
Neural Sequence-to-Sequence
Models for Low-Resource

Morphology
Katharina Kann

München 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/226762798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Neural Sequence-to-Sequence
Models for Low-Resource

Morphology

Katharina Kann

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Katharina Kann

München, den 15. Mai 2018

Erstgutachter: Prof. Hinrich Schütze
Zweitgutachter: Prof. David Yarowsky
Drittgutachter: Prof. Ondřej Bojar

Tag der mündlichen Prüfung: 27. März 2019

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. 5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig
ohne unerlaubte Beihilfe angefertigt wurde.

New York, den 15.05.2018

Katharina Kann

5

6

Abstract

The vocabularies of morphologically rich languages, e.g., German or Spanish, are
much larger than those of morphologically poor languages, e.g., Chinese. This is
due to processes like composition, inflection and derivation. A result of this is an
increased number of rare words, which motivates the development of models that
can deal with rare words by either analyzing or generating them.

This thesis presents approaches to generate morphological inflections or an-
alyze word forms through canonical segmentation. We employ state-of-the art
deep learning models, namely encoder-decoder gated recurrent neural networks
with attention. For analysis, we simply encode the input word and output the fi-
nal segments as one word with segmentation markers. For generation, instead of
only encoding the source form, we further encode additional information about
the source and target forms: their morphological tags. This enables us to train one
single model for all combinations of source and target tags. Our approach can thus
be seen as multi-task learning by considering each such combination a separate
task. It enables parameter sharing and strongly boosts the overall performance of
our models.

In theory, our methods are language independent. However, due to neural
networks requiring large amounts of training data, limited availability of suitable
training examples is a big challenge. In this work, we focus particularly on low-
resource languages. In order to make up for missing training data, we experiment
with transfer learning to leverage knowledge from related languages. We show
that similar languages can improve performance of morphological generation sys-
tems in low-resource settings. Further, we investigate semi-supervised training,
making use of large unlabeled corpora.

Finally, we focus on the fact that in morphologically rich languages paradigms
usually consist of more than one form and present solutions for such multi-source
settings. We show that both our proposed approaches — a model accepting multi-
source input and a fine-tuning approach which is related to domain adaptation —
improve generation performance.

7

8

Zusammenfassung

Das Vokabular morphologisch reicher Sprachen wie Deutsch oder Spanisch ist
um einige Ordnungen größer als das morphologisch armer Sprachen wie Chine-
sisch. Das ist Prozessen wie Komposition, Flexion und Derivation geschuldet.
Das Ergebnis ist eine große Menge seltener Wörter, was die Entwicklung von
Modellen, die mit diesen umgehen können, indem sie sie entweder analysieren
oder generieren, motiviert.

Diese Doktorarbeit präsentiert Methoden zum Generieren von morphologis-
chen Flexionen oder zur Analyse von Wortformen durch kanonische Segmen-
tierung. Dafür verwenden wir moderne Deep Learning-Modelle, nämlich eine
neuronale Architektur, die ”encoder-decoder gated recurrent neural network” genannt
wird und über einen ”attention”-Mechanismus verfügt. Zum Analysieren kodieren
wir einfach das Eingabewort und geben alle Segmente als ein Wort mit Markierun-
gen der Segmentgrenzen aus. Zum Generieren kodieren wir nicht nur die Eingabeform
sondern noch zusätzliche Informationen über die Eingabe- und Ausgabeform: ihre
morphologischen Tags. Das macht es uns möglich, ein einziges Modell für alle
Kombinationen aus Quell- und Zieltag zu trainieren. Unser Lösungsansatz kann
daher als ”multi-task learning” gesehen werden, wenn man jede solche Kombina-
tion als einen eigenen Task ansieht. Das macht eine gemeinsame Verwendung der
Parameter möglich und verbessert die Gesamtperformanz unserer Modelle stark.

Theoretisch sind unsere Methoden sprachunabhängig. Weil neuronale Netze
allerdings große Mengen Trainingsdaten benötigen, ist die begrenzte Verfügbarkeit
passender Trainingsbeispiele eine große Herausforderung. In dieser Arbeit konzen-
trieren wir uns speziell auf Sprachen mit begrenzten Ressourcen. Um fehlende
Trainingsdaten auszugleichen, experimentieren wir mit ”transfer learning”, um
Daten verwandter Sprachen zu verwenden. Wir zeigen, dass ähnliche Sprachen
im Fall begrenzter Ressourcen die Performanz der Modelle für morphologische
Generierung verbessern können. Außerdem untersuchen wir ”semi-supervised
training”, um große, nicht annotierte Korpora zu verwenden.

Schließlich konzentrieren wir uns auf die Tatsache, dass Paradigmen in mor-
phologisch reichen Sprachen normalerweise aus mehr als einer Form bestehen und
presentieren Lösungen for solche ”multi-source”-Settings. Wir zeigen, dass un-

9

sere beiden vorgeschlagenen Ansätze, ein Modell, dass mehrere Eingaben akzep-
tiert und ein ”fine-tuning” Ansatz, der ”domain adaptation” ähnelt, die Performanz
der Generierung verbessern.

10

Acknowledgments

Writing this dissertation was a hard but beautiful process during which I learned
about natural language processing and machine learning, the world and its inhab-
itants, as well as myself. It would by no means have been possible without the
support and guidance of a variety of people along the way, and I would like to
explicitly mention the most important ones here.

First of all, I would like to thank my advisor Hinrich Schütze for the huge
amount of time and all the advice he gave me. He taught me how to conduct
interesting research, and shielded me and my fellow PhD students from as much
non-research related work as possible. I am grateful that he gave me the opportu-
nity to leave Munich for a total of three internships during the time of my PhD.

Second, I owe a lot to my amazing colleagues and friends at CIS, who I miss
every day at 12:00 and 15:00: Anne Friedrich, Ben Roth, Heike Adel, Matthias
Huck, Sascha Rothe, Sebastian Ebert, Thang Vu, Wenpeng Yin, and Yadollah
Yaghoobzadeh. I promised Heike a tiny PhD hat in case I finished my thesis,
so I drew her one here. I will always be grateful for her infinite support, both
personally and academically.

Third, I am thankful to my colleagues and friends at Google, most importantly
my hosts Adnan Ozturel, Katja Filippova, Ralf Perpeet, and Sascha Rothe, as well
as Manu Orsini and Paulina Grnarova.

Finally, I owe all success I have ever achieved to my family and those friends
who feel like family: Monika Pfeiffer-Kann, Peter Kann, Philipp Kann, Alexandra
Breiner, Anne Strässer, Diego Oller Alcay, Julian Kling, Michael Kirsche, Patsch
Renninger, Raphaela Stork, Robin Zenz, and Tomasz Kuswik. You are my life,
and this dissertation is dedicated to you.

For Heike.

11

Contents

Publications and Declaration of Co-Authorship 17

1 Introduction 21
1.1 About Morphology . 21
1.2 Morphological Tasks . 23

1.2.1 The Importance of Handling Morphology 23
1.2.2 Morphological Generation 24
1.2.3 Morphological Analysis 27

1.3 Neural Networks . 27
1.3.1 Perceptrons . 28
1.3.2 Recurrent Neural Networks 29
1.3.3 Encoder-Decoder Recurrent Neural Networks 32
1.3.4 Attention Mechanism . 33

1.4 Related Work . 35
1.4.1 Morphology . 35
1.4.2 Sequence-to-Sequence Models in NLP 38

1.5 Proposed Approaches . 39

2 Single-Model Encoder-Decoder with Explicit Morphological Rep-
resentation for Reinflection 43
2.1 Introduction . 44
2.2 Model Description . 45
2.3 Experiments . 46
2.4 Results . 47
2.5 Analysis . 47
2.6 Related Work . 48
2.7 Conclusion and Future Work . 48

3 MED: The LMU System for the SIGMORPHON 2016 Shared Task
on Morphological Reinflection 51
3.1 Introduction . 52
3.2 System description . 53

12

CONTENTS

3.2.1 Neural network model 53
3.2.2 Input and output format 54

3.3 Data and training . 54
3.3.1 Training data enhancement 54
3.3.2 Description of the final training data 55
3.3.3 Training . 55

3.4 Results on the Shared Task test data 56
3.5 System Analysis . 57

3.5.1 Analysis 1: Number of hidden units in encoder and decoder 57
3.5.2 Analysis 2: Size of the embeddings 57
3.5.3 Analysis 3: Initialization 58
3.5.4 Analysis 4: One embedding per tag vs. one embedding

per tag combination . 58
3.5.5 Analysis 5: The order of tags 58

3.6 Related Work . 59
3.7 Conclusion . 59

4 One-Shot Neural Cross-Lingual Transfer for Paradigm Completion 61
4.1 Introduction . 62
4.2 Inflectional Morphology and Paradigm Completion 63

4.2.1 Transferring Inflectional Morphology 63
4.2.2 Formalization of the Task 63

4.3 Cross-Lingual Transfer as Multi-Task Learning 64
4.3.1 Encoder-Decoder RNN 64
4.3.2 Input Format . 64

4.4 Languages and Language Families 65
4.5 Experiments . 66

4.5.1 Exp. 1: Transfer Learning for Paradigm Completion . . . 66
4.5.2 Exp. 2: Multiple Source Languages 68
4.5.3 Exp. 3: Zero-Shot/One-Shot Transfer 68
4.5.4 Exp. 4: True Transfer vs. Other Effects 69

4.6 Related Work . 69
4.7 Conclusion . 70
4.8 Future Work . 70

5 Unlabeled Data for Morphological Generation With Character-Based
Sequence-to-Sequence Models 73
5.1 Introduction . 74
5.2 Model Description . 75
5.3 Experiments . 75
5.4 Analyses . 76

13

CONTENTS

5.4.1 Amount of Unlabeled Data 76
5.4.2 Autoencoding of Random Strings 77

5.5 Related Work . 77
5.6 Conclusion . 78

6 Neural Multi-Source Morphological Reinflection 81
6.1 Introduction . 82
6.2 The Task: Multi-Source Reinflection 83

6.2.1 Motivating Examples . 83
6.2.2 Principle Parts . 84

6.3 Model Description . 85
6.3.1 Input and Output Format 85
6.3.2 Multi-Source Encoder-Decoder 85

6.4 Multi-Source Reinflection Experiment 85
6.4.1 Experimental Settings . 85
6.4.2 Results . 87
6.4.3 Comparison of Different Architectures 88
6.4.4 Learning Curves . 88
6.4.5 Attention Visualization 88

6.5 Related Work . 89
6.6 Conclusion . 89
6.7 Future Work . 90

7 The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task
on Universal Morphological Reinflection 93
7.1 Introduction . 94
7.2 Morphological Reinflection . 95
7.3 Preprocessing Methods . 95
7.4 Training Data Augmentation Methods 95
7.5 System Architecture . 96

7.5.1 MED . 96
7.5.2 Baseline System . 96

7.6 Choice of Important Sources . 97
7.7 Fine-Tuning for Multi-Source Input 97
7.8 Experiments . 98

7.8.1 Systems . 98
7.8.2 MED Hyperparameters 99
7.8.3 Data . 100
7.8.4 Results . 100
7.8.5 Official Shared Task Evaluation 100

7.9 Remaining Challenges . 100

14

CONTENTS

7.10 Conclusion . 102

8 Neural Morphological Analysis: Encoding-Decoding Canonical Seg-
ments 103
8.1 Introduction . 104
8.2 Neural Canonical Segmentation 104

8.2.1 Neural Encoder-Decoder 105
8.2.2 Neural Reranker . 105

8.3 Related Work . 106
8.4 Experiments . 106

8.4.1 Languages . 106
8.4.2 Corpora . 106
8.4.3 Training . 107

8.5 Results . 107
8.6 Conclusion and Future Work . 108

Bibliography 111

15

16

Publications and Declaration of
Co-Authorship

Chapter 2

Chapter 2 corresponds to the following publication:

Katharina Kann and Hinrich Schütze; Single-Model Encoder-Decoder
with Explicit Morphological Representation for Reinflection; Pro-
ceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Berlin, Germany, August 2016), pages 555–560.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 3

Chapter 3 corresponds to the following publication:

Katharina Kann and Hinrich Schütze; MED: The LMU System for
the SIGMORPHON 2016 Shared Task on Morphological Rein-
flection; Proceedings of the 14th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and Morphology (Berlin,
Germany, August 2016), pages 62–70.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

There is a large overlap between the SIGMORPHON workshop paper and the
ACL 2016 short paper. I include both papers in this dissertation for the following
reasons. ACL is the leading conference in our field, so that acceptance at ACL is

17

an indication of the quality of the work. The ACL paper also contains a detailed
description of POET, an edit-tree-based correction method for morphological re-
inflection systems that is essentially orthogonal to encoder-decoder methods. The
SIGMORPHON paper documents my participation in the SIGMORPHON shared
task. My system was the winner of the shared task, which in natural language
processing is viewed as an important validation of the underlying approach. The
SIGMORPHON paper contains more experimental results and more analysis than
the ACL paper.

Chapter 4

Chapter 4 corresponds to the following publication:

Katharina Kann, Ryan Cotterell and Hinrich Schütze; One-Shot Neu-
ral Cross-Lingual Transfer for Paradigm Completion; Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics (Vancouver, Canada, August 2017), pages 1993–2003.

Ryan Cotterell and I came up together with the research question addressed in
this work. The data used in the experiments was provided by Ryan Cotterell. I
also regularly discussed this work with my coauthors. Apart from these explicitly
declared exceptions, I conceived of the original research contributions and per-
formed implementation and evaluation. I wrote the initial draft of the article and
did most of the subsequent corrections. My coauthors assisted me in improving
the draft.

Chapter 5

Chapter 5 corresponds to the following publication:

Katharina Kann and Hinrich Schütze; Unlabeled Data for Morpho-
logical Generation With Character-Based Sequence-to-Sequence
Models; Proceedings of the 1st Workshop on Subword and Charac-
ter Level Models in NLP (Copenhagen, Denmark, September 2017),
pages 76–81.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

18

Chapter 6

Chapter 6 corresponds to the following publication:

Katharina Kann, Ryan Cotterell and Hinrich Schütze; Neural Multi-
Source Morphological Reinflection; Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational
Linguistics (Valencia, Spain, April 2017), pages 514–524.

The research question addressed in this work was suggested by Ryan Cotterell.
The data used in the experiments was provided by Ryan Cotterell. I also regu-
larly discussed this work with my coauthors. Apart from these explicitly declared
exceptions, I conceived of the original research contributions and performed im-
plementation and evaluation. I wrote the initial draft of the article and did most of
the subsequent corrections. My coauthors assisted me in improving the draft.

Chapter 7

Chapter 7 corresponds to the following publication:

Katharina Kann and Hinrich Schütze; The LMU System for the
CoNLL-SIGMORPHON 2017 Shared Task on Universal Mor-
phological Reinflection; Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphological Reinflection (Vancou-
ver, Canada, August 2017), pages 40–48.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 8

Chapter 8 corresponds to the following publication:

Katharina Kann, Ryan Cotterell and Hinrich Schütze; Neural Mor-
phological Analysis: Encoding-Decoding Canonical Segments; Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing (Austin, USA, November 2016), pages 961–
967.

The research question addressed in this work was suggested by Ryan Cotterell.
The data used in the experiments was provided by Ryan Cotterell. Further, Ryan

19

Cotterell did the original implementation of the reranker. I also regularly dis-
cussed this work with my coauthors. Apart from these explicitly declared excep-
tions, I conceived of the original research contributions and performed implemen-
tation and evaluation. I wrote the initial draft of the article and did most of the
subsequent corrections. My coauthors assisted me in improving the draft.

New York, den 15.05.2018

Katharina Kann

20

Chapter 1

Introduction

1.1 About Morphology

Within the broader area of natural language processing (NLP), morphology is the
study of the internal structure of words, or, more specifically, systematic covari-
ation in the form and meaning of words. The covariations of interest typically
occur systematically in groups of words in a language.

Traditionally, a distinction is made between inflectional morphology and deriva-
tional morphology: Inflectional morphology is concerned with changes to a
word’s surface form in order to express grammatical properties such as case, gen-
der, tense, etc. The base form or dictionary form of a word is called its lemma,
and other forms of a lemma are referred to as word forms or inflected forms. The
set of all inflected forms of a lemma is called its paradigm. The English inflected
form rains, for example, contains the information that the subject of the lemma
rain is 3rd person singular, e.g., it, and that the action occurs in the present. Those
transformations of surface forms comply with the syntactic function of a word
and correspond usually to rather small changes of a word’s semantics. In partic-
ular, the part of speech remains unchanged. The subfield of morphology that is
concerned with the relationship with syntax is called morphosyntax.

In contrast to inflectional morphology, derivational morphology covers trans-
formations that mostly convey a larger change in meaning, though the original and
the derived form are still semantically related. An example is the noun rain and
its derived adjective rainy. Derivation is a way of word formation, because it pro-
duces new lemmas, while inflection generates new forms of an existing lemma.
However, the distinction between inflection and derivation is not always well de-
fined.

One big difference between derivational and inflectional morphology is that
whenever a certain inflected form exists for one lemma, chances are high that a

21

1. Introduction

parallel form can be found in the paradigm of most other lemmas. However, this is
not the case for derivation: While rainy is a common English word, computery is
not a valid derivation of computer. Derivational morphology is, thus, considered
harder to master than inflectional morphology.

Another type of morphological word formation is compounding. Compound-
ing is the process of combining two independent words into one new word, thus
fusing the original meanings. The resulting word’s part of speech is not required
to be the same as the part of speech of the original words. Neither do the two fused
words necessarily have to belong to the same part of speech. English examples
are greenhorn for a combination of an adjective and a noun or dreamcatcher for a
compound formed by two nouns.

This thesis is devoted to the computational treatment of morphological phe-
nomena in natural language. With a main focus on inflectional morphology, we
aim at finding answers to several questions of different granularity: How can
words be split up into their smallest meaning bearing units, the morphemes? How
can new surface forms be generated given the meaning they should convey and
how do proposed approaches generalize for a variety of languages? And, finally,
how are word forms organized into structured classes within their inflectional fam-
ilies and how can we make use of that knowledge to generate inflections?

Inspired by recent advances in the deep learning sub-field of machine learn-
ing, we present several neural network-based approaches for morphological gen-
eration and analysis, which obtain new state-of-the-art results on multiple tasks
addressing above questions. However, neural networks are known for requiring
large amounts of training data, while, in contrast, for many morphologically rich
languages only few or little morphologically annotated resources are available.
This makes the development of methods for handling of morphology challeng-
ing, and, subsequently, reduces system performance for many downstream NLP
tasks. In order to help overcome this problem which many morphologically rich
languages are facing, a big focus of this thesis is on how to make state-of-the-art
neural models applicable in low-resource settings.

This introduction covers the background needed to understand both the tasks
which are the focus of this thesis as well as the machine learning models which
are used in the work described in the following chapters. It is structured as fol-
lows. We first introduce the tasks addressed in this work: (i) the generation tasks
of morphological inflection, morphological reinflection and paradigm completion;
as well as (ii) canonical segmentation, an analysis task. We then explain the neu-
ral network architectures that are used in the main part of this thesis: perceptrons,
recurrent neural networks (RNNs) and recurrent neural sequence-to-sequence ar-
chitectures. When the reader is familiar with the problems we are intending to
solve, as well as the architectures we use, we present the most important previ-
ous approaches for both categories of tasks. Finally, we summarize the core ideas

22

1.2 Morphological Tasks

presented in subsequent chapters of this work.

1.2 Morphological Tasks

1.2.1 The Importance of Handling Morphology
Morphologically rich languages like German, Navajo or Arabic make extensive
use of inflection. This means they modify the surface form of a word in order to
express grammatical properties like tense or mood of verbs or number or gender
of nouns. Many languages realize those modifications through affixiation: they
combine different prefixes or suffixes with the stem of a word. However, this
is not a general rule, e.g., templatic languages such as Arabic or Maltese apply
specific patterns to a word’s root instead. In the case of Arabic, the root of a word
usually consists of 3 consonants (Sakakini et al., 2017).

Paradigm sizes differ between languages, cf. Table 1.1 for an example of a
German noun and Table 1.2 for an example of a Slovak noun. As can be seen,
the Slovak nominal paradigm consists of 12 forms, while the German nominal
paradigm only covers 8 forms. Additionally, the sizes of paradigms of differ-
ent parts of speech of one single language usually differ as well: Spanish verbal
paradigms are relatively big, while Spanish nominal paradigms only consist of
two forms.

SG PL
NOM Schneemann Schneemänner
GEN Schneemannes Schneemänner
DAT Schneemann Schneemännern
ACC Schneemann Schneemänner

Table 1.1 – The complete paradigm of the German masculine noun Schnee-
mann (Engl.: snowman).

Those transformations of surface forms in morphologically rich languages
yield a very large vocabulary. Here, we only show a German and a Slovak nominal
paradigm, which are both relatively small. However, the paradigm of a Russian
verb, for example, consists of more than 30 different members (Wade, 2010). Pol-
ish is even more extreme, since each Polish verb can have about 100 inflected
forms (Janecki, 2000).

Thus, inflection as well as other morphological processes result in a drasti-
cally increased amount of potentially rare surface forms, which masks important
generalizations. Accordingly, morphologically rich languages pose a challenge to
computational approaches due to sparsity; a challenge which can be simplified by

23

1. Introduction

SG PL
NOM syn synovia
GEN syna synov
DAT synovi synom
ACC syna synov
INS synom synmi
ESS synovi synoch

Table 1.2 – The complete paradigm of the Slovak noun syn (Engl.: son).

special analysis or generation of surface forms. Therefore, morphological treat-
ment can yield an improved performance in many downstream tasks, e.g., speech
recognition (Hirsimäki et al., 2006), machine translation (De Gispert et al., 2009;
Green and DeNero, 2012) or word representation learning (Avraham and Gold-
berg, 2017). In particular, some form of morphological generation is trivially
needed for all tasks that include the production of human-readable text in mor-
phologically rich languages.

1.2.2 Morphological Generation
In this thesis, we consider a group of closely related tasks concerned with the
generation of inflected forms1: We define morphological reinflection as the task
of producing an inflected form from a paradigm, given the lemma or any other
inflected form. Note that as the task consists of producing indicated target forms,
this does not necessarily include the generation of entire paradigms. A spe-
cial case of this is morphological inflection. Instead of an arbitrary one of the
paradigm’s forms, the lemma is defined to be the input to the morphological gen-
eration system. Finally, we consider the task of paradigm completion. Here
the goal is to generate all inflected forms of a paradigm, i.e., to produce the entire
paradigm. Either one single form or multiple forms can be given as input. This dif-
fers from morphological reinflection in two aspects: First, evaluation might differ
slightly, because, in the case of reinflection, the generation of forms that are rare
and hard to infer could be not required. In contrast, when performing paradigm
completion, all missing forms have to be produced. Second, since multiple forms
of the paradigm can be given as input, this can be seen as a multi-source setting.
In particular, it enables the application of systems that work on multi-source input.
To understand the importance of this, consider the different cases shown in Figure

1The definitions of the terms paradigm completion, morphological inflection and morphologi-
cal reinflection vary slightly throughout the literature, including the work presented in later chap-
ters of this thesis. In this introduction, we will use the definitions outlined here. In each of the
following chapters, the terms are defined as applies.

24

1.2 Morphological Tasks

(a) AnyForm (b) SingleForm

(c) MultiForm (d) NoForm

Figure 1.1 – Different multi-source input configurations for paradigm com-
pletion.

1.1: ANYFORM is the case where one can predict the target form from any of the
given source forms, cf. Figure 1.1a. SINGLEFORM is the case where only one
form can be used to regularly predict the target form. In the example in Figure
1.1b, it is easy to predict the target form trafen from traf, but not necessarily from
the other two sources. MULTIFORM is the case where multiple forms are nec-
essary to predict the target form. For the paradigm of poner, which is shown in
Figure 1.1c, a combination of two source forms, e.g., poner and pongo, is needed
to infer the target form ponga. Finally, in the case of NOFORM, it is impossi-
ble to regularly derive the target form from any of the source forms, cf. Figure
1.1d. Leveraging additional source forms is likely to improve performance for
the configurations ANYFORM, SINGLEFORM and MULTIFORM, but not for the
configuration NOFORM. In particular, as we will show in later chapters, there are
cases where it can be beneficial to have information about more than one single

25

1. Introduction

inflected form of a paradigm.

Formalization of the Tasks

We will now describe the three aforementioned tasks in a formal way, developing
our notation.

Let T be the set of morphological tags being expressed in a language and w a
lemma in the same language. We define the morphological paradigm π belonging
to w as follows:

π(w) =
{(
fk[w], tk

)}
k∈T (w)

(1.1)

fk[w] denotes an inflected form corresponding to tag tk, and w and fk[w] are
strings formed by letters from an alphabet Σ. Note that, even though we follow
the convention to describe word forms as functions of the lemma, in the huge
majority of the cases, each inflection is uniquely defined given any other inflected
form of the same paradigm and the two respective tags.

Paradigm completion. Given a partial paradigm π(w)pt with π(w)pt ⊆ π(w),
the goal of paradigm completion is to produce all inflected forms fi[w] with
(fi[w], ti) /∈ π(w)pt. The corresponding tags are supposed to be known.

For example, consider the following partial paradigm, which is a subset of the
German paradigm shown in Table 1.1:

πpt(Schneemann) =
{(

Schneemännern, PL;DAT
)}

We then expect a paradigm completion system to produce all unknown inflected
forms, which correspond to the tags SG;NOM, SG;GEN, SG;DAT, SG;ACC, PL;NOM,
PL;GEN and PL;ACC.

Morphological reinflection. The task of morphological reinflection consists
of predicting a missing form fi[w] from a paradigm, given another form fj[w] or
w as well as the tag of the target form ti, and optionally the source tag tj .

An example from the paradigm in Table 1.1 would be

(Schneemannes, SG;GEN, SG;DAT)→ Schneemann

SG;GEN and SG;DAT are the source tag and target tag, respectively.
Morphological inflection. The special case of morphological inflection con-

sists of predicting a missing form fi[w] from a paradigm, given the lemma w
together with the target tag ti. Since the source form is defined to be the lemma,
no source tag is needed.

An example would be:

(Schneemann, SG;GEN)→ Schneemannes

26

1.3 Neural Networks

1.2.3 Morphological Analysis
The morphological analysis task called morphological segmentation aims to ei-
ther divide a word into morphemes, i.e., its smallest meaning-bearing units, or
into morphs, the surface forms thereof. Traditionally, most research described
in the NLP literature has focused on surface segmentation, whereby a word w
is segmented into a sequence of substrings whose concatenation results in the
entire word; see Ruokolainen et al. (2016) for a survey. In contrast, we are in-
terested in canonical segmentation, where w is divided into a sequence of stan-
dardized segments. In order to understand the difference, consider the following
example: the surface segmentation of the complex English word achievability
is achiev+abil+ity, whereas its canonical segmentation is achieve+able+ity. In
particular, canonical segmentation includes restoring the alterations made during
word formation. This version of the task has several representational advantages
over surface segmentation, e.g., whether two words share a morpheme is no longer
obfuscated by orthography. However, it also introduces a more complicated algo-
rithmic challenge: besides segmenting a word, one must also reverse orthographic
changes, e.g., perform the mapping achievability7→achieveableity. Canonical ver-
sions of morphological segmentation have been introduced multiple times in the
NLP literature (Kay, 1977; Naradowsky and Goldwater, 2009; Cotterell et al.,
2016b).

In general, segmentations are useful in a diverse set of applications, e.g., au-
tomatic speech recognition (Afify et al., 2006), keyword spotting (Narasimhan
et al., 2014), machine translation (Clifton and Sarkar, 2011) and parsing (Seeker
and Çetinoğlu, 2015).

Formalization of the Task

We cast segmentation as a sequence-to-sequence transduction task. Given an
alphabet Σ (e.g., the 26 letters of the English alphabet), the goal of canonical
segmentation is to map a word w ∈ Σ∗ (e.g., w=achievability) to a sequence
c ∈ Ω∗ of characters, representing its correct segmentation and marking the bor-
ders of the sub-word units it is formed of (e.g., c=achieve+able+ity). We define
Ω = Σ ∪ {+}, where + is a distinguished separation symbol. Additionally, we
can write the segmented form as c = σ1 + σ2 + . . . + σn, where each segment
σi ∈ Σ∗ and n is the number of canonical segments.

1.3 Neural Networks
Artificial neural networks are strong computational models suitable for a broad
range of applications inside and outside of NLP. Their name dates back to attempts

27

1. Introduction

Figure 1.2 – A simple perceptron without any hidden layers.

to find mathematical representations of information processing in biological sys-
tems (McCulloch and Pitts, 1943; Widrow and Hoff, 1960), even though some of
them arguably lack biological plausibility. In particular, artificial neural networks
are much smaller than the brain of a mammal; an artificial network might have
thousands of processor units, whereas a mammalian brain has billions of neurons.

The main neural network architecture we use and extend in our work is an
attention-based encoder-decoder RNN as presented first by Bahdanau et al. (2015)
for neural machine translation. Though there exist a multitude of different neural
network types, we will limit our descriptions in this introduction to those needed
to understand this thesis.

1.3.1 Perceptrons
The most basic neural network model is a perceptron. It consists of an input layer,
i.e., vectors representing the input, a variable number of hidden layers and an
output layer. Except for the input layer which does not perform any computations,
every layer is realized by a weight matrix followed by a non-linearity. The number
of dimensions of the vectors representing the results of each layer is called the
number of units per layer. There are two common ways of counting the number
of layers of a perceptron, which are to include or not the input layer. We adopt
the view that, since it does not compute anything, the input layer should not be
counted, such that we call an architecture without hidden layers a single-layer
perceptron, cf. Figure 1.2. In contrast, a perceptron with one or more hidden
layers is called a multi-layer perceptron (MLP), cf. Figure 1.3.

In perceptrons, connections from each layer exclusively lead to subsequent
layers. In particular, the output of a layer is not used for calculations in earlier
or the same layers. Therefore, a perceptron belongs to the class of feedforward
networks. In contrast, network architectures which make use of recurrent connec-
tions are called recurrent neural networks.

28

1.3 Neural Networks

Figure 1.3 – An MLP with one hidden layer.

Formally, every layer of an MLP is a function f(x) : Rd → Rc that produces
a c-dimensional output for a d-dimensional input x according to the following
formula:

f(x) = g(Wx + b) (1.2)

In a hidden layer, g can be any non-linear function, typically the sigmoid or the
hyperbolic tangent function. In the output layer, g is usually realized as the soft-
max function. W is a weight matrix and b a bias vector. Both of them are usually
learned from the available training data, using backpropagation. During this pro-
cess, the parameters of the network are updated according to the error made on
the training examples.

Perceptrons get more expressive with increasing depth, i.e., a larger number
of hidden layers. In particular, a single-layer perceptron can only solve linearly
separable problems (Hertz et al., 1991).

1.3.2 Recurrent Neural Networks
Because the numbers of units in their input and output layers are defined before-
hand, feedforward networks like perceptrons are limited to inputs of a fixed size.
Correspondingly, they always produce equally fixed-sized outputs. This limitation
can be relaxed by padding, i.e., by filling empty dimensions with placeholders,
e.g., zeros. However, even then the maximum input and output sizes still need
to be chosen beforehand. In contrast, recurrent neural networks (RNNs) (Elman,

29

1. Introduction

Figure 1.4 – A simple RNN architecture, expanded in the dimension of time.

1990) were developed to handle input sequences of variable length without the
need for padding. They treat the input as a sequence of separate units and obtain a
representation by accumulating information going through the input one by one.

An RNN computes hidden representations for each element in a given input,
which is represented by a sequence of embedding vectors x = (x1,x2, . . . ,xT)
of length T , as follows:

ht = g(Uhxt + Whht−1 + bh) (1.3)

Again, g is a non-linear function. An overview of a simple RNN architecture is
shown in Figure 1.4. Wh and Uh are weight matrices and bh is a bias vector.

One of the main drawbacks of RNNs is the vanishing gradient problem, which
is a general problem for deep neural networks, i.e., networks with multiple layers:
During backpropagation, parameters are updated proportionally to the gradient
of the error function. However, this gradient is computed according to the chain
rule, which leads to vanishingly small gradients for high numbers of layers. The
vanishing gradient problem affects RNNs because they can be unfolded in time,
resulting in an architecture with multiple hidden layers. Thus, for longer inputs,
the weights are kept from being updated in a meaningful way, causing the net-
work’s performance to decrease rapidly.

