∞
S∞ → 0. (6.27)

Remark 6.5.21. For the places above p and ∞, βn+1|n and transition maps induced by the
restriction coincide, so we get Y∞S∞ = Y∞S∞,β and Y∞Sp = Y∞Sp,β .

Definition 6.5.22. Let fχ be the conductor of the character χ. In particular, fχ | f. Recall that
we have

G := Gal(L∞/k) ∼= H × J × Γ,

where we have L0 = K2,m, and H := Gal(K0/k), J := Gal(L0/K0) as well as Γ := Gal(L∞/L0).

For ψ ∈ Ĥ we denote the conductor by fψ. Now we know that fψ has the form dp or d with
d | f0. So we can write fχ as dpν′ .

We have f = f0p
ν with ν > 0 and (p, f0) = 1. Furthermore we set ε(ψ) = 0 if ψ 6= 1 and ε(ψ) = 1

if ψ = 1 and we shorten the notation to ε.
We set

ηf0 := {NK′
m(n)

/Ln(ψ(1; f0p
m(n)))}n≥0,

ηd := {NK′
m(n)

/Ln(ψ(1; dpm(n)))}n≥0,

where in this definition ψ is the function defined in Definition 2.1.23 and m(n) is the smallest
natural number ` such that Ln ⊆ K ′`.

Lemma 6.5.23.

FittΛqχ
(X∞Sr,qχ) = T−ε

∏
l|f,l-d

(
1− Fr−1

l

)
Λqχ = FittΛqχ

(
ΛqχT

εηd/Λqχηf0
)
,

where the product goes over prime divisors l.

Proof. We adapt the argument of Lemma 5.5 in [Fla04] to our situation.
First of all, as in part c) of Lemma 6.5.26 we see that X∞Sr,qχ is torsion so the left side is well-
defined.
Since we have Corollary 6.5.19 we know that for l | f0, Dl has finite index in G and that Il ⊂ Dl

is finite. Moreover, we have a direct decomposition Dl = Il × 〈Frl〉. Indeed, Il ∩ 〈Frl〉 is trivial
because otherwise there would be a c ∈ Z such that Frcl ∈ Il, which would imply that Frl has
finite order and therefore |Dl| < ∞. This would be a contradiction to |G/Dl| < ∞. Next we
know that we have an isomorphism of Λ-modules

Y∞{v|l}
∼= IndGDl

Zp ∼= Zp[G/Dl]

and the short exact sequence of Λ-modules

0→ X∞Sr → Y∞Sr → Zp → 0.
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We localize the sequence now at qχ to get

0→ X∞Sr,qχ → Y∞Sr,qχ → Zp,qχ → 0

Now Zp,qχ is trivial if χ 6= 1. So in this case it is enough to compute the Fitting ideal of Y∞Sr,qχ .
If ψ |Il 6= 1, i.e. l | d, we get Y∞{w|l},qχ = 0. Otherwise, in the case ψ |Il= 1 we use the exact
sequence

0→ Λ
1−Fr−1

l−−−−−→ Λ→ Zp[G/ 〈Frl〉]→ 0.

But we also have Zp[G/ 〈Frl〉]qχ = Zp[G/Dl]qχ so we obtain

0→ Λqχ

1−Fr−1
l−−−−−→ Λqχ → Y∞{w|l},qχ → 0.

Therefore we know that FittΛqχ
(X∞{w|l},qχ) = (1 − Fr−1

l )Λqχ for χ |Il= 1 and χ 6= 1. For χ = 1
we obtain from the exact sequence of Λ-modules

0→ Λqχ
1−γ−−→ Λqχ → Zp,qχ → 0

the term T−1.
The second equality follows from the fact that Nk(f0p)/k(dp) is a unit in Λqχ and so we get

with the norm relations for elliptic units

Nk(f0p)/k(dp) · ηf0 =

∏
l|f,l-d

(
1− Fr−1

l

) ηd.

Let N∞ be a rank one Zp-extension in K ′∞ with Gal(N∞/k) ∼= Γ×H such that Γ ∼= Zp and
H a finite abelian group.

With the same proof as of Lemma 5.12 in [BKS17] or on p.104 in [Ble06] we obtain

Lemma 6.5.24. If Condition F(N∞/k, S) holds, then we have
(
PN∞/k,S

)
qχ

= 0.

6.5.5 Proof for Case I (no trivial zeroes case)

We assume now that we are in the situation where χ|Dp
6= 1.

Lemma 6.5.25. Assuming P∞S,qχ = 0 we obtain

a) H1(∆∞qχ) = (U∞S )qχ
∼= U∞qχ .

b) H2(∆∞qχ) = (X∞S )qχ .

