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ABSTRACT 

AL-AHMAD, SARA, F.M., Masters of Science: June : 2019, Biomedical Sciences 

Title: PROFILING the SALIVARY MICROBIOME in the QATARI POPULATION 

 

Supervisor ofThesis: Souhaila,  Al Khodor. 

           Humans are living ecosystems composed of human cells and microbes. The 

microbiome is the collection of microbes and their genes. Recent breakthrough in the 

high throughput sequencing technologies made it possible for us to understand the 

composition of the human microbiome. Launched by the National Institutes of Health 

in USA, the human microbiome project indicated that our bodies harbor a wide array 

of microbes, specific to each body site with inter and intra-personal variabilities. 

Numerous studies have indicated that, the microbiome composition plays an 

important role in health and disease, thus highlighting the significance of microbiome 

research in human health. 

 Saliva is a biofluid secreted from salivary glands composed of water, 

electrolytes, mucus, DNA, RNA, proteins, enzymes and microbes. Several studies 

assessed the role of the salivary microbiome in many conditions ranging from local 

diseases of the oral cavity such as dental carries and gingivitis to neurodevelopmental 

disease such as autism, indicating the potential of applying the knowledge generated 

from the salivary microbiome projects towards a better understanding of various 

pathological conditions.  

 In this study, we aim to profile the salivary microbiome of the Qatari population 

and identify the oral microbial communities in individuals with diabetes or obesity. 
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100 saliva samples collected from Qatari participants, selected randomly, were 

retrieved from Qatar Biobank repository. Samples were collected by spitting in a tube. 

After microbial DNA extraction, 16S rRNA gene was sequenced using Illumina 

Miseq.  Microbial profiles were then correlated with the individual phenotypic and 

clinical data to identify the microbial signatures associated with health and disease 

conditions, with special focus on diabetes and obesity due to the increasing prevalence 

rate of both conditions in Qatar.  

 



  

v 

 

DEDICATION 

 

 

 

 

 

I would like to dedicate this work to those who supported me during my study. I am 

grateful for having them in my life. 

  



  

vi 

 

ACKNOWLEDGMENTS 

 I would like to especially thank all members of the Microbiome and Host-

Microbe Interaction team in the Research Department at Sidra Medicine.   

Special thanks to Dr. Selvasankar Murugesan for his immense help in the analysis part 

of the project. 

 

 

  



  

vii 

 

TABLE OF CONTENTS 

DEDICATION ............................................................................................................... v 

ACKNOWLEDGMENTS ............................................................................................ vi 

LIST OF TABLES ......................................................................................................... x 

LIST OF FIGURES ...................................................................................................... xi 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

CHAPTER 2: REVIEW OF THE LITERATURE................................................... 3 

1. The human microbiome project ..................................................................... 3 

2. Development of the microbiome: Inception from the early days of life ...... 3 

3. The salivary microbiome ................................................................................. 4 

4. The gut microbiome ......................................................................................... 6 

5. Factors that affect the salivary microbiome composition ............................ 6 

5.1. Oral hygiene ................................................................................................ 8 

5.2. Smoking....................................................................................................... 9 

6. Microbiome in disease: Microbial dysbiosis .................................................. 9 

7. Tools used to assess the microbiome composition: 16S rRNA gene 

sequencing ............................................................................................................... 11 

8. Aims of the project ......................................................................................... 12 

CHAPTER 3: METHODOLOGY ........................................................................... 13 

1. Description of the study participants ........................................................... 13 



  

viii 

 

2. Inclusion/ Exclusion criteria ......................................................................... 13 

3. Sample collection ............................................................................................ 14 

4. DNA extraction from saliva using QIAsymphony ...................................... 14 

5. DNA Quality control ...................................................................................... 16 

6. Amplification of 16S rRNA gene fragment by polymerase chain reaction

 16 

7. PCR thermal conditions and duration ......................................................... 18 

8. Gel electrophoresis ......................................................................................... 18 

9. 16S library magnetic bead purification ....................................................... 19 

10. AmpPure magnetic bead purification ....................................................... 19 

11. Assessment of the PCR product quality using Agilent bioanalyzer and 

Qubit fluorometer .................................................................................................. 20 

11.1. Agilent High sensitivity kit .................................................................... 20 

11.2. Qubit Fluorometer ................................................................................ 21 

12. Sequencing ................................................................................................... 21 

13. Sequencing Procedure................................................................................. 23 

14. Data Analysis ............................................................................................... 24 

CHAPTER 4: RESULTS .......................................................................................... 25 

1. Description of the study participants ........................................................... 25 

2. Microbial DNA Quality and Quantity ......................................................... 26 



  

ix 

 