In order to overcome this, extensions of the original RNN architecture have
been proposed: long-short term memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) and gated recurrent units (GRUs) (Cho et al., 2014b). Both
share the idea of controlling the information at each time step by giving the net-
work a mechanism to keep more or less of the past history as suitable. Perfor-
mances of the two types of extensions are typically similar. However, GRUs—
which we employ in our models—are slightly simpler, since they contain fewer
parameters (Cho et al., 2014b).

30

1.3 Neural Networks

Figure 1.5 – The architecture of a GRU, expanded in the dimension of time.

The formulas defining a GRU with input x = (x1,x2, . . . ,xT) are:

zt = σ(Uzxt + Wzht−1 + bz) (1.4)
rt = σ(Urxt + Wrht−1 + br) (1.5)
st = tanh(Usxt + Ws(ht−1 ∗ rt) + bs) (1.6)
ht = (1− zt) ∗ st + zt ∗ ht−1 (1.7)

The h-dimensional vectors st and ht are called the state and the hidden state of
the RNN, respectively. zt and rt are the so-called gates of the GRU. They control
the information flow through the network by application of the sigmoid function
to a weighted sum of the input xt and the preceding hidden state ht−1. Uj ∈ Rh×d

and Wj ∈ Rh×h are weight matrices, and the bj are bias vectors, j ∈ {r, s, z}.
Weights and biases are parameters to be learned during training. The architecture
of a GRU is displayed in Figure 1.5.

The corresponding formulas for an LSTM, as shown in Figure 1.6, are:

it = σ(Uixt + Wiht−1 + bi) (1.8)

ft = σ(Ufxt + Wfht−1 + bf) (1.9)
ot = σ(Uoxt + Woht−1 + bo) (1.10)
qt = tanh(Uqxt + Wqht−1 + bq) (1.11)
pt = ft ∗ pt−1 + it ∗ qt (1.12)
ht = ot ∗ tanh(pt) (1.13)

As for the GRU, ht is the hidden state of the network at time step t, and Uj ∈
Rh×d, Wj ∈ Rh×h and bj for j ∈ {i, f, o, q} are again weight matrices and bias
vectors. An LSTM has three gates: the input gate it, the forget gate ft and the
output gate ot. All gates are put into practice as non-linear functions applied to
weighted combinations of the input vector xt and the last hidden state ht−1.

31

1. Introduction

Figure 1.6 – The architecture of an LSTM, expanded in the dimension of time.

RNNs are mainly used for two categories of tasks: sequence labeling and clas-
sification. For the former, each hidden state is fed into an output layer, producing
one output for each time step. For the latter, the goal is typically to produce one
output for an entire input sequence. This makes it necessary to decouple the out-
put length from the input length. Thus, for classification, it is common to use the
last hidden state hT, which is supposed to represent the entire input, as input to a
final output layer.

1.3.3 Encoder-Decoder Recurrent Neural Networks
Cho et al. (2014b) and Sutskever et al. (2014) independently developed neural
sequence-to-sequence models based on RNNs, the so-called encoder-decoder net-
works or encoder-decoder RNNs. In contrast to earlier applications of RNNs,
where either the last hidden state had been used for classification or one output
had been produced for each element in the input sequence, the new architecture
made it possible to produce variable-length output for variable-length input. Such
variable-length sequence-to-sequence tasks are something commonly found when
working with natural language, e.g., for translating an input sentence into an out-
put sentence or for question answering, where the question and text with addi-
tional information form the input sequence and the answer is the output sequence.
Thus, encoder-decoder RNNs are extremely suitable for NLP applications.

The basic sequence-to-sequence model by Cho et al. (2014a) and Sutskever
et al. (2014) consists of two parts: an encoder which processes the input, and a
decoder which generates the output. The encoder is implemented as an RNN that
reads the vectors of the input sequence x = (x1,x2, . . . ,xTx) and encodes them
into a fixed-length context vector c, computing the hidden states ht and c as:

ht = f(xt,ht−1) (1.14)
(1.15)

f is again a non-linear function, e.g., the sigmoid function.

32

1.3 Neural Networks

The decoder, implemented as a second RNN, produces the output
y = (y1, y2, . . . , yTy). Note that the length of the output Ty is not constrained to
be equal to the input length Tx. The decoder is trained to predict each element of
the output yt dependent on c and all previous predictions y1, . . . , yt−1:

p(y) =

Ty∏

t=1

p(yt|{y1, . . . , yt−1}, c) (1.16)

with each conditional probability being modeled with an RNN as:

p(yt|{y1, . . . , yt−1}, c) = g(yt−1, st, c) (1.17)

Again, g is a non-linear function and st is the hidden state of the decoder RNN. c
is a so-called context vector; most commonly, the last hidden state of the encoder
hTx is used.

Even though for the work presented in this thesis we only employ RNN encoder-
decoder models, sequence-to-sequence architectures are not limited to recurrent
networks. There exists work on encoder-decoder models based on convolutional
neural networks (CNNs) (Kalchbrenner et al., 2016; Gehring et al., 2017) or
even simple feedforward networks with attention-mechanisms for sequence-to-
sequence transduction (Vaswani et al., 2017). Those are reported to be computa-
tionally faster to train, because they can be parallelized. However, due to them
being invented only recently, we did not try their performance on our tasks and
will leave this for future work.

1.3.4 Attention Mechanism
A weakness limiting the performance of the basic encoder–decoder approach is
that the network needs to be able to compress all necessary information about
the entire input sequence into a single fixed-length vector. Since this is compli-
cated for longer input sequences, Cho et al. (2014a) showed that the performance
decreases quickly when the length of the input grows.

In order to overcome this issue, Bahdanau et al. (2015) introduced a so-called
attention mechanism. The main idea of their approach was to get rid of the fixed-
length context vector c. Instead, they proposed to calculate a new context vector
for each output element as a weighted combination of all hidden states of the
encoder. In this way, the information does not have to be compressed into one
single vector anymore.

Formula 1.16, which describes the decoder, thus changes as follows:

p(y) =

Ty∏

t=1

g(yt−1, st, ct) (1.18)

33

1. Introduction

Figure 1.7 – Schematic overview of the attention-based encoder-decoder
model.

All formerly introduced variables denote the same as before. The single fixed-
length context vector c has been substituted by a time step-dependent context
vector ct, being the weighted sum of the hidden states (h1, . . . ,hTx) produced by
the encoder. It is calculated using the following formulas:

eij = a(si−1,hj) (1.19)

αij =
exp(eij)∑Tx

k=1 exp(eik)
(1.20)

ci =
Tx∑

j=1

αijhj (1.21)

The weights αij are called attention weights and are functions of the energies
eij . Bahdanau et al. (2015) suggested to parameterize a as a feedforward neural
network and to train it jointly with the other components. More specifically, they
proposed to use a multilayer perceptron in order to keep the computational cost
relatively low, as this needs to be evaluated TxTy times for an input of length Tx
and an output of length Ty. Thus, the formula to calculate a is:

a(si−1,hj) = (va)T tanh(Wasi−1 + Uahj + ba) (1.22)

34

1.4 Related Work

Wa and Ua are weight matrices. va and ba are vectors.
Additionally to the attention mechanism, the model of Bahdanau et al. (2015)

which we build on in this work employs a bidirectional encoder, with the final
encoder hidden states being the concatenation of the hidden states of a forward
and a backward RNN. The resulting attention-based encoder-decoder architecture
is shown in Figure 1.7.

1.4 Related Work

Now we will describe how our morphological generation and analysis tasks as
well as similar ones have been approached in the past. Subsequently, we will give
a general overview of other NLP tasks which can be tackled with neural sequence-
to-sequence models.

1.4.1 Morphology
Paradigm completion and morphological reinflection. In the last two years,
a lot of important work on the tasks of paradigm completion and morphological
reinflection has been done in the context of the SIGMORPHON 2016 shared task
on morphological reinflection (Cotterell et al., 2016a) and its follow-up edition,
the CoNLL-SIGMORPHON 2017 shared task on universal morphological rein-
flection (Cotterell et al., 2017a).

In 2016, the shared task was limited to morphological inflection (task 1) and
morphological reinflection (tasks 2 and 3). The submitted systems could roughly
be sorted into 3 categories. The first category consisted of neural sequence-to-
sequence models and contained the strongest systems in the competition. Those
were namely RNN encoder-decoder models with soft (Kann and Schütze, 2016)
or hard attention (Aharoni et al., 2016), as well as one encoder-decoder model that
employed a convolutional layer over the character input (Östling, 2016).

The systems of the second category were built upon earlier work by Durrett
and DeNero (2013). They first computed an unsupervised alignment for the pairs
of source and target forms in the training set. This alignment was then used to
extract edit operations that transformed the input into the target string. Finally,
a system was trained on predicting the right transformations to obtain the output
from a combination of the input string and the morphological tags. Alegria and
Etxeberria (2016) and Nicolai et al. (2016) employed weighted finite state trans-
ducers for those applications of edit operations. In turn, Liu and Mao (2016) and
King (2016) used a semi-Markov conditional random field (CRF) (Sarawagi and
Cohen, 2005). Nicolai et al. (2016) further introduced a reranker to rescore the
answer candidates obtained by their system.

35

1. Introduction

Finally, the last category covered all systems that made use of linguistically
inspired heuristics. They effectively reduced the problem to multi-class classifica-
tion. Taji et al. (2016) took ideas from Eskander et al. (2013) which had originally
been intended for the creation of a morphological analyzer and generator, using
data that had been manually segmented and clustered by lexeme. Sorokin (2016)
followed ideas by Ahlberg et al. (2014, 2015).

The 2017 edition of the shared task was concerned with morphological in-
flection (task 1) and paradigm completion (task 2). Due to the success of encoder-
decoder networks in 2016, most systems developed for 2017 were neural sequence-
to-sequence models. In particular, most teams used some version of an RNN, e.g.,
(Makarov et al., 2017; Bergmanis et al., 2017; Zhou and Neubig, 2017).

Finally, besides systems designed for the two shared tasks and the work pre-
sented in this thesis, Cotterell et al. (2017b) considered a multi-source setting
for paradigm completion. They modeled paradigms using graphical models with
neural parameterizations, defined over multiple string-valued random variables.
Thus, they could jointly decode entire paradigms, leveraging all available source
forms. Additionally, Zhou and Neubig (2017) presented multi-space variational
encoder-decoders for the task of morphological reinflection.

Earlier influential work on paradigm completion or reinflection—both neural
and non-neural—which is not mentioned above, included but was by no means
limited to (Dreyer et al., 2008; Hulden et al., 2014; Nicolai et al., 2015; Faruqui
et al., 2016b).

Morphological segmentation. Several approaches to morphological segmen-
tation have been proposed in the literature. In the unsupervised realm, most
work was based on the principle of minimum description length (Rissanen, 1989).
Goldsmith (2001) and, besides other follow-up work, Lee and Goldsmith (2016)
introduced LINGUISTICA for the unsupervised learning of segmentation of Eu-
ropean languages. In particular, the program took unlabeled corpora of varying
sizes as input and produced partial morphological analyses of the words, splitting
them into morphemes and categorizing them. Goldsmith (2001) developed a set of
heuristics to build a probabilistic morphological grammar. Minimum description
length analysis was used to decide if a modification proposed by those heuristics
should be applied or discarded.

Creutz and Lagus (2002) presented two different methods for the unsuper-
vised splitting of words into morpheme-like units. The first was also based on the
minimum description length principle to simultaneously measure the goodness
of the representation and the model complexity, whereas the second made use of
maximum likelihood optimization. Their approach, instead of expecting a sin-
gle one for each of prefix, stem and suffix, was especially suitable for languages

36

1.4 Related Work

with agglutinative morphology, where words can consist of long sequences of
segments. Based on the ideas described by Creutz and Lagus (2002), another
program for unsupervised morphological segmentation called MORFESSOR was
developed (Creutz et al., 2007). As using the corpus vocabulary instead of the
corpus led to segmentation results closer to linguistic morphemes, MORFESSOR

was trained on a collection of word types instead of word tokens. Words below a
certain frequency threshold were excluded from training.

Later on, Kohonen et al. (2010) extended MORFESSOR to a semi-supervised
version by adding known linguistic segmentations into the data likelihood func-
tion and performing optimization of separate weights for unlabeled and labeled
data. They showed that performance improved quickly even for only few anno-
tated examples, highlighting the potential benefits of minimal supervision when
sets of labeled data are available, but not large enough to enable supervised ap-
proaches to work well.

Supervised approaches to morphological segmentation exist as well. Most
notably, Ruokolainen et al. (2013) developed a supervised approach for the seg-
mentation task based on CRFs, which they subsequently extended to also work
in a semi-supervised way (Ruokolainen et al., 2014) using letter successor vari-
ety features (Hafer and Weiss, 1974). Further, Cotterell et al. (2015) improved
performance with a semi-Markov CRF. Finally, Wang et al. (2016) achieved state-
of-the-art results on surface morphological segmentation using a window LSTM.

Several groups presented work on canonical segmentation, calling the task
a set of different names, e.g., Kay (1977); Naradowsky and Goldwater (2009);
Cotterell et al. (2016b).

Other morphological tasks. Research on computational morphology has pro-
duced a large variety of tasks and respective approaches. While some methods
have been carefully designed by hand (Koskenniemi, 1983; Buckwalter, 2004),
recently, machine learning methods including neural networks have been gain-
ing popularity. Those can be supervised—like most approaches presented in this
thesis—, semi-supervised or unsupervised.

Of special interest here are the tasks of morphological tagging (Müller et al.,
2013) and morphological analysis (Schmid et al., 2004; Nicolai and Kondrak,
2017), i.e., producing morphological tags for a given word with or without con-
text, since they can be seen as the reverse of paradigm completion. Also related to
the morphological generation tasks in this thesis is work concerned with the auto-
matic creation of morphological lexicons (Eskander et al., 2013; Faruqui et al.,
2016a). Even though the way to approach this is usually unrelated, the final
products are quite similar. Note in particular that a full-coverage lexicon can be
used directly for morphological reinflection and would be the product of paradigm

37

1. Introduction

completion for all lemmas of a language.
Other tasks in the realm of morphology include compound splitting (Koehn

and Knight, 2003; Macherey et al., 2011), prediction of derivational forms (Vy-
lomova et al., 2017), or—even though it is not morphology in the stricter sense—
portmanteau creation (Deri and Knight, 2015).

Recently, the ability of machine learning models to deal with morphology has
been investigated explicitly by several groups. Belinkov et al. (2017) performed
several experiments in order to answer the question what neural machine trans-
lation models learn about morphology. They found that character-based models
were better at learning morphology than word-based ones. Further, lower network
layers seemed to be mainly responsible for handling morphology, while the atten-
tional decoder did not learn much about it. Avraham and Goldberg (2017) focused
on the relationship of semantics and morphology in word embeddings. Their main
result was that including morphological information into word embeddings could
harm performance on semantic tasks. Due to this trade-off, they concluded that,
unless needed for the task at hand, it would be better to ignore morphology during
the creation of word embeddings.

1.4.2 Sequence-to-Sequence Models in NLP
Morphological generation and analysis are by far not the only tasks for which neu-
ral sequence-to-sequence models constitute the state of the art. Even though those
models had originally been designed for translation (Sutskever et al., 2014; Cho
et al., 2014a; Bahdanau et al., 2015), they have shown to be useful for a wide and
diverse area of applications. As of today, those architectures have been success-
fully applied to many sequence-to-sequence tasks in NLP, e.g., syntactic parsing
(Vinyals et al., 2015), automatic speech recognition (Graves and Schmidhuber,
2005; Graves et al., 2013) or language correction (Xie et al., 2016).

Attention for sequence-to-sequence models was also studied extensively. So-
called hard attention (Aharoni and Goldberg, 2017) was introduced in contrast to
Bahdanau et al. (2015)’s soft attention. Thereby, the model attends to one single
input state at a time and either adds a symbol to the output sequence or moves the
position of the attention pointer to the next hidden state of the encoder. Aharoni
and Goldberg (2017) argued that this was especially suitable for tasks that exhibit
an almost monotonic alignment between the input and output sequences, as it is
the case for paradigm completion or morphological segmentation. Findings of the
CoNLL-SIGMORPHON 2017 shared task (Cotterell et al., 2017a) indicated that
hard attention might be of particular interest for extreme low-resource scenarios.
Also relevant for the multi-source setting of the paradigm completion task is work
like the one by Libovickỳ and Helcl (2017): The authors proposed two novel
approaches to combine the outputs of attention mechanisms over each source for

38

1.5 Proposed Approaches

multi-source sequence-to-sequence tasks, which they called flat and hierarchical
attention. They argued that their attention strategies were interpretable and took
into account the roles of the individual source sequences explicitly. Thus, they
might be something that could easily and potentially beneficially be combined
with our work.

Relevant for multi-source paradigm completion are also multi-source sequence-
to-sequence approaches for machine translation: Zoph and Knight (2016) made
simultaneous use of source sentences in multiple languages with the goal of find-
ing the best match possible in the target language. They applied transformations
to the hidden states of the encoders that were the input to the decoder. Firat et al.
(2016) presented an approach that translated from any of N source languages to
any of M target languages, using encoders and decoders specific to each of them.
One common attention mechanism was shared between all languages.

1.5 Proposed Approaches

RNN encoder-decoders models are strong computational models, which define
the state of the art for a variety of different NLP tasks. Their main drawback is
that they require large amounts of training data. In this thesis, we present multiple
ways to mitigate this problem and to make neural sequence-to-sequence models
applicable to morphological tasks even in low-resource settings.

The basis of this thesis is the presentation of the morphological encoder-
decoder model MED, a language-independent character-level sequence-to-sequence
model for morphological reinflection or paradigm completion, which we extend
in later chapters. In contrast to earlier work by Faruqui et al. (2016b), we train
one single model on all mappings from source to target forms that appear in the
training set of a given language. This way, we perform multi-task training on
all subtasks, effectively sharing all of the network’s parameters. This radically
reduces the amount of training data needed, since most morphological patterns
occur in many source-target tag pairs. The key enabler for our approach is a novel
representation we use for the task. We encode each input as a continuous sequence
of the morphological tags of the source form, the morphological tags of the target
form and the characters of the source form. The output is the sequence of letters
the target form is composed of. We show that MED defines a new state of the art
for the SIGMORPHON 2016 shared task dataset and, together with the right data
augmentation techniques, also performs on par with the winning system of task
1 of the CoNLL-SIGMORPHON 2017 shared task in all but the lowest-resource
track.

We further investigate methods to deal with morphology in extreme low re-
source settings. One possible approach we present consists of extending MED to

39

1. Introduction

enable cross-lingual transfer by adding an additional input: a tag representing the
language of the sample at hand, similar to an idea introduced by Johnson et al.
(2017) for machine translation. By doing so, we can train a single neural network
model on multiple languages, and thus exploit annotations in a high-resource lan-
guage to train a system for an extremely low-resource language. We analyze the
effectiveness of our method for morphological reinflection on multiple language
pairs belonging to different language families. We further address the research
question which languages might be especially apt for this type of morphologi-
cal transfer. Our results hint that the degree of performance gain depends on the
relatedness of the high-resource and the low-resource language.

Another approach is to extend MED to enable semi-supervised training. This
is based on the idea that an abundance of unlabeled data can safely be assumed to
be available for each language in the focus of NLP. We obtain a semi-supervised
model by treating unlabeled words as training examples for an autoencoding (Vin-
cent et al., 2010) task and performing multi-task training. We expect this to be
beneficial for the following reasons: (i) The decoder’s character language model
can be trained using unlabeled data. (ii) Training on a second task mitigates the
overfitting problem. (iii) By forcing the model to additionally learn to autoen-
code, we give it a strong prior to copy the input string. This might be advanta-
geous, because often many forms of a paradigm share the same stem, e.g., smiling
and smiled. We further present a second way of semi-supervised training: using
autoencoding of random strings as an auxiliary task. We find that for our experi-
mental settings and non-templatic languages the performance gain is comparable
to using corpus words.

Turning to paradigm completion, we finally address how to make use of infor-
mation emerging from the general structure of paradigms. We consider two ques-
tions: How can we leverage information from a set of given entire paradigms?
Further, how can we make use of multiple input sources for completing a certain
paradigm, and how does the usefulness of additional forms depend on properties
of the language and the paradigm?

As an intended answer to the first question, we present CIS, an algorithm se-
lecting the most suitable source form for a target form, given the set of all available
source forms. Addressing the second question, we propose two approaches: First,
we experiment with a multi-source input version of MED, leaving the selection
of the best source for each target form to the model. Second, we introduce a
novel alternative way to make use of additional given forms: paradigm adapta-
tion, i.e., fine-tuning the encoder-decoder model on available source forms before
generating the target forms. The motivation for paradigm adaptation is that, since
members of the same paradigm often consist of similar character sequences, we
expect each available input form to contain valuable information about what the
unknown target form looks like. We assume that we can pass this information to

40

1.5 Proposed Approaches

the generation part of the model by fine-tuning it on new examples created from
the partial paradigm.

Finally, we apply the same neural sequence-to-sequence architecture to mor-
phological segmentation and show that encoder-decoder models are able to im-
prove over the previous state of the art also for this analysis task.

Overall, we hope that this thesis will make a contribution to research on mor-
phology generation and analysis, and help to make neural network models appli-
cable in low-resource settings.

41

1. Introduction

42

Chapter 2

Single-Model Encoder-Decoder with
Explicit Morphological
Representation for Reinflection

43

Single-Model Encoder-Decoder with Explicit Morphological
Representation for Reinflection

Katharina Kann and Hinrich Schütze
Center for Information & Language Processing

LMU Munich, Germany
kann@cis.lmu.de

Abstract

Morphological reinflection is the task of
generating a target form given a source
form, a source tag and a target tag. We
propose a new way of modeling this
task with neural encoder-decoder models.
Our approach reduces the amount of re-
quired training data for this architecture
and achieves state-of-the-art results, mak-
ing encoder-decoder models applicable to
morphological reinflection even for low-
resource languages. We further present a
new automatic correction method for the
outputs based on edit trees.

1 Introduction

Morphological analysis and generation of previ-
ously unseen word forms is a fundamental prob-
lem in many areas of natural language process-
ing (NLP). Its accuracy is crucial for the success
of downstream tasks like machine translation and
question answering. Accordingly, learning mor-
phological inflection patterns from labeled data is
an important challenge.

The task of morphological reinflection (MRI)
consists of producing an inflected form for a given
source form, source tag and target tag. A spe-
cial case is morphological inflection (MI), the
task of finding an inflected form for a given
lemma and target tag. An English example is
“tree”+PLURAL→ “trees”. Prior work on MI and
MRI includes machine learning models and mod-
els that exploit the paradigm structure of the lan-
guage (Ahlberg et al., 2015; Dreyer, 2011; Nicolai
et al., 2015).

In this work, we propose the neural encoder-
decoder MED – Morphological Encoder-Decoder
– a character-level sequence-to-sequence attention
model that is a language-independent solution for

MRI. In contrast to prior work, we train a single
model that is trained on all source to target map-
pings of the language that are attested in the train-
ing set. This radically reduces the amount of train-
ing data needed for the encoder-decoder because
most MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The key enabler for this single-model approach
is a novel representation we use for MRI. We en-
code the input as a single sequence of (i) the mor-
phological tags of the source form, (ii) the mor-
phological tags of the target form and (iii) the se-
quence of letters of the source form. The output is
the sequence of letters of the target form. As the
decoder produces each letter, the attention mech-
anism can focus on the input letter sequence for
parts of the output that simply copy the input. For
other parts of the output, e.g., an inflectional end-
ing that is predicted using the target tags, the at-
tention mechanism can focus on the target mor-
phological tags. In more complex cases, simulta-
neous attention can be paid to subsequences of all
three input types – source tags, target tags and in-
put letter sequence. We can train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data. MED outperformed other systems
on the SIGMORPHON16 shared task1 for all ten
languages that were covered (Kann and Schütze,
2016; Cotterell et al.,).

We also present POET – Prefer Observed Edit
Trees – a new generic method for correcting the
output of an MRI system. The combination of
MED and POET is state-of-the-art or close to it on
a CELEX-based evaluation of MRI even though
this evaluation makes it difficult to exploit gener-

1ryancotterell.github.io/
sigmorphon2016/

44

alizations across tag pairs.

2 Model Description

Neural network model. Our model is based on
the network architecture proposed by Bahdanau
et al. (2014) for machine translation.2 They de-
scribe the model in detail; unless we explicitly say
so in the description of our model below, we use
the same network configuration as Bahdanau et al.
(2014).

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of an RNN that reads an input sequence of
vectors x and encodes it into a fixed-length context
vector c, computing hidden states ht and c by

ht = f(xt, ht−1), c = q(h1, ..., hTx) (1)

with nonlinear functions f and q. The decoder is
trained to predict each output yt dependent on c
and previous predictions y1, ..., yt−1:

p(y) =

Ty∏

t=1

p(yt|{y1, ..., yt−1}, c) (2)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (3)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based extension of this model that allows different
vectors ct for each step by automatic learning of
an alignment model. Additionally, they made the
encoder bidirectional: each hidden state hj at time
step j does not only depend on the preceding, but
also on the following input:

hj =

[−→
hTj ;
←−
hTj

]T
(4)

The formula for p(y) changes as follows:

p(y) =

Ty∏

t=1

p(yt|{y1, ..., yt−1}, x) (5)

= g(yt−1, st, ct) (6)

2Our implementation of MED is based on
github.com/mila-udem/blocks-examples/
tree/master/machine_translation.

with st being an RNN hidden state for time t
and ct being the weighted sum of the annota-
tions (h1, ..., hTx) produced by the encoder, using
the attention weights. Further descriptions can be
found in (Bahdanau et al., 2014).

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a letter in
our case, (Pascanu et al., 2014)). As MRI is less
complex than machine translation, we reduce the
number of hidden units and embedding size. Af-
ter initial experiments, we fixed the hyperparame-
ters of our system and did not further adapt them
to a specific task or language. Encoder and de-
coder RNNs have 100 hidden units each. For train-
ing, we use stochastic gradient descent, Adadelta
(Zeiler, 2012) and a minibatch size of 20. We ini-
tialize all weights in the encoder, decoder and the
embeddings except for the GRU weights in the de-
coder with the identity matrix as well as all biases
with zero (Le et al., 2015). We train all models
for 20,000 iterations. We settled on this number
in early experimentation because training usually
converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

Input and output format. We define the al-
phabet Σlang as the set of characters used in the
application language. As each morphological tag
consists of one or more subtags, e.g. “number“ or
“case“, we further define Σsrc and Σtrg as the set
of morphological subtags seen during training as
part of the source tag and target tag, respectively.
Let Sstart and Send be predefined start and end sym-
bols. Then each input of our system is of the for-
mat SstartΣsrc

+Σtrg
+Σlang

+Send. In the same way,
we define the output format as SstartΣlang

+Send.
A sample input for German is

<w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The
system should produce the corresponding output
<w> i s o l i e r t e </w>. The high-level
structure of MED can be seen in Figure 1.

POET. We now describe POET (Prefer Ob-
served Edit Trees), a new generic method for cor-
recting the output of an MRI system. We use it in
combination with MED in this paper, but it can in

45

Figure 1: Overview of MED

Figure 2: Edit tree for the inflected form abgesagt “canceled”
and its lemma absagen “to cancel”. The highest node con-
tains the length of the parts before and after the LCS. The left
node in the second row contains the length of the parts before
and after the LCS of abge and ab. The prefix sub indicates
that the node is a substitution operation.

principle be applied to any MRI system.
An edit tree e(σ, τ) specifies a transforma-

tion from a source string σ to a target string τ
(Chrupała, 2008). To compute e(σ, τ), we first
determine the longest common substring (LCS)
(Gusfield, 1997) between σ and τ and then recur-
sively model the prefix and suffix pairs of the LCS.
If the length of LCS is zero for (σ, τ), then e(σ, τ)
is simply the substitution operation that replaces σ
with τ . Figure 2 shows an example.

Let X be a training set for MRI. For each pair
(s, t) of tags, we define:

Es,t={e′|∃x∈X : e′=e(x), s=S(x), t=T (x)}

where S(x) and T (x) are source and target tags
of x and e(x) is e(σ(x), τ(x)), the edit tree that
transforms the source form into the target form.

Let ρ be a target form predicted by the MRI
system for the source form σ and let s and t be
source and target tags. POET does not change ρ if
e(σ, ρ) ∈ Es,t. Otherwise it replaces ρ with τ :

τ :=

{
τ ′ if e(σ, τ ′) ∈ Es,t, |ρ, τ ′| = 1
ρ else

where |ρ, τ ′| is the Levenshtein distance. If there
are several forms τ ′ with edit distance 1, we select
the one with the most frequent edit tree. Ties are
broken randomly.

We observed that MED sometimes makes er-
rors that are close to the target, but differ by one

edit operation. Those errors are often not covered
by edit trees that are observed in the training data
whereas the correct form is. Thus, substituting a
form not supported by an observed edit tree with a
close one that is supported promises to reduce the
error rate.

The effectiveness of POET depends on a train-
ing set that is large enough to cover the possible
edit trees that can occur in reinflection in a lan-
guage. Thus, if the training set is not large enough
in this respect, then POET will not be beneficial.

3 Experiments

We compare MED with the three models of Dreyer
et al. (2008) as well as with two recently pro-
posed models: (i) discriminative string transduc-
tion (Durrett and DeNero, 2013; Nicolai et al.,
2015), the SIGMORPHON16 baseline, and (ii)
Faruqui et al. (2015)’s encoder-decoder model.3

We call the latter MODEL*TAG as it requires
training as many models as there are target tags.

We evaluate MED on two MRI tasks: CELEX
and SIGMORPHON16.

CELEX. This task is based on complete inflec-
tion tables for German extracted from CELEX.
For this experiment we follow Dreyer et al. (2008).
We use four pairs of morphological tags and corre-
sponding word forms from the German part of the
CELEX morphological database. The 4 different
transduction tasks are: 13SIA→ 13SKE, 2PIE→
13PKE, 2PKE → z and rP → pA.4 An example
for this task would be to produce the output ges-
teuert (target tag pA) for the source steuert (source
tag rP). To do so, the system has to learn that the
prefix ge-, which is used for many participles in
German, has to be added to the beginning of the
original word form.

We use the same data splits as Dreyer et al.
(2008), dividing the original 2500 samples for
each tag into five folds, each consisting of 500
training and 1000 development and 1000 test sam-
ples. We train a separate model for each fold and
report exact match accuracy, averaged over the five
folds, as our final result.

3For our experiments we ran the code available at
github.com/mfaruqui/morph-trans. We used the
enc-dec-attn model as overall results for the CELEX task
were better than with the sep-morph model.

413SIA=1st/3rd sg. ind. past; 13SKE=1st/3rd sg. sub-
junct. pres.; 2PIE=2nd pl. ind. pres.; 13PKE=1st/3rd pl.
subjunct. pres.; 2PKE=2nd. pl. subjunct. pres.; z=infinitive;
rP=imperative pl.; pA=past part.

46

model 13
SI

A

2P
IE

2P
K

E

rP

D
re

ye
r backoff 82.8 88.7 74.7 69.9

lat-class 84.8 93.6 75.7 81.8
lat-region 87.5 93.4 87.4 84.9
baseline 77.6 95.1 82.5 69.6
MODEL*TAG 76.4 92.1 83.4 81.8
MED 82.3 94.4 86.8 83.9
MED+POET 83.9 95.0 87.6 84.0

Table 1: Exact match accuracy of MRI on CELEX. Re-
sults of (Dreyer et al., 2008)’s model are from their pa-
per; backoff: ngrams+x model; lat-class: ngrams+x+latent
class model; lat-region: ngrams+x+latent class+latent re-
gion model; baseline: SIGMORPHON16 baseline.

SIGMORPHON16. This task covers eight lan-
guages and does not provide complete paradigms,
but only a set of quadruples, each consisting of
word form, source tag, target tag and target form.
The main difference to CELEX is that the number
of tag pairs is large, resulting in much less training
data per tag pair. The number of tag pairs varies
by language with Georgian being an extreme case;
it has 28 tag pairs in dev that appear less than 10
times in train. For each language, we have around
12,800 training and 1600 development samples.
We report exact match accuracy on the develop-
ment set, as the final test data of the shared task is
not publically available yet.

4 Results

Table 1 gives CELEX results. MED+POET is bet-
ter than prior work on one task, close in perfor-
mance on two and worse by a small amount on the
third. Unlike Dreyer et al. (2008)’s models, MED
does not use any hand-crafted features. MED’s re-
sults are weakest on 13SIA. Typical errors on this
task include epenthesis (e.g., zirkle vs. zirkele) and
irregular verbs (e.g., abhing vs. abhängte).