Proof. We obtain from Proposition 6.3.1 c) that H1(∆∞qχ) = (U∞S )qχ . Moreover, from (6.26) and
Remark 6.5.21 we get the exact sequence

0→ U∞qχ → U∞S,qχ → Y∞Sp,qχ → P∞qχ → P∞S,qχ → 0.

Now with χ|Dp
6= 1 and Y∞Sp = Zp[G/Dp] we get that Y∞Sp ⊗ Λqχ = 0 and therefore assertion a).

Assertion b) follows directly from Proposition 6.3.1 and the assumption that P∞S,qχ = 0.
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Step A The following lemma is shown (in greater generality) in Lemma 5.12 in [BKS17]2.

Lemma 6.5.26. Assuming P∞S,qχ = 0 and LC(L∞/k, p), it holds that:

a) H1(∆∞qχ)tors = 0.

b) H2(∆∞qχ)tors = (X∞Srp)qχ .

c) ω ·H2(∆∞qχ)tors = 0.

In particular, the assumptions for using Lemma 6.5.6 are satisfied.

Proof. Part a) follows from Lemma 6.5.27 b), where we use LC(L∞/k, p) and P∞S,qχ = 0.
For part b), we get with Lemma 6.5.25, where we use P∞S,qχ = 0, that

H2(∆∞qχ) = (X∞S )qχ

. Because there is an isomorphism

X∞S ⊗Q(Λα) ∼= Y∞S∞ ⊗Q(Λα)

for Λα := Zp[im(α)][[T ]] with α := ψ × η1 ∈ Ĥ × J as defined in Definition 6.5.22 and the short
exact sequence

0→ X∞Srp → X∞S → Y∞S∞ → 0

we obtain H2(∆∞qχ)tors = (X∞Srp)qχ . For part c) we notice that ω ∼ 1 − γpn and γp
n ∈ Dl for

sufficiently large n and l | f0p. It follows that ω = 1− γpm annihilates X∞Srp .

Step B and C

Lemma 6.5.27. Assume Condition P∞S,qχ = 0 holds. Then we obtain that

a)
M2 = Y∞S∞,qχ with β2 = τ

b) and if we additionally assume that LC(L∞/k, p) holds, then we obtain

M1 = U∞qχ with β1 = ηd.

Proof. We prove assertion a) first: There is the short exact sequence of Λ-modules

0→ X∞Spr → X∞S → Y∞S∞ → 0.

By Lemma 6.5.26 b) and Lemma 6.5.25 we therefore get that

M2 = (Y∞S∞)qχ with β2 = τ.

Now we prove assertion b): We have that LC(L∞/k, p) holds, i.e.

ca · (η−1
f0
⊗ τ)Λ = DetΛ(∆L∞/k).

2We remind the reader that there is a shift in the definition of the complex in their work.



6.5 Descent for abelian extensions of i.q. fields in the inert case 133

Since qχ is a regular prime ideal of height one, we obtain with Lemma 6.1.4

ca · (η−1
f0
⊗ τ)Λqχ = Det−1

Λqχ
(H1(∆∞qχ))⊗DetΛqχ

(H2(∆∞qχ)).

Using Lemma 6.5.25, part a), the sequence in (6.27) and
(
Y∞Sp

)
qχ

= 0 (because χ|Dp
6= 1) we

obtain
ca ·DetΛqχ

(U∞qχ /Λqχηf0) = DetΛqχ
(X∞Sr,qχ).

Since U∞qχ has rank one, U∞qχ /Λqχηf0 is torsion and moreover, X∞Sr,qχ is torsion so we obtain

ca · FittΛqχ
(U∞qχ /Λqχηf0) = FittΛqχ

(X∞Sr,qχ).

Now Lemma 6.5.23 asserts that

FittΛqχ

(
ΛqχT

εηd/Λqχηf0
)

= T−ε
∏
l|f,l-d

(
1− Fr−1

l

)
Λqχ = FittΛqχ

(X∞Sr,qχ).

So with Lemma 6.5.23 we obtain
U∞qχ = caT

εηdΛqχ .

As on p. 104 in [Ble06], T ε = (1− γ)ε and ca are units in Λqχ . So we can choose as a Λqχ-basis
of U∞qχ the element ηd. Therefore, we get H1(∆∞qχ) = U∞S,qχ

∼= U∞qχ = ηdΛqχ , so β1 = ηd.

From here on until the end of this subsection we follow very closely the computations of
pp. 105-108 in [Ble06], but we nevertheless include them for the reader’s convenience.

Step D

Lemma 6.5.28. There is an embedding

ι : U∞qχ /ωU
∞
qχ → O

×
k(f),S ⊗Qp(χ),

u 7→ um ⊗ 1.