3. PCR product visualization using agarose gel electrophoresis ................... 26 

4. Taxa summary ................................................................................................ 27 

5. Relative abundance of the salivary microbiome at the Genus level .......... 30 

6. Comparative relative abundance between various categories ................... 32 

7. Interindividual and intraindividual variability: Alpha and beta-diversity

 34 

8. Correlation between clinical variables and microbial data: HALLA ....... 37 

9. Significant differences among clinical categories using LDA (Linear 

discriminant analysis) Effect Size (LEfSe) ........................................................... 41 

10. Predictive functional profiling of microbial communities using PiCrust

 42 

CHAPTER 5: DISCUSSION .................................................................................... 45 

REFRENCES ............................................................................................................. 49 

 

  



  

x 

 

LIST OF TABLES 

Table 1 ......................................................................................................................... 17 

Table 2 ......................................................................................................................... 17 

Table 3 ......................................................................................................................... 25 

  



  

xi 

 

LIST OF FIGURES 

Figure 1:Summerized  method workflow .................................................................... 13 

Figure 2: Schematic representation of the QIAsymphony SP protocol used for DNA 

extraction...................................................................................................................... 15 

Figure 3: 16S rRNA gene: the red boxes represent the variable regions, whereas the 

blue areas in between the boxes represents the conserved region. .............................. 16 

Figure 4: AMPure XP magnetic beads purification of the PCR product ..................... 19 

Figure 5: Sequencing by synthesis, Source:(Mardis, 2013) ........................................ 23 

Figure 6: Gel electrophoresis for PCR products .......................................................... 26 

Figure 7: Relative abundance of bacterial phyla among salivary samples .................. 27 

Figure 8: Comparison of the microbial taxa at the phylum level in normal weight, 

overweight and obese ................................................................................................... 29 

Figure 9: Taxa summary of the phylum level for Diabetic Versus Normal ................ 30 

Figure 10: Taxa summary of the genus level for BMI categories with most abundant 

genera ........................................................................................................................... 31 

Figure 11: Taxa summary of the genus level for Diabetic versus Normal with most 

abundant genera ........................................................................................................... 32 

Figure 12: Hierarchical clustering heatmap of top 25 genera between Normal, 

Overweight and Obese group. ...................................................................................... 33 

Figure 13: Hierarchical clustering heatmap of top 25 genera between diabetic and 

normal group. ............................................................................................................... 34 

Figure 14: Alpha diversity of diabetic and normal (non-diabetic) subjects................. 35 

Figure 15: Chao1 analysis for alpha diversity of BMI categories ............................... 36 

Figure 16: Principle of Coordinate Analysis (PCoA) by applying weighted UniFrac of 

file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935728
file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935733
file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935733


  

xii 

 

BMI category; red triangle: normal, blue: obese, circle: overweight .......................... 37 

Figure 17: Principle of Coordinate Analysis (PCoA) by applying weighted UniFrac of 

diabetic and normal; blue: normal, red: diabetic ......................................................... 37 

Figure 18: Associations between clinical parameters and  microbial composition (genus 

level) for all participants .............................................................................................. 38 

Figure 19: Associations between clinical parameters and microbial composition (genus 

level) for the  Diabetic group ....................................................................................... 39 

Figure 20: Associations between clinical parameters and microbial composition (genus 

level) for the normal weight group .............................................................................. 40 

Figure 21: Associations between clinical parameters and microbial composition (genus 

level) for the obese group ............................................................................................ 40 

Figure 22: Associations between clinical parameters and microbial composition (genus 

Level) for Overweight group ....................................................................................... 41 

Figure 23: LefSe analysis of BMI groups and their microbial composition................ 42 

Figure 24: PiCrust analysis of Normal and diabetic in relation to N-glycan biosynthesis

...................................................................................................................................... 43 

Figure 25: PiCrust analysis of normal weight and obese in relation to N-glycan 

biosynthesis (significant difference was observed, p value <0.05) ............................. 44 

 

 

  

file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935746
file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935747
file:///D:/Users/SM17073/OneDrive/Al-Ahmad%20Sara-%2005232019.docx%23_Toc9935747


  

1 

 

CHAPTER 1: INTRODUCTION 

 The term microbiome refers to the collection of genomes annotated for all the 

microbes that form a habitat in a specific body site (Ursell, Metcalf, Parfrey, & Knight, 

2012). The other term that has been used extensively in the literature is Microbiota, 

which refers to the collection of the microbes themselves (Ursell et al., 2012). The 

advent in the molecular techniques especially sequencing methods, has made the study 

of the microbiome possible, since not all microbes are cultivable (Consortium, 2012a). 