For SIGMORPHON16, Table 2 shows that
MED outperforms the baseline for all eight lan-
guages. Absolute performance and variance is
probably influenced by type of morphology (e.g.,
templatic vs. agglutinative), regularity of the lan-
guage, number of different tag pairs and other fac-
tors. MED performs well even for complex and
diverse languages like Arabic, Finnish, Navajo
and Turkish, suggesting that the type of attention-
based encoder-decoder we use – single-model, us-
ing an explicit morphological representation – is a
good choice for MRI.

MED
baseline average ensemble

Arabic 58.8 83.1 (0.4) 88.8
Finnish 64.6 92.5 (0.8) 95.6
Georgian 91.5 95.7 (0.3) 97.3
German 87.7 92.1 (0.5) 95.1
Navajo 60.9 85.0 (1.1) 91.1
Russian 85.6 84.2 (0.3) 88.4
Spanish 95.6 96.3 (0.3) 97.5
Turkish 54.9 94.7 (1.3) 97.6

Table 2: Exact match accuracy of MRI on SIG-
MORPHON16; baseline: SIGMORPHON16 baseline;
MED/average: average of five MED models (standard devia-
tion in parentheses); MED/ensemble: majority voting of five
MED models.

We do not compare to MODEL*TAG here be-
cause it requires training a large number of indi-
vidual networks. This is a disadvantage compared
to MED both in terms of the number of models
that need to be trained and in terms of the effec-
tive use of the small number of training examples
that are available per tag pair.

POET improves the results for all tag pairs for
CELEX. However, initial experiments indicated
that it is not effective for SIGMORPHON16 be-
cause its training sets are not large enough.

5 Analysis

The main innovation of our work is that MED
learns a single model of all MRI patterns of a lan-
guage and thus can transfer what it has learned
from one tag pair to another tag pair. Using
CELEX, we now analyze how much our design
contributes to better performance by conducting
two experiments in which we gradually decrease
the training set in two different ways. (i) Large
general training set. We only reduce the number
of training examples available for a tag pair (s, t)
and retain all other training examples. (ii) Small
training set. We reduce the number of training ex-
amples available for all tag pairs, not just for one.

A typical example of the large general training
set scenario is that familiar second person forms
are rare in genres like encyclopedia and news. So
a training set derived from these genres will be
large, but it will have very few tag pairs whose
target tag is familiar second person.

A typical example of the small training set sce-
nario is that we are dealing with a low-resource
language.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy

% of training data

MED
MODEL*TAG

Figure 3: Results for the large general training set experi-
ment: effect of reducing the training set for only 2PIE →
13PKE on the accuracy for 2PIE → 13PKE for MED and
MODEL*TAG.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

1
3

S
IA

% of training data

MED
MODEL*TAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

2
P

IE

% of training data

MED
MODEL*TAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

2
P

K
E

% of training data

MED
MODEL*TAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

rP

% of training data

MED
MODEL*TAG

Figure 4: Results for the small training set experiment: effect
of reducing the training set for all tag pairs on accuracy for
MED and MODEL*TAG.

In the following two experiments, we only re-
duce the training set and do not change the test
set.

Large general training set. We iteratively
halve the training data for 2PIE → 13PKE until
only 6.25% or 32 samples are left. Figure 3 shows
that MED performs well even if only 6.25% of the
training examples for the tag pair remain. In con-
trast, MODEL*TAG struggles to generalize cor-
rectly. This is due to the fact that we train one
single model for all tags, so it can learn from other
tags and transfer what it has learned to the tag pair
that has a small training set.

Small training set. Figure 4 shows results
for reducing the training data equally for all tags.
MED performs much better than the baseline for
less than 50% of the training data. This can be ex-
plained by the fact that MED learns from all given
data at once and thus is able to learn common pat-
terns that apply across different tag pairs.

6 Related Work

Earlier work on morphology includes morpholog-
ical segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998) and different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,

2013; Eskander et al., 2013; Nicolai et al., 2015).
Chrupała (2008) defined edit trees and Chrupała
(2008) and Müller et al. (2015) use them for mor-
phological tagging and lemmatization.

In the last years, RNN encoder-decoder models
and RNNs in general were applied to several NLP
tasks. For example, they proved to be useful for
machine translation (Cho et al., 2014; Sutskever et
al., 2014; Bahdanau et al., 2014), parsing (Vinyals
et al., 2015) and speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013).

MED bears some resemblance to Faruqui et al.
(2015)’s work. However, they train one network
for every tag pair; this can negatively impact per-
formance for low-resource languages and in gen-
eral when training data are limited. In contrast, we
train a single model for each language. This radi-
cally reduces the amount of training data needed
for the encoder-decoder because most MRI pat-
terns occur in many tag pairs, so what is learned
for one can be transferred to others. To be able
to model all tag pairs of the language together,
we introduce an explicit morphological represen-
tation that enables the attention mechanism of
the encoder-decoder to generalize MRI patterns
across tag pairs.

7 Conclusion and Future Work

We have presented MED, a language independent
neural sequence-to-sequence mapping approach,
and POET, a method based on edit trees for cor-
recting the output of an MRI system. MED ob-
tains results comparable to state-of-the-art systems
for CELEX and establishes the state-of-the-art for
SIGMORPHON16. POET improves results fur-
ther for large training sets. Our analysis showed
that MED outperforms a neural encoder-decoder
baseline system by a large margin, especially for
small training sets.

In future work, we would like to make POET
less dependent on the source tag and thus increase
its accuracy for small training sets. Second, we
will look into ways of taking advantage of ad-
ditional information sources including unlabeled
corpora.

Acknowledgments

We gratefully acknowledge the financial support
of Siemens for this research.

48

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proc. of EACL.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proc. of NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans
Hulden. The SIGMORPHON 2016 shared
task—morphological reinflection. In Proc. of the
2016 Meeting of SIGMORPHON.

Hervé Déjean. 1998. Morphemes as necessary concept
for structures discovery from untagged corpora. In
Proc. of the Joint Conferences on New Methods in
Language Processing and CoNLL.

Markus Dreyer, Jason R Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In Proc. of EMNLP.

Markus Dreyer. 2011. A non-parametric model for the
discovery of inflectional paradigms from plain text
using graphical models over strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proc. of HLT-NAACL.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
Proc. of EMNLP.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2015. Morphological inflection genera-
tion using character sequence to sequence learning.
arXiv preprint arXiv:1512.06110.

Ian Goodfellow, David Warde-farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proc. of ICML.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proc of. ICASSP.

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: computer science and computational bi-
ology. Cambridge university press.

Margaret A Hafer and Stephen F Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion storage and retrieval, 10(11):371–385.

Zellig S Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Katharina Kann and Hinrich Schütze. 2016. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In Proc.
of the 2016 Meeting of SIGMORPHON.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Thomas Müller, Ryan Cotterell, and Alexander Fraser.
2015. Joint lemmatization and morphological tag-
ging with lemming. In Proc. of EMNLP.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proc. of NAACL.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. In Proc. of ICLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. of NIPS.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proc. of NIPS.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

49

50

Chapter 3

MED: The LMU System for the
SIGMORPHON 2016 Shared Task
on Morphological Reinflection

51

MED: The LMU System for the SIGMORPHON 2016 Shared Task on
Morphological Reinflection

Katharina Kann and Hinrich Schütze
Center for Information & Language Processing

LMU Munich, Germany
kann@cis.lmu.de

Abstract

This paper presents MED, the main sys-
tem of the LMU team for the SIGMOR-
PHON 2016 Shared Task on Morpholog-
ical Reinflection as well as an extended
analysis of how different design choices
contribute to the final performance. We
model the task of morphological reinflec-
tion using neural encoder-decoder models
together with an encoding of the input as a
single sequence of the morphological tags
of the source and target form as well as
the sequence of letters of the source form.
The Shared Task consists of three sub-
tasks, three different tracks and covers 10
different languages to encourage the use of
language-independent approaches. MED
was the system with the overall best per-
formance, demonstrating our method gen-
eralizes well for the low-resource setting
of the SIGMORPHON 2016 Shared Task.

1 Introduction

In many areas of natural language processing
(NLP) it is important that systems are able to
correctly analyze and generate different morpho-
logical forms, including previously unseen forms.
Two examples are machine translation and ques-
tion answering, where errors in the understanding
of morphological forms can seriously harm perfor-
mance. Accordingly, learning morphological in-
flection patterns from labeled data is an important
challenge.

The task of morphological inflection (MI) con-
sists of generating an inflected form for a given
lemma and target tag. Several approaches have
been developed for this, including machine learn-
ing models and models that exploit the paradigm
structure of language (Ahlberg et al., 2015;

Dreyer, 2011; Nicolai et al., 2015). A more com-
plex problem is morphological reinflection (MRI).
For this, an inflected form has to be found given
another inflected form, a target tag and optionally
a source tag.

We use the same approach to both MI and
MRI: the character-based and language indepen-
dent sequence-to-sequence attention model called
MED, which stands for Morphological Encoder-
Decoder. To solve the MRI task, we train one sin-
gle model on all available source-to-target map-
pings for each language contained in the training
set. This enables the encoder-decoder to learn
good parameters for relatively small amounts of
training data per target tag already, because most
MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The most important point for this is the repre-
sentation we use for MRI. We encode the input as
a single sequence of (i) the morphological tags of
the source form, (ii) the morphological tags of the
target form and (iii) the sequence of letters of the
source form. The output is the sequence of let-
ters of the target form. We train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data.

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection covers both, MI and MRI,
for 10 languages as well as different settings and
MED outperforms all other systems on all sub-
tasks. The given languages, tracks and tasks will
be explained briefly now. For further details on the
Shared Task please refer to Cotterell et al. (2016).

Languages. In total, the Shared Task covers
10 languages: Arabic, Finnish, Georgian, German,
Hungarian, Maltese, Navajo, Russian, Spanish and
Turkish. The training and development datasets

52

for Hungarian and Maltese were only released at
evaluation time.

Tasks. The Shared Task consists of 3 separate
tasks with increasing difficulty: task 1 is supposed
to be the easiest and task 3 the hardest. The first
task consists of mapping a given lemma and target
tag to a target form. Task 2 requires the mapping
of a given source form, source tag and target tag to
a target form. Finally, task 3 consists of finding a
target form for a given source form and source tag
only.

Tracks. The Shared Task is split into 3 tracks
that differ in the information available. The first
track is the standard track and requires the solution
for each task to use only the training and develop-
ment data of the current and all lower-numbered
tasks, e.g., to use only the data for tasks 1 and 2
for task 2. The restricted track limits the avail-
able training and development data to the data be-
longing to the current task, i.e., data from lower
tasks cannot be used, making it impossible to re-
duce task 2 to task 1 or task 3 to task 2. Track 3 is
the bonus track. In this track, all available data per
language can be used, including unlabeled corpora
which are provided by the task organizers. How-
ever, those vary a lot in length, depending on the
language. Therefore, we do not make use of them.

In total, there are 90 combinations of languages,
tasks and tracks to solve.

The remainder of this paper is organized as fol-
lows: In Section 2, our model for the SIGMOR-
PHON 2016 Shared Task is presented. Next, our
method to preprocess and thus extend the training
data is explained in detail. In Section 4 the final
results on the test data of the Shared Task are pre-
sented and discussed. Afterwards, we analyze the
contribution of different settings and components
to the overall performance of our system in detail.
Finally, in Section 6, we give information about
prior work on topics related to our system.

This paper is mainly concerned with the imple-
mentation and analysis of the system we submit-
ted to the Shared Task. In (Kann and Schütze,
2016), we instead focus on the novel aspects of our
new method MED and compare its performance to
prior work on other MRI benchmarks.

2 System description

Our system for the Shared Task is an encoder-
decoder recurrent neural network (RNN), called
MED, which stands for Morphological Encoder-

Decoder. It will be described in detail in this Sec-
tion.

2.1 Neural network model

Our model is based on the network architecture
proposed by Bahdanau et al. (2014) for machine
translation.1 The authors describe the model in de-
tail; unless we explicitly say so in the description
of our model below, we use the same network con-
figuration as they do.

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of a gated RNN (GRU) that reads an input
sequence of vectors x and encodes it into a fixed-
length context vector c, computing hidden states
ht and c by

ht = f(xt, ht−1) (1)

and

c = q(h1, ..., hTx) (2)

with nonlinear functions f and q. The decoder
uses the context vector to predict the output y:

p(y) =

Ty∏

t=1

p(yt|{y1, ..., yt−1}, c) (3)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (4)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based version of this model that allows different
vectors ct for each step by automatic learning of an
alignment model. They further made the encoder
bidirectional. In their model each hidden state hj
at time step j does not only depend on the preced-
ing, but also on the following input:

hj =

[−→
hTj ;
←−
hTj

]T
(5)

1Our implementation of MED is based on https:
//github.com/mila-udem/blocks-examples/
tree/master/machine_translation.

53

The formula for p(y) changes accordingly:

p(y) =

Ty∏

t=1

p(yt|{y1, ..., yt−1}, x) (6)

=

Ty∏

t=1

g(yt−1, st, ct) (7)

with st being an RNN hidden state for time t
and ct being the weighted sum of the annotations
(h1, ..., hTx) produced by the encoder:

ci =

Tx∑

j=1

αijhj (8)

The attention weights αij are calculated for
each hj as

αij =
exp(eij)∑Tx
k=1 exp(eik)

(9)

with

eij = a(si−1, hj) (10)

a is parametrized as a feedforward neural net-
work and trained jointly with all other compo-
nents.

More theoretical background is given in (Bah-
danau et al., 2014) and a system overview can be
seen in Figure 1.

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a charac-
ter in our case, (Pascanu et al., 2014)). As MRI
is less complex than machine translation, we re-
duce the number of hidden units and the embed-
ding size. After initial experiments, we fixed the
hyperparameters of our system and did not further
adapt them to a specific task or language. Encoder
and decoder RNNs have 100 hidden units each.
For training, we use stochastic gradient descent,
Adadelta (Zeiler, 2012) and a minibatch size of 20.
We initialize all weights in the encoder, decoder
and the embeddings except for the GRU weights
in the decoder with the identity matrix as well as
all biases with zero (Le et al., 2015). We train
all models for 20 iterations for all combinations of
track and task where we cannot extend the training
data with our method described in the next section.
Otherwise, we train for 10 epochs.2 We settled

2For extended data in Maltese we trained only for 6
epochs, due to time constraints.

on this number in early experimentation because
training usually converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

2.2 Input and output format

We define the alphabet Σlang as the set of char-
acters used in the application language. As each
tag combination which describes a source or target
form consists of one or more subtags, e.g., “num-
ber“ or “case“, we further define Σsrc and Σtrg as
the set of morphological subtags seen during train-
ing as part of the source tag or the target tag, re-
spectively. Finally, we define Sstart and Send to be
a start and an end symbol. Then each input of our
system is of the format SstartΣ+

srcΣ
+
trgΣ+

langSend.
In the same way, we define the output format as
SstartΣ

+
langSend.

For example, a valid input for German
would be <w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The corre-
sponding system output should be <w> i s o l i e
r t e </w>.3

3 Data and training

3.1 Training data enhancement

Since the Shared Task models a low-resource set-
ting, a way to enhance the given training data is
highly desirable. We apply three different meth-
ods for this, depending on the track and, therefore,
depending on the information available. Even
though the training data enhancer could be used
to increase the amount of available data for other
models as well, we expect it to be especially effec-
tive with MED. This is due to the fact that MED
is able to reuse information from any combination
of input and output tag for any other tag pair.

Restricted track. In the restricted track, only
training and development data of the respective
task and language can be used. This means that
there is less information available than in the other
two tracks. Therefore, in this track we can only
use a very basic enhancement method and we can

3For task 1 in the restricted and standard track and task
3 throughout all tracks, no source tag is given and we only
have one tag combination in the input. Therefore, we do not
prepend IN= or OUT= to the tags. However, internally, this
does not make a difference for the model.

54

Figure 1: System overview. The input x consists of characters
as well as input and output tags. The output y consists of
characters only.

only apply it to task 2. The idea the method is
based on is that task 2 is symmetric. As described
before, the task consists of mapping a triplet of
source tag, source form and target tag to a target
form. To double the training data it is sufficient
to switch the information and thus create a new
sample, mapping from target tag, target form and
source tag to the source form.

Standard track. The training data enhancement
for the standard track combines information from
task 1 and task 2 and can therefore, following the
Shared Task rules, be used for task 2 and task
3, as only data from lower tasks needs to be ac-
cessed. The idea of our enhancement method is
that each word form belongs to a certain paradigm
which in turn belongs to one single lemma. There-
fore, when knowing the lemmas of words, we can
group them into paradigms. When having more
than one word per paradigm, we can infer the in-
formation that all of them can be inflected into
each other and thus use them to create new sam-
ples. Knowing this, we use task 1 training data to
make groups of lemmas and word forms belong-
ing to the same paradigm, keeping the tags. Then,
we add all information from task 2 and, knowing
that source form and target form always belong
to the same lemma, we add both forms with their

tags to a group whenever one of them is already
in there.4 Afterwards, we build all combinations
of word pairs of each paradigm and, by doing so,
create new training data.

This method could be applied even if there was
absolutely no overlap between the lemmas in task
1 and task 2. However, it would then be neces-
sary to train a lemmatizer on task 1 data first and
lemmatize all words to sort them into paradigms.
When doing this, accuracy could be improved
by only accepting predictions with a strong con-
fidence and by only accepting new words for a
paradigm if the source and the target form of a
sample have the same lemma prediction.

Bonus track. In the bonus track, our training
data enhancement can also be used for task 1. In
order to do so, we first apply the same method
as for the standard track to produce the extended
training data. However, we additionally change
the input format for task 1 such that it resembles
the task 2 input, using LEMMA as the input tag.
In this way, we can apply the task 2 model to task
1 such that task 1 is able to benefit from the addi-
tional data as well.

3.2 Description of the final training data

Depending on the complexity of the language and
the structure of the datasets we end up with a dif-
ferent amount of final training samples for each
language, even though we start with nearly iden-
tical training set sizes. We show the final number
of samples for task 2 in different tracks in Table
1. As can be seen, the training data enhancement
increases the number of samples by a factor be-
tween 10 and 80. Out of all languages, the en-
hancer has the smallest effect for Finnish. Most
additional samples are created for Maltese.

3.3 Training

For each of the 10 languages we train one ensem-
ble for each task of the restricted track as well as
for each of tasks 2 and 3 of the bonus track. We do
not train a separate model for task 1, due to the fact
that the same model can be applied to both task 1
and task 2 of the bonus track. In total, we train 50
ensembles, consisting of 250 single models. For
our setting, task 1 of the standard track is the same
as for the restricted track, while tasks 2 and 3 are
the same as for the bonus track.

4As for none of the languages task 3 contained new word
forms, we did not consider task 3 data here.

55

T2, given T2, restricted T2, standard
Dataset no. samples no. samples factor no. samples factor
Arabic 14,400 28,800 2 458,814 32
Finnish 14,400 28,800 2 116,206 8
Georgian 14,400 28,800 2 196,396 14
German 14,400 28,800 2 166,148 12
Hungarian 21,600 43,200 2 643,630 30
Maltese 21,600 43,200 2 1,629,446 75
Navajo 14,385 28,770 2 160,332 11
Russian 14,400 28,800 2 129,302 9
Spanish 14,400 28,800 2 211,030 15
Turkish 14,400 28,800 2 392,136 27

Table 1: Number of training samples for task 2 without (given) and with the training data enhancer (restricted and standard
track) together with the factor by which the size of the training set increased. Note that the samples for task 2 in the standard
track are the same as the samples for task 1 in the bonus track.

Language Task 1 Task 2 Task 3
Arabic 95.47% 97.38% 96.52%
Finnish 96.80% 97.40% 96.56%
Georgian 98.50% 99.14% 98.87%
German 95.80% 97.45% 95.60%
Hungarian 99.30% 99.67% 99.50%
Maltese 88.99% 88.17% 87.83%
Navajo 91.48% 96.64% 96.20%
Russian 91.46% 91.00% 89.91%
Spanish 98.84% 98.74% 97.96%
Turkish 98.93% 97.94% 99.31%

Table 2: Exact-match accuracy per language for the standard
track of the SIGMORPHON 2016 Shared Task.

Language Task 1 Task 2 Task 3
Arabic 95.47% 91.09% 82.80%
Finnish 96.80% 96.81% 93.18%
Georgian 98.50% 98.50% 96.21%
German 95.80% 96.22% 92.41%
Hungarian 99.30% 99.42% 98.37%
Maltese 88.99% 86.88% 84.25%
Navajo 91.48% 97.81% 83.50%
Russian 91.46% 90.11% 87.13%
Spanish 98.84% 98.45% 96.69%
Turkish 98.93% 98.38% 95.00%

Table 3: Exact-match accuracy per language for the restricted
track of the SIGMORPHON 2016 Shared Task.

For each task of the restricted track we train a
separate model for 20 epochs. For the bonus track
we reduce the number of epochs to 10, because
we have much more training data. For Maltese,
we reduce it even further to 6 epochs.

Because we do not tune any hyperparameters,
we combine the original training and development
sets to one big training set. The numbers reported
in Table 1 are considering this big dataset.

4 Results on the Shared Task test data

Tables 2, 3 and 4 list the official final results of
MED for the SIGMORPHON 2016 Shared Task.
Table 2 shows the results of the standard track for
which systems are allowed to access the data of

Language Task 1 Task 2 Task 3
Arabic 98.25% 97.38% 96.25%
Finnish 97.30% 97.40% 96.56%
Georgian 99.20% 99.14% 98.87%
German 97.38% 97.45% 95.60%
Hungarian 99.69% 99.67% 99.50%
Maltese 88.53% 88.17% 87.83%
Navajo 98.03% 96.64% 96.20%
Russian 92.15% 91.00% 89.91%
Spanish 99.05% 98.74% 97.96%
Turkish 97.49% 97.94% 99.31%

Table 4: Exact-match accuracy per language for the bonus
track of the SIGMORPHON 2016 Shared Task.

the respective task and all lower numbered tasks.
Therefore, we can apply our training data exten-
sion to tasks 2 and 3, but not to task 1. Because
of this, the two higher tasks have the same scores
as in the bonus track: we effectively give the same
answers. Task 1, in turn, is the same for the stan-
dard and the restricted track, leading to the same
numbers in Tables 2 and 3.

For ease of exposition, we will mostly com-
pare the restricted and the bonus track as the stan-
dard track can be considered a mixture of those
two. For most tasks and languages the accuracy
is higher in the bonus than in the restricted track.
This is easy to explain as MED has more data to
train on (task 1 information for tasks 2 and 3 and
task 2 information for task 1). The exception is
Navajo: For task 2 the accuracy is higher in the
bonus track than in the restricted track. We leave
an investigation of this for future work.

Our training data enhancer – which is the only
difference between the bonus and the restricted
track as we do not use the provided unlabeled cor-
pora – is clearly effective: For Arabic, for ex-
ample, it leads to 13.72% improvement in perfor-
mance for task 3. For Turkish, the accuracy for
task 3 increases by 4.31%. Those are also the lan-

56

guages for which the training data enhancement
was very effective as can be seen in Table 1. That
Maltese does not improve so much even though we
use a lot more training data is most likely due to
the shorter training: we trained only for 6 epochs
instead of 10, because of time constraints.

As expected, the scores for task 3 are worse than
or at most comparable to the scores for task 2 in all
tracks. This is due to the fact that task 3 does not
provide a source tag, so less information is avail-
able. However, it seems that this information was
not much needed as the improvement when adding
it is minor. The better result for task 3 for Turkish
compared to task 2 in the bonus track may be due
to randomness during training – like the order of
samples in the training data – as it is below 1.5%.

It may be surprising at first that the results for
task 1 are not always better than the results for
task 2. This is the case, for example, in the re-
stricted track for Finnish, Georgian, Hungarian
and Navajo. As the organizers describe on the
Shared Task’s homepage, they expect task 1 to be
the easiest. Our guess would be that the model
has more information in total for task 2 as more
forms are given per paradigm. Additionally, task
2 is symmetric; this makes it possible to use twice
the training data, as described in Section 3.

5 System Analysis

To analyze which design choices are important
and how they influence the performance of MED
we conduct several experiments, always keeping
all but the investigated design choice fixed to the
settings described in Section 2. To make the ex-
periments clearer, we limit them to one combina-
tion of task, track and language: Unless mentioned
otherwise, we perform all experiments described
in this section on task 2 of the restricted track for
Russian. For the experiments in this section, the
system is trained on training data only and eval-
uated on the development set. The training data
enhancement is not used in this analysis.

5.1 Analysis 1: Number of hidden units in
encoder and decoder

In its original configuration MED has 100 hidden
units in both the encoder and the decoder. This
number was found to be good during initial ex-
periments. However, we want to investigate how
the number of hidden units in the RNNs can effect
the final accuracy on an MRI task. Therefore, we

Number of hidden units Exact-match accuracy
50 86.2%

100 88.4%
200 87.2%
400 87.3%

Table 5: Performance of MED for different numbers of hid-
den units in the encoder and decoder.

Embedding size Exact-match accuracy
100 86.7%
200 87.3%
300 88.4%
400 90.0%
500 90.3%

Table 6: Performance of MED for different embedding di-
mensions in the encoder and decoder.

train one ensemble for each of 50, 100, 200 and
400 hidden units. To reduce the number of pos-
sible different options and because it agrees with
MED’s original configuration, we define the num-
bers of hidden units in encoder and decoder to be
equal.

The evaluation in Table 5 shows that the best ac-
curacy is obtained for 100 hidden units. Lower re-
sults for fewer hidden units indicate that the model
does not have enough capacity to learn the pat-
terns in the data well. Lower results for more hid-
den units indicate that the model is overfitting the
training data.

5.2 Analysis 2: Size of the embeddings

We chose 300 to be the size of the character and
tag embeddings in our model for the Shared Task.
In this analysis, we want to systematically investi-
gate how MED performs for different embedding
sizes for the encoder and decoder embeddings. We
train the model with embeddings of the sizes 100,
200, 300, 400 and 500 and report the resulting ac-
curacies in Table 6.

The results show that the bigger the embeddings
get the more the perfomance improves. The best
accuracy is reached for 500-dimensional embed-
dings, i.e., the biggest embeddings in this analy-
sis. This suggests that we might have improved
our final results in the Shared Task even further
by using embeddings of a higher dimensionality.
However, this is also a trade-off between a gain
in accuracy and longer training time. Keeping in
mind that we had to train many single models, 300
was a reasonable choice for the embedding size,
with only 1.9% loss of perfomance compared to
500-dimensional embeddings.

57

Initialization Exact-match accuracy
Identity 90.5%

Identity + orthogonal 88.4%
Gaussian + orthogonal 89.7%

Table 7: Performance of MED for different initialization
types.

5.3 Analysis 3: Initialization
For the Shared Task, most weights of MED are
initialized with the identitiy matrix. An exception
to this are the weights in the decoder GRU which
are initialized using a random orthogonal matrix.
All biases are initialized to zero. We now compare
how MED’s final performance depends on the type
of initialization. For this, we train two additional
models: (i) we initialize all weights with the iden-
titiy matrix and (ii) we initialize all weights except
for the weights in the decoder GRU from a Gaus-
sian distribution. The weights in the decoder GRU
are again initialized with a random orthogonal ma-
trix.

The final accuracy of the three models can be
seen in Table 7. The random intialization leads
to better results than intitializing with the iden-
tity matrix together with a random orthogonal ma-
trix. However, the highest accuracy is reached by
initializing all weights with identity matrices. In
fact, the results are 2.1% better than MED’s origi-
nal performance. Thus, we would recommend this
initialization for future use of our model.

5.4 Analysis 4: One embedding per tag vs.
one embedding per tag combination

To keep the model flexible to handle tag com-
binations not present in the training set, we
split each tag combination into single tags,
e.g., pos=ADJ,case=ACC,gen=FEM,num=SG
becomes pos=ADJ, case=ACC, gen=FEM and
num=SG with each part having its own embedding
which is fed into the model.

We now compare to the performance of a rep-
resentation in which tags are “fused” and each tag
combination has only one single embedding. As
this is one of the most important design choices
for MED, we do this analysis for several languages
and additionally report the number of tag combi-
nations that are not seen during training.

Table 8 shows that unknown tag combinations
are generally not a problem with the exception
of Maltese. Nevertheless, there is a considerable
decrease in performance. The difference is espe-
cially big for languages with a lower performance

Language MED MED-tag-comb. Unk.
Arabic 88.8% 83.4% 0
Finnish 95.6% 95.2% 1
Georgian 97.3% 95.6% 0
German 95.1% 93.5% 1
Hungarian 99.3% 99.3% 0
Maltese 85.7% 77.1% 151
Navajo 91.1% 83.4% 1
Russian 88.4% 86.8% 1
Spanish 97.5% 97.0% 0
Turkish 97.6% 95.9% 2

Table 8: Exact match accuracy for the standard representa-
tion (MED) as well as the representation with one embedding
per tag combination (MED-tag-comb) per language. The last
column shows the number of samples that contain tag combi-
nations that appear in dev but not in train, either for the source
or the target form.

Tag order type Exact-match accuracy
MED 88.4%

MED-perm 86.4%

Table 9: Performance of MED when training on samples with
tags in always the same order (MED) and samples where the
tags are permuted inside each combination (MED-perm).

like Arabic, Maltese, Navajo and Russian. Lan-
guages with a general high accuracy do not lose
much accuracy when using one embedding per
tag combination. We hypothesize that the pat-
terns of these languages are easy enough to even
be learned with a harder representation. Over-
all, it seems that our representation with split-up
tag combinations is the better choice for MRI and
might even be a key component for MED’s suc-
cess in the Shared Task.

5.5 Analysis 5: The order of tags

In the representation we feed to MED, the order
of single tags inside a tag combination is always
fixed. We now investigate how much influence this
has on the final performance of the model; i.e., we
ask: is MRI harder or easier to learn if we permu-
tate the morphological tags? For this analysis, we
randomly shuffle the tags of each combination in
the training and development data (while still us-
ing the development set for testing).

Table 9 shows that learning seems to be easier
for non-permuted tags. Indeed, when keeping the
order of tags fixed, the system performance is 2%
better than for the random tag order. However, the
difference is not big. This might actually be differ-
ent for languages other than Russian as we did not
investigate from a linguistic point of view if the or-
der matters contentwise for any of the languages.

58

6 Related Work

Prior work on morphology includes morphologi-
cal segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998), different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,
2013; Eskander et al., 2013; Nicolai et al., 2015).
and work on morphological tagging and lemmati-
zation (Müller et al., 2015).

RNN encoder-decoder models, gated RNNs in
general as well as LSTMs were applied to sev-
eral NLP tasks including some on morphology
like morphological segmentation (Wang et al.,
2016) during the last years. Other tasks they
proved to be useful for are machine translation
(Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2014), parsing (Vinyals et al., 2015)
or speech recognition (Graves and Schmidhuber,
2005; Graves et al., 2013).

The most similar work to ours was probably
the one by Faruqui et al. (2015). Indeed, MED’s
design is very close to their model. However,
they trained one network for every tag pair; this
can negatively impact performance in a setting
with limited training data like the SIGMORPHON
2016 Shared Task. In contrast, we train a sin-
gle model for each language. This radically re-
duces the amount of training data needed for the
encoder-decoder because most MRI patterns oc-
cur in many tag pairs, so what is learned for one
can be transferred to others. In order to model all
tag pairs of the language together, we introduce an
explicit morphological representation that enables
the attention mechanism of the encoder-decoder to
generalize MRI patterns across tag pairs.

7 Conclusion

In this paper we described MED, our system for
the SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection as well as a training data
enhancement method based on paradigms. MED
is a powerful character-based encoder-decoder
RNN and its architecture is completely language-
independent, such that we trained the models for
all 10 languages of the Shared Task using the same
hyperparameters. MED establishes the state of
the art for the SIGMORPHON 2016 Shared Task,
scoring first in all of the 90 subtasks of the final
evaluation.

Furthermore, we presented an extended analy-
sis, evaluating different design choices for MED.
The results show that most of our initial settings

were good choices, especially the representation
of morphological tags. However, it might be
possible to further improve MED’s performance
increasing the size of the used embeddings and
choosing another initialization.