Proof. First we have that ωU∞qχ ⊂ ker(ι) because uγ
pm

n = un for un ∈ Ln with n ≤ m. Further-
more, U∞qχ is a free rank one Λqχ-module so it is isomorphic to Λqχ and therefore a homomorphism
from U∞qχ /ωU

∞
qχ can only be the zero map or injective. But there are obviously elements not in

the kernel.

Lemma 6.5.29. For

Tχ :=

{
(1− χ−1(p)) fχ 6= (1)

1 fχ = (1)

we have
β1 = Tχψχ ⊗ [k(f) : k(dpν

′
)]−1 and β2 = τ.
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Proof. Assume first that ν, ν ′ > 0 and recall that fχ = dpν
′ . Then we get

β1 = ψ(1, dpν)⊗ 1

= Nk(dpν)/k(dpν′ )(ψ(1, dpν))⊗ [k(dpν) : k(dpν
′
)]−1

= ψ(1; fχ)⊗ [k(dpν) : k(dpν
′
)]−1.

Then assume that ν > 0 and ν ′ = 0. So we have fχ = d.

β1 = ψ(1, dpν)⊗ 1

= Nk(dpν)/k(d)ψ(1, dpν)⊗ [k(dpν) : k(d)]−1

= (1− χ−1(p))ψ(1, d)⊗ [k(dpν) : k(d)]−1

= (1− χ−1(p))ψ(1, fχ)⊗ [k(dpν) : k(d)]−1.

Step E For l | f0 choose a place wl above l in k(f)/k. Let Sl be the set of places above l. Then
we obtain

YSl
⊗Qp(χ) =

{
0, χ|Dl

6= 1,

Qp(χ) · wl, χ|Dl
= 1.

We choose for each l | f0 with χ|Dl
= 1 an element xl ∈ L× such that

ordwl
(xl) 6= 0 and ordw(xl) = 0 for all w 6= wl,

Moreover, we set J := {l | f0 with χ|Dl
= 1}, xJ :=

∧
l∈J xl, wJ :=

∧
l∈J wl and

val : Qp(χ)xl → YSl
⊗Qp(χ) = Qp(χ) · wl.

and we obtain

{β1} ∪ {xl : l ∈ J} is a Qp(χ) -basis of H1(∆∞qχ ⊗Qp(χ))

{β2} ∪ {wl : l ∈ J} is a Qp(χ)-basis of H2(∆∞qχ ⊗Qp(χ))

We also get e = −|J | as on p. 107 in [Ble06].

Lemma 6.5.30. If we read L in (DetΛ(∆∞))qχ , we can write

L = ca · d′ ·
∏
l∈I

(1− Fr−1
l )−1

∏
l∈J

ω

1− Fr−1
l︸ ︷︷ ︸

B:=

·(ωeβ−1
1 ⊗ β2)

with I := {l | f0 such that l - d and χ|Dl
6= 1} and d′ := [k(f0p) : k(dp)].

Proof.

L = ca(η
−1
f0
⊗ τ)

= ca · [k(f0p) : k(dp)] · [Nk(f0p)/k(dp)]
−1(η−1

f0
⊗ τ)

= ca · [k(f0p) : k(dp)] ·
∏

l∈I∪J
(1− Fr−1

l )−1 · (η−1
d ⊗ τ)

= ca · [k(f0p) : k(dp)] ·
∏
l∈I
·(1− Fr−1

l )−1 ·
∏
l∈J

ω

1− Fr−1
l

· (ωeβ−1
1 ⊗ β2).
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Step F

Lemma 6.5.31. It holds that

φ′χ ◦ φ−1
ω (β

−1
1 ⊗ β2) =

∏
l∈J

cl · d · T−1
χ eχψ

−1
χ ⊗ τ =: A

with d := [k(dpν) : k(dpν
′
)].

Proof.

φ′χ ◦ φ−1
ω (β

−1
1 ⊗ β2) = φ′χ(β

−1 ∧ x−1
J ⊗ βω(xJ) ∧ β2)

=
∏
l∈J

cl,γ · φ′χ(β
−1
1 ∧ x−1

J ⊗ val(xJ) ∧ β2)

=
∏
l∈J

cl,γ · (β
−1
1 ⊗ β2)

=
∏
l∈J

cl,γ · [k(dpν) : k(dpν
′
)] · T−1

χ eχψ
−1
χ ⊗ τ,

where the first equality comes from (6.21), the second equality from Proposition 6.5.15 and the
last equality uses Lemma 6.5.29.

Step G

Lemma 6.5.32. The following two equalities hold:

a)
eχE−1

S =
∏
l∈J

f−1
l ·

∏
l∈I

(1− χ(Fr−1
l )),

b)

χ

(
ω

1− Fr−1
l

)
=

fl
cl,γ

for l ∈ J.