 In an effort to introduce a profile of the human microbiota, the Human 

Microbiome Project (HMP) was initiated in 2008 with an aim to identify and 

characterize the core microbiota in humans using samples collected from different 

body sites (Peterson et al., 2009). The project achieved major milestones introducing 

3000 reference sets of genome sequences that represent microbial isolates from human 

samples (Peterson et al., 2009). This database is now used  as  a reference for 

researchers aiming to assess the microbiome composition in various study designs 

(Consortium, 2012a). The microbiome composition can be compared in health and 

disease (Althani et al., 2016), in longitudinal studies, microbial communities can be 

compared between seasons, between different subjects, or within the same subject but 

at different time periods (Cameron, Huws, Hegarty, Smith, & Mur, 2015).  

 Qatar Biobank (QBB) is an organization that aims to promote public health in 

Qatar by recruiting participants, collecting and storing a series of biological samples 

along with a comprehensive assessment of the individual phenotypic, dietary and 

clinical data among others. Saliva samples used in this study were collected from 

participants recruited in QBB (discussed in more details in the chapter 3: Materials 

and Methods) for the purpose of investigating the salivary microbiome. 
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 In this study, we aim to profile the salivary microbiome of the Qatari population 

and identify the oral microbial communities in individuals with diabetes or obesity. A 

total of 100 saliva samples randomly selected from the QBB participants, were 

obtained for microbial profiling. The microbiome profiles of the 100 saliva samples 

were correlated with the clinical data and phenotypic data, in order to identify 

microbial signatures associated with various diseases or pathological conditions.  In 

this project, we focused on diabetes and obesity due to their increasing prevalence rate 

in Qatar.  

 

HYPOTHESIS: 

 In this study, we hypothesize that saliva samples have a microbial composition 

that vary between individuals, and that specific microbial signatures can be associated 

with various pathological conditions and diseases.  

To test this hypothesis, we aim to: 

1. Study the microbiome composition of 100 saliva samples collected from 

Qatari participants in QBB. 

2. Correlate the microbial composition with the clinical data in order to identify 

specific signatures associated with various pathological conditions. 

3. Identify salivary microbial communities associated with diabetes and obesity. 
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 CHAPTER 2: REVIEW OF THE LITERATURE 

 

1. The human microbiome project 

 The human microbiome has gained a considerable attention especially after the 

initiation of the HMP (Turnbaugh et al., 2007). In order to characterize the normal 

microbiota of different body habitats in healthy adults, an extensive sampling was 

planned across two time points. (Consortium, 2012b). The HMP recruited 242 

volunteers (129 males, 113 females) and sampled tissues from 15 body sites in men 

and 18 body sites in women (Huttenhower et al., 2012). By incorporating several 

complementary techniques and analyses including 16S ribosomal RNA (rRNA) gene 

sequencing, whole-genome shotgun sequencing (WGS) and aligning the assembled 

sequences to the reference microbial genomes they were able to define the 

microbiome composition of each body site they sampled from (Huttenhower et al., 

2012). Several studies has been conducted afterward in order to characterize the core 

microbiome that make up a status of symbiosis or in other words “microbiome in 

health” (Lloyd-Price et al., 2017). A healthy individual maintains a unique balance 

between the microbiome, immune system for protection from invading bacteria 

(Belkaid & Hand, 2014). However, in some cases pathogenic bacteria increases in 

numbers replacing the beneficial bacteria (microbial dysbiosis) leading to a significant 

impact on our health (Carding, Verbeke, Vipond, Corfe, & Owen, 2015).  

 

 

2. Development of the microbiome: Inception from the early days of life 

 The process of microbiome colonization starts early in life even before birth 
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(Mueller, Bakacs, Combellick, Grigoryan, & Dominguez-Bello, 2015). The microbial 

contact during prenatal life and the inoculum transferred during birth and 

breastfeeding imprint the infant’s microbiota and the immune system. 