Acknowledgments

We are grateful to MILA (https://mila.
umontreal.ca) for making their neural ma-
chine translation model available to us. We further
acknowledge the financial support of Siemens for
this research.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proc. of EACL.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proc. of NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proc. of the 2016
Meeting of SIGMORPHON.

Hervé Déjean. 1998. Morphemes as necessary concept
for structures discovery from untagged corpora. In
Proc. of the Joint Conferences on New Methods in
Language Processing and CoNLL.

Markus Dreyer. 2011. A non-parametric model for the
discovery of inflectional paradigms from plain text
using graphical models over strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proc. of HLT-NAACL.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
Proc. of EMNLP.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2015. Morphological inflection genera-
tion using character sequence to sequence learning.
arXiv preprint arXiv:1512.06110.

59

Ian Goodfellow, David Warde-farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proc. of ICML.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proc. of ICASSP.

Margaret A Hafer and Stephen F Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion storage and retrieval, 10(11):371–385.

Zellig S Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proc. of ACL.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proc. of
EMNLP.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proc. of NAACL.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. In Proc. of ICLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. of NIPS.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proc. of NIPS.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
LSTM neural networks. In Proc. of AAAI.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

60

Chapter 4

One-Shot Neural Cross-Lingual
Transfer for Paradigm Completion

61

One-Shot Neural Cross-Lingual Transfer for Paradigm Completion

Katharina Kann
CIS

LMU Munich, Germany
kann@cis.lmu.de

Ryan Cotterell
Department of Computer Science
Johns Hopkins University, USA

ryan.cotterell@jhu.edu

Hinrich Schütze
CIS

LMU Munich, Germany
inquiries@cislmu.org

Abstract

We present a novel cross-lingual transfer
method for paradigm completion, the task
of mapping a lemma to its inflected forms,
using a neural encoder-decoder model, the
state of the art for the monolingual task.
We use labeled data from a high-resource
language to increase performance on a low-
resource language. In experiments on 21
language pairs from four different language
families, we obtain up to 58% higher ac-
curacy than without transfer and show that
even zero-shot and one-shot learning are
possible. We further find that the degree
of language relatedness strongly influences
the ability to transfer morphological knowl-
edge.

1 Introduction

Low-resource natural language processing (NLP)
remains an open problem for many tasks of interest.
Furthermore, for most languages in the world, high-
cost linguistic annotation and resource creation are
unlikely to be undertaken in the near future. In the
case of morphology, out of the 7000 currently spo-
ken (Lewis, 2009) languages, only about 200 have
computer-readable annotations (Sylak-Glassman
et al., 2015) – although morphology is easy to an-
notate compared to syntax and semantics. Transfer
learning is one solution to this problem: it exploits
annotations in a high-resource language to train a
system for a low-resource language. In this work,
we present a method for cross-lingual transfer of
inflectional morphology using an encoder-decoder
recurrent neural network (RNN). This allows for
the development of tools for computational mor-
phology with limited annotated data.

In many languages, individual lexical entries
may be realized as distinct inflections of a single

Present Past
Indicative Indicative

Sg Pl Sg Pl

1 sueño soñamos soñé soñamos
2 sueñas soñáis soñaste soñasteis
3 sueña sueñan soñó soñaron

Table 1: Partial inflection table for the Spanish verb
soñar.

lemma depending on the syntactic context. For ex-
ample, the 3SgPresInd of the English verbal lemma
to bring is brings. In morphologically rich lan-
guages, a lemma can have hundreds of individ-
ual forms. Thus, both generation and analysis
of such morphological inflections are active areas
of research in NLP and morphological process-
ing has been shown to be a boon to several other
down-stream applications, e.g., machine transla-
tion (Dyer et al., 2008), speech recognition (Creutz
et al., 2007), parsing (Seeker and Çetinoğlu, 2015),
keyword spotting (Narasimhan et al., 2014) and
word embeddings (Cotterell et al., 2016b), inter
alia. In this work, we focus on paradigm comple-
tion, a form of morphological generation that maps
a given lemma to a target inflection, e.g., (bring,
Past) 7→ brought (with Past being the target tag).

RNN sequence-to-sequence models (Sutskever
et al., 2014; Bahdanau et al., 2015) are the state
of the art for paradigm completion (Faruqui et al.,
2016; Kann and Schütze, 2016a; Cotterell et al.,
2016a). However, these models require a large
amount of data to achieve competitive perfor-
mance; this makes them unsuitable for out-of-the-
box application to paradigm completion in the
low-resource scenario. To mitigate this, we con-
sider transfer learning: we train an end-to-end neu-
ral system jointly with limited data from a low-
resource language and a larger amount of data from
a high-resource language. This technique allows

62

the model to apply knowledge distilled from the
high-resource training data to the low-resource lan-
guage as needed.

We conduct experiments on 21 language pairs
from four language families, emulating a low-
resource setting. Our results demonstrate success-
ful transfer of morphological knowledge. We show
improvements in accuracy and edit distance of up
to 58% (accuracy) and 4.62 (edit distance) over the
same model with only in-domain language data on
the paradigm completion task. We further obtain
up to 44% (resp. 14%) improvement in accuracy
for the one-shot (resp. zero-shot) setting, i.e., one
(resp. zero) in-domain language sample per target
tag. We also show that the effectiveness of morpho-
logical transfer depends on language relatedness,
measured by lexical similarity.

2 Inflectional Morphology and Paradigm
Completion

Many languages exhibit inflectional morphology,
i.e., the form of an individual lexical entry mutates
to show properties such as person, number or case.
The citation form of a lexical entry is referred to as
the lemma and the collection of its possible inflec-
tions as its paradigm. Tab. 1 shows an example of
a partial paradigm; we display several forms for the
Spanish verbal lemma soñar. We may index the
entries of a paradigm by a morphological tag, e.g.,
the 2SgPresInd form sueñas in Tab. 1. In generation,
the speaker must select an entry of the paradigm
given the form’s context. In general, the presence
of rich inflectional morphology is problematic for
NLP systems as it greatly increases the token-type
ratio and, thus, word form sparsity.

An important task in inflectional morphology is
paradigm completion (Durrett and DeNero, 2013;
Ahlberg et al., 2014; Nicolai et al., 2015; Cotterell
et al., 2015; Faruqui et al., 2016). Its goal is to
map a lemma to all individual inflections, e.g.,
(soñar, 1SgPresInd) 7→ sueño. There are good solu-
tions for paradigm completion when a large amount
of annotated training data is available (Cotterell
et al., 2016a).1 In this work, we address the low-
resource setting, a yet unsolved challenge.

1The SIGMORPHON 2016 shared task (Cotterell et al.,
2016a) on morphological reinflection, a harder generalization
of paradigm completion, found that ≥ 98% accuracy can be
achieved in many languages with neural sequence-to-sequence
models, improving the state of the art by 10%.

2.1 Transferring Inflectional Morphology

In comparison to other NLP annotations, e.g., part-
of-speech (POS) and named entities, morphologi-
cal inflection is especially challenging for transfer
learning: we can define a universal set of POS tags
(Petrov et al., 2012) or of entity types (e.g., coarse-
grained types like person and location or fine-
grained types (Yaghoobzadeh and Schütze, 2015)),
but inflection is much more language-specific. It
is infeasible to transfer morphological knowledge
from Chinese to Portuguese as Chinese does not
use inflected word forms. Transferring named
entity recognition, however, among Chinese and
European languages works well (Wang and Man-
ning, 2014a). But even transferring inflectional
paradigms from morphologically rich Arabic to
Portuguese seems difficult as the inflections often
mark dissimilar subcategories. In contrast, trans-
ferring morphological knowledge from Spanish to
Portuguese, two languages with similar conjuga-
tions and 89% lexical similarity, appears promis-
ing. Thus, we conjecture that transfer of inflec-
tional morphology is only viable among related
languages.

2.2 Formalization of the Task

We now offer a formal treatment of the cross-
lingual paradigm completion task and develop our
notation. Let Σ` be a discrete alphabet for lan-
guage ` and let T` be a set of morphological tags
for `. Given a lemma w` in `, the morphological
paradigm (inflectional table) π can be formalized
as a set of pairs

π(w`) =
{(
fk[w`], tk

)}
k∈T (w`)

(1)

where fk[w`] ∈ Σ+
` is an inflected form, tk ∈ T` is

its morphological tag and T (w`) is the set of slots
in the paradigm; e.g., a Spanish paradigm is:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

Paradigm completion consists of predicting miss-
ing slots in the paradigm π(w`) of a given lemma
w`.

In cross-lingual paradigm completion, we con-
sider a high-resource source language `s (lots of
training data available) and a low-resource target
language `t (little training data available). We
denote the source training examples as Ds (with
|Ds| = ns) and the target training examples as

63

Dt (with |Dt| = nt). The goal of cross-lingual
paradigm completion is to populate paradigms in
the low-resource target language with the help of
data from the high-resource source language, using
only few in-domain examples.

3 Cross-Lingual Transfer as Multi-Task
Learning

We describe our probability model for morpho-
logical transfer using terminology from multi-task
learning (Caruana, 1997; Collobert et al., 2011).
We consider two tasks, training a paradigm com-
pletor (i) for a high-resource language and (ii) for
a low-resource language. We want to train jointly,
so we reap the benefits of having related languages.
Thus, we define the log-likelihood as

L(θ)=
∑

(k,w`t
)∈Dt

log pθ (fk[w`t] | w`t , tk, λ`t) (2)

+
∑

(k,w`s)∈Ds

log pθ(fk[w`s] | w`s , tk, λ`s)

where we tie parameters θ for the two languages
together to allow the transfer of morphological
knowledge between languages. The λs are special
language tags, cf. Sec. 3.2. Each probability dis-
tribution pθ defines a distribution over all possible
realizations of an inflected form, i.e., a distribution
over Σ∗. For example, consider the related Ro-
mance languages Spanish and French; focusing on
one term from each of the summands in Eq. (2)
(the past participle of the translation of to visit in
each language), we arrive at

Lvisit(θ) = log pθ(visitado | visitar, PastPart, ES)

+ log pθ(visité | visiter, PastPart, FR) (3)

Our cross-lingual setting forces both transductions
to share part of the parameter vector θ, to represent
morphological regularities between the two lan-
guages in a common embedding space and, thus, to
enable morphological transfer. This is no different
from monolingual multi-task settings, e.g., jointly
training a parser and tagger for transfer of syntax.

Based on recent advances in neural transducers,
we parameterize each distribution as an encoder-
decoder RNN, as in (Kann and Schütze, 2016b). In
their setup, the RNN encodes the input and predicts
the forms in a single language. In contrast, we force
the network to predict two or more languages.

3.1 Encoder-Decoder RNN

We parameterize the distribution pθ as an encoder-
decoder gated RNN (GRU) with attention (Bah-
danau et al., 2015), the state-of-the-art solution for
the monolingual case (Kann and Schütze, 2016b).
A bidirectional gated RNN encodes the input se-
quence (Cho et al., 2014) – the concatenation of
(i) the language tag, (ii) the morphological tag of
the form to be generated and (iii) the characters of
the input word – represented by embeddings. The
input to the decoder consists of concatenations of−→
hi and

←−
hi , the forward and backward hidden states

of the encoder. The decoder, a unidirectional RNN,
uses attention: it computes a weight αi for each
hi. Each weight reflects the importance given to
that input position. Using the attention weights, the
probability of the output sequence given the input
sequence is:

p(y | x1, . . . , x|X|) =

|Y |∏

t=1

g(yt−1, st, ct) (4)

where y = (y1, . . . , y|Y |) is the output sequence (a
sequence of |Y | characters), x = (x1, . . . x|X|) is
the input sequence (a sequence of |X| characters),
g is a non-linear function, st is the hidden state of
the decoder and ct is the sum of the encoder states
hi, weighted by attention weights αi(st−1) which
depend on the decoder state:

ct =

|X|∑

i=1

αi(st−1)hi (5)

Fig. 1 shows the encoder-decoder. See Bahdanau
et al. (2015) for further details.

3.2 Input Format

Each source form is represented as a sequence of
characters; each character is represented as an em-
bedding. In the same way, each source tag is repre-
sented as a sequence of subtags, and each subtag
is represented as an embedding. More formally,
we define the alphabet Σ = ∪`∈LΣ` as the set of
characters in the languages in L, with L being the
set of languages in the given experiment. Next, we
define S as the set of subtags that occur as part of
the set of morphological tags T = ∪`∈LT`; e.g., if
1SgPresInd ∈ T , then 1, Sg, Pres, Ind ∈ S . Note that
the set of subtags S is defined as attributes from the
UNIMORPH schema (Sylak-Glassman, 2016) and,
thus, is universal across languages; the schema is

64

!
h1

!
h2

!
h3

!
hN

h1

h2

h3

hN

s o ñ r

s u e
s1 s2 s3 sN

y1= y2= y3=M

…
Figure 1: Encoder-decoder RNN for paradigm com-
pletion. The lemma soñar is mapped to a target
form (e.g., sueña). For brevity, language and target
tags are omitted from the input. Thickness of red
arrows symbolizes the degree to which the model
attends to the corresponding hidden state of the
encoder.

derived from research in linguistic typology.2 The
format of the input to our system is S+Σ+. The
output format is Σ+. Both input and output are
padded with distinguished BOW and EOW symbols.

What we have described is the representation
of Kann and Schütze (2016b). In addition, we
preprend a symbol λ ∈ L to the input string (e.g.,
λ = Es, also represented by an embedding), so
the RNN can handle multiple languages simulta-
neously and generalize over them. Thus, our final
input is of the form λS+Σ+.

4 Languages and Language Families

To verify the applicability of our method to a wide
range of languages, we perform experiments on
example languages from several different families.

Romance languages, a subfamily of Indo-
European, are widely spoken, e.g., in Europe and
Latin America. Derived from the common ances-
tor Vulgar Latin (Harris and Vincent, 2003), they
share large parts of their lexicon and inflectional
morphology; we expect knowledge among them to
be easily transferable.

2Note that while the subtag set is universal, which subtags
a language actually uses is language-specific; e.g., Spanish
does not mark animacy as Russian does. We contrast this with
the universal POS set (Petrov et al., 2012), where it is more
likely that we see all 17 tags in most languages.

PT CA IT FR

similarity to ES 89% 85% 82% 75%

Table 2: Lexical similarities for Romance (Lewis,
2009).

We experiment on Catalan, French, Italian, Por-
tuguese and Spanish. Tab. 2 shows that Spanish –
which takes the role of the low-resource language
in our experiments – is closely related with the
other four, with Portuguese being most similar. We
hypothesize that the transferability of morpholog-
ical knowledge between source and target corre-
sponds to the degree of lexical similarity; thus, we
expect Portuguese and Catalan to be more benefi-
cial for Spanish than Italian and French.

The Indo-European Slavic language family
has its origin in eastern-central Europe (Corbett
and Comrie, 2003). We experiment on Bulgar-
ian, Macedonian, Russian and Ukrainian (Cyrillic
script) and on Czech, Polish and Slovene (Latin
script). Macedonian and Ukranian are low-resource
languages, so we assign them the low-resource role.
For Romance and for Uralic, we experiment with
groups containing three or four source languages.
To arrive at a comparable experimental setup for
Slavic, we run two experiments, each with three
source and one target language: (i) from Russian,
Bulgarian and Czech to Macedonian; and (ii) from
Russian, Polish and Slovene to Ukrainian.

We hope that the paradigm completor learns sim-
ilar embeddings for, say, the characters “e” in Pol-
ish and “ε” in Ukrainian. Thus, the use of two
scripts in Slavic allows us to explore transfer across
different alphabets.

We further consider a non-Indo-European lan-
guage family, the Uralic languages. We exper-
iment on the three most commonly spoken lan-
guages – Finnish, Estonian and Hungarian (Abon-
dolo, 2015) – as well as Northern Sami, a language
used in Northern Scandinavia. While Finnish and
Estonian are closely related (both are members of
the Finnic subfamily), Hungarian is a more dis-
tant cousin. Estonian and Northern Sami are low-
resource languages, so we assign them the low-
resource role, resulting in two groups of exper-
iments: (i) Finnish, Hungarian and Estonian to
Northern Sami; (ii) Finnish, Hungarian and North-
ern Sami to Estonian.

Arabic (baseline) is a Semitic language (part
of the Afro-Asiatic family (Hetzron, 2013)) that is

65

spoken in North Africa, the Arabian Peninsula and
other parts of the Middle East. It is unrelated to all
other languages used in this work. Both in terms
of form (new words are mainly built using a tem-
platic system) and categories (it has tags such as
construct state), Arabic is very different. Thus, we
do not expect it to support morphological knowl-
edge transfer and use it as a baseline for all target
languages.

5 Experiments

We run four experiments on 21 distinct pairings of
languages to show the feasibility of morphological
transfer and analyze our method. We first discuss
details common to all experiments.

We keep hyperparameters during all experi-
ments (and for all languages) fixed to the following
values. Encoder and decoder RNNs each have 100
hidden units and the size of all subtag, character
and language embeddings is 300. For training we
use ADADELTA (Zeiler, 2012) with minibatch size
20. All models are trained for 300 epochs. Fol-
lowing Le et al. (2015), we initialize all weights in
the encoder, decoder and the embeddings except
for the GRU weights in the decoder to the identity
matrix. Biases are initialized to zero.

Evaluation metrics: (i) 1-best accuracy: the
percentage of predictions that match the true an-
swer exactly; (ii) average edit distance between
prediction and true answer. The two metrics differ
in that accuracy gives no partial credit and incorrect
answers may be drastically different from the anno-
tated form without incurring additional penalty. In
contrast, edit distance gives partial credit for forms
that are closer to the true answer.

5.1 Exp. 1: Transfer Learning for Paradigm
Completion

In this experiment, we investigate to what extent
our model transfers morphological knowledge from
a high-resource source language to a low-resource
target language. We experimentally answer three
questions. (i) Is transfer learning possible for mor-
phology? (ii) How much annotated data do we
need in the low-resource target language? (iii)
How closely related must the two languages be
to achieve good results?

Data. Based on complete inflection tables
from unimorph.org (Kirov et al., 2016), we cre-
ate datasets as follows. Each training set con-
sists of 12,000 samples in the high-resource source

50·20 50·21 50·22 50·23 50·24 50·25 50·26 50·27

Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Languages
Pt
Ca
It
Fr
Ar
Es

Figure 2: Learning curves showing the accuracy
on Spanish test when training on language λ ∈
{PT, CA, IT, FR, AR, ES}. Except for λ=ES, each
model is trained on 12,000 samples from λ and
“Number of Samples” (x-axis) of Spanish.

language and nt∈{50, 200} samples in the low-
resource target language. We create target lan-
guage dev and test sets of sizes 1600 and 10,000,
respectively.3 For Romance and Arabic, we cre-
ate learning curves for nt∈{100, 400, 800, 1600,
3200, 6400, 12000}. Due to the data available to
us, we use only verbs for the Romance and Uralic
language families, but nouns, verbs and adjectives
for the Slavic language family and Arabic. Lem-
mata and inflections are randomly selected from all
available paradigms.

Results and Discussion. Tab. 3 shows the ef-
fectiveness of transfer learning. There are two
baselines. (i) “0”: no transfer, i.e., we consider
only in-domain data; (ii) “AR”: Arabic, which is
unrelated to all target languages.

With the exception of the 200 sample case of
ET→SME, cross-lingual transfer is always better
than the two baselines; the maximum improvement
is 0.58 (0.58 vs. 0.00) in accuracy for the 50 sam-
ple case of CA→ES. More closely related source
languages improve performance more than distant
ones. French, the Romance language least simi-
lar to Spanish, performs worst for →ES. For the
target language Macedonian, Bulgarian provides
most benefit. This can again be explained by simi-
larity: Bulgarian is closer to Macedonian than the
other languages in this group. The best result for
Ukrainian is RU→UK. Unlike Polish and Slowe-
nian, Russian is the only language in this group
that uses the same script as Ukrainian, showing

3For Estonian, we use 7094 (not 12,000) train and 5000
(not 10,000) test samples as more data is unavailable.

66

Romance Slavic I Slavic II Uralic I Uralic II
source 0 AR PT CA IT FR 0 AR RU BG CS 0 AR RU PL SL 0 AR FI HU ET 0 AR FI HU SME
target →ES →MK →UK →SME →ET

5
0 acc ↑ 0.00 0.04 0.48 0.58 0.46 0.29 0.00 0.00 0.23 0.47 0.13 0.01 0.01 0.47 0.16 0.07 0.00 0.01 0.07 0.05 0.03 0.02 0.01 0.35 0.21 0.17

ED ↓ 5.42 4.06 0.85 0.80 1.15 1.82 5.71 5.59 1.61 0.87 2.32 5.23 4.80 0.77 2.14 3.12 6.21 5.47 2.88 3.46 3.71 4.50 4.51 1.55 2.19 2.60

2
0
0 acc ↑ 0.38 0.54 0.62 0.78 0.74 0.60 0.21 0.40 0.62 0.77 0.57 0.16 0.21 0.64 0.55 0.50 0.13 0.24 0.26 0.28 0.13 0.34 0.53 0.74 0.71 0.66

ED ↓ 1.37 0.87 0.57 0.39 0.44 0.82 1.93 1.12 0.68 0.36 0.72 2.09 1.60 0.49 0.73 0.82 2.94 1.89 1.78 1.61 2.46 1.47 0.98 0.41 0.48 0.62

Table 3: Accuracy (acc; the higher the better; indicated by ↑) and edit distance (ED; the lower the better;
indicated by ↓) of cross-lingual transfer learning for paradigm completion. The target language is indicated
by “→”, e.g., it is Spanish for “→ES”. Sources are indicated in the row “source”; “0” is the monolingual
case. Except for Estonian, we train on ns = 12,000 source samples and nt ∈ {50, 200} target samples
(as indicated by the row). There are two baselines in the table. (i) “0”: no transfer, i.e., we consider only
in-domain data; (ii) “AR”: the Semitic language Arabic is unrelated to all target languages and functions
as a dummy language that is unlikely to provide relevant information. All languages are denoted using the
official codes (SME=Northern Sami).

the importance of the alphabet for transfer. Still,
the results also demonstrate that transfer works
across alphabets (although not as well); this sug-
gests that similar embeddings for similar characters
have been learned. Finnish is the language that is
closest to Estonian and it again performs best as a
source language for Estonian. For Northern Sami,
transfer works least well, probably because the dis-
tance between sources and target is largest in this
case. The distance of the Sami languages from
the Finnic (Estonian, Finnish) and Ugric (Hungar-
ian) languages is much larger than the distances
within Romance and within Slavic. However, even
for Northern Sami, the worst performing language,
adding an additional language is still always bene-
ficial compared to the monolingual baseline.

Learning curves for Romance and Arabic fur-
ther support our finding that language similarity is
important. In Fig. 2, knowledge is transferred to
Spanish, and a baseline – a model trained only on
Spanish data – shows the accuracy obtained with-
out any transfer learning. Here, Catalan and Italian
help the most, followed by Portuguese, French and,
finally, Arabic. This corresponds to the order of
lexical similarity with Spanish, except for the per-
formance of Portuguese (cf. Tab. 2). A possible
explanation is the potentially confusing overlap
of lemmata between the two languages – cf. dis-
cussion in the next subsection. That the transfer
learning setup improves performance for the unre-
lated language Arabic as source is at first surprising.
However, adding new samples to a small training
set helps prevent overfitting (e.g., rote memoriza-
tion) even if the source is a morphologically unre-
lated language; effectively acting as a regularizer.

Following (Kann and Schütze, 2016b) we did
not use standard regularizers. To verify that the

effect of Arabic is mainly a regularization effect,
we ran a small monolingual experiment on ES (200
setting) with dropout 0.5 (Srivastava et al., 2014).
The resulting accuracy is 0.57, very similar to the
comparable Arabic number of 0.54 in the table.
The accuracy for dropout and 50 ES samples stays
at 0.00, showing that in extreme low-resource set-
tings an unrelated language might be preferable to
a standard regularizer.

Error Analysis for Romance. Even for only 50
Spanish instances, many inflections are correctly
produced in transfer. For, e.g., (criar, 3PlFutSbj)
7→ criaren, model outputs are: fr: criaren, ca:
criaren, es: crntaron, it: criaren, ar: ecriren, pt:
criaren (all correct except for the two baselines).
Many errors involve accents, e.g., (contrastar, 2Pl-
FutInd) 7→ contrastaréis; model outputs are: fr: con-
trastareis, ca: contrastareis, es: conterarı́an, it:
contrastareis, ar: contastarı́as, pt: contrastareis.
Some inflected forms are produced incorrectly by
all systems, mainly because they apply the inflec-
tional rules of the source language directly to the
target. Finally, the output of the model trained on
Portuguese contains a class of errors that are unlike
those of other systems. Example: (contraatacar,
1SgCond) 7→ contraatacarı́a with the following so-
lutions: fr: contratacarı́am, ca: contraatacarı́a, es:
concarnar, it: contratacé, ar: cuntatarı́a and pt:
contra-atacarı́a. The Portuguese model inserts “-”
because Portuguese train data contains contraat-
acar and “-” appears in its inflected form. Thus,
it seems that shared lemmata between the high-
resource source language and the low-resource tar-
get language hurt our model’s performance.4 An

4To investigate this in more detail we retrain the Portuguese
model with 50 Spanish samples, but exclude all lemmata
that appear in Spanish train/dev/test, resulting in only 3695

67

PT CA IT CA&PT CA&IT

→ES
50

acc ↑ 0.48 0.58 0.46 0.56 0.58
ED ↓ 0.85 0.80 1.15 0.67 0.82

2
00 acc ↑ 0.62 0.78 0.74 0.77 0.79

ED ↓ 0.47 0.39 0.44 0.34 0.31

Table 4: Results for transfer from pairs of source
languages to ES. Results from single languages are
repeated for comparison.

example for the generally improved performance
across languages for 200 Spanish training samples
is (contrastar, 2PlIndFut) 7→ contrastaréis: all mod-
els now produce the correct form.

5.2 Exp. 2: Multiple Source Languages

We now want to investigate the effect of multiple
source languages.

Data. Our experimental setup is similar to §5.1:
we use the same dev, test and low-resource train
sets as before. However, we limit this experiment
to the Romance language family and the high-
resource train data consists of samples from two
different source languages at once. Choosing those
which have the highest accuracies on their own, we
experiment with the following pairs: CA&PT, as
well as CA&IT. In order to keep all experiments
easily comparable, we use half of each source lan-
guage’s data, again ending up with a total of 12,000
high-resource samples.

Results and Discussion. Results are shown in
Tab. 4. Training on two source languages improves
over training on a single one. Increases in accuracy
are minor, but edit distance is reduced by up to
0.13 (50 low-resource samples) and 0.08 (200 low-
resource samples). That using data from multiple
languages is beneficial might be due to a weaker
tendency of the final model to adapt wrong rules
from the source language, since different alterna-
tives are presented during training.

5.3 Exp. 3: Zero-Shot/One-Shot Transfer

In §5.1, we investigated the relationship between in-
domain (target) training set size and performance.
Here, we look at the extreme case of training set
sizes 1 (one-shot) and 0 (zero-shot) for a tag. We
train our model on a single sample for half of the
tags appearing in the low-resource language, i.e.,

training samples. Accuracy on test increases by 0.09 despite
the reduced size of the training set.

0 PT CA IT FR AR

→ES

on
e

sh
ot acc ↑ 0.00 0.44 0.39 0.23 0.13 0.00

ED ↓ 6.26 1.01 1.27 1.83 2.87 7.00

ze
ro

sh
ot acc ↑ 0.00 0.14 0.08 0.01 0.02 0.00

ED ↓ 7.18 1.95 1.99 3.12 4.27 7.50

Table 5: Results for one-shot and zero-shot transfer
learning. Formatting is the same as for Tab. 3. We
still use ns = 12000 source samples. In the one-
shot (resp. zero-shot) case, we observe exactly one
form (resp. zero forms) for each tag in the target
language at training time.

if T` is the set of morphological tags for the target
language, train set size is |T`|/2. As before, we add
12,000 source samples.

We report one-shot accuracy (resp. zero-shot ac-
curacy), i.e., the accuracy for samples with a tag
that has been seen once (resp. never) during train-
ing. Note that the model has seen the individual
subtags each tag is composed of.5

Data. Now, we use the same dev, test and high-
resource train sets as in §5.1. However, the low-
resource data is created in the way specified above.
To remove a potentially confounding variable, we
impose the condition that no two training samples
belong to the same lemma.

Results and Discussion. Tab. 5 shows that the
Spanish and Arabic systems do not learn anything
useful for either half of the tags. This is not sur-
prising as there is not enough Spanish data for
the system to generalize well and Arabic does not
contribute exploitable information. The systems
trained on French and Italian, in contrast, get a non-
zero accuracy for the zero-shot case as well as 0.13
and 0.23, respectively, in the one-shot case. This
shows that a single training example is sometimes
sufficient for successful generation although gener-
alization to tags never observed is rarely possible.
Catalan and Portuguese show the best performance
in both settings; this is intuitive since they are the
languages closest to the target (cf. Tab. 2). In fact,
adding Portuguese to the training data yields an ab-
solute increase in accuracy of 0.44 (0.44 vs. 0.00)
for one-shot and 0.14 (0.14 vs. 0.00) for zero-shot
with corresponding improvements in edit distance.

Overall, this experiment shows that with transfer
learning from a closely related language the per-

5It is very unlikely that due to random selection a subtag
will not be in train; this case did not occur in our experiments.

68

formance of zero-shot morphological generation
improves over the monolingual approach, and, in
the one-shot setting, it is possible to generate the
right form nearly half the time.

5.4 Exp. 4: True Transfer vs. Other Effects

We would like to separate the effects of regulariza-
tion that we saw for Arabic from true transfer.

To this end, we generate a random cipher (i.e.,
a function γ : Σ ∪ S 7→ Σ ∪ S) and apply it
to all word forms and morphological tags of the
high-resource train set; target language data are not
changed. Ciphering makes it harder to learn true
“linguistic” transfer of morphology. Consider the
simplest case of transfer: an identical mapping in
two languages, e.g., (visitar, 1SgPresInd) 7→ visito
in both Portuguese and Spanish. If we transform
Portuguese using the cipher γ(iostv...) = kltqa...,
then visito becomes aktkql in Portuguese and its tag
becomes similarly unrecognizable as being iden-
tical to the Spanish tag 1SgPresInd. Our intuition
is that ciphering will disrupt transfer of morphol-
ogy.6 On the other hand, the regularization effect
we observed with Arabic should still be effective.

Data. We use the Portuguese-Spanish and
Arabic-Spanish data from §5.1. We generate a ran-
dom cipher and apply it to morphological tags and
word forms for Portuguese and Arabic. The lan-
guage tags are kept unchanged. Spanish is also not
changed. For comparability with Tab. 3, we use the
same dev and test sets as before.

Results and Discussion. Tab. 6 shows that per-
formance of PT→ES drops a lot: from 0.48 to 0.09
for 50 samples and from 0.62 to 0.54 for 200 sam-
ples. This is because there are no overt similarities
between the two languages left after applying the
cipher, e.g., the two previously identical forms vis-
ito are now different.

The impact of ciphering on AR→ES varies:
slightly improved in one case (0.54 vs. 0.56),
slightly worse in three cases. We also apply the
cipher to the tags and Arabic and Spanish share sub-
tags, e.g., Sg. Just the knowledge that something
is a subtag is helpful because subtags must not be
generated as part of the output. We can explain the
tendency of ciphering to decrease performance on
AR→ES by the “masking” of common subtags.

6Note that ciphered input is much harder than transfer
between two alphabets (Latin/Cyrillic) because it creates am-
biguous input. In the example, Spanish “i” is totally different
from Portuguese “i” (which is really “k”), but the model must
use the same representation.

0→ES PT→ES AR→ES

orig ciph orig ciph

5
0 acc ↑ 0.00 0.48 0.09 0.04 0.02

ED ↓ 5.42 0.85 3.25 4.06 4.62

2
0
0 acc ↑ 0.38 0.62 0.54 0.54 0.56

ED ↓ 1.37 0.57 0.95 0.87 0.93

Table 6: Results for ciphering. “0→ES” and “orig”
are original results, copied from Tab. 3; “ciph” is
the result after the cipher has been applied.

For 200 samples and ciphering, there is no clear
difference in performance between Portuguese and
Arabic. However, for 50 samples and ciphering,
Portuguese (0.09) seems to perform better than Ara-
bic (0.02) in accuracy. Portuguese uses suffixation
for inflection whereas Arabic is templatic and in-
flectional changes are not limited to the end of the
word. This difference is not affected by ciphering.
Perhaps even ciphered Portugese lets the model
learn better that the beginnings of words just need
to be copied. For 200 samples, the Spanish dataset
may be large enough, so that ciphered Portuguese
no longer helps in this regard.