Proof. Part a) follows easily from the fact that for l ∈ Srp we have

El =
∑

χ|Dl
=1

fleχ +
∑

χ|Dl
6=1

(1− χ(Fr−1
l ))eχ and ES =

∏
l∈S
El,

whereas b) follow from the fact that χ|Dl
= 1 for l ∈ J and that

(1− Fr−1
l ) · (1 + . . .+ Fr−fl+1

l ) = 1− Fr−fll = 1− γcl,γpm .

Lemma 6.5.33. It holds that

eχE−1
S ·B ·A =

{
ca · w(fχ)[k(f) : k(fχ)] · eχ(ψ−1

χ ⊗ τ) fχ 6= (1),

ca · w(1) · [k(f) : k(1)] · Tχ · eχ(ψ−1
χ ⊗ τ) fχ = (1).
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Recall that by abuse of notation we denote by ca the elements N (a)− σa and N (a)− χ(a).
This notation is unfortunately similar to cl,γ and cp,γ , which one can see from Definition 6.5.11
is something completely different.

Proof. Now by combining Lemmas 6.5.32 a), 6.5.30 and 6.5.31 we get

eχE−1
S ·B ·A =

∏
l∈J

f−1
l

∏
l∈I

(1− χ(Fr−1
l ))

· ca · d′ ·
∏
l∈I

(1− χ(Fr−1
l ))−1

∏
l∈J

ω

1− Fr−1
l

·
∏
l∈J

cl,γ · d · T−1
χ eχψ

−1
χ ⊗ τ

With χ(p) = eχFrp = 0 because χ|Dp
6= 1 and Lemma 6.5.32 b) it remains to show that

d · d′ = w(fχ)[k(f) : k(fχ)]

but with the help of Theorem 3.1.9 in [Sch10] this is an easy computation.

6.5.6 Proof for Case II (trivial zeroes case)

We recall that we have fixed an odd prime p, let p be the prime ideal of k above p and let k be
an imaginary quadratic field. Also we have assumed that p is inert in k and p - hk. Let f be an
integral ideal of k with f = f0p

ν with (f0, p) = 1 and without loss of generality ν ≥ 1. Let χ be a
non-trivial character such that χ |Dp= 1. We denote by fχ the conductor of the character χ and
we have fχ | f by definition and in this case p - fχ, because χ|Dp

= 1.
We again follow very closely the computations of pp. 108-114 in [Ble06] and make the appro-

priate adaptations for the inert case if necessary.
For any subgroup B of G we define JB to be the kernel of the canonical map Zp[[G]]→ Zp[[G/B]].

Lemma 6.5.34. a) We have the isomorphism Y∞Sp,qχ
∼= Qp(χ).

b) It holds that (γ − 1)U∞S,qχ = U∞qχ .

Proof. For a) we have
Y∞Sp,qχ

∼= Zp[G/Dp]⊗Λ Λqχ
∼= Λqχ/JDpΛqχ .

Because we have χ|Dp
= 1 we get Γ ⊆ Dp, and therefore one has γpm − 1 ∼ γ − 1. It follows

that Y∞Sp,qχ
∼= Qp(χ). Part b) follows from the structure theorem for modules over principal ideal

rings.

Step A As in Case I we get the following lemma.

Lemma 6.5.35. Assuming P∞S,qχ = 0 we obtain

a) H1(∆∞qχ) = (U∞S )qχ and H2(∆∞qχ) = (X∞S )qχ .

b) H1(∆∞qχ)tors = 0.

c) H2(∆∞qχ)tors = (X∞Spr)qχ and ω ·H2(∆∞qχ)tors = 0.

In particular, the assumptions for using Lemma 6.5.6 are satisfied.
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Step B and C Let F be the decomposition field of k(d)/k at p. First of all we set some
notation H := Gal(K0/k), H1 := Gal(K0/k(dp)), H2 := Gal(K0/k(d)), H3 := Gal(K0/F ),
K
′′
n := k(dpn+1) and illustrate it in the following diagram of fields.

L0

K0 LH1
0

k(dp) LH2
0

k(d) LH3
0

F

k

Since F is the decomposition field of k(d)/k at p, we have k ⊆ F ⊂ k(d). We set F∞ := F ·k1,∞
and so F∞/F is also a Zp-extension with Galois group isomorphic to Γ. We denote by Fn an
intermediate level of this Zp-extension and recall that an extension Fn/F is now a cyclic extension
of degree pn.

Definition 6.5.36. For an admissible set of places S of k we set

U∞k(fχ),S′ := lim←−
n

O×
L
H1
n ,S′

⊗ Zp

for some finite set S′ of places of k which contains S.