  The mode of birth was shown to play an important role in the composition of 

the microbiome in the early days of life as babies born through a cesarean section 

carry a different microbiome as compared to those who were born naturally 

(Francavilla, Cristofori, Tripaldi, & Indrio, 2018). Moreover, the mode of feeding the 

neonates was also shown to play an important role in the seeding of their gut 

microbiome, as  babies who were strictly breastfed had a different gut microbiome 

composition as compared to those who were mixed fed with formula milk (Backhed 

et al., 2015). By the end of the second year of age, the taxonomic composition of the 

gut microbiome stabilizes and converges towards a characteristic adult gut 

microbiome. 

 

 

3. The salivary microbiome 

 Saliva is produced by multiple salivary glands, the major glands (major is 

referred to their size) which are the parotid glands and the submandibular gland 

(Humphrey & Williamson, 2001). The major glands accounts for 90% of salivary 

secretion (de Paula et al., 2017). The minor glands which are found in the tongue, 

cheeks and lower lip account for 10% of  the produced saliva, these glands are 

responsible for the production of  serous saliva (de Paula et al., 2017). The average 

amount normally produced by humans ranges from 1 to 1.5 liters of saliva daily 

(Humphrey & Williamson, 2001). 
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 Saliva contains several components such as electrolytes, proteins, 

immunoglobulins, enzymes and microbes (Humphrey & Williamson, 2001). 

Electrolytes together with proteins for examples maintain the process of 

mineralization and remineralization (Humphrey & Williamson, 2001). 

Immunoglobulins help in the neutralization of harmful pathogens without eliciting an 

inflammation. Urea, bicarbonate and phosphatase maintain a steady salivary pH of 6 

to 7 (Humphrey & Williamson, 2001).  

 One of the major components that promote the colonization of bacteria and 

fungi is mucin (Humphrey & Williamson, 2001). Mucins are non-immunologic 

glycosylated proteins that also act as lubricants, and provide protection from acid 

penetration to the cells by forming a barrier (Humphrey & Williamson, 2001). Being 

highly available, saliva is considered as an easy to collect sample that does not require 

hospitalization or special preparation (Kaczor-Urbanowicz et al., 2017).  

 Salivary microbiome is temporally stable as it does not fluctuate according to 

the circadian rhythm (Belstrøm et al., 2016). Collection of saliva can be achieved by 

several methods including spitting, swabbing, and the draining method (Priya & 

Prathibha, 2017). The method of collection exert a minimal effect on  the extraction 

of microbial DNA (Y. Lim, Totsika, Morrison, & Punyadeera, 2017).  

 The healthy adult human mouth hosts a complex and resilient ecosystem of 

hundreds of different microbial species (Rosier, Marsh, & Mira, 2018). These 

microbes reside in different sites of the oral cavity, which is mainly composed of a 

soft mucosa that is constantly shedding, and the hard surface which comprises the 

teeth (He, Li, Cao, Xue, & Zhou, 2015). The saliva is a representing constituent of 

both locations but more profoundly the soft mucosa (He et al., 2015). According to 
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many studies, the most predominant phyla of the salivary microbiome are Firmicutes, 

Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria (Ahn et al., 

2011;(Zhou et al., 2016)). 

 Located at the opening of the gastrointestinal tract, the oral cavity provides a 

convenient, accessible site for collecting and analyzing microbial samples in the saliva 

(Kodukula et al., 2017). It is also worth noting that, the salivary microbiome mirrors 

the gut microbiome in terms of complexity and diversity (Kodukula et al., 2017). 

 

 

4. The gut microbiome 

 The gut microbiome had been studied extensively for many reasons such as the 

immense populations of microbiota residing at this site,  the easiness of obtaining the 

fecal matter as a representative of the microbiota of that site (Lynch & Pedersen, 

2016). It is estimated that the number of gut microbiota may be more than 1014 and 

the genomic content of the microbiota is 100 times more than the human genome 

(Thursby & Juge, 2017). The gut microbiome was described as part of the MetaHIT 

cohorts and indicated that a large proportion of the microbial genes are shared between 

individuals of this cohort, and more than 99% of these genes are bacterial; 

representing 1000 to 1150 bacterial species(Dusko Ehrlich, 2010). A healthy gut has 

mainly  five  phyla which is mainly composed of strict anaerobes and  dominated by 

2 main phyla: Bacteroidetes and Firmicutes(Rinninella et al., 2019).  