Comparing no transfer with transfer from a ci-
phered language to Spanish, we see large perfor-
mance gains, at least for the 200 sample case:
0.38 (0→ES) vs. 0.54 (PT→ES) and 0.56 (AR→ES).
This is evidence that our conjecture is correct that
the baseline Arabic mainly acts as a regularizer that
prevents the model from memorizing the training
set and therefore improves performance. So per-
formance improves even though no true transfer of
morphological knowledge takes place.

6 Related Work

Cross-lingual transfer learning has been used
for many tasks, e.g., automatic speech recognition
(Huang et al., 2013), parsing (Cohen et al., 2011;
Søgaard, 2011; Naseem et al., 2012; Ammar et al.,
2016), language modeling (Tsvetkov et al., 2016),
entity recognition (Wang and Manning, 2014b) and
machine translation (Johnson et al., 2016; Ha et al.,
2016).

One straightforward method is to translate
datasets and then train a monolingual model (For-
tuna and Shawe-Taylor, 2005; Olsson et al., 2005).
Also, aligned corpora have been used to project
information from annotations in one language to
another (Yarowsky et al., 2001; Padó and Lapata,
2005). The drawback is that machine translation

69

errors cause errors in the target. Therefore, alter-
native methods have been proposed, e.g., to port a
model trained on the source language to the target
language (Shi et al., 2010).

In the realm of morphology, Buys and Botha
(2016) recently adapted methods for the training
of POS taggers to learn weakly supervised mor-
phological taggers with the help of parallel text.
Snyder and Barzilay (2008a, 2008b) developed
a non-parametric Bayesian model for morpholog-
ical segmentation. They performed identification
of cross-lingual abstract morphemes and segmen-
tation simultaneously and reported, similar to us,
best results for related languages.

Work on paradigm completion has recently
been encouraged by the SIGMORPHON 2016
shared task on morphological reinflection (Cot-
terell et al., 2016a). Some work first applies an
unsupervised alignment model to source and tar-
get string pairs and then learns a string-to-string
mapping (Durrett and DeNero, 2013; Nicolai et al.,
2015), using, e.g., a semi-Markov conditional ran-
dom field (Sarawagi and Cohen, 2004). Encoder-
decoder RNNs (Aharoni et al., 2016; Faruqui et al.,
2016; Kann and Schütze, 2016b), a method which
our work further develops for the cross-lingual sce-
nario, define the current state of the art.

Encoder-decoder RNNs were developed in par-
allel by Cho et al. (2014) and Sutskever et al. (2014)
for machine translation and extended by Bahdanau
et al. (2015) with an attention mechanism, support-
ing better generalization. They have been applied
to NLP tasks like speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013), parsing
(Vinyals et al., 2015) and segmentation (Kann et al.,
2016).

More recently, a number of papers have used
encoder-decoder RNNs in multitask and transfer
learning settings; this is mainly work in machine
translation: (Dong et al., 2015; Zoph and Knight,
2016; Chu et al., 2017; Johnson et al., 2016; Lu-
ong et al., 2016; Firat et al., 2016; Ha et al., 2016),
inter alia. Each of these papers has both similar-
ities and differences with our approach. (i) Most
train several distinct models whereas we train a
single model on input augmented with an explicit
encoding of the language (similar to (Johnson et al.,
2016)). (ii) Let k and m be the number of dif-
ferent input and output languages. We address
the case k ∈ {1, 2, 3} and m = k. Other work
has addressed cases with k > 3 or m > 3; this

would be an interesting avenue of future research
for paradigm completion. (iii) Whereas training
RNNs in machine translation is hard, we only expe-
rienced one difficult issue in our experiments (due
to the low-resource setting): regularization. (iv)
Some work is word- or subword-based, our work is
character-based. The same way that similar word
embeddings are learned for the inputs cow and
vache (French for “cow”) in machine translation,
we expect similar embeddings to be learned for sim-
ilar Cyrillic/Latin characters. (v) Similar to work in
machine translation, we show that zero-shot (and,
by extension, one-shot) learning is possible.

(Ha et al., 2016) (which was developed in par-
allel to our transfer model although we did not
prepublish our paper on arxiv) is most similar to
our work. Whereas Ha et al. (2016) address ma-
chine translation, we focus on the task of paradigm
completion in low-resource settings and establish
the state of the art for this problem.

7 Conclusion

We presented a cross-lingual transfer learning
method for paradigm completion, based on an RNN
encoder-decoder model. Our experiments showed
that information from a high-resource language can
be leveraged for paradigm completion in a related
low-resource language. Our analysis indicated that
the degree to which the source language data helps
for a certain target language depends on their re-
latedness. Our method led to significant improve-
ments in settings with limited training data – up
to 58% absolute improvement in accuracy – and,
thus, enables the use of state-of-the-art models for
paradigm completion in low-resource languages.

8 Future Work

In the future, we want to develop methods to make
better use of languages with different alphabets or
morphosyntactic features, in order to increase the
applicability of our knowledge transfer method.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments. We are grateful to
Siemens and Volkswagenstiftung for their generous
support. This research would not have been possi-
ble without the organizers of the SIGMORPHON
shared task, especially John Sylak-Glassman and
Christo Kirov, who created the resources we use.

70

References
Daniel Abondolo. 2015. The Uralic Languages. Rout-

ledge.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In EACL.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. TACL 4:431–444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Jan Buys and Jan A Botha. 2016. Cross-lingual mor-
phological tagging for low-resource languages. In
ACL.

Rich Caruana. 1997. Multitask learning. Machine
Learning 28(1):41–75.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint 1409.1259 .

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint 1701.03214 .

Shay B Cohen, Dipanjan Das, and Noah A Smith. 2011.
Unsupervised structure prediction with non-parallel
multilingual guidance. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR 12(Aug):2493–2537.

Greville Corbett and Bernard Comrie. 2003. The
Slavonic Languages. Routledge.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. TACL 3:433–447.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In ACL.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti
Varjokallio, Ebru Arisoy, Murat Saraçlar, and An-
dreas Stolcke. 2007. Analysis of morph-based
speech recognition and the modeling of out-of-
vocabulary words across languages. In NAACL-
HLT .

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL-IJCNLP.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
NAACL.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
In ACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL.

Orhan Firat, KyungHyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. CoRR
abs/1601.01073.

Blaz Fortuna and John Shawe-Taylor. 2005. The use of
machine translation tools for cross-lingual text min-
ing. In ICML Workshop on Learning with Multiple
Views.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In IEEE.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. arXiv
preprint 1611.04798 .

Martin Harris and Nigel Vincent. 2003. The Romance
languages. Routledge.

Robert Hetzron. 2013. The Semitic Languages. Rout-
ledge.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and
n Gong. 2013. Cross-language knowledge transfer
using multilingual deep neural network with shared
hidden layers. In IEEE.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. CoRR
abs/1611.04558.

71

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In EMNLP.

Katharina Kann and Hinrich Schütze. 2016a. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Katharina Kann and Hinrich Schütze. 2016b. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In ACL.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of wiktionary morphological
paradigms. In LREC.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

M Paul Lewis, editor. 2009. Ethnologue: Languages
of the World. SIL International, Dallas, Texas, 16
edition.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword
spotting. In EMNLP.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In ACL.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL.

J Scott Olsson, Douglas W Oard, and Jan Hajič. 2005.
Cross-language text classification. In ACM SIGIR.

Sebastian Padó and Mirella Lapata. 2005. Cross-
linguistic projection of role-semantic information.
In HLT/EMNLP.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In LREC.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In NIPS.

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morpho-
logical segmentation and syntactic analysis. TACL
3:359–373.

Lei Shi, Rada Mihalcea, and Mingjun Tian. 2010.
Cross language text classification by model transla-
tion and semi-supervised learning. In EMNLP.

Benjamin Snyder and Regina Barzilay. 2008a. Cross-
lingual propagation for morphological analysis. In
AAAI.

Benjamin Snyder and Regina Barzilay. 2008b. Un-
supervised multilingual learning for morphological
segmentation. In ACL-HLT .

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In ACL-
HLT .

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (uni-
morph schema). Technical report, Department of
Computer Science, Johns Hopkins University.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In ACL-
IJCNLP.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris
Dyer. 2016. Polyglot neural language models: A
case study in cross-lingual phonetic representation
learning. In NAACL-HLT .

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In NIPS.

Mengqiu Wang and Christopher D Manning. 2014a.
Cross-lingual projected expectation regularization
for weakly supervised learning. TACL 2:55–66.

Mengqiu Wang and Christopher D Manning. 2014b.
Cross-lingual pseudo-projected expectation regular-
ization for weakly supervised learning. TACL 2:55–
66.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using contex-
tual information. In EMNLP.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora. In
HLT .

Matthew D Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR abs/1212.5701.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In NAACL-HLT .

72

Chapter 5

Unlabeled Data for Morphological
Generation With Character-Based
Sequence-to-Sequence Models

73

Unlabeled Data for Morphological Generation With Character-Based
Sequence-to-Sequence Models

Katharina Kann and Hinrich Schütze
LMU Munich, Germany

kann@cis.lmu.de

Abstract

We present a semi-supervised way of
training a character-based encoder-
decoder recurrent neural network for
morphological reinflection, the task
of generating one inflected word form
from another. This is achieved by using
unlabeled tokens or random strings as
training data for an autoencoding task,
adapting a network for morphological
reinflection, and performing multi-task
training. We thus use limited labeled
data more effectively, obtaining up to
9.9% improvement over state-of-the-art
baselines for 8 different languages.

1 Introduction

Morphologically rich languages use inflection—
the adaptation of a surface form to its syntactic
context—to mark the properties of a word, e.g.,
gender or number of nouns or tense of verbs.
This drastically increases the type-token ratio, and
thus negatively effects natural language process-
ing (NLP), making morphological analysis and
generation an important field of research.

In this work, we focus on morphological rein-
flection (MRI), the task of mapping one inflected
form of a lemma to another, given the morpholog-
ical properties of the target, e.g., (smiling, Past-
Part) → smiled. The lemma does not have to
be known. Recently, there have been some ad-
vances on the topic, motivated by the SIGMOR-
PHON 2016 shared task on morphological rein-
flection (Cotterell et al., 2016) and the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection (Cotterell et al., 2017).
In 2016, neural sequence-to-sequence models,
specifically attention-based encoder-decoder mod-
els, outperformed all other approaches by a wide

Figure 1: Examples for labeled and unlabeled input. The
content of the red boxes (very left in both rows) signalizes if
the sample belongs to the MRI task or the autoencoding task.

margin (Faruqui et al., 2016; Kann and Schütze,
2016). However, those models require a lot of
training data, while in contrast many morpholog-
ically rich languages are low-resource, and little
work has been done so far on neural models for
morphology in settings with limited training data.
This makes sequence-to-sequence models not ap-
plicable to morphological generation in most lan-
guages.

An abundance of unlabeled data, in contrast,
can be assumed available for each language in
the focus of NLP. Thus, we propose a semi-
supervised training method for a state-of-the-art
encoder-decoder network for MRI using both la-
beled and unlabeled data, mitigating the need for
time-expensive annotations. We achieve this by
treating unlabeled words as training examples for
an autoencoding (Vincent et al., 2010) task and
multi-task training (cf. Figure 1). We intuit the
following reasons why this should be beneficial:
(i) The decoder’s character language model can
be trained using unlabeled data. (ii) Training on
a second task reduces the problem of overfitting.
(iii) By forcing the model to additionally learn au-
toencoding, we give it a strong prior to copy the
input string. This might be advantageous as often
many forms of a paradigm share the same stem,
e.g., smiling and smiled. In order to investigate
the importance of the latter, we further experiment
with autoencoding of random strings and find that
for our experimental settings and non-templatic
languages the performance gain is comparable to
using corpus words.

74

2 Model Description

The log-likelihood for joint training on the tasks
of MRI and autoencoding is:

L(θ)=
∑

(fs,ft,t)∈T
log pθ (ft | e(fs, t)) (1)

+
∑

w∈W
log pθ(w | e(w)),

T is the MRI training data, with each example
consisting of a source form fs, a target form ft
and a target tag t. W denotes a set of words in the
language of the system. The encoding function e
depends on θ. The parameters θ are shared across
the two tasks, resulting in a share of information.
We obtain this by giving our model data from both
sets at the same time, and marking each example
with a task-specific input symbol, cf. Figure 1.
Following (Kann and Schütze, 2016), we employ
a neural encoder-decoder model.

Encoder. For the input of the encoder, we adapt
the format by Kann and Schütze (2016), but mod-
ify it to be able to handle unlabeled data: Given
the set of morphological subtags M each target tag
is composed of (e.g., the tag 1SgPresInd contains
the subtags 1, Sg, Pres and Ind), and the alphabet
Σ of the language of application, our input is of the
form B[A/M∗]Σ∗E, i.e., it consists of either a se-
quence of subtags or the symbol A signaling that
the input is not annotated and should be autoen-
coded, and (in both cases) the character sequence
of the input word. B and E are start and end sym-
bols. Each part of the input is represented by an
embedding.

We then encode the input x = x1, x2, . . . , xTx

using a bidirectional gated recurrent neural net-
work (GRU) (Cho et al., 2014b), i.e.,

−→
h i =

f
(−→
h i−1, xi

)
and
←−
h i = f

(←−
h i+1, xi

)
, with f

being the update function of the hidden layer. For-
ward and backward hidden states are concatenated
to obtain the input hi for the decoder.

Decoder. The decoder is an attention-based
GRU, defining a probability distribution over
strings in Σ∗:

p(y | x) =

Ty∏

t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using

the encoder hidden states together with attention
weights. A detailed description of the model can
be found in Bahdanau et al. (2015).

3 Experiments

Dataset. We experiment on the task 3 dataset
of the SIGMORPHON 2016 shared task on MRI
(Cotterell et al., 2016) and all standard languages
provided: Arabic, Finnish, Georgian, German,
Navajo, Russian, Spanish and Turkish. German,
Spanish and Russian are suffixing and exhibit stem
changes. Russian differs from the other two in
that those stem changes are consonantal and not
vocalic. Finnish and Turkish are agglutinating,
almost exclusively suffixing and have vowel har-
mony systems. Georgian uses both prefixiation
and suffixiation. In contrast, Navajo mainly makes
use of prefixes with consonant harmony among
its sibilants. Finally, Arabic is a templatic, non-
concatenative language.

For each language, we further add randomly
sampled words from the respective Wikipedia
dumps. We exclude tokens that are not exclu-
sively composed from characters of the language’s
alphabet, e.g., digits, or do not appear at least 2
times in the corpus. The exact amount of unla-
baled data added is treated as a hyperparameter
depending on the number of available annotated
examples and optimized on the development set,
cf. Section 4.1. Evaluation is done on the official
shared task test set.

Training, hyperparameters and evaluation.
We mainly adopt the hyperparameters of (Kann
and Schütze, 2016). Embeddings are 300-
dimensional, the size of all hidden layers is 100
and for training we use ADADELTA (Zeiler, 2012)
with a batch size of 20. We train all models which
use 1

8 or more of the labeled data for 200 epochs,
and models that see 1

16 and 1
32 of the original data

for 400 and 800 epochs, respectively. In all cases,
we apply the last model for testing.

We evaluate using two metrics: accuracy and
edit distance. Accuracy reports the percentage of
completely correct solutions, while the edit dis-
tance between the system’s guess and the gold so-
lution gives credit to systems that produce forms
that are close to the right form.

Baselines. We compare our system to three
baselines: The first one is MED1, the winning sys-

1http://cistern.cis.lmu.de/med/

75

ar fi ka de nv ru sp tu

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

SI
G

16

SI
G

17

M
E

D

O
ur

1
4

acc .188 .094 .716 .722 .293 .325 .809 .854 .814 .831 .910 .912 .721 .687 .882 .888 .317 .403 .706 .711 .641 .638 .825 .824 .558 .539 .939 .942 .181 .129 .904 .910
ED 2.26 3.06 0.94 0.92 1.90 1.47 0.47 0.35 0.42 0.38 0.28 0.30 0.47 0.54 0.33 0.31 2.04 1.95 1.01 0.97 0.69 0.65 0.43 0.43 0.96 0.97 0.15 0.15 2.92 3.33 0.27 0.23

1
8

acc .104 .063 .600 .640 .207 .227 .687 .732 .798 .791 .883 .894 .618 .593 .851 .873 .247 .350 .516 .619 .516 .523 .766 .772 .441 .409 .896 .916 .120 .080 .846 .832
ED 2.76 3.32 1.37 1.20 2.32 1.91 0.85 0.77 0.47 0.44 0.45 0.42 0.67 0.73 0.42 0.35 2.40 2.23 1.75 1.40 0.95 0.92 0.60 0.60 1.36 1.35 0.26 0.22 3.42 3.80 0.47 0.54

1
16

acc .052 .043 .470 .533 .126 .149 .543 .620 .709 .751 .860 .875 .504 .495 .791 .839 .204 .329 .350 .473 .384 .422 .645 .695 .317 .308 .807 .862 .070 .049 .717 .739
ED 3.36 3.53 1.80 1.59 2.84 2.34 1.33 1.16 0.62 0.50 0.58 0.52 0.90 0.94 0.60 0.45 2.71 2.41 2.63 2.05 1.23 1.17 0.94 0.82 1.80 1.70 0.47 0.36 3.81 4.09 0.99 0.94

1
32

acc .028 .027 .263 .381 .073 .088 .314 .402 .595 .648 .818 .852 .384 .386 .661 .722 .174 .303 .174 .369 .249 .293 .406 .502 .196 .245 .657 .756 .044 .028 .524 .571
ED 3.73 3.73 2.79 2.22 3.18 2.76 2.48 2.00 0.87 0.70 0.76 0.65 1.15 1.18 1.01 0.90 2.94 2.65 3.85 2.73 1.61 1.45 1.71 1.38 2.22 2.06 0.97 0.62 4.19 4.27 1.98 1.80

Table 1: Accuracy (the higher the better) and edit distance (the lower the better) for our system and the three baselines on
the official test set of task 3 of the SIGMORPHON 2016 shared task. Only the indicated amount (row labels) of the original
training data is used, emulating a low-resource setting. Best results for each language in bold.

tem of the 2016 shared task. The network architec-
ture is the same as in our system, but it is trained
exclusively on labeled data. Thus, we expect it to
suffer stronger from a lack of resources.

The second baseline is the official SIGMOR-
PHON 2016 shared task baseline (SIG16) (Cot-
terell et al., 2016), which is similar in spirit to the
system described by Nicolai et al. (2015). The
system treats the prediction of edit operations to
be performed on the input string as a sequential
decision-making problem, greedily choosing each
edit action given the previously chosen actions.
The selection of operations is made by an averaged
perceptron, using the binary features described in
(Cotterell et al., 2016).2

Third, we compare to the baseline system of the
CoNLL-SIGMORPHON 2017 shared task on uni-
versal morphological reinflection (SIG17) (Cot-
terell et al., 2017), which is extremely suitable for
low-resource settings. It splits all source and tar-
get forms in the training set into prefix, middle
part and suffix, and uses those to find prefix or suf-
fix substitution rules. Every evaluation example is
searched for the longest contained prefix or suffix
and the rule belonging to the affix and given target
tag is applied to obtain the output.

Results and discussion. As shown in Table 1,
additionally training on unlabeled examples im-
proves the performance of the encoder-decoder
network for nearly all settings and languages, es-
pecially for the very low-resource scenarios with
1
16 and 1

32 of the training data. The biggest
increase in accuracy can be seen for Russian
and Spanish, both in the 1

32 setting, with 0.0963
(0.5023− 0.4060) and 0.0992 (0.7564− 0.6572),
respectively. For the settings with bigger amounts

2Note that our use of the system differs from the offi-
cial baseline in that we perform a direct form-to-form map-
ping. The shared task system predicts first form-to-lemma
and then lemma-to-form. However, we assume no lemmata
to be given, and thus are unable to train such a system.

of training data available, the unlabeled data does
not change performance a lot. This was ex-
pected, as the model already gets enough infor-
mation from the annotated data. However, semi-
supervised training never hurts performance, and
can thus always be employed. Overall, our semi-
supervised training method shows to be a useful
extension of the original system.

Furthermore, there are only two cases—
Georgian, 1

16 , and Navajo, 1
32—where any of the

SIGMORPHON baselines outperforms the neural
methods. This clearly shows the superiority of
neural networks for the task and emphasizes the
need to reduce the amount of labeled training data
required for their training.

4 Analyses

4.1 Amount of Unlabeled Data

We now consider the amount of unlabeled exam-
ples as a function of the number of annotated ex-
amples. Data and training regime are the same as
in Section 3. This analysis is performed on the de-
velopment set and we report the highest accuracy
obtained during training.

The resulting accuracies for Arabic and Ger-
man can be seen in Figure 2. The other languages
behave similarly to German. The loss of perfor-
mance for reducing the training data varies a lot
between languages, depending on how regular and
thus ”easy to learn” those are. Concerning the
amount of unlabeled examples, it seems that even
though in single cases other ratios are slightly bet-
ter, using 4 times more unlabeled examples mostly
obtains highest accuracy. Thus, a general rule
could be that the more additional examples are
used the better. The only exception is Arabic in
the 1

32 setting, where using half as many unlabeled
as labeled examples obtains much better results.
We explain this with the Semitic language being
templatic. Since words in Arabic paradigms do

76

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1/32 1/16 1/8 1/4

+0
+0.5*ann.

+1*ann.
+2*ann.
+4*ann.

Arabic

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1/32 1/16 1/8 1/4

+0
+0.5*ann.

+1*ann.
+2*ann.
+4*ann.

German

Figure 2: Comparison of different amounts of unlabeled data,
sorted by the amount of labeled training examples in portions
of the original data. Evaluated on the development set.

not share a connected stem, we expect that giving
the model too much bias to copy might be harm-
ing performance in low-resource settings. How-
ever, even for low-resource Arabic, using a ratio
of 1:4 of labeled to unlabeled examples still yields
a better performance than not using unlabeled ex-
amples at all. Thus, we can conclude that if aiming
for a language-independent setup, this is a good
ratio.

4.2 Autoencoding of Random Strings
We expect the network to benefit from a bias to
copy strings. This suggests that any random com-
bination of characters from the language’s alpha-
bet could be autoencoded in order to improve the
performance in low-resource settings. To verify
this, we train models on new datasets with 1

32 of
the labeled examples from task 3 of the SIGMOR-
PHON 2016 shared task and the optimal number
of unlabeled examples for each language, cf. §4.1.
However, the unlabeled examples are now random
strings of a length between 3 and 20. All mod-
els are trained as before. Accuracies on the offi-
cial test sets are shown in Table 2, and compared
to (i) training without unlabeled examples and (ii)
the data being enhanced by corpus words. Sev-
eral aspects of the results are eye-catching. First,
for Arabic, the gap to the performance with cor-

ar fi ka de nv ru es tu
MED .2628 .3144 .8184 .6608 .1738 .4060 .6572 .5238
MED+corpus .3811 .4015 .8523 .7221 .3688 .5023 .7564 .5713
MED+random .3064 .3793 .8531 .7313 .3250 .4958 .7676 .5706

Table 2: Accuracies for MED (Kann and Schütze (2016)),
MED+corpus and MED+random. Descriptions in the text.

pus words is the biggest, showing that indeed the
tendency of languages to copy the stem when in-
flecting is playing an important role. Second, for
some languages the performance gains for corpus
words and random words are comparable. Third,
the performance of random strings is closer to the
performance of corpus words the higher the over-
all accuracy is. The additional unlabeled examples
might be acting as regularizers in this case.

Overall, this experiment shows clearly that giv-
ing the model a bias to copy strings helps for in-
flection in non-templatic languages, and that ran-
dom strings can improve a network for MRI.

5 Related Work

For the SIGMORPHON 2016 and the CoNLL-
SIGMORPHON 2017 shared tasks (Cotterell
et al., 2016, 2017), multiple MRI systems were
developed, e.g., (Nicolai et al., 2016; Taji et al.,
2016; Kann and Schütze, 2016; Aharoni et al.,
2016; Östling, 2016; Makarov et al., 2017).
Encoder-decoder neural networks (Cho et al.,
2014a; Sutskever et al., 2014; Bahdanau et al.,
2015) performed best, such that we extend them
in this work. Earlier work on paradigm comple-
tion included (Faruqui et al., 2016; Nicolai et al.,
2015; Durrett and DeNero, 2013). Work directly
tackling MRI was more rare, e.g., (Dreyer and Eis-
ner, 2009). Our work relates to the line of re-
search on minimally supervised and unsupervised
methods for morphology, e.g., Creutz and Lagus
(2007) and Goldsmith (2001) presenting the un-
supervised morphological segmentation systems
Morfessor and Linguistica, or (Dreyer and Eis-
ner, 2011; Poon et al., 2009; Snyder and Barzilay,
2008). However, none of those focused directly on
MRI or on training neural networks for morphol-
ogy. The only case we know of where this was
done was work by Kann et al. (2017). They lever-
aged morphologically annotated data in a closely
related high-resource language to reduce the need
for labeled data in the target language. This works
well for similar languages, but has the shortcom-
ing to require annotations in such a language to
be at hand. A similar approach was presented

77

by Ha et al. (2016) for machine translation (MT).
Unlabeled corpora were used for semi-supervised
training of models for MT, e.g., by Cheng et al.
(2016); Vincent et al. (2010); Socher et al. (2011);
Ramachandran et al. (2016). Those approaches
differ from ours, due to a fundamental difference
between the two tasks: For MRI, the source vo-
cabulary and the target vocabulary are mostly the
same. This makes it intuitive for MRI to train the
final model jointly on MRI and autoencoding.

6 Conclusion

We presented a way of semi-supervised training
of a state-of-the-art model for low-resource MRI,
using words from an unlabeled corpus. We found
that the best ratio of labeled to unlabeled data de-
pends of the morphological typology of the lan-
guage. Finally, we showed that autoencoding ran-
dom strings also increases performance, for some
languages as much as using corpus words.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments. This work was sup-
ported by DFG (SCHU2246/10).

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
arXiv preprint arXiv:1606.04596 .

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In SSST .

Kyunghyun Cho, Bart Van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In EMNLP.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David

Yarowsky, Jason Eisner, and Mans Hulden. 2017.
The CoNLL-SIGMORPHON 2017 shared task:
Universal morphological reinflection in 52 lan-
guages. In CoNLL-SIGMORPHON.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. TSLP 4(1):3.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In EMNLP.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
Dirichlet process mixture model. In EMNLP.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
NAACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
linguistics 27(2):153–198.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. arXiv
preprint arXiv:1611.04798 .

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradig completion. In ACL.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In ACL.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
CoNLL-SIGMORPHON.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL.

Garrett Nicolai, Bradley Hauer, Adam St Arnaud, and
Grzegorz Kondrak. 2016. Morphological reinflec-
tion via discriminative string transduction. In SIG-
MORPHON.

Robert Östling. 2016. Morphological reinflection with
convolutional neural networks. In SIGMORPHON.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In NAACL.

78

Prajit Ramachandran, Peter J Liu, and Quoc V Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683
.

Benjamin Snyder and Regina Barzilay. 2008. Unsuper-
vised multilingual learning for morphological seg-
mentation. In ACL.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Dima Taji, Ramy Eskander, Nizar Habash, and Owen
Rambow. 2016. The Columbia University - New
York University Abu Dhabi SIGMORPHON 2016
morphological reinflection shared task submission.
In SIGMORPHON.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, and Pierre-Antoine Manzagol.
2010. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning
Research 11(Dec):3371–3408.

Matthew D Zeiler. 2012. ADADELTA: An adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701 .

79

80

Chapter 6

Neural Multi-Source Morphological
Reinflection

81

Neural Multi-Source Morphological Reinflection

Katharina Kann
CIS

LMU Munich, Germany
kann@cis.lmu.de

Ryan Cotterell
Department of Computer Science
Johns Hopkins University, USA

ryan.cotterell@jhu.edu

Hinrich Schütze
CIS

LMU Munich, Germany
inquiries@cislmu.org

Abstract

We explore the task of multi-source mor-
phological reinflection, which generalizes
the standard, single-source version. The
input consists of (i) a target tag and (ii)
multiple pairs of source form and source
tag for a lemma. The motivation is that it
is beneficial to have access to more than
one source form since different source
forms can provide complementary infor-
mation, e.g., different stems. We further
present a novel extension to the encoder-
decoder recurrent neural architecture, con-
sisting of multiple encoders, to better solve
the task. We show that our new archi-
tecture outperforms single-source reinflec-
tion models and publish our dataset for
multi-source morphological reinflection to
facilitate future research.

1 Introduction

Morphologically rich languages still constitute a
challenge for natural language processing (NLP).
The increased data sparsity caused by highly in-
flected word forms in certain languages causes
otherwise state-of-the-art systems to perform
worse in standard tasks, e.g., parsing (Ballesteros
et al., 2015) and machine translation (Bojar et al.,
2016). To create systems whose performance is
not deterred by complex morphology, the devel-
opment of NLP tools for the generation and anal-
ysis of morphological forms is crucial. Indeed,
these considerations have motivated a great deal
of recent work on the topic (Ahlberg et al., 2015;
Dreyer, 2011; Nicolai et al., 2015).

In the area of generation, the most natural task
is morphological inflection—finding an inflected
form for a given target tag and lemma. An ex-
ample for English is as follows: (trg:3rdSgPres,

Present Ind Past Ind Past Sbj
Sg Pl Sg Pl Sg Pl

1 treffe treffen traf trafen träfe träfen
2 triffst trefft trafst traft träfest träfet
3 trifft treffen traf trafen träfe träfen

Table 1: The paradigm of the strong German verb TREFFEN,
which exhibits an irregular ablaut pattern. Different parts of
the paradigm make use of one of four bolded theme vowels:
e, i, a or ä. In a sense, the verbal paradigm is partitioned into
subparadigms. To see why multi-source models could help
in this case, starting only from the infinitive treffen makes it
difficult to predict subjunctive form träfest, but the additional
information of the fellow subjunctive form träfe makes the
task easier.

bring) 7→ brings. In this case, the 3rd per-
son singular present tense of bring is generated.
One generalization of inflection is morphological
reinflection (MRI) (Cotterell et al., 2016), where
we must produce an inflected form from a triple of
target tag, source form and source tag. The inflec-
tion task is the special case where the source form
is the lemma. As an example, we may again con-
sider generating the English past tense form from
the 3rd person singular present: (trg:3rdSgPres,
brought, src:Past) 7→ brings (where trg = “target
tag” and src = “source tag”). As the starting point
varies, MRI is more difficult than morphological
inflection and exhibits more data sparsity. How-
ever, it is also more widely applicable since lex-
ical resources are not always complete and, thus,
the lemma is not always available. A more com-
plex German example is given in Table 1.

In this work, we generalize the MRI task to
a multi-source setup. Instead of using a single
source form-tag pair, we use multiple source form-
tag pairs. Our motivation is that (i) it is often bene-
ficial to have access to more than one source form
since different source forms can provide comple-
mentary information, e.g., different stems; and (ii)

82

in many application scenarios, we will have en-
countered more than one form of a paradigm at
the point when we want to generate a new form.

We will make the intuition that multiple source
forms provide complementary information pre-
cise in the next section, but first return to
the English verb bring. Generating the form
brings from brought may be tricky—there is
an irregular vowel shift. However, if we had
a second form with the same theme vowel,
e.g., bringing, the task would be much easier,
i.e., (trg:3rdSgPres, form1:brought, src1:Past,
form2:bringing, src2:Gerund). A multi-source
approach clearly is advantageous for this case
since mapping bringing to brings is regular even
though the verb itself is irregular.

The contributions of the paper are as follows. (i)
We define the task of multi-source MRI, a gener-
alization of single-source MRI. (ii) We show that a
multi-source MRI system, implemented as a novel
encoder-decoder, outperforms the top-performing
system in the SIGMORPHON 2016 Shared Task
on Morphological Reinflection on seven out of
eight languages, when given additional source
forms. (iii) We release our data to support the de-
velopment of new systems for MRI.

2 The Task: Multi-Source Reinflection

Previous work on morphological reinflection has
assumed a single source form, i.e., an input con-
sisting of exactly one inflected source form (po-
tentially the lemma) and the corresponding mor-
phological tag. The output is generated from this
input. In contrast, multi-source morphological re-
inflection, the task we introduce, is a generaliza-
tion in which the model receives multiple form-tag
pairs. In effect, this gives the model a partially an-
notated paradigm from which it predicts the rest.