Lemma 6.5.37. a) The following sequence is exact:

0→ U∞k(fχ),S

γ−1−−→ U∞k(fχ),S →
(
U∞k(fχ),S

)
Γ
→ 0.

b) The canonical map
ι :
(
U∞k(fχ),S

)
Γ
→ O×

L
H1
0 ,S
⊗ Zp is injective.

Proof. We can use exactly the same argument as in Lemma 5.9 in [Ble06]. The only thing we
have to think about whether we can show that

U∞k(fχ),S
∼= U∞k(fχ),S∞∪Sp .

There could be finite primes in S which are splitting infinitely. But if necessary we can choose,
as we have seen above, a Zp-extension in which this does not happen.

As in [Ble06] we choose an auxiliary prime ideal b of Ok such that

(b, f) = 1, w(b) = 1, χ(b) 6= 1,



138 6. Application to the eTNC for abelian extensions of i.q. fields

and so we can set

B′n := k(dbpn+1).

Using this ideal we can define a new element

η :=
{
N
B′n/L

H1
n

(
ψ(1; bdpn+1)

)}
n≥0

.

Lemma 6.5.38. The following two equalities hold:

a) ι(N
L
H1
0 /F

(η)) = N
L
H1
0 /F

(η0),

b) N
L
H1
0 /F

(η0) = 1.

Proof. With the proof of Lemma 5.9 in [Ble06] we see that ι maps an element to its zero-th
component. For b) we compute

N
L
H1
0 /F

(η0) = Nk(d)/F

(
N
L
H1
0 /k(d)

(N
B′0/L

H1
0

(ψ(1; bdp)))
)

= Nk(db)/F

(
ψ(1; db)1−σ(p)−1

)
= (1− σ|F (p)−1)Nk(db)/F (ψ(1; db)) = 1

where we have used that σ|F (p) is the identity because p splits completely in F , and the norm
relations.

Combining now Lemmas 6.5.37 and 6.5.38 we get the following lemma.

Lemma 6.5.39. There exists an element z∞ ∈ U∞k(fχ),S ⊗Qp such that

(γ − 1)z∞ =
1

[LH1
0 : F ]

N
L
H1
0 /F

(η).

Recall that we have ηnd := N
(K′n)H1/L

H1
n

(ψ(1; dpn+1)) so we get

N
L
H1
n /Fn

(ηn) = NB′n/Fn(ψ(1; bdpn+1)) = (1− Fr−1
b )N

L
H1
n /Fn

(ηnd ) (6.28)

Lemma 6.5.40. Assume LC(L∞/k, p) and P∞qχ = 0 holds. Then we obtain that

M1 = U∞S,qχ with β1 = z∞

and
M2 = X∞S∞,qχ with β2 = τ.

Proof. Similar as in Case I in Lemma 6.5.27 - assuming LC(L∞/k, p) and P∞S,qχ = 0 (which is
implied by P∞qχ = 0) - we can get that U∞qχ = Λqχηd. There is a slight modification necessary,
because now we do not have Y∞Sp,qχ = 0 in Case II and therefore we obtain the following exact
sequence by using only P∞qχ = 0:

0→ U∞qχ → U∞S,qχ → Y∞Sp,qχ → 0.

But the extra factor inH1(∆∞qχ) cancels out with a factor we obtain from the short exact sequence
(6.27). Now Lemma 6.5.34 and Lemma 6.5.39 gives us that U∞S,qχ = Λqχz

∞ so because we know
that H1(∆∞qχ) = U∞S,qχ the first assertion follows. The second assertion is proven exactly as in
Case I.
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Step D

Lemma 6.5.41. We have
β1 = zm and β2 = τ.

Proof. As in Case I in Lemma 6.5.28 we now again have the injective map

M1/ω → O×k(f),S ⊗Qp(χ)

u 7→ um ⊗ 1

and we recall that β1 is the image of β1 ∈M1/ω. The result for β2 is clear.

Step E

Construction of κ∞ Now we set

εn := NB′n/Fn(ψ(1; bdpn+1))

which is a norm-compatible system and therefore with Hilbert’s Theorem 90 there exists a
αn ∈ F×n /F× (because we have ε0 = 1 by Lemma 6.5.38 b)) such that

αγ−1
n = εn.

So we can define κn := NFn/F (αn) and κ∞ := {κn}∞n=0 ∈ lim←−n F
×/ (F×)

pn . Now by definition
of F the prime ideal p splits completely in F .
Now with Theorem 4.1.16 we obtain in the inert case

ordw(κ∞) = πγ(
1

p
logp(Nk(db)/F (ψ(1; db)))) (6.29)

for a place w of F above p, because multiplication by 1/p induces an isomorphism between pOkp
and Okp .