The multi-source variant is a more natural prob-
lem than single-source morphological reinflection
since we often have access to more than just one
form.1 For example, corpora such as the universal
dependency corpus (McDonald et al., 2013) that
are annotated on the token level with inflectional
features often contain several different inflected
forms of a lemma. Such corpora would provide

1Scenarios where a single form is available and that form
is the lemma are perhaps not infrequent. In high-resource
languages, an electronic dictionary may have near-complete
coverage of the lemmata of the language. However, paradigm
completion is especially crucial for neologisms and low-
resource languages.

an ideal source of data for the multi-source MRI
task.

Formally, we can think of a morphological
paradigm as follows. Let Σ be a discrete alphabet
for a given language and T be the set of morpho-
logical tags in the language. The inflectional table
or morphological paradigm π of a lemmaw can be
formalized as a set of pairs:

π(w) = {(f1, t1), (f2, t2), . . . , (fN , tN)}, (1)

where fi ∈ Σ+ is an inflected form of w, and ti ∈
T is the morphological tag of the form fi. The
integer N is the number of slots in the paradigm
that have the syntactic category (POS) of w.

Using this notation, single-source morpholog-
ical reinflection (MRI) can be described as fol-
lows. Given a target tag and a pair of source form
and source tag (ttrg, (fsrc, tsrc)) as input, predict
the target form ftrg. There has been a substantial
amount of prior work on this task, including sys-
tems that participated in Task 2 of the SIGMOR-
PHON 2016 shared task (Cotterell et al., 2016).
Thus, we may define the task of multi-source
morphological reinflection as follows: Given a
target tag and a set of k form-tag source pairs
(ttrg, {(f1src, t

1
src), . . . , (f

k
src, t

k
src)}) as input, predict

the target form ftrg. Note that single-source MRI
is a special case of multi-source MRI for k = 1.

2.1 Motivating Examples

Figure 1 gives examples for four different config-
urations that can occur in multi-source MRI.2 We
have colored the source forms green and drawn a
dotted line to the target if they contain sufficient
information for correct generation. If two source
forms together are needed, the dotted line encloses
both of them. Source forms that provide no infor-
mation in the configuration are colored red (no ar-
row); note these forms could provide (and in most

2Figure 1 is not intended as a complete taxonomy of pos-
sible MRI configurations, e.g., there are hybrids of ANY-
FORM and NOFORM (some forms are informative, others
are suppletive) and fuzzy variants (a single form gives pretty
good evidence for how to generate the target form, but an-
other single form gives better evidence). All of our exam-
ples make additional assumptions, e.g., that we have not seen
other similar forms in training either of the same lemma (e.g.,
poner) or of a similar lemma (e.g., reponer). Hopefully,
the examples are illustrative of the main conceptual distinc-
tion: several single forms each are sufficient by themselves
(ANYFORM), a single, but carefully selected form is suffi-
cient (SINGLEFORM), multiple forms are needed to generate
the target (MULTIFORM) and the target form cannot be pre-
dicted (irregular) from the source forms (NOFORM).

83

lift
1stSgPres

lifts
3rdSgPres

lifted
PstPart

lifting
PresPart

(a) ANYFORM

treffe
1SgIndPres

traf
1stSgIndPst

triff
2ndSgImp

trafen
1stPlIndPst

(b) SINGLEFORM

pondré
1stSgFt

pongo
1stSgIndPres

poner
Inf

ponga
3rdSgSubPres

(c) MULTIFORM

go
1stSgPres

goes
3rdSgPres

gone
PstPart

went
1stSgPst

(d) NOFORM

Figure 1: Four possible input configurations in multi-source morphological reinflection (MRI). In each subfigure, the target
form on the right is purple. The source forms are on the left and are green if they can be used to predict the target form (also
connected with a dotted line) and red if they cannot. There are four possible configurations: (i) ANYFORM is the case where
one can predict the target form from any of the source forms. (ii) SINGLEFORM is the case where only one form can be used to
regularly predict the target form. (iii) MULTIFORM is the case where multiple forms are necessary to predict the target form.
(iv) NOFORM is the case where the target form cannot be regularly derived from any of the source forms. Multi-source MRI
is expected to perform better than single-source MRI for the configurations SINGLEFORM and MULTIFORM, but not for the
configurations ANYFORM and NOFORM.

cases will provide) useful information for other
combinations of source and target forms.

The first type of configuration is ANYFORM:
each of the available source forms in the subset
of the English paradigm (lift, lifts, lifted) contains
enough information for a correct generation of the
target form lifting. The second configuration is
SINGLEFORM: there is a single form that contains
enough information for correct generation, but it
has to be carefully selected. Inflected forms of the
German verb treffen ‘to meet’ have different stem
vowels (see Table 1). In single-source reinflection,
producing a target form with one stem vowel (a in
trafe in the figure) from a source form with another
stem vowel (e.g., e in treffe) is difficult.3

In contrast, the learning problem for the
SINGLEFORM configuration is much easier in
multi-source MRI. The multi-source model does
not have to learn the possible vowel changes of
this irregular verb; instead, it just needs to pick
the correct vowel change from the alternatives of-
fered in the input. This is a relatively easy task
since the theme vowel is identical. So we only
need to learn one general fact about German mor-
phology (which suffix to add) and will then be able
to produce the correct form with high accuracy.
This type of regularity is typical of complex mor-
phology: there are groups of forms in a paradigm
that are similar and it is highly predictable which
of these groups a particular target form for a new
word will be a member of. As long as one repre-

3It is not impossible to learn, but treffen is an irregular
verb, so we cannot easily leverage the morphology we have
learned about other verbs.

sentative of each group is part of the multi-source
input, we can select it to generate the correct form.

In the MULTISOURCE configuration, we are
able to use information from multiple forms if
no single form is sufficient by itself. For exam-
ple, to generate ponga, 3rdSgSubPres of poner ‘to
put’ in Spanish, we need to know what the stem
is (ponga, not pona) and which conjugation class
(-ir, -er or -ar) it is part of (ponga, not pongue).
The single-source input pongo, 1stSgIndPres, does
not reveal the conjugation class: it is compatible
with both ponga and pongue. The single-source
input poner, Inf, does not reveal the stem for the
subjunctive: it is compatible with both ponga and
pona—we need both source forms to generate the
correct form ponga.

Again, such configurations are frequent cross-
linguistically, either in this “discrete” variant or in
more fuzzy variants where taking several forms to-
gether increases our chances of producing the cor-
rect target form. Finally, we call configurations
NOFORM if the target form is completely irregu-
lar and not related to any of the source forms. The
suppletive form went is our example for this case.

2.2 Principle Parts
The intuition behind the MRI task draws inspira-
tion from the theoretical linguistic notion of prin-
ciple parts (Finkel and Stump, 2007; Stump and
Finkel, 2013). The notion is that a paradigm has
a subset that allows for maximum predictability.
In terms of language pedagogy, the principle parts
would be a minimial set of forms a student has
to learn in order to be able to generate any form

84

in the paradigm. For instance for the partial Ger-
man paradigm in Table 1, the forms treffen, trifft,
trafen, and träfen could form one potential set of
principle parts.

From a computational learning point of view,
maximizing predictability is always a boon—we
want to make it as easy as possible for the system
to learn the morphological regularities and subreg-
ularities of the language. Giving the system the
principle parts as input is one way to achieve this.

3 Model Description

Our model is a multi-source extension of MED,
Kann and Schütze (2016b)’s encoder-decoder net-
work for MRI. In MED, a single bidirectional re-
current neural network (RNN) encodes the input.
In contrast, we use multiple encoders to be able to
handle multiple source form-tag pairs. In MED, a
decoder RNN produces the output from the hidden
representation. We do not change this part of the
architecture, so there is still a single decoder.4

3.1 Input and Output Format

For k source forms, our model takes k different in-
puts of parallel structure. Each of the 1 ≤ i ≤ k
inputs consists of the target tag ttrg and the source
form fi and its corresponding source tag ti. The
output is the target form. Each source form is rep-
resented as a sequence of characters; each char-
acter is represented as an embedding. Each tag—
both the target tag and the source tags—is repre-
sented as a sequence of subtags; each subtag is
represented as an embedding.

More formally, we define the alphabet Σlang as
the set of characters in the language and Σsubtag as
the set of subtags that occur as part of the set of
morphological tags T of the language, e.g., if 1st-
SgPres ∈ T , then 1st, Sg and Pres ∈ Σsubtag. Each
of the k inputs to our system is of the following
format: SstartΣ

+
subtagΣ

+
langΣ

+
subtagSend where the first

subtag sequence is the source tag ti and the sec-
ond subtag sequence is the target tag. The output
format is: SstartΣ

+
langSend, where the symbols Sstart

and Send are predefined start and end symbols.

3.2 Multi-Source Encoder-Decoder

The encoder-decoder is based on the machine
translation model of Bahdanau et al. (2015) and all

4The edit tree (Chrupała, 2008; Müller et al., 2015) aug-
mentation discussed in Kann and Schütze (2016b) was not
employed here.

specifics of our model are identical to the original
presentation unless stated otherwise.5 Whereas
Bahdanau et al. (2015)’s model has only one en-
coder, our model consists of k ≥ 1 encoders and
processes k sources simultaneously. The k sources
have the form Xm = (ttrg, f

m
src , t

m
src), represented

as SstartΣ
+
subtagΣ

+
langΣ

+
subtagSend as described above.

Characters and subtags are embedded.
The input to encoder m is Xm. Each encoder

consists of a bidirectional RNN that computes a
hidden state hmi for each position, the concatena-
tion of forward and backward hidden states. De-
coding proceeds as follows:

p(y | X1, . . . , Xk) =

|Y |∏

t=1

p(yt | {y1, ..., yt−1}, ct)

=

|Y |∏

t=1

g(yt−1, st, ct), (2)

where y = (y1, ..., y|Y |) is the output sequence (a
sequence of |Y | characters), g is a nonlinear func-
tion, st is the hidden state of the decoder and ct is
the sum of the encoder states hmi, weighted by at-
tention weights αmi(st−1) that depend on the de-
coder state:

ct =
k∑

m=1

|Xm|∑

i=1

αmi(st−1)hmi. (3)

A visual depiction of this model may be found in
Figure 2. A more complex hierarchical attention
structure would be an alternative, but this sim-
ple model in which all hidden states contribute
on the same level in a single attention layer (i.e.,∑k

m=1

∑|Xm|
i=1 αmi = 1) works well as our exper-

iments show. The k encoders share their weights.

4 Multi-Source Reinflection Experiment

We evaluate the performance of our model in an
experiment based on Task 2 of the SIGMOR-
PHON Shared Task on Morphological Reinflec-
tion (Cotterell et al., 2016). This is a single-source
MRI task as outlined in Section 1.

4.1 Experimental Settings
Datasets. Our datasets are based on the data
from the SIGMORPHON 2016 Shared Task
on Morphological Reinflection (Cotterell et al.,

5We modify the implementation of the model freely avail-
able at https://github.com/mila-udem.

85

!
h1

!
h2

!
h3

!
hN

h1

h2

h3

hN

!
h1

!
h2

!
h3

!
hN

h1

h2

h3

hN

t r e n t r a n

t r ä
s1 s2 s3 sN

y1= y2= y3= M

s4

… …
Figure 2: Visual depiction of our multi-source encoder-decoder RNN. We sketch a two encoder model, where the left encoder
reads in the present form treffen and the right encoder reads in the past tense form trafen. They work together to predict the
subjunctive form träfen. The shadowed red arcs indicate the strength of the attention weights—we see the network is focusing
more on a because it helps the decoder better predict ä than e. We omit the source and target tags as input for conciseness.

2016). Our experiments cover eight languages:
Arabic, Finnish, Georgian, German, Hungarian,
Russian, Spanish and Turkish. The languages
were chosen to represent different types of mor-
phology. Finnish, German, Hungarian, Russian,
Turkish and Spanish are all suffixing. In addition
to being suffixing, three of these languages em-
ploy vocalic (German, Spanish) and consonantal
(Russian) stem changes for many inflections. The
members of the remaining sub-group are aggluti-
native. Georgian makes use of prefixation as well
as suffixation. Arabic morphology contains both
concatenative and templatic elements. We build
multi-source versions of the dataset for Task 2 of
the SIGMORPHON shared task in the following
way. We use data from the UNIMORPH project,6

containing complete paradigms for all languages
of the shared task. The shared task data was sam-
pled from the same set of paradigms; our new
dataset is a superset of the SIGMORPHON data.

We create our new dataset by uniformly sam-
pling three additional word forms from the
paradigm of each source form in the original data.
In combination with the source and target forms
of the original dataset, this means that our dataset
is a set of 5-tuples consisting each of four source
forms and one target form.7 Ideally, we would

6http://unimorph.org
7One thing to note is that the original shared task data was

sampled depending on word frequency in unlabeled corpora.
We do not impose a similar condition, so the frequency dis-
tributions of our data and the shared task data are different.

1 2 3 ≥ 4
ar 0 0 0 12,800
fi 0 0 0 12,800
ka 1015 84 2 11,699
de 0 0 0 12,800
hu 0 0 0 19,200
ru 0 0 5 12,794
es 1575 25 877 10,323
tu 0 0 0 12,800

Table 2: Number of target forms in the training set for which
1, 2, 3 or ≥ 4 source forms (in the training set) are available
for prediction. The tables for the development and test splits
show the same pattern and are omitted.

like to keep the experimental variable k, the num-
ber of sources we use in multi-source MRI, con-
stant for a particular experiment or vary it sys-
tematically across other experimental conditions.
Table 2 gives an overview of the number of dif-
ferent source forms per language in our dataset.
Our dataset is available for download at http:
//cistern.cis.lmu.de.

Hyperparameters. We use embeddings of size
300. Our encoder and decoder GRUs have 100
hidden units each. Following Le et al. (2015), we
initialize all encoder and decoder weights as well
as the embeddings with an identity matrix. All
biases are initialized with zero. We use stochas-

Also, we excluded Maltese and Navajo due to a lack of data
to create the additional multi-source datasets.

86

source form(s) used
1 2 3 4 1–2 1–4

ar .871 .813 .796 .830 .905 .944
fi .956 .929 .941 .934 .965 .978
ka .967 .943 .942 .934 .969 .979
de .954 .922 .931 .912 .959 .980
hu .992 .962 .963 .963 .988 .989
ru .876 .795 .824 .817 .888 .911
es .975 .961 .963 .968 .977 .984
tu .967 .928 .947 .944 .970 .983

Table 3: Accuracy on MRI for single-source (1, 2, 3, 4) and
multi-source (1–2, 1–4) models. Best result in bold.

tic gradient descent, Adadelta (Zeiler, 2012) and a
minibatch size of 20 for training. Training is done
for a maximum number of 90 epochs. If no im-
provement occurs for 20 epochs, we stop training
early. The final model we run on test is the model
that performs best on the development data.

Baselines. For the single-source case, we apply
MED, the top-scoring system in the SIGMOR-
PHON 2016 Shared Task on Morphological Rein-
flection (Cotterell et al., 2016; Kann and Schütze,
2016b). At the time of writing, MED constitutes
the state of the art on the dataset. For Arabic, Ger-
man and Turkish, we run an additional set of ex-
periments to test two additional architectural con-
figurations of multi-source encoder-decoders: (i)
In addition to the default configuration in which all
encoders share parameters, we also test the option
of each encoder learning its own set of parameters
(shared par’s: yes vs. no in Table 4). (ii) Another
way of realizing a multi-source system is to con-
catenate all sources and give this to an encoder-
decoder with a single encoder as one input (en-
coders: k = 1 vs. k > 1 in Table 4).

Evaluation Metric. We evaluate on 1-best ac-
curacy (exact match) against the gold form. We
deviate from the shared task, which also evalu-
ates under mean reciprocal rank and edit distance.
We omit the later two since all these metrics were
highly correlated (Cotterell et al., 2016).

4.2 Results
Table 3 shows the results of the MRI experiment
on test data. We compare using a single source,
the first two sources and all four sources. The
first source (in column “1”) is the original source
from the SIGMORPHON shared task. Recall
that we used uniform sampling to identify addi-

encoders: k = 1 k = 4
par’s shared: yes no

ar .944 .944 .920
de .980 .980 .975
tu .985 .983 .969

Table 4: Accuracy of different architectures for the dataset
with 4 source forms being available for prediction. The best
result for each row is in bold.

tional forms whereas the sampling procedure of
the shared task took into account frequency. We
suspect that this is the reason for the worse perfor-
mance of the new sources compared to the original
source; e.g., in German there are rarely used sub-
junctive forms like befähle that are unlikely to help
generate related forms that are more frequent.

The main result of the experiment is that multi-
source MRI performs better than single-source
MRI for all languages except for Hungarian and
that, clearly, the more sources the better: us-
ing four sources is always better than using two
sources. This result confirms our hypothesis, il-
lustrated in Figure 1, that for most languages, dif-
ferent source forms provide complementary infor-
mation when generating a target form and thus
performance of the multi-source model is better
than of the single-source model. Table 3 demon-
strates that the two configurations we identified as
promising for multi-source MRI, SINGLEFORM

and MULTIFORM, occur frequently enough to
boost the performance for seven of the eight lan-
guages, with the largest gains observed for Arabic
(7.3%) and Russian (3.5%) and the smallest for
Spanish (0.9%) and Georgian (1.3%) (comparing
using source form 1 with using source forms 1–4).

Hungarian is the only language for which per-
formance decreases, by a small amount (0.3%).
We attribute this to overfitting: the multi-source
model has a larger number of parameters, so it is
more prone to overfitting. We would expect the
performance to be the same in a comparison of two
models that have the same size.

Error Analysis. We compare errors of single-
source and multi-source models for German on
development data. Most mistakes of the multi-
source model are stem-related: versterbst for
verstirbst, erwerben for erwürben, Apfelsinen-
baume for Apfelsinenbäume, lungenkränkes for
lungenkrankes and übernehmte for übernähme. In
most of these cases, the stem of the lemma was

87

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

A
ra

b
ic

 M
R

I

% of training data

1 source
4 sources

(a) Arabic

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100A
cc

u
ra

cy
 f

o
r

G
e

rm
a

n
 M

R
I

% of training data

1 source
4 sources

(b) German

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
cc

u
ra

cy
 f

o
r

T
u

rk
is

h
 M

R
I

% of training data

1 source
4 sources

(c) Turkish

Figure 3: Learning curves for single-source and multi-source models for Arabic, German and Turkish. We observe that the
multi-source model generalizes faster than the single soure case—this is to be expected since the multi-source model often
faces an easier transduction problem.

used, which is correct for some forms, but not for
the form that had to be generated. In one case, the
multi-source model did not use the correct inflec-
tion rule: braucht for gebraucht—the inflectional
rule that the past participle is formed by ge- was
not applied.

Errors of the single-source model that were
“corrected” by the multi-source model include
empfahlt for empfiehl, Throne for Thron and be-
fielen for befallen. These are all SINGLEFORM

cases: the multi-source model will generate the
correct form if it succeeds in selecting the most
predictive source form. The single-source model
is at a disadvantage if this most predictive source
form is not part of its input.

4.3 Comparison of Different Architectures
Table 4 compares different architectural configura-
tions. All experiments use 4 sources. We see that
sharing parameters is superior as expected. Using
a single encoder on 4 sources performs as well as
4 encoders (and very slightly better on Turkish).
Apparently, it has no difficulty learning to under-
stand an unstructured (or rather lightly structured)
concatenation of form-tag pairs; on the other hand,
this parsing task, i.e., learning to parse the se-
quence of form-tag pairs, is easy, so this is not a
surprising result.

4.4 Learning Curves
Figure 3 shows learning curves for Arabic, Ger-
man and Turkish. We iteratively halve the train-
ing set and train models for each subset. In this
analysis, we train all models for 90 epochs, but
use the numbers from the main experiment for
the full training set. For the single-source model,
we use the SIGMORPHON source. The figure
shows that the single-source model needs more in-
dividual paradigms in the training data to achieve
the same performance as the multi-source model.

The largest difference between single-source and
multi-source is > 20% for Arabic when only 1/8
of the training set is used. This suggests that
multi-source MRI is an attractive option for low-
resource languages since it exploits available data
better than single-source.

4.5 Attention Visualization

Figure 4 shows for one example, the generation
of the German form wögen, 3rdPlSubPst, the at-
tention weights of the multi-source model at each
time step of the decoder, i.e., for each character
as it is being produced by the decoder. For char-
acters that simply need to be copied, the main
attention lies on the corresponding characters of
the input sources. For example, the character g
is produced when attention is on the characters
g in wögest, wöge and wogen. This aspect of
the multi-source model is not different from the
single-source model, offering no advantage.

However, even for g, the source form that is
least relevant for generating wögen receives al-
most no weight: wägst is an indicative singular
form that does not provide helpful information for
generating a plural form in the subjunctive; the
model seems to have learned that this is the case.
In contrast, wogen does receive some weight; this
makes sense as it is a past indicative form and
the past subjunctive is systematically related to the
past indicative for many German verbs. These ob-
servations suggest that the network has learned to
correctly predict (at least in this case) which forms
provide potentially useful information. For the last
two time steps (i.e., characters to be generated), at-
tention is mainly focused on the tags. Again, this
indicates that the model has learned the regularity
in generating this part of the word form: the suffix,
consisting of en, is predictable from the tag.

88

Figure 4: Attention heatmap for the multi-source model. The example is for the German verb wiegen ‘to weigh’. The model
learns to focus most of its attention on forms that share the irregular subjunctive stem wög in addition to the target subtags 3 and
P that encode that the target form is 3rd person plural. We omit the tags from the diagram to which the model hardly attends.

5 Related Work

Recently, variants of the RNN encoder-decoder
have seen widespread adoption in many areas of
NLP due to their strong performance. Encoder-
decoders with and without attention have been ap-
plied to tasks such as machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2015), parsing (Vinyals et al., 2015) and auto-
matic speech recognition (Graves and Schmidhu-
ber, 2005; Graves et al., 2013).

The first work on multi-source models was pre-
sented for machine translation. Zoph and Knight
(2016) made simultaneous use of source sentences
in multiple languages in order to find the best
match possible in the target language. Unlike our
model, they apply transformations to the hidden
states of the encoders that are input to the de-
coder. Firat et al. (2016)’s neural architecture for
MT translates from any of N source languages to
any of M target languages, using language spe-
cific encoders and decoders, but sharing one sin-
gle attention-mechanism. In contrast to our work,
they obtain a single output for each input.

Much ink has been spilled on morphological re-
inflection over recent years. Dreyer et al. (2008)
develop a high-performing weighted finite-state
transducer for the task, which was later hybridized
with an LSTM (Rastogi et al., 2016). Durrett and
DeNero (2013) apply a semi-CRF to heuristically
extracted rules to generate inflected forms from
lemmata using data scraped from Wiktionary. Im-
proved systems for the Wiktionary data were sub-
sequently developed by Hulden et al. (2014), who
used a semi-supervised approach, and Faruqui et
al. (2016), who used a character-level LSTM. All
of the above work has focused on the single input
case. Two important exceptions, however, have
considered the multi-input case. Both Dreyer and
Eisner (2009) and Cotterell et al. (2015b) define a
string-valued graphical model over the paradigm
and apply the missing values.

The SIGMORPHON 2016 Shared Task on Mor-

phological Reinflection (Cotterell et al., 2016),
based on the UNIMORPH (Sylak-Glassman et al.,
2015) data, resulted in the development of nu-
merous methods. RNN encoder-decoder models
(Aharoni et al., 2016; Kann and Schütze, 2016a;
Östling, 2016) obtained the strongest performance
and are the current state of the art on the task.
The best-performing model made use of an atten-
tion mechanism (Kann and Schütze, 2016a), first
popularized in machine translation (Bahdanau et
al., 2015). We generalize this architecture to the
multi-source case in this paper for the reinflection
task.

Besides generation, computational work
on morphology has also focused on analysis.
In this area, a common task—morphological
segmentation—is to break up a word into its se-
quence of constituent morphs. The unsupervised
MORFESSOR model (Creutz and Lagus, 2002) has
achieved widespread adoption. Bayesian methods
have also proven themselves successful in unsu-
pervised morphological segmentation (Johnson
et al., 2006; Goldwater et al., 2009). When
labeled training data for segmentation is available,
supervised methods significantly outperform the
unsupervised techniques (Ruokolainen et al.,
2013; Cotterell et al., 2015a).

As we pointed out in Section 2, morphologi-
cally annotated corpora provide an ideal source of
data for the multi-source MRI task: they are an-
notated on the token level with inflectional fea-
tures and often contain several different inflected
forms of a lemma. Eskander et al. (2013) develop
an algorithm for automatic learning of inflectional
classes and associated lemmas from morpholog-
ically annotated corpora, an approach that could
be usefully combined with our multi-source MRI
framework.

6 Conclusion

Generation of unknown inflections in morpholog-
ically rich languages is an important task that re-

89

mains unsolved. We provide a new angle on the
problem by considering systems that are allowed
to have multiple inflected forms as input. To this
end, we define the task of multi-source morpho-
logical reinflection as a generalization of single-
source MRI (Cotterell et al., 2016) and present a
model that solves the task. We extend an attention-
based RNN encoder-decoder architecture from the
single-source case to the multi-source case. Our
new model consists of multiple encoders, each re-
ceiving one of the inputs. Our model improves
over the state of the art for seven out of eight
languages, demonstrating the promise of multi-
source MRI. Additionally, we publically release
our implementation.8

7 Future Work

The new dataset for multi-source morphological
reinflection that we release is a superset of the
dataset of the SIGMORPHON 2016 Shared Task
on Morphological Reinflection to facilitate re-
search on morphological generation. One focus
of future work should be the construction of more
complex datasets, e.g., datasets that have better
coverage of irregular words and datasets in which
there is no overlap in lemmata between training
and test sets. Further, for difficult inflections, it
might be interesting to find an effective way to in-
clude unsupervised data into the setup. For ex-
ample, we could define one of our k inputs to be
a form mined from a corpus that is not guaranteed
to have been correctly tagged morphologically, but
likely to be helpful.

We show in this paper that multi-source MRI
outperforms single-source MRI. This is an im-
portant contribution because—as we discussed in
Section 2.1—multi-source MRI is only promis-
ing for paradigms with specific properties, which
we referred to as SINGLEFORM and MULTIFORM

configurations. Whether such configurations oc-
cur and whether these configurations have a strong
effect on MRI performance was an open empiri-
cal question. Indeed, we found that for one of the
languages we investigated, for Hungarian, single-
source MRI works at least as well as multi-source
MRI—presumably because its paradigms almost
exclusively contain SINGLEFORM configurations.
Thus, single-source MRI is probably preferable
for Hungarain since single-source is simpler than
multi-source.

8http://cistern.cis.lmu.de

There is another important question that we
have not answered in this paper: in an experimen-
tal setting in which the amount of training infor-
mation available is exactly the same for single-
source and multi-source, does multi-source still
outperform single-source and by how much? For
example, the numbers we compare in Table 3
are matched with respect to the number of target
forms, but not with respect to the number of source
forms: multi-source has more source forms avail-
able for training than single-source. We leave in-
vestigation of this important issue for future work.

Acknowledgments

We gratefully acknowledge the financial support
of Siemens and of DFG (SCHUE 2246/10-1) for
this research. The second author was supported by
a DAAD Long-Term Research Grant and an ND-
SEG fellowship.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In 2016 Meeting of
SIGMORPHON.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
EMNLP.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of the
2016 conference on machine translation. In WMT.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015a. Labeled morphological
segmentation with semi-markov models. In CoNLL.

90

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015b. Modeling word forms using latent underly-
ing morphs and phonology. In TACL.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In 2016 Meeting of SIG-
MORPHON.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In ACL Workshop on Mor-
phological and Phonological Learning.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In EMNLP.

Markus Dreyer, Jason R Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In EMNLP.

Markus Dreyer. 2011. A non-parametric model for the
discovery of inflectional paradigms from plain text
using graphical models over strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
HLT-NAACL.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
EMNLP.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL.

Raphael Finkel and Gregory Stump. 2007. Princi-
pal parts and morphological typology. Morphology,
17(1):39–75.

Orhan Firat, KyungHyun Cho, and Yoshua Ben-
gio. 2016. Multi-way, multilingual neural ma-
chine translation with a shared attention mechanism.
CoRR.

Sharon Goldwater, Thomas L Griffiths, and Mark John-
son. 2009. A bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition,
112(1):21–54.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5):602–610.

Alan Graves, Abdel-Rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In ICASSP.

Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In EACL.

Mark Johnson, Thomas L Griffiths, and Sharon Gold-
water. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric Bayesian
models. In NIPS.

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In 2016
Meeting of SIGMORPHON.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, and
Oscar Täckström. 2013. Universal dependency an-
notation for multilingual parsing. In ACL.

Thomas Müller, Ryan Cotterell, and Alexander Fraser.
2015. Joint lemmatization and morphological tag-
ging with LEMMING. In EMNLP.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL.

Robert Östling. 2016. Morphological reinflection with
convolutional neural networks. In 2016 Meeting of
SIGMORPHON.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morpholog-
ical segmentation in a low-resource learning setting
using conditional random fields. In CoNLL.

Gregory Stump and Raphael A Finkel. 2013. Morpho-
logical typology: From word to paradigm, volume
138. Cambridge University Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In ACL-
IJCNLP.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In NIPS.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

91

Barret Zoph and Kevin Knight. 2016. Multi-
source neural translation. arXiv preprint
arXiv:1601.00710.

92

Chapter 7

The LMU System for the
CoNLL-SIGMORPHON 2017
Shared Task on Universal
Morphological Reinflection

93

The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on
Universal Morphological Reinflection

Katharina Kann and Hinrich Schütze
CIS

LMU Munich, Germany
kann@cis.lmu.de

Abstract

We present the LMU system for the
CoNLL-SIGMORPHON 2017 shared task
on universal morphological reinflection,
which consists of several subtasks, all con-
cerned with producing an inflected form
of a paradigm in different settings. Our
solution is based on a neural sequence-
to-sequence model, extended by prepro-
cessing and data augmentation methods.
Additionally, we develop a new algorithm
for selecting the most suitable source form
in the case of multi-source input, outper-
forming the baseline by 5.7% on aver-
age over all languages and settings. Fi-
nally, we propose a fine-tuning approach
for the multi-source setting, and combine
this with the source form detection, in-
creasing accuracy by a further 4.6% on av-
erage.

1 Introduction

Many of the world’s languages have a rich mor-
phology, i.e., make use of surface variations of
lemmata in order to express certain properties, like
the tense or mood of a verb. This makes a variety
of natural language processing tasks more chal-
lenging, as it increases the number of words in
a language drastically; a problem morphological
analysis and generation help to mitigate. How-
ever, a big issue when developing methods for
morphological processing is that for many mor-
phologically rich languages, there are only few
or no relevant training data available, making it
impossible to train state-of-the-art machine learn-
ing models (e.g., (Faruqui et al., 2016; Kann and
Schütze, 2016b; Aharoni et al., 2016; Zhou and
Neubig, 2017)). This is the motivation for the
CoNLL-SIGMORPHON-2017 shared task on uni-

versal morphological reinflection (Cotterell et al.,
2017a), which animates the development of sys-
tems for as many as 52 different languages in 6
different low-resource settings for morphological
reinflection: to generate an inflected form, given
a target morphological tag and either the lemma
(task 1) or a partial paradigm (task 2). An exam-
ple is

(use, V;3;SG;PRS) 7→ uses

In this paper, we describe the LMU system for
the shared task. Since it depends on the language
and the amount of resources available for training
which method performs best, our approach con-
sists of a modular system. For most medium- and
high-resource, as well as some low-resource set-
tings, we make use of the state-of-the-art encoder-
decoder (Cho et al., 2014a; Sutskever et al., 2014;
Bahdanau et al., 2015) network MED (Kann and
Schütze, 2016b), while extending the training data
in several ways. Whenever the given data are not
sufficient, we make use of the baseline system,
which can be trained on fewer instances.

While we submit solutions for every language
and setting, our main focus is on task 2 of the
shared task and the main contributions of this pa-
per correspondingly address a multi-source input
setting: (i) We develop CIS (”choice of important
sources”), a novel algorithm for selecting the most
appropriate source form for a target tag from a
partially given paradigm, which is based on edit
trees (Chrupała, 2008). (ii) We propose to cast
the task of multi-source morphological reinflec-
tion as a domain adaptation problem. By fine-
tuning on forms from a partial paradigm, we im-
prove the performance of a neural sequence-to-
sequence model for most shared task languages.

Our final methods, averaged over languages,
outperform the official baseline by 7.0%, 18.5%,
and 16.5% for task 1 and 8.7%, 10.1%, and

94

10.3% for task 2 for the low-, medium-, and high-
resource settings, respectively.

Furthermore, our submitted sytem—a combina-
tion of our methods with the baseline system—
surpasses the baseline’s accuracy on test for both
tasks as well as all languages and settings. Differ-
ences in performance are between 8.69% (task 1
low) and 17.94% (task 1 medium).

2 Morphological Reinflection

The paradigm of a lemma wl is a set of tuples of
inflected forms fk and tags tk describing the prop-
erties of the inflected word, which we formally de-
note as:

π(wl) =
{(
fk[wl], tk

)}
tk∈T (wl)

(1)

with T (wl) being the set of possible tags for wl.
An example is the following paradigm of the

Spanish lemma soñar:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

The shared task has two subtasks: task 1 con-
sists of predicting a certain form fi[wl], given the
lemma wl and the target tag ti. For task 2, one
or more source forms are given for each lemma
(multi-source input). Thus, additional information
about the way a lemma is inflected is known and
can be leveraged.

3 Preprocessing Methods

We apply the following preprocessing methods.

String preprocessing. We determine for each
language if it is predominantly prefixing or suf-
fixing, using the same algorithm as the shared task
baseline system (Cotterell et al., 2017a). For pre-
fixing languages, we invert all words. An example
for the prefixing language Navajo is:

chidı́→ ı́dihc

New character handling. The source and target
vocabularies for the languages are constructed us-
ing the respective training and development sets.
Therefore, out-of-vocabulary symbols can appear
in the test sets, resulting in symbols the model has
no information about. In order to address this, we
substitute such characters by a special NEW sym-
bol and train the model on it by including it in
the additional training samples we create, cf. §4.

In the output, NEW is substituted back by the new
characters in the input in order of appearance. An
example from the German development data is:

Phloëm→ PhloNEWm

Tag extension. Explicit information is usually
handled better by machine learning methods than
implicit information. Therefore, we search for op-
tional subtag slots, in contrast to those that are al-
ways occupied by some value, e.g., an optional
negation subtag, in contrast to the part-of-speech
subtag which, for most languages, is always ei-
ther Verb, Noun or Adjective, but never empty.
For all optional subtags, we artificially introduce
a negated form.

4 Training Data Augmentation Methods

Additional source-target form pairs. We col-
lect all forms belonging to the same lemma.
We then add additional samples by constructing
source-target combinations for other sources than
the lemma, using the members of each paradigm.
For the two samples lemmai → word1 and
lemmai→ word2 we can introduce the new sam-
ples word1→ word2 and word2→ word1.1

Autoencoding samples. We further create sam-
ples for a sequence autoencoding task, i.e., we add
mappings of words to themselves, with a special
copy tag A. No morphological tags are given. This
is a way to multi-task train on autoencoding the
input string and reinflection, as we maximize the
joint log-likelihood

L(θ)=
∑

(wl,ts,tt)∈T
log pθ (ft(wl) | e(fs(wl), tt))

(2)

+
∑

w∈W
log pθ(w | e(w))

for the training data T , source and target tags ts
and tt, a lemma wl and an encoding function e
depending on θ, as well as a set of stringsW . We
apply two variants: autoencoding the lemmata and
forms from the original training set, or using ran-
dom strings for this. Random strings are produced
in the following way. We first construct all pos-
sible bigrams B from the vocabulary of the lan-
guage. We then combine those with a random se-
quence of characters r of a random length between

1The respective source and target tags are part of the input,
but omitted here for clarity.

95

1 and 4 in the following way: b1 + b2 +r+ b3 + b4
for bi ∈ B. Constructing random strings like this
has the positive side-effect that we can add a NEW
to the vocabulary.

Rule-based data generation. We imitate a rule-
based system by, given a source form and a tar-
get form, defining the prefix (resp. suffix) of a
word as the word minus the longest common suf-
fix (resp. prefix). We then create an additional
training example by generating a random string s
and prepending (resp. appending) source and tar-
get prefixes (resp. suffixes) to s. For example, in
German, we can find the following rule for the 2nd
person singular form:

*en→ *st

From this we can create additional training in-
stances like the following.

(jfgdgfen, V;2;SG;PRS) 7→ jfgdgfst

(Ahggen, V;2;SG;PRS) 7→ Ahggst

We apply this procedure to all pairs of a source and
a target tag that appear less than t times in train for
a certain threshold t.

5 System Architecture

We apply the encoder-decoder network MED
(Kann and Schütze, 2016a), due to its success in
last year’s edition of the shared task (Cotterell
et al., 2016). While we extend it by new train-
ing data augmentation methods and, for task 2, the
additional algorithms described below, we do not
make changes to the model’s architecture. We will
shortly describe MED and the shared task baseline
system in this section.

5.1 MED
Encoder. The format of the input of the encoder
is the same as in (Kann and Schütze, 2016a), but
with a small modification to be able to handle un-
labeled data: Given the set of morphological sub-
tags M that each target tag is composed of (e.g.,
the tag 1SgPresInd contains the subtags 1, Sg, Pres
and Ind), and the alphabet Σ of the language of ap-
plication, our input is of the form (A | M∗) Σ∗, i.e.,
it consists of either a sequence of subtags or the
symbol A signaling that the input is not annotated
and should be autoencoded, and (in both cases) the
character sequence of the input word. All parts of
the input are represented by embeddings.

(a) The lemma is the
only accepted source
form.

(b) Additional source
forms with a higher
priority than the lemma
have been determined.

Figure 1: Comparison of the traditional view (left) and the re-
sult of CIS (right). Possible source forms in green, the target
form in blue. Thickness of the arrows represents priorities of
source forms. Most forms of the paradigm have been omitted
because of space limitations.

We encode the input x = x1, x2, . . . , xTx us-
ing a bidirectional gated recurrent neural network
(GRU) (Cho et al., 2014b). We then concatenate
the forward and backward hidden states to obtain
the input hi for the decoder.

Decoder. The decoder is a uni-directional
attention-based GRU, defining a probability dis-
tribution over strings in Σ∗:

p(y | x) =

Ty∏

t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using
the encoder hidden states together with attention
weights. A detailed description of the encoder-
decoder model can be found in (Bahdanau et al.,
2015).

5.2 Baseline System

The shared task baseline system (BL) is well-
suited for low-resource settings. It first aligns each
input and output string, and than extracts possible
prefix or suffix substitution rules from the train-
ing data. At test time, it applies the most suitable
one in the following way: Every input is searched
for the longest contained prefix or suffix and the
rule belonging to the affix and given target tag is
applied to obtain the output. Whether prefixes or
suffixes are used depends on the language and is
determined using the training set.

96

Figure 2: Edit tree for the transformation from abgesagt
“canceled” to absagen “to cancel”. Each node contains the
length of the parts before and after the respective LCS, e.g.,
the leftmost node contains the length of the parts before and
after the LCS of abge and ab. The prefix sub indicates that
the node is a substitution operation.

6 Choice of Important Sources

As our choice of important sources (CIS) algo-
rithm is based strongly on edit trees (Chrupała,
2008), we will introduce them first.

Edit trees. An edit tree e(σ, τ) is a way to spec-
ify a transformation between a source string σ and
a target string τ (Chrupała, 2008). It is constructed
by first determining the longest common substring
(LCS) (Gusfield, 1997) of σ and τ and then mod-
eling the prefix and suffix pairs of the LCS recur-
sively. In the case of an empty LCS, e(σ, τ) corre-
sponds to the substitution operation that replaces
σ with τ . Figure 2 shows an example.

CIS. The entire task of paradigm completion
is built upon the notion that the members of a
paradigm are not independent. However, for many
languages, some slots of a paradigm are more
dependent on each other: For example, gehen,
gehe and ging are all forms of the same German
paradigm, but when aiming to produce the 3rd per-
son plural past tense form gingen, the task is easier
when starting from the (more similar) form ging.
In fact, in many cases, the entire paradigm is com-
pletely deterministic when the right paradigm slots
are known. A set of forms that determines all other
inflected forms is called principal parts.

(Cotterell et al., 2017b) use this property of
morphologically rich languages to induce topolo-
gies in order to jointly decode entire paradigms
and to thus make use of all known forms.
However, they suppose to be able to compute
and use good estimates for the probabilities
p(fi(wl)|fj(wl)) for source form fj(wl) and tar-
get form fi(wl), since they use at least 632 en-
tire paradigms per part of speech and language for
training. Using a minimum spanning tree, they ap-
proximate a solution to the maximum-a-posteriori

Figure 3: Overview of a fine-tuning setup. In our case, “in-
domain” refers to the partial paradigm to be completed; “out-
of-domain” refers to all other paradigms.

(MAP) inference problem.
In order to be able to apply our approach to

low-resource settings, we focus instead on find-
ing the best source form for each target form in
a language, and CIS works as follows. We cal-
culate edit trees for each pair (fj(wl), fi(wl)) for
each lemma wl in the training data. We then count
the number of different edit trees for each pair of
source and target tag (tj , ti) and build an impor-
tance list for each tag ti, giving higher priorities
to source tags with lower counts. The intuition be-
hind this is that the fewer different edit trees ap-
pear in the training set, the more deterministic the
paradigm slot i is, given a certain source slot j.

At test time, we find the form from the given
slots of the paradigm which has the highest impor-
tance score, and use it to generate the target form.
Note that, as the lemma is always given, there will
never be a need to use a worse source form than
the lemma.

7 Fine-Tuning for Multi-Source Input

For sequence-to-sequence models for neural ma-
chine translation, it has been shown that special-
ized models for a certain domain are able to ob-
tain better performances than general ones (Lu-
ong and Manning, 2015). One way to perform
such a domain adaptation is fine-tuning: a general
model, which has been trained on out-of-domain
data, is further trained on (newly) available in-
domain data, cf. Figure 3. This brings the con-
ditional probability p(y1, ..., ym|x1, ..., xn) for an
output sequence (y1, ..., ym) given an input se-
quence (x1, ..., xn) closer to the target distribu-
tion.

Here, we propose to improve multi-source mor-
phological reinflection by treating each paradigm
as a separate domain and performing “domain
adaptation” everytime a new paradigm should be
completed by the model.

In particular, we have one base model (for

97

n ≤ 1.5 1.5 < n < 10 10 ≤ n
danish arabic albanian
english bengali armenian

norwegian-bokmal bulgarian basque
norwegian-nynorsk czech catalan

dutch haida
estonian hindi
faroese italian
finnish khaling
french persian

georgian portuguese
german quechua
hebrew sorani

hungarian spanish
icelandic turkish

irish urdu
kurmanji welsh

latin
latvian

lithuanian
lower-sorbian
macedonian

navajo
northern-sami

polish
romanian
russian

scottish-gaelic
serbo-croatian

slovak
slovene
swedish

ukrainian

Table 1: Average amount n of sources given per paradigm,
for the development set.

each setting and language), trained on all avail-
able training examples. The original training data
corresponds to out-of-domain data in a domain
adaptation setting. At test time, we construct for
each partial paradigm Pknown all possible training
examples in the way described in the paragraphs
about additional source-target form pairs and au-
toencoding in §4. Thus, for |Pknown| = n, we
end up with (up to) n ∗ (n− 1) +Na in-domain
samples for fine-tuning whereNa is the number of
autoencoding training samples. We then for each
partial paradigm fine-tune the original base model
on all examples constructed from Pknown, which
match the in-domain data for domain adaptation.
Thus, we end up with a different fine-tuned model
for each partial paradigm in the test set.

Our method is expected to perform best in a set-
ting in which many forms of each paradigm are
given as input, e.g., when n is big. Table 1 indi-
cates for which language we would therefore ex-
pect could performance.

8 Experiments

8.1 Systems
Task1. For task 1, we apply MED*: MED in
combination with all preprocessing methods men-
tioned in §3 and the following data augmenta-
tions. We create additional source-target form
pairs where possible and create autoencoding sam-
ples, random ones as well as from the original
data. Further, we create 5 additional rule-based
samples for each existing sample of all source-
target tag combinations that appear less than t =
10 times in the training set for a language.

We employ ensembles of 5 MED* models,
which are trained for 90 (low and medium) or 45
(high) epochs. Ensembling is done by majority
voting.

Task2. We again apply MED*. However, for
task 2 we do not create rule-based samples.2 Mod-
els for the low-resource, medium-resource and
high-resource settings are trained for 45, 30 and
20 epochs, respectively. For task 2, we do not use
ensembling.

At test time, we preprocess each newly incom-
ing paradigm in the same way as the training data,
except for the creation of random copy samples.
We then fine-tune the base model for each new
paradigm according to §7 for 25 additional epochs.
Additionally, we choose the best source form for
each required target tag and predict each inflected
form for this input (MED*+FT+CIS).

The limited amount of data makes it impos-
sible to obtain competitive performance using
MED* for some languages and settings (espe-
cially for languages with only few given slots per
paradigm), even after applying all data augmen-
tation methods described above. Thus, we apply
the baseline model for those cases, but combine
it with CIS (cf. §6) to improve its performance
(BL+CIS). We do not apply preprocessing or data
augmentation methods for BL, as they would not
influence its performance.

Shared task submission. The best approach de-
pends on both the language and the setting. Thus,
our final submission for each case is obtained
by either BL, BL+CIS, the MED* ensemble, or
MED*+FT+CIS, selected using the accuracy on
the development set.

2Using rule-based examples for training leads to worse
performance of the fine-tuned system, even though the base
system turns out to be better. Thus, we do not use it.

98

low medium high
BL MED* MED* (ENS) BL MED* MED* (ENS) BL MED* MED* (ENS)

albanian 0.216 0.102 0.129 0.661 0.849 0.878 0.781 0.966 0.975
arabic 0.215 0.237 0.298 0.400 0.804 0.842 0.477 0.930 0.952
armenian 0.378 0.444 0.488 0.766 0.897 0.914 0.891 0.972 0.975
bulgarian 0.331 0.437 0.480 0.750 0.814 0.837 0.900 0.969 0.974
catalan 0.552 0.560 0.598 0.832 0.903 0.930 0.942 0.981 0.983
czech 0.408 0.318 0.341 0.807 0.815 0.856 0.904 0.927 0.937
danish 0.598 0.636 0.654 0.781 0.830 0.845 0.891 0.934 0.960
dutch 0.537 0.500 0.521 0.717 0.828 0.862 0.868 0.968 0.971
english 0.762 0.831 0.852 0.902 0.928 0.940 0.950 0.964 0.968
faroese 0.307 0.347 0.386 0.587 0.595 0.672 0.747 0.817 0.867
finnish 0.162 0.120 0.147 0.425 0.682 0.754 0.785 0.939 0.954
french 0.630 0.579 0.635 0.761 0.789 0.820 0.836 0.889 0.914
georgian 0.712 0.802 0.845 0.900 0.925 0.928 0.940 0.991 0.995
german 0.537 0.541 0.593 0.715 0.772 0.800 0.812 0.894 0.912
hebrew 0.279 0.335 0.366 0.400 0.798 0.831 0.558 0.987 0.991
hindi 0.310 0.781 0.782 0.866 0.964 0.974 0.940 1.000 1.000
hungarian 0.172 0.300 0.346 0.417 0.708 0.763 0.711 0.856 0.874
icelandic 0.342 0.341 0.364 0.614 0.647 0.689 0.761 0.873 0.913
italian 0.449 0.392 0.467 0.738 0.920 0.927 0.799 0.978 0.974
latvian 0.621 0.483 0.536 0.851 0.834 0.861 0.910 0.965 0.977
lower-sorbian 0.343 0.451 0.488 0.705 0.788 0.817 0.860 0.966 0.973
macedonian 0.500 0.577 0.664 0.823 0.901 0.913 0.919 0.957 0.964
navajo 0.184 0.166 0.198 0.313 0.415 0.460 0.383 0.838 0.897
northern-sami 0.154 0.136 0.174 0.357 0.639 0.711 0.611 0.954 0.968
norwegian-nynorsk 0.508 0.489 0.559 0.633 0.671 0.687 0.783 0.883 0.923
persian 0.273 0.405 0.457 0.654 0.892 0.913 0.776 0.999 1.000
polish 0.419 0.366 0.431 0.752 0.751 0.780 0.894 0.909 0.925
portuguese 0.603 0.633 0.684 0.929 0.938 0.944 0.974 0.986 0.993
quechua 0.172 0.567 0.615 0.681 0.965 0.977 0.947 1.000 1.000
russian 0.428 0.319 0.366 0.750 0.763 0.801 0.820 0.909 0.919
scottish-gaelic 0.480 0.600 0.620 0.520 0.940 0.960 – – –
serbo-croatian 0.213 0.286 0.324 0.658 0.812 0.844 0.840 0.900 0.920
slovak 0.419 0.467 0.495 0.707 0.788 0.795 0.852 0.940 0.960
slovene 0.474 0.494 0.522 0.819 0.865 0.883 0.898 0.966 0.981
spanish 0.586 0.465 0.554 0.854 0.891 0.910 0.906 0.965 0.974
swedish 0.543 0.590 0.607 0.737 0.772 0.796 0.854 0.901 0.914
turkish 0.143 0.280 0.255 0.331 0.801 0.852 0.729 0.977 0.982
ukrainian 0.729 0.350 0.393 0.715 0.757 0.775 0.863 0.929 0.934
urdu 0.303 0.669 0.687 0.861 0.955 0.962 0.958 0.996 0.995
welsh 0.150 0.340 0.460 0.540 0.910 0.920 0.670 0.990 0.990
basque 0.000 0.140 0.180 0.020 0.860 0.870 0.060 0.990 0.990
bengali 0.440 0.610 0.680 0.750 0.980 0.980 0.840 0.990 0.990
estonian 0.226 0.242 0.271 0.624 0.796 0.832 0.762 0.985 0.992
haida 0.340 0.480 0.570 0.560 0.920 0.910 0.690 0.970 0.970
irish 0.318 0.188 0.222 0.447 0.626 0.694 0.543 0.891 0.929
khaling 0.039 0.157 0.184 0.184 0.879 0.901 0.538 0.995 0.998
kurmanji 0.823 0.818 0.620 0.884 0.904 0.916 0.922 0.934 0.943
latin 0.160 0.139 0.028 0.368 0.430 0.489 0.456 0.735 0.795
lithuanian 0.235 0.168 0.193 0.530 0.592 0.618 0.647 0.867 0.906
norwegian-bokmal 0.690 0.722 0.743 0.798 0.820 0.838 0.906 0.907 0.925
romanian 0.441 0.335 0.392 0.702 0.715 0.764 0.804 0.863 0.893
sorani 0.205 0.175 0.232 0.528 0.794 0.823 0.643 0.899 0.910
Average: 0.386 0.421 0.456 0.647 0.804 0.832 0.751 0.902 0.916

Table 2: Accuracies for task 1, for BL, MED* and MED* ensembles. Upper part: development languages; lower part: surprise
languages.

8.2 MED Hyperparameters

We use the same hyperparameters for all MED
models, i.e., all languages, tasks and amounts of
resources. In particular, we keep them fixed to
the following. Encoder and decoder RNNs each
have 100 hidden units and the embeddings size
is 300. For training we use ADADELTA (Zeiler,

2012) with minibatch size 20. Following Le et al.
(2015), we initialize all weights in the encoder,
decoder and the embeddings except for the GRU
weights in the decoder to the identity matrix. Bi-
ases are initialized to zero. We use dropout with a
coefficient of 0.5. As this is the model we use to
produce test results for the shared task, we report

99

Task 1 Task 2
Low 100 535
Medium 994 2285
High 9825 8578

Table 3: Average amount of training examples per task and
resource quantity.

the best numbers obtained on the development set
during training (“early stopping”). We compare
the 1-best accuracy of all systems, i.e., the per-
centage of predictions that match the true answer
exactly.

8.3 Data

The official shared task data consists of sets for 52
different languages, 2 tasks and 3 different settings
with varying amount of resources.3 An overview
of the (averaged) amount of samples per task and
setting is given in Table 3. Development and test
sets are the same for all settings for each respective
task and language. The gold labels for the test set
are not published yet, so the experiments in this
paper are performed on the development set.

8.4 Results

We compare our approaches to the official shared
task baseline. Detailed results for task 1 and task
2 are shown in Table 2 and Table 4, respectively.

Task 1. Table 2 shows the results obtained by
MED*, both for single models and ensembles. As
can be seen, MED* already outperforms the base-
line for the majority of languages in all settings; in
average by 0.035, 0.157 and 0.151, respectively.
MED*’s performance is worse for the low data
quantity than for the others. This is an expected
result, as neural networks are known to require a
huge amount of training instances.

Ensembling increases the final accuracy for all
settings, by an average of 0.035 (low), 0.028
(medium) and 0.014 (high).

Task 2. As can be seen in Table 4, combining BL
and CIS outperforms BL on its own for many lan-
guages, especially in the low-resource setting. The
highest improvements for the low-, medium- and
high-resource setting are for Hungarian (0.362),
Latin (0.440) and Latin (0.429), respectively. For
some languages, e.g., Catalan, Danish or Urdu,
choosing a good source form seems to not be im-
portant. For a few languages, results even get

3A list of all languages can be found in Tables 2 and 4.

worse. We will discuss some of those cases in §9.
Overall, however, we obtain 0.087 (low), 0.066
(medium) and 0.019 (high) improvement on av-
erage over all languages, which clearly shows the
usefulness of CIS.

MED* on its own does not achieve competi-
tive performance for task 2. We attribute this to
the limited number of different lemmata given for
training, resulting in an overfitting model, learn-
ing, e.g., to produce certain character combina-
tions for certain tags. However, MED*+FT+CIS
outperforms both BL as well as BL+CIS for many
languages in the medium- and high-resource set-
tings and even in some low-resource scenarios.
Comparing the obtained accuracies with Table 1, it
gets obvious that languages with a higher amount
of given source forms per paradigm achieve bet-
ter results after fine-tuning, many times reaching a
higher accuracy than BL, even in the low-resource
setting. In contrast, fine-tuning works poorly for
languages with ≤ 1.5 given source forms per
paradigm. In total, using MED*+FT+CIS, we ob-
tain an average improvement of 0.068 (low), 0.101
(medium) and 0.103 (high) over the baseline.

8.5 Official Shared Task Evaluation
Our submitted system obtained average accu-
racies of 0.4659 (low), 0.8264 (medium) and
0.947 (high) for task 1, and 0.6776 (low), 0.8202
(medium) and 0.8852 (high) for task 2, respec-
tively. This corresponds to place 5 of 18, 3 of
19 and 7 of 15 for the high-, medium- and low-
resource settings of task 1, respectively. Remark-
ably, the difference to the best system for the two
higher settings is less than 0.01.

Among 3 submissions for task 2, our system
comes first. It beats the baseline by 17.16 (low),
15.54 (medium) and 10.84 (high).

9 Remaining Challenges

Certain parts of our system do not perform as well
for some languages as we would expect. In this
section we will discuss those cases in more detail.

CIS. For some languages, e.g., Danish or En-
glish, CIS does not influence the performance.
This might be due to those languages not having
paradigm slots that are regularly closer to certain
slots than others.

One other problem for the algorithm are train-
ing instances that consist of multiple separate
words, e.g., the edit trees for “ride a bike” 7→

100

low medium high
BL BL+ MED* MED*+ BL BL+ MED* MED*+ BL BL+ MED* MED*+

CIS FT+CIS CIS FT+CIS CIS FT+CIS
albanian 0.160 0.249 0.000 0.619 0.882 0.280 0.016 0.865 0.942 0.434 0.240 0.960
arabic 0.380 0.428 0.011 0.706 0.553 0.704 0.059 0.907 0.566 0.733 0.533 0.953
armenian 0.722 0.855 0.001 0.933 0.785 0.962 0.210 0.969 0.856 0.806 0.517 0.983
bulgarian 0.553 0.592 0.006 0.571 0.640 0.646 0.200 0.747 0.819 0.810 0.677 0.911
catalan 0.942 0.938 0.000 0.877 0.958 0.970 0.266 0.962 0.965 0.976 0.759 0.992
czech 0.307 0.346 0.008 0.312 0.610 0.635 0.160 0.580 0.841 0.839 0.429 0.806
danish 0.567 0.567 0.284 0.287 0.753 0.753 0.541 0.410 0.827 0.827 0.673 0.680
dutch 0.588 0.666 0.057 0.608 0.796 0.932 0.509 0.796 0.845 0.965 0.812 0.969
english 0.784 0.784 0.544 0.576 0.832 0.832 0.852 0.784 0.900 0.900 0.900 0.924
faroese 0.513 0.592 0.000 0.171 0.559 0.674 0.234 0.578 0.651 0.738 0.430 0.761
finnish 0.517 0.629 0.017 0.581 0.720 0.743 0.143 0.899 0.709 0.772 0.470 0.948
french 0.864 0.876 0.000 0.877 0.893 0.936 0.379 0.951 0.982 0.959 0.824 0.983
georgian 0.793 0.853 0.000 0.834 0.900 0.922 0.532 0.909 0.933 0.954 0.793 0.966
german 0.610 0.647 0.123 0.625 0.662 0.748 0.255 0.764 0.705 0.813 0.619 0.874
hebrew 0.380 0.683 0.012 0.786 0.417 0.701 0.217 0.895 0.547 0.743 0.596 0.950
hindi 0.698 0.719 0.000 0.970 0.746 0.867 0.040 0.970 0.961 0.563 0.719 1.000
hungarian 0.255 0.617 0.000 0.627 0.453 0.823 0.238 0.824 0.585 0.877 0.503 0.949
icelandic 0.439 0.546 0.000 0.333 0.531 0.683 0.083 0.588 0.617 0.753 0.380 0.751
italian 0.769 0.843 0.000 0.809 0.839 0.901 0.075 0.927 0.901 0.896 0.503 0.976
latvian 0.790 0.839 0.001 0.565 0.852 0.926 0.330 0.825 0.877 0.953 0.705 0.951
lower-sorbian 0.362 0.532 0.003 0.509 0.670 0.811 0.302 0.769 0.866 0.878 0.650 0.867
macedonian 0.396 0.562 0.001 0.367 0.832 0.858 0.175 0.740 0.942 0.964 0.749 0.876
navajo 0.306 0.404 0.008 0.313 0.385 0.502 0.088 0.517 0.408 0.593 0.282 0.650
northern-sami 0.314 0.485 0.000 0.243 0.499 0.841 0.028 0.758 0.562 0.905 0.201 0.912
Norwegian-nynorsk 0.439 0.445 0.127 0.122 0.604 0.604 0.452 0.341 0.610 0.579 0.560 0.555
persian 0.822 0.159 0.000 0.990 0.911 0.185 0.203 0.997 0.889 0.190 0.854 1.000
polish 0.506 0.596 0.002 0.327 0.694 0.787 0.170 0.704 0.794 0.831 0.619 0.820
portuguese 0.951 0.973 0.001 0.934 0.969 0.987 0.243 0.969 0.975 0.995 0.741 0.991
quechua 0.973 1.000 0.000 0.972 0.973 0.973 0.234 0.996 0.972 0.999 0.796 0.999
russian 0.412 0.503 0.039 0.382 0.830 0.843 0.400 0.816 0.900 0.907 0.756 0.915
scottish-gaelic 0.449 0.498 0.004 0.441 0.441 0.506 0.087 0.490 – – – –
serbo-croatian 0.285 0.291 0.001 0.363 0.570 0.601 0.095 0.683 0.863 0.850 0.166 0.898
slovak 0.647 0.705 0.006 0.447 0.720 0.779 0.295 0.659 0.777 0.805 0.530 0.789
slovene 0.616 0.834 0.000 0.583 0.767 0.886 0.352 0.834 0.798 0.943 0.636 0.933
spanish 0.787 0.882 0.000 0.901 0.911 0.895 0.192 0.971 0.954 0.908 0.717 0.978
swedish 0.421 0.475 0.049 0.208 0.635 0.795 0.282 0.643 0.723 0.843 0.583 0.789
turkish 0.124 0.624 0.000 0.805 0.613 0.876 0.303 0.977 0.825 0.921 0.697 0.994
ukrainian 0.523 0.594 0.007 0.411 0.734 0.709 0.285 0.655 0.808 0.760 0.452 0.773
urdu 0.670 0.670 0.010 0.883 0.680 0.680 0.027 0.953 0.991 0.488 0.221 0.982
welsh 0.601 0.349 0.000 0.857 0.693 0.864 0.127 0.939 0.752 0.903 0.258 0.960
basque 0.040 0.180 0.005 0.890 0.051 0.182 0.021 0.891 – – – –
bengali 0.661 0.928 0.036 0.780 0.847 0.963 0.100 0.906 0.847 0.965 0.238 0.933
estonian 0.385 0.734 0.001 0.806 0.551 0.767 0.064 0.953 0.581 0.779 0.273 0.951
haida 0.554 0.810 0.000 0.937 0.802 0.849 0.002 0.937 – – – –
irish 0.317 0.439 0.045 0.375 0.424 0.493 0.137 0.592 0.474 0.530 0.411 0.692
khaling 0.247 0.495 0.011 0.973 0.546 0.627 0.279 0.992 0.840 0.659 0.638 0.996
kurmanji 0.633 0.648 0.003 0.449 0.790 0.798 0.279 0.695 0.875 0.844 0.679 0.878
latin 0.336 0.594 0.000 0.157 0.449 0.889 0.112 0.691 0.493 0.922 0.301 0.820
lithuanian 0.536 0.669 0.006 0.487 0.615 0.831 0.059 0.744 0.662 0.879 0.302 0.876
norwegian-bokmal 0.417 0.438 0.396 0.306 0.590 0.590 0.576 0.340 0.750 0.750 0.715 0.667
romanian 0.151 0.232 0.008 0.062 0.630 0.715 0.077 0.561 0.773 0.786 0.284 0.744
sorani 0.534 0.532 0.000 0.630 0.661 0.561 0.065 0.879 0.646 0.599 0.488 0.898
Average: 0.520 0.607 0.035 0.588 0.682 0.748 0.220 0.783 0.783 0.802 0.549 0.886

Table 4: Accuracies for task 2. All systems are described in the text. Upper part: development languages; lower part: surprise
languages.

“riding a bike” and “hike” 7→ “hiking” are not the
same, even though they should be. Such cases po-
tentially confuse the algorithm. A solution could
be to detect training examples which consist of
more than one token and split them up, in order
to just consider the inflecting word.

Fine-tuning. For some settings and languages,
e.g., Danish or Bokmål, the fine-tuned model ob-
tains a lower accuracy than the base MED* model.
While this might seem strange at first, when com-
paring to Table 1, it gets clear that this is mainly
the case for languages where, besides the lemma,

101

no forms of a paradigm are given. This results in
the model being fine-tuned on autoencoding the
lemma, and thus a strong bias to copy the input,
which can hurt performance. A possible solution
might be to apply a combination of fine-tuning and
multi-domain training as proposed, e.g., by Chu
et al. (2017) for neural machine translation. We
leave respective experiments for future work.

10 Conclusion

We presented the LMU system for the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection, which is based on an
encoder-decoder network. We introduced two new
methods for handling multi-source morphological
reinflection: CIS, a source form selection algo-
rithm based on edit trees and a fine-tuning ap-
proach similar in spirit to domain adaptation. On
average over all participating languages, our ap-
proaches outperform the official shared task base-
line for both tasks and all settings.

Acknowledgments

We would like to thank VolkswagenStiftung for
supporting this research.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning
for morphological inflection generation: The biu-
mit systems for the sigmorphon 2016 shared task for
morphological reinflection. In SIGMORPHON.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint 1409.1259 .

Kyunghyun Cho, Bart Van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In EMNLP.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint 1701.03214 .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017a.
The CoNLL-SIGMORPHON 2017 shared task:
Universal morphological reinflection in 52 lan-
guages. In CoNLL-SIGMORPHON.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Ryan Cotterell, John Sylak-Glassman, and Christo
Kirov. 2017b. Neural graphical models over strings
for principal parts morphological paradigm comple-
tion. In EACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL-HLT .

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: computer science and computational bi-
ology. Cambridge university press.

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In SIG-
MORPHON.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In IWSLT .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Matthew D Zeiler. 2012. ADADELTA: An adaptive
learning rate method. CoRR abs/1212.5701.

Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. arXiv
preprint 1704.01691 .