Lemma 6.5.42. We have the following two equalities:

a)
αn = N

L
H1
n /Fn

(zn) in F×n /F
×.

b)
κ∞ = {N

L
H1
0 /F

(z0)}∞n=0 in lim←−
n

F×/
(
F×
)pn

.

Proof. In order to prove assertion a) we only need to look at the defining equations of αn and
zn.
For b) we can compute

κn = NFn/F (αn) = NFn/F (N
L
H1
n /Fn

(zn)) = N
L
H1
0 /F

(N
L
H1
n /L

H1
0

(zn)) = N
L
H1
0 /F

(z0)

where we have used the diagram of fields above and a).

We collect some properties we are going to need in the following lemmas.
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Remark 6.5.43. a) Let L/K be an abelian extension of number fields, and p a prime ideal
of K and assume that there is only one prime ideal P above p. Then we have

f(P | p) · ordP(α) = ordp(NL/K(α)) for each α ∈ L.

b) Primes above p are totally ramified in k(dp)/k(d), LH1
0 /k(dp) as well as in LH1

m /LH1
0 .

c) Let L/K be an abelian extension of number fields and let P be a prime ideal in L over p
then we have

1

e(P | p)
ordP = ordp.

In order to facilitate the computation one should consider the following diagrams of fields.

k(f) v

k(d) w′

F w

k p

k(f)

•

k(d) k(f)Dp

F

k

Lemma 6.5.44. The following equality holds

πγ

(
1

p
logp(Nk(f)v/kp(Nk(db)/k(d)(ψ(1; bd))

)
= fp · ordv(NLH1

0 /k(d)
(z0)),

where fp is the residue degree f(v | p) of p in k(f)/k.

Proof. If we look at the right diagram above we obtain:

logp
(
Nk(f)v/kp(Nk(db)/k(d)(ψ(1; bd)))

)
=

|Dp|
[k(d) : F ]

logp
(
Nk(d)/F (Nk(db)/k(d)(ψ(1; bd)))

)
and then we compute the following

πγ

(
1

p
logp(Nk(f)v/kp(Nk(db)/k(d)(ψ(1; bd))))

)
=

|Dp|
[k(d) : F ]

πγ

(
1

p
logp

(
Nk(d)/F (Nk(db)/k(d)(ψ(1; bd)))

))
=

|Dp|
[k(d) : F ]

ordw(N
L

H1
0 /F

(z0))

=
|Dp|

[k(d) : F ]
f(w′ | w)ordw′(N

L
H1
0 /k(d)

(z0))

= |Dp|
1

e(v | w′)
ordv(NLH1

0 /k(d)
(z0))

= fp · ordv(NLH1
0 /k(d)

(z0)),
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where in the first equality we use the equality from directly above and the second equality
follows from (6.29) and Lemma 6.5.42. For the third equality we use that f(w′ | w) · ordw′(α) =
ordw(Nk(d)/F (α)) if there is only one place above w, which it is because F is the decomposition
field of k(d)/k at p. Moreover, ordw(α) = e(w′ | w) · ordw′(α) and e(w′ | w) = 1 because
p - d. The fourth equality holds because f(w′ | w) = [k(d) : F ] because e(w′ | w) = 1. Moreover,

1
e(v|w′)ordv = ordw′ . The fifth equality follows because |Dp| = e(v | p)·f(v | p) = e(v | w′)·f(v | p)

since p - d.

Lemma 6.5.45. In Λqχ we have

a) (γ − 1)β1 = (γ − 1)z∞ = 1

[L
H1
0 :F ]

N
L
H1
0 /F

(η).

b) ω
1−γ =

∑pm−1
i=0 γi =: T .

c) ωβ1 = −T (1− σ(b)−1)ηd.

d) e = −(|J |+ 1), with e from Lemma 6.5.6.

Proof. We get a) by combining Lemmas 6.5.39 and 6.5.40.
For b): Because of Remark 6.5.9 we have ω = 1− γpm and therefore

(1− γ) ·
pm−1∑
i=0

γi =

pm−1∑
i=0

γi −
pm−1∑
i=0

γi+1 = 1− γpm = ω.

For c) we compute:

ωβ1 = (1− γ)Tβ1

= −T 1

[LH1
0 : F ]

N
L
H1
0 /F

(η)

= −T · 1

[LH1
0 : F ]

· (1− σ(b)−1) ·N
L
H1
0 /F

(ηd)

= −T · (1− σ(b)−1) · ηd
where we have used a) and b). For d) we can use the proof of p. 107 in [Ble06].

We define I := {l | f0 with l - fχ} and I ′ := {l | f0 with l - fχ and χ|Dl 6=1}.
Lemma 6.5.46. If we read L in (DetΛ(∆∞))qχ we get

L = −T · ca · [L0 : LH1
0 ] ·

∏
l∈I′

(1− Fr−1
l )−1 ·

∏
l∈J

ω

1− Fr−1
l︸ ︷︷ ︸

B:=

ωeβ−1
1 ⊗ β2.

Proof.

L = ca · η−1
f0
⊗ τ = ca · [L0 : LH1

0 ] ·
(
Trk(f0p)/k(dp)ηf0

)−1 ⊗ τ

= ca · [L0 : LH1
0 ] ·

∏
l∈I

(1− Fr−1
l )−1η−1

d ⊗ τ

= −T · (1− σ(b)−1) · ca · [L0 : LH1
0 ] ·

∏
l∈I

(1− Fr−1
l )−1ω−1β−1

1 ⊗ β2

= −T · (1− σ(b)−1) · ca · [L0 : LH1
0 ] ·

∏
l∈I′

1

1− Fr−1
l

·
∏
l∈J

ω

1− Fr−1
l

ωeβ−1
1 ⊗ β2.
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Lemma 6.5.47. It holds that

βω(Nk(db)/k(d)ψ(1; bd))v = c−1
p,γ · fp · [LH1

m : k(d)]ordv(β1)

with βω from Proposition 6.5.15.

Proof.

βω(Nk(db)/k(d)ψ(1; bd))v = c−1
p,γ · fp · ordv(NLH1

0 /k(d)
(z0))

= c−1
p,γ · fp · [L

H1
0 : k(d)] · ordv(z0)

= c−1
p,γ · fp · [LH1

m : LH1
0 ] · [LH1

0 : k(d)] · ordv(zm)

= c−1
p,γ · fp · [LH1

m : k(d)] · ordv(β1).

The first equality follows from Proposition 6.5.15 and Lemma 6.5.44. For the second equality we
consider the diagram:

k(f) v

LH1
0 w′′

k(d) w′

k p

With Remark 6.5.43 c) we obtain

ordv(z0) = ordw′′(z0) · e(v | w′′) and ordv(NLH1
0 /k(d)

(z0)) = ordw′(NLH1
0 /k(d)

(z0)) · e(v | w′)

and from Remark 6.5.43 a) combined with b) we get

ordw′′(z0) = ordw′(NLH1
0 /k(d)

(z0)).

So since e(w′′ | w′) = [LH1
0 : k(d)] because of Remark 6.5.43 b) we obtain the second equality.

Using the fact that z0 = N
L
H1
m /L

H1
0

(zm) we can prove the third equality analogous to the second
equality. The last equality follows from Lemma 6.5.41.

Step F

Lemma 6.5.48. We have the following equality

φ′χ ◦ φ−1
ω (β

−1
1 ⊗ β2) = −c−1

p,γ ·
∏
l∈J

cl,γ · [LH1
m : k(d)] ·

(
Nk(db)/k(d)ψ(1; bd)

)−1 ⊗ τ =: A

with φ′χ from Definition 6.5.16.
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Proof. We compute

φ′χ ◦ φ−1
ω (β̄−1

1 ⊗ β̄2)

= φ′χ

(
β̄−1

1 ∧
(
Nk(db)/k(d)ψ(1; bd)

)−1 ∧ x−1
J ⊗ βω(xJ) ∧ βω(Nk(db)/k(d)ψ(1; bd)) ∧ β̄2

)
= −

∏
l∈J

cl,γ · c−1
p,γ · fp · [LH1

m : k(d)]
((
Nk(db)/k(d)ψ(1; bd)

)−1 ⊗ τ
)

where we get the first equality from (6.22) and the second equality from Lemma 6.5.47.

Step G

Lemma 6.5.49. i) For l ∈ J we have χ
(

ω
1−Fr−1

l

)
= fl

cl,γ
.

ii) It holds that χ(T ) = cp,γ .

Proof. For a) we can use the same proof as in Lemma 6.5.32 a). For b) we have

cp,γ = πγ(
1

p
(χell(γ

pm))) = χ

(
pm−1∑
i=0

γi

)
= χ(T ).

Lemma 6.5.50. We have

eχE−1
S ·B ·A = ca · [k(f) : k(d)] · eχ(ψ−1

χ ⊗ τ).

Proof. We put everything we have computed so far together (additionally to the lemmas devel-
oped for this case, we also use Lemma 6.5.32 from Case I) to obtain:

eχE−1
Sp
·B ·A =

∏
l∈J∪{p}

f−1
l · χ

(∏
l∈I′

(1− Fr−1
l

)

− T · (1− σ(b)−1) · ca · [L0 : LH1
0 ] ·

∏
l∈I′

1

1− Fr−1
l

·
∏
l∈J

ω

1− Fr−1
l

− c−1
p,γ ·

∏
l∈J

cl,γ · [LH1
m : k(d)] ·

(
Nk(db)/k(d)ψ(1; bd)

)−1 ⊗ τ.