102

Chapter 8

Neural Morphological Analysis:
Encoding-Decoding Canonical
Segments

103

Neural Morphological Analysis: Encoding-Decoding Canonical Segments

Katharina Kann
Center for Information and Language Processing

LMU Munich, Germany
kann@cis.lmu.de

Ryan Cotterell
Department of Computer Science
Johns Hopkins University, USA

ryan.cotterell@jhu.edu

Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
inquiries@cislmu.org

Abstract

Canonical morphological segmentation aims
to divide words into a sequence of stan-
dardized segments. In this work, we
propose a character-based neural encoder-
decoder model for this task. Additionally,
we extend our model to include morpheme-
level and lexical information through a neural
reranker. We set the new state of the art for
the task improving previous results by up to
21% accuracy. Our experiments cover three
languages: English, German and Indonesian.

1 Introduction

Morphological segmentation aims to divide words
into morphemes, meaning-bearing sub-word units.
Indeed, segmentations have found use in a diverse
set of NLP applications, e.g., automatic speech
recognition (Afify et al., 2006), keyword spot-
ting (Narasimhan et al., 2014), machine transla-
tion (Clifton and Sarkar, 2011) and parsing (Seeker
and Çetinoğlu, 2015). In the literature, most re-
search has traditionally focused on surface segmen-
tation, whereby a word w is segmented into a se-
quence of substrings whose concatenation is the en-
tire word; see Ruokolainen et al. (2016) for a sur-
vey. In contrast, we consider canonical segmenta-
tion: w is divided into a sequence of standardized
segments. To make the difference concrete, con-
sider the following example: the surface segmen-
tation of the complex English word achievability is
achiev+abil+ity, whereas its canonical segmenta-
tion is achieve+able+ity, i.e., we restore the alter-
ations made during word formation.

Canonical versions of morphological segmenta-
tion have been introduced multiple times in the lit-
erature (Kay, 1977; Naradowsky and Goldwater,
2009; Cotterell et al., 2016). Canonical segmen-
tation has several representational advantages over
surface segmentation, e.g., whether two words share
a morpheme is no longer obfuscated by orthogra-
phy. However, it also introduces a hard algorith-
mic challenge: in addition to segmenting a word,
we must reverse orthographic changes, e.g., map-
ping achievability7→achieveableity.

Computationally, canonical segmentation can be
seen as a sequence-to-sequence problem: we must
map a word form to a canonicalized version with
segmentation boundaries. Inspired by the re-
cent success of neural encoder-decoder models
(Sutskever et al., 2014) for sequence-to-sequence
problems in NLP, we design a neural architecture
for the task. However, a naı̈ve application of the
encoder-decoder model ignores much of the linguis-
tic structure of canonical segmentation—it cannot
directly model the individual canonical segments,
e.g., it cannot easily produce segment-level embed-
dings. To solve this, we use a neural reranker on
top of the encoder-decoder, allowing us to embed
both characters and entire segments. The combined
approach outperforms the state of the art by a wide
margin (up to 21% accuracy) in three languages: En-
glish, German and Indonesian.

2 Neural Canonical Segmentation

We begin by formally describing the canonical
segmentation task. Given a discrete alphabet
Σ (e.g., the 26 letters of the English alphabet),

104

Figure 1: Detailed view of the attention mechanism of the neu-

ral encoder-decoder.

our goal is to map a word w ∈ Σ∗ (e.g.,
w=achievability), to a canonical segmentation c ∈
Ω∗ (e.g., c=achieve+able+ity). We define Ω =
Σ∪{+}, where + is a distinguished separation sym-
bol. Additionally, we will write the segmented form
as c=σ1+σ2+. . .+σn, where each segment σi ∈ Σ∗

and n is the number of canonical segments.
We take a probabilistic approach and, thus, at-

tempt to learn a distribution p(c | w). Our model
consists of two parts. First, we apply an encoder-
decoder recurrent neural network (RNN) (Bahdanau
et al., 2014) to the sequence of characters of the
input word to obtain candidate canonical segmen-
tations. Second, we define a neural reranker that
allows us to embed individual morphemes and
chooses the final answer from within a set of can-
didates generated by the encoder-decoder.

2.1 Neural Encoder-Decoder
Our encoder-decoder is based on Bahdanau et al.
(2014)’s neural machine translation model.1 The en-
coder is a bidirectional gated RNN (GRU) (Cho et
al., 2014b). Given a word w ∈ Σ∗, the input to

1
github.com/mila-udem/blocks-examples/tree/master/machine_

translation

the encoder is the sequence of characters of w, rep-
resented as one-hot vectors. The decoder defines
a conditional probability distribution over c ∈ Ω∗

given w:

pED(c |w) =

|c|∏

t=1

p(ct|c1, . . . , ct−1, w)

=

|c|∏

t=1

g(ct−1, st, at)

where g is a nonlinear activation function, st is the
state of the decoder at t and at is a weighted sum of
the |w| states of the encoder. The state of the encoder
for wi is the concatenation of forward and backward
hidden states

−→
hi and

←−
hi for wi. An overview of how

the attention weight and the weighted sum at are
included in the architecture can be seen in Figure
1. The attention weights αt,i at each timestep t are
computed based on the respective encoder state and
the decoder state st. See Bahdanau et al. (2014) for
further details.

2.2 Neural Reranker
The encoder-decoder, while effective, predicts each
output character in Ω sequentially. It does not use
explicit representations for entire segments and is in-
capable of incorporating simple lexical information,
e.g., does this canonical segment occur as an inde-
pendent word in the lexicon? Therefore, we extend
our model with a reranker.

The reranker rescores canonical segmentations
from a candidate set, which in our setting is sampled
from pED. Let the sample set be Sw = {k(i)}Ni=1

where k(i) ∼ pED(c | w). We define the neural
reranker as

pθ(c |w)=
exp

(
u> tanh(Wvc) + τ log pED(c |w)

)

Zθ

where vc=
∑n

i=1 vσi (recall c = σ1+σ2+. . .+σn)
and vσi is a one-hot morpheme embedding of σi
with an additional binary dimension marking if σi
occurs independently as a word in the language.2

The partition function is Zθ(w) and the parame-
ters are θ = {u,W, τ}. The parameters W and u

2To determine if a canonical segment is in the lexicon, we
check its occurrence in ASPELL. Alternatively, one could ask
whether it occurs in a large corpus, e.g., Wikipedia.

105

are projection and hidden layers, respectively, of a
multi-layered perceptron and τ can be seen as a tem-
perature parameter that anneals the encoder-decoder
model pED (Kirkpatrick, 1984). We define the parti-
tion function over the sample set Sw:

Zθ =
∑

k∈Sw
exp

(
u>tanh(Wvk)+τ log pED(k |w)

)
.

The reranking model’s ability to embed mor-
phemes is important for morphological segmenta-
tion since we often have strong corpus-level signals.
The reranker also takes into account the character-
level information through the score of the encoder-
decoder model. Due to this combination we expect
stronger performance.

3 Related Work

Various approaches to morphological segmentation
have been proposed in the literature. In the un-
supervised realm, most work has been based on
the principle of minimum description length (Cover
and Thomas, 2012), e.g., LINGUISTICA (Goldsmith,
2001; Lee and Goldsmith, 2016) or MORFESSOR

(Creutz and Lagus, 2002; Creutz et al., 2007; Poon
et al., 2009). MORFESSOR was later extended to a
semi-supervised version by Kohonen et al. (2010).
Supervised approaches have also been considered.
Most notably, Ruokolainen et al. (2013) developed
a supervised approach for morphological segmen-
tation based on conditional random fields (CRFs)
which they later extended to work also in a semi-
supervised way (Ruokolainen et al., 2014) using
letter successor variety features (Hafer and Weiss,
1974). Similarly, Cotterell et al. (2015) improved
performance with a semi-Markov CRF.

More recently, Wang et al. (2016) achieved state-
of-the-art results on surface morphological segmen-
tation using a window LSTM. Even though Wang et
al. (2016) also employ a recurrent neural network,
we distinguish our approach, in that we focus on
canonical morphological segmentation, rather than
surface morphological segmentation.

Naturally, our approach is also relevant to other
applications of recurrent neural network transduc-
tion models (Sutskever et al., 2014; Cho et al.,
2014a). In addition to machine translation (Bah-
danau et al., 2014), these models have been success-

fully applied to many areas of NLP, including pars-
ing (Vinyals et al., 2015), morphological reinflec-
tion (Kann and Schütze, 2016) and automatic speech
recognition (Graves and Schmidhuber, 2005; Graves
et al., 2013).

4 Experiments

To enable comparison to earlier work, we use a
dataset that was prepared by Cotterell et al. (2016)
for canonical segmentation.3

4.1 Languages

The dataset we work on covers 3 languages: En-
glish, German and Indonesian. English and German
are West Germanic Languages, with the former be-
ing an official languages in nearly 60 different states
and the latter being mainly spoken in Western Eu-
rope. Indonesian — or Bahasa Indonesia— is the
official language of Indonesia.

Cotterell et al. (2016) report the best experimental
results for Indonesian, followed by English and fi-
nally German. The high error rate for German might
be caused by it being rich in orthografic changes. In
contrast, Indonesian morphology is comparatively
simple.

4.2 Corpora

The data for the English language was extracted
from segmentations derived from the CELEX
database (Baayen et al., 1993). The German data
was extracted from DerivBase (Zeller et al., 2013),
which provides a collection of derived forms to-
gether with the transformation rules, which were
used to create the canonical segmentations. Finally,
the data for Bahasa Indonesia was collected by us-
ing the output of the MORPHIND analyzer (Larasati
et al., 2011), together with an open-source corpus of
Indonesian. For each language we used the 10,000
forms that were selected at random by Cotterell et
al. (2016) from a uniform distribution over types to
form the corpus. Following them, we perform our
experiments on 5 splits of the data into 8000 train-
ing forms, 1000 development forms and 1000 test
forms and report averages.

3
ryancotterell.github.io/canonical-segmentation

106

4.3 Training

We train an ensemble of five encoder-decoder mod-
els. The encoder and decoder RNNs each have
100 hidden units. Embedding size is 300. We use
ADADELTA (Zeiler, 2012) with a minibatch size of
20. We initialize all weights (encoder, decoder, em-
beddings) to the identity matrix and the biases to
zero (Le et al., 2015). All models are trained for 20
epochs. The hyperparameter values are taken from
Kann and Schütze (2016) and kept unchanged for
the application to canonical segmentation described
here.

To train the reranking model, we first gather the
sample set Sw on the training data. We take 500
individual samples, but (as we often sample the
same form multiple times) |Sw| ≈ 5. We op-
timize the log-likelihood of the training data using
ADADELTA. For generalization, we employ L2 reg-
ularization and we perform grid search to determine
the coefficient λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. To
decode the model, we again take 500 samples to
populate Sw and select the best segmentation.
Baselines. Our first baseline is the joint transduction
and segmentation model (JOINT) of Cotterell et al.
(2016). It is the current state of the art on the datasets
we use and the task of canonical segmentation in
general. This model uses a jointly trained, separate
transduction and segmentation component. Impor-
tantly, the joint model of Cotterell et al. (2016) al-
ready contains segment-level features. Thus, rerank-
ing this baseline would not provide a similar boost.

Our second baseline is a weighted finite-state
transducer (WFST) (Mohri et al., 2002) with a log-
linear parameterization (Dreyer et al., 2008), again,
taken from Cotterell et al. (2016). The WFST
baseline is particularly relevant because, like our
encoder-decoder, it formulates the problem directly
as a string-to-string transduction.
Evaluation Metrics. We follow Cotterell et al.
(2016) and use the following evaluation measures:
error rate, edit distance and morpheme F1. Error
rate is defined as 1 minus the proportion of guesses
that are completely correct. Edit distance is the Lev-
enshtein distance between guess and gold standard.
For this, guess and gold are each represented as one
string with a distinguished character denoting the
segment boundaries. Morpheme F1 compares the

RR ED Joint WFST UB

er
ro

r en .19 (.01) .25 (.01) 0.27 (.02) 0.63 (.01) .06 (.01)
de .20 (.01) .26 (.02) 0.41 (.03) 0.74 (.01) .04 (.01)
id .05 (.01) .09 (.01) 0.10 (.01) 0.71 (.01) .02 (.01)

ed
it

en .21 (.02) .47 (.02) 0.98 (.34) 1.35 (.01) .10 (.02)
de .29 (.02) .51 (.03) 1.01 (.07) 4.24 (.20) .06 (.01)
id .05 (.00) .12 (.01) 0.15 (.02) 2.13 (.01) .02 (.01)

F
1

en .82 (.01) .78 (.01) 0.76 (.02) 0.53 (.02) .96 (.01)
de .87 (.01) .86 (.01) 0.76 (.02) 0.59 (.02) .98 (.00)
id .96 (.01) .93 (.01) 0.80 (.01) 0.62 (.02) .99 (.00)

Table 1: Error rate (top), edit distance (middle), F1 (bottom)

for canonical segmentation. Each double column gives the mea-

sure and its standard deviation. Best result on each line (exclud-

ing UB) in bold. RR: encoder-decoder+reranker. ED: encoder-

decoder. JOINT, WFST: baselines (see text). UB: upper bound,

the maximum score our reranker could obtain, i.e., considering

the best sample in the predictions of ED.

morphemes in guess and gold. Precision (resp. re-
call) is the proportion of morphemes in guess (resp.
gold) that occur in gold (resp. guess).

5 Results

The results of the canonical segmentation experi-
ment in Table 1 show that both of our models im-
prove over all baselines. The encoder-decoder alone
has a .02 (English), .15 (German) and .01 (Indone-
sion) lower error rate than the best baseline. The
encoder-decoder improves most for the language for
which the baselines did worst. This suggests that, for
more complex languages, a neural network model
might be a good choice.

The reranker achieves an additional improvement
of .04 to .06. for the error rate. This is likely due
to the additional information the reranker has access
to: morpheme embeddings and existing words.

Important is also the upper bound we report. It
shows the maximum performance the reranker could
achieve, i.e., evaluates the best solution that appears
in the set of candidate answers for the reranker. The
right answer is contained in≥ 94% of samples. Note
that, even though the upper bound goes up with the
number of samples we take, there is no guarantee
for any finite number of samples that they will con-
tain the true answer. Thus, we would need to take
an infinite number of samples to get a perfect upper
bound. However, as the current upper bound is quite
high, the encoder-decoder proves to be an appropri-

107

ate model for the task. Due to the large gap between
the performance of the encoder-decoder and the up-
per bound, a better reranker could further increase
performance. We will investigate ways to improve
the reranker in future work.
Error analysis. We give for representative samples
the error (E for the segmentation produced by our
method) and the correct analysis (G for gold).

We first analyze cases in which the right an-
swer does not appear at all in the samples
drawn from the encoder-decoder. Those in-
clude problems with umlauts in German (G:
verflüchtigen7→ ver+flüchten+ig, E: verflucht+ig)
and orthographic changes at morpheme boundaries
(G:cutter7→cut+er, E: cutter or cutt+er, sampled
with similar frequency). There are also errors that
are due to problems with the annotation, e.g., the fol-
lowing two gold segmentations are arguably incor-
rect: tec7→detective and syrerin7→syr+er+in (syr is
neither a word nor an affix in German).

In other cases, the encoder-decoder does find the
right solution (G), but gives a higher probability
to an incorrect analysis (E). Examples are a wrong
split into adjectives or nouns instead of verbs (G:
fügsamkeit7→fügen+sam+keit, E: fügsam+keit),
the other way around (G: zähler7→zahl+er, E:
zählen+er), cases where the wrong morphemes
are chosen (G: precognition7→pre+cognition, E:
precognit+ion), difficult cases where letters have
to be inserted (G: redolence7→redolent+ence, E:
re+dolence) or words the model does not split
up, even though they should be (G: additive7→
addition+ive, E: additive).

Based on its access to lexical information and
morpheme embeddings, the reranker is able to
correct some of the errors made by the encoder-
decoder. Samples are G: geschwisterpärchen7→
geschwisterpaar+chen, E: geschwisterpar+chen
(geschwisterpaar is a word in German but geschwis-
terpar is not) or G: zickig 7→ zicken+ig, E: zick+ig
(with zicken, but not zick, being a German word).

Finally, we want to know if segments that appear
in the test set without being present in the training
set are a source of errors. In order to investigate
that, we split the test samples into two groups: The
first group contains the samples for which our sys-
tem finds the right answer. The second one contains
all other samples. We compare the percentage of

wrong samples right samples
27.33 (.02) 36.60 (.01)

Table 2: Percentage of segments in the solutions for the test

data that do not appear in the training set - split by samples that

our system does or does not get right. We use the German data

and average over the 5 splits. Standard deviation in parenthesis.

samples that do not appear in the training data for
both groups. We exemplarily use the German data
and the results results are shown in Table 2. First,
it can be seen that very roughly about a third of all
segments does not appear in the training data. This
is mainly due to unseen lemmas as their stems are
naturally unknown to the system. However, the cor-
rectly solved samples contain nearly 10% more un-
seen segments. As the average number of segments
per word for wrong and right solutions — 2.44 and
2.11, respectively — does not differ by much, it
seems unlikely that many errors are caused by un-
known segments.

6 Conclusion and Future Work

We developed a model consisting of an encoder-
decoder and a neural reranker for the task of canoni-
cal morphological segmentation. Our model com-
bines character-level information with features on
the morpheme level and external information about
words. It defines a new state of the art, improv-
ing over baseline models by up to .21 accuracy, 16
points F1 and .77 Levenshtein distance.

We found that ≥ 94% of correct segmentations
are in the sample set drawn from the encoder-
decoder model, demonstrating the upper bound on
the performance of our reranker is quite high; in fu-
ture work, we hope to develop models to exploit this.

Acknowledgments

We gratefully acknowledge the financial support of
Siemens for this research.

References
Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo,

Laurent Besacier, and Yuqing Gao. 2006. On the use
of morphological analysis for dialectal Arabic speech
recognition. In Proc. of INTERSPEECH.

R. H. Baayen, R. Piepenbrock, and H. Van Rijn. 1993.
The CELEX lexical data base on CD-ROM.

108

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning phrase repre-
sentations using RNN encoder–decoder for statistical
machine translation. In Proc. of EMNLP.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In Proc. of ACL.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-markov models. In Proc. of
CoNLL.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological seg-
mentation. In Proc. of NAACL.

Thomas M Cover and Joy A Thomas. 2012. Elements of
Information Theory. John Wiley & Sons.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proc. of the ACL-02
Workshop on Morphological and Phonological Learn-
ing.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti
Puurula, Janne Pylkkönen, Vesa Siivola, Matti Var-
jokallio, Ebru Arisoy, Murat Saraçlar, and Andreas
Stolcke. 2007. Morph-based speech recognition
and modeling of out-of-vocabulary words across lan-
guages. ACM Transactions on Speech and Language
Processing, 5(1):3:1–3:29.

Markus Dreyer, Jason R. Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In Proc. of EMNLP.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In Proc of. ICASSP.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion storage and retrieval, 10(11):371–385.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proc. of ACL.

Martin Kay. 1977. Morphological and syntactic analysis.
Linguistic Structures Processing, 5:131–234.

Scott Kirkpatrick. 1984. Optimization by simulated an-
nealing: Quantitative studies. Journal of Statistical
Physics, 34(5-6):975–986.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. 2010.
Semi-supervised learning of concatenative morphol-
ogy. In Proc. of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology and
Phonology.

Septina Dian Larasati, Vladislav Kuboň, and Daniel Ze-
man. 2011. Indonesian morphology tool (morphind):
Towards an indonesian corpus. In Proc. of SFCM.
Springer.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Jackson L. Lee and John A. Goldsmith. 2016. Linguis-
tica 5: Unsupervised learning of linguistic structure.
In Proc. of NAACL.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Jason Naradowsky and Sharon Goldwater. 2009. Im-
proving morphology induction by learning spelling
rules. In Proc. of IJCAI.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword spot-
ting. In Proc. of EMNLP.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proc. of NAACL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and
Mikko Kurimo. 2013. Supervised morphological seg-
mentation in a low-resource learning setting using con-
ditional random fields. In Proc. of CoNLL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and mikko kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional random
fields. In Proc. of EACL.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. Comparative study of minimally supervised
morphological segmentation. Computational Linguis-
tics, 42(1):91–120.

109

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morphologi-
cal segmentation and syntactic analysis. TACL, 3:359–
373.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. of NIPS.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. of NIPS.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
LSTM neural networks. In Proc. of AAAI.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Britta Zeller, Jan Šnajder, and Sebastian Padó. 2013. De-
rivbase: Inducing and evaluating a derivational mor-
phology resource for german. In Proc. of ACL.

110

Bibliography

Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo, Laurent Besacier, and
Yuqing Gao. On the use of morphological analysis for dialectal Arabic speech
recognition. In Annual Conference of the International Speech Communication
Association, 2006.

Roee Aharoni and Yoav Goldberg. Sequence to sequence transduction with hard
monotonic attention. In Annual Meeting of the Association for Computational
Linguistics, 2017.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov. Improving sequence to
sequence learning for morphological inflection generation: The BIU-MIT sys-
tems for the SIGMORPHON 2016 shared task for morphological reinflec-
tion. In SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology, 2016.

Malin Ahlberg, Markus Forsberg, and Mans Hulden. Semi-supervised learning of
morphological paradigms and lexicons. In Conference of the European Chapter
of the Association for Computational Linguistics, 2014.

Malin Ahlberg, Markus Forsberg, and Mans Hulden. Paradigm classification
in supervised learning of morphology. In Conference of the North American
Chapter of the Association for Computational Linguistics / Human Language
Technologies, 2015.

Inaki Alegria and Izaskun Etxeberria. EHU at the SIGMORPHON 2016 shared
task. A simple proposal: Grapheme-to-phoneme for inflection. In SIGMOR-
PHON Workshop on Computational Research in Phonetics, Phonology, and
Morphology, 2016.

Oded Avraham and Yoav Goldberg. The interplay of semantics and morphology
in word embeddings. In Conference of the European Chapter of the Association
for Computational Linguistics, 2017.

111

BIBLIOGRAPHY

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In International Conference on
Learning Representations, 2015.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass.
What do neural machine translation models learn about morphology? Annual
Meeting of the Association for Computational Linguistics, 2017.

Toms Bergmanis, Katharina Kann, Hinrich Schütze, and Sharon Goldwater.
Training data augmentation for low-resource morphological inflection. In
CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflec-
tion, 2017.

Tim Buckwalter. Buckwalter Arabic morphological analyzer version 2.0. Techni-
cal report, Linguistic Data Consortium, University of Pennsylvania, 2004.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
2014a.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder–decoder for statistical machine translation. In
Conference on Empirical Methods in Natural Language Processing, 2014b.

Ann Clifton and Anoop Sarkar. Combining morpheme-based machine translation
with post-processing morpheme prediction. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2011.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and Hinrich Schütze. Labeled
morphological segmentation with semi-markov models. In Computational Nat-
ural Language Learning, 2015.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eis-
ner, and Mans Hulden. The SIGMORPHON 2016 shared task—morphological
reinflection. In SIGMORPHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, 2016a.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. A joint model of orthography
and morphological segmentation. In North American Chapter of the Associa-
tion for Computational Linguistics, 2016b.

112

BIBLIOGRAPHY

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekate-
rina Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in 52 languages. In CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morphological Reinflection, 2017a.

Ryan Cotterell, John Sylak-Glassman, and Christo Kirov. Neural graphical mod-
els over strings for principal parts morphological paradigm completion. In Con-
ference of the European Chapter of the Association for Computational Linguis-
tics, 2017b.

Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In
Workshop on Morphological and Phonological Learning, 2002.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne
Pylkkönen, Vesa Siivola, Matti Varjokallio, Ebru Arisoy, Murat Saraçlar, and
Andreas Stolcke. Morph-based speech recognition and modeling of out-of-
vocabulary words across languages. ACM Transactions on Speech and Lan-
guage Processing, 5(1):3:1–3:29, 2007.

Adrià De Gispert, Sami Virpioja, Mikko Kurimo, and William Byrne. Minimum
Bayes risk combination of translation hypotheses from alternative morphologi-
cal decompositions. In North American Chapter of the Association for Compu-
tational Linguistics, pages 73–76, 2009.

Aliya Deri and Kevin Knight. How to make a frenemy: Multitape FSTs for port-
manteau generation. In Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics / Human Language Technologies, 2015.

Markus Dreyer, Jason R. Smith, and Jason Eisner. Latent-variable modeling of
string transductions with finite-state methods. In Conference on Empirical
Methods in Natural Language Processing, 2008.

Greg Durrett and John DeNero. Supervised learning of complete morphological
paradigms. In Conference of the North American Chapter of the Association
for Computational Linguistics / Human Language Technologies, 2013.

Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

Ramy Eskander, Nizar Habash, and Owen Rambow. Automatic extraction of mor-
phological lexicons from morphologically annotated corpora. In Conference on
Empirical Methods in Natural Language Processing, 2013.

113

BIBLIOGRAPHY

Manaal Faruqui, Ryan McDonald, and Radu Soricut. Morpho-syntactic lexicon
generation using graph-based semi-supervised learning. Transactions of the
Association for Computational Linguistics, 4:1–16, 2016a.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. Morphological
inflection generation using character sequence to sequence learning. In Con-
ference of the North American Chapter of the Association for Computational
Linguistics / Human Language Technologies, 2016b.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural
machine translation with a shared attention mechanism. In Conference of the
North American Chapter of the Association for Computational Linguistics /
Human Language Technologies, 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.
Dauphin. Convolutional sequence to sequence learning. In International Con-
ference on Machine Learning, 2017.

John Goldsmith. Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27(2):153–198, 2001.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18(5):602–610, 2005.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6645–6649, 2013.

Spence Green and John DeNero. A class-based agreement model for generat-
ing accurately inflected translations. In Annual Meeting of the Association for
Computational Linguistics, 2012.

Margaret A. Hafer and Stephen F. Weiss. Word segmentation by letter successor
varieties. Information storage and retrieval, 10(11):371–385, 1974.

John A.. Hertz, Anders S. Krogh, and Richard G. Palmer. Introduction to the
theory of neural computation. Addison-Wesley Publishing Company, 1991.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko Kurimo, Sami Virpioja,
and Janne Pylkkönen. Unlimited vocabulary speech recognition with morph
language models applied to finnish. Computer Speech & Language, 20(4):
515–541, 2006.

114

BIBLIOGRAPHY

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

Mans Hulden, Markus Forsberg, and Malin Ahlberg. Semi-supervised learning of
morphological paradigms and lexicons. In Conference of the European Chapter
of the Association for Computational Linguistics, 2014.

Klara Janecki. 300 Polish Verbs. Barron’s Educational Series, 2000.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Mac-
duff Hughes, and Jeffrey Dean. Google’s multilingual neural machine transla-
tion system: Enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351, 2017.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099, 2016.

Katharina Kann and Hinrich Schütze. MED: The LMU system for the SIGMOR-
PHON 2016 shared task on morphological reinflection. In SIGMORPHON
Workshop on Computational Research in Phonetics, Phonology, and Morphol-
ogy, 2016.

Martin Kay. Morphological and syntactic analysis. Linguistic Structures Process-
ing, 5:131–234, 1977.

David L. King. Evaluating sequence alignment for learning inflectional morphol-
ogy. In SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology, 2016.

Philipp Koehn and Kevin Knight. Empirical methods for compound splitting.
In Conference of the European Chapter of the Association for Computational
Linguistics, 2003.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. Semi-supervised learning of
concatenative morphology. In SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology, 2010.

Kimmo Koskenniemi. Two-level model for morphological analysis. In Interna-
tional Joint Conference on Artificial Intelligence, volume 83, pages 683–685,
1983.

115

BIBLIOGRAPHY

Jackson L. Lee and John A. Goldsmith. Linguistica 5: Unsupervised learning of
linguistic structure. In North American Chapter of the Association for Compu-
tational Linguistics, 2016.

Jindřich Libovickỳ and Jindřich Helcl. Attention strategies for multi-source
sequence-to-sequence learning. In Annual Meeting of the Association for Com-
putational Linguistics, 2017.

Ling Liu and Lingshuang Jack Mao. Morphological reinflection with conditional
random fields and unsupervised features. In SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, 2016.

Klaus Macherey, Andrew M. Dai, David Talbot, Ashok C. Popat, and Franz Och.
Language-independent compound splitting with morphological operations. In
Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, 2011.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide. Align and copy: UZH at
SIGMORPHON 2017 shared task for morphological reinflection. In CoNLL
SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection,
2017.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of mathematical biology, 5(4):115–133, 1943.

Thomas Müller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order
CRFs for morphological tagging. In Conference on Empirical Methods in Nat-
ural Language Processing, 2013.

Jason Naradowsky and Sharon Goldwater. Improving morphology induction by
learning spelling rules. In International Joint Conference on Artificial Intelli-
gence, 2009.

Karthik Narasimhan, Damianos Karakos, Richard Schwartz, Stavros Tsakalidis,
and Regina Barzilay. Morphological segmentation for keyword spotting. In
Conference on Empirical Methods in Natural Language Processing, 2014.

Garrett Nicolai and Grzegorz Kondrak. Morphological analysis without expert
annotation. In Conference of the European Chapter of the Association for Com-
putational Linguistics, 2017.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak. Inflection generation as dis-
criminative string transduction. In Conference of the North American Chapter
of the Association for Computational Linguistics / Human Language Technolo-
gies, 2015.

116

BIBLIOGRAPHY

Garrett Nicolai, Bradley Hauer, Adam St Arnaud, and Grzegorz Kondrak. Mor-
phological reinflection via discriminative string transduction. In SIGMOR-
PHON Workshop on Computational Research in Phonetics, Phonology, and
Morphology, 2016.

Robert Östling. Morphological reinflection with convolutional neural networks. In
SIGMORPHON Workshop on Computational Research in Phonetics, Phonol-
ogy, and Morphology, 2016.

Jorma Rissanen. Stochastic complexity in statistical inquiry. World scientific
series in computer science, 15:79–93, 1989.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. Super-
vised morphological segmentation in a low-resource learning setting using con-
ditional random fields. In Computational Natural Language Learning, 2013.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. Painless
semi-supervised morphological segmentation using conditional random fields.
In Conference of the European Chapter of the Association for Computational
Linguistics, 2014.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-Arne Grönroos, Mikko
Kurimo, and Sami Virpioja. Comparative study of minimally supervised mor-
phological segmentation. Computational Linguistics, 42(1):91–120, 2016.

Tarek Sakakini, Suma Bhat, and Pramod Viswanath. Fixing the infix:
Unsupervised discovery of root-and-pattern morphology. arXiv preprint
arXiv:1702.02211, 2017.

Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields
for information extraction. In Advances in Neural Information Processing Sys-
tems, 2005.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. SMOR: A german computa-
tional morphology covering derivation, composition and inflection. In Interna-
tional Conference on Language Resources and Evaluation, 2004.

Wolfgang Seeker and Özlem Çetinoğlu. A graph-based lattice dependency parser
for joint morphological segmentation and syntactic analysis. Transactions of
the Association for Computational Linguistics, 3:359–373, 2015.

Alexey Sorokin. Using longest common subsequence and character models to
predict word forms. In SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, 2016.

117

BIBLIOGRAPHY

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

Dima Taji, Ramy Eskander, Nizar Habash, and Owen Rambow. The Columbia
University-New York University Abu Dhabi SIGMORPHON 2016 morpho-
logical reinflection shared task submission. In SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, 2017.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408, 2010.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geof-
frey Hinton. Grammar as a foreign language. In Advances in Neural Informa-
tion Processing Systems, 2015.

Ekaterina Vylomova, Ryan Cotterell, Timothy Baldwin, and Trevor Cohn.
Context-aware prediction of derivational word-forms. In Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2017.

Terence Wade. A comprehensive Russian grammar. John Wiley & Sons, 2010.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo. Morphological segmenta-
tion with window LSTM neural networks. In AAAI Conference on Artificial
Intelligence, 2016.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. Neurocom-
puting: Foundations of Research, 4:96–104, 1960.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y.
Ng. Neural language correction with character-based attention. arXiv preprint
arXiv:1603.09727, 2016.

Chunting Zhou and Graham Neubig. Multi-space variational encoder-decoders
for semi-supervised labeled sequence transduction. In Annual Meeting of the
Association for Computational Linguistics, 2017.

118

BIBLIOGRAPHY

Barret Zoph and Kevin Knight. Multi-source neural translation. In Conference of
the North American Chapter of the Association for Computational Linguistics
/ Human Language Technologies, 2016.

119

BIBLIOGRAPHY

120