We know from the norm relations and because we have by construction that w(b) = w(f) = 1:

(
Nk(bd)/k(d)(ψ(1; bd))

)−1
=

(
1

w(d)
Nk(bd)/k(d)(ψ(1; bd)w(d))

)−1

=

(1− σ(b)−1)−1w(d)ψ−1
χ if d 6= 1,

w(1)
(
δ(Ok,a−1)
δ(b,a−1b)

)−1
if d = 1,

and one has the relation(
δ(Ok, a−1)

δ(b, a−1b)

)1−σ(p)−1

=

(
δ(Ok, a−1)

δ(p, a−1p)

)1−σ(b)−1

.
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Using Lemma 6.5.49 we know that

eχE−1
S ·B ·A =

{
w(d)[LH1

m : k(d)] · [L0 : LH1
0 ] · ψ−1

χ · ⊗τ if d 6= (1),

w(1)[LH1
m : k(1)] · [L0 : LH1

0 ] · ψ−1
χ ⊗ τ if d = (1).

So it remains to show that

[k(f) : k(d)] = [LH1
m : k(d)] · [L0 : LH1

0 ].

We already know that [k(f) : k(d)] = [k(dpν) : k(d)] · [K0 : k(dp)] and that [L0 : LH1
0 ] = [K0 :

k(dp)] so the problem is reduced to showing that

[k(dpν) : k(d)] = [LH1
m : k(d)].

But recall that H1 := Gal(k(f0p)/k(dp)) ∼= Gal(k(f0p
m)/k(dpm)) and that by construction we

have Lm = k(f), with m > 1, so we can establish the wanted equality.

6.5.7 Proof for Case III (trivial character case)

Now we want to treat the case of the trivial character χ = 1 of Gal(k(f)/k). We again assume that
p | f so that we have f = f0p

ν with ν ≥ 1. Now d = 1() and we have that H1(∆∞qχ) = U∞qχ = Λqχη1

and H2(∆∞qχ) = X∞S . We obtain that

M1 = U∞qχ with β1 = η1 and M2 = Y∞S∞ with β2 = τ.

A lift of τ|k(f) ∈M1/ω is given by τ ′ := τ − vp for a fixed prime ideal vp above p.
Now β1 = ψ(1; pν)⊗1 ∈ O×k(f),S⊗Qp. Furthermore, we can compute with Theorem 2.4 in [Ble06]
that:

val(β1) =
N (a)− 1

Φ(pν)

[k(f) : k]

fp
vp ∈ YSrp

and we have a short exact sequence

0→ XS∞ ⊗Qp → XS ⊗Qp → YSrp ⊗Qp → 0

with an explicit splitting given by

v 7→ v − 1

[k(f) : k]
Trk(f)/kτ|k(f)

and we obtain val(β1) = −N (a)−1
Φ(pν)

[k(f):k]
fp

τ ′. So on the one hand we can compute

(φ′χ ◦ φ−1
ω )(β

−1
1 ⊗ β2) = φ′χ(β

−1
1 ∧ x−1

J ⊗ βω(xJ) ∧ τ ′)

= −
∏
l|f0

cl ·
Φ(pν)

N (a)− 1

fp
[k(f) : k]

· φ′χ(β
−1
1 ∧ x−1

J ⊗ val(xJ) ∧ val(β1))

= −
∏
l|f0

cl ·
Φ(pν)

N (a)− 1

fp
[k(f) : k]

and on the other hand we get as in the previous two cases

L ⊗ 1 = ca · η−1
f0
⊗ τ

= ca · [L0 : LH1
0 ] ·

∏
l|f0

(1− Fr−1
l )−1η−1

1 ⊗ τ

= ca · [L0 : LH1
0 ] ·

∏
l|f0

ω

1− Fr−1
l

ωeβ−1
1 ⊗ β2.



6.5 Descent for abelian extensions of i.q. fields in the inert case 145

For the Euler factor we obtain in this case E−1
S =

∏
l|f0p f

−1
l . So we can conclude that

E−1
S · φ

′
χ(L ⊗ 1) = −

∏
l|f0p

f−1
l ca · [L0 : LH1

0 ] ·
∏
l|f0

ω

1− Fr−1
l

∏
l|f0

cl
Φ(pν)

N (a)− 1

fp
[k(f) : k]

= − [L0 : LH1
0 ] · Φ(pν)

[k(f) : k]

= − hk
w(1)

.

So we get the equality from Step G also for this case and this finishes the proof of Theorem 6.5.1.
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