 

5. Factors that affect the salivary microbiome composition 

 Several pre and post-natal factors can significantly alter the composition of the 
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salivary microbiome including host genetics, the mode of delivery at birth; the method 

of infant feeding; teeth eruption, the use of medications, especially antibiotics; 

smoking, oral hygiene and diet among others. 

 The salivary microbiome in neonates was shown to be different in breast-fed or 

formula fed babies (Al-Shehri et al., 2016). The study had shown that there is a higher 

prevalence of Bacteroidetes in the mouths of formula-fed infants when compared to 

breast-fed infants, but in contrast Actinobacteria were more prevalent in breast-fed 

babies and  Proteobacteria was more prevalent in the saliva of breast-fed babies when 

compared to the than in formula-fed neonates (Al-Shehri et al., 2016).  

 Moreover, the Human Oral Microbe Identification Microarray (HOMIM) was 

used to compare the oral microbiome of babies who were born via c-section versus 

those who were born naturally, and  found the later has a greater number of taxa (Lif 

Holgerson, Harnevik, Hernell, Tanner, & Johansson, 2011). The newborn oral cavity 

initial colonizers are Streptococcus salivarius, since it  has the ability to adhere to the 

epithelial surfaces and produce polymers that facilitate the adherence of other bacteria 

including Actinomyces sp (Sampaio-Maia & Monteiro-Silva, 2014).  

 When eruption of teeth starts, the colonization of Streptococcus mutans begins, 

which is considered a cariogenic Streptococcus sp due their preference on colonizing 

hard tissue such as teeth (Sampaio-Maia & Monteiro-Silva, 2014). Although, it was 

also found that S. mutans are also present in edentulous infants (Cephas et al., 2011). 

 The major role that the diet plays in modulating the microbiome composition, 

promoted the potential for interventional studies using diet or dietary products to alter 

and improve the microbiome composition especially the gut microbiome in order to 

improve health (Wen & Duffy, 2017). A recent longitudinal study examined the effect 
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of the consumption of yogurt rich with probiotic versus using a standard yogurt on the 

composition of the salivary microbiome,  an increase in the alpha diversity after a 

short term consumption of probiotics was observed (Dassi et al., 2018).  

 While genetics was shown to play a role in the microbiome composition 

(Julia K. Goodrich et al., 2014),  a  microbiome study conducted for Ashkenazi Jewish 

population by analyzing the salivary microbiome for  pedigrees of families, concluded 

that the environment and shared household, plays a greater role in shaping the 

microbiome composition when compared to genetics (Shaw et al., 2017). While 

multifactorial, it is clear that the  environment and  host genetics together are major 

modulators of the microbiome composition (M. Y. Lim et al., 2014). 

 The use of broad-spectrum antibiotics has negative effects on the composition 

of the gut microbiota, which results in significant drops in taxonomic richness, 

diversity and evenness of the gut microbial communities (Thiemann, Smit, & Strowig, 

2016). Another study has concluded that individuals exposed to a single antibiotic 

treatment, undergo considerable microbial shifts and enrichment in antibiotic 

resistance in their gut microbiome composition, while their salivary microbiome 

composition remains unexpectedly stable (Zaura et al., 2015). On the other hand, it 

was shown that children receiving antibiotics treatment for otitis media infection have 

a microbial shift in their salivary microbiome that was recovered three weeks after the 

treatment ended (Lazarevic et al., 2013).  

5.1. Oral hygiene 

 Saliva flow along with good hygienic practices both aid in the detachment of 

biofilms that are known to cause proliferation of pathogenic species (Zarco, Vess, & 

Ginsburg, 2012). Moreover as a result of poor hygiene, acid-byproduct as a result of 
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sugar or carbohydrate product may aid in the formation of caries (Yadav & Prakash, 

2016).  A study demonstrated the role of poor oral hygiene status in children in 

association to salivary microbiome composition, found an increase 

of Veillonella species (Mashima et al., 2017).  

 

 

5.2. Smoking 

 

     In a large American cohort study, J. Wu et al  compared the salivary microbiome 

composition in both current smokers and non-smokers (J. Wu et al., 2016). They ob- 

served that the salivary microbiome of smokers reflected  a decrease in the abundan- 

ce of the phylum Proteobacteria, and in Capnocytophaga , Peptostreptococcu-  

s and Leptotrichia genera; while the genera Atopobium and Streptococcus were 

found to be elevated in smokers compared to non-smokers (J. Wu et al., 2016). 

Another study examined the oral microbiome of smokers and non-smoker in addition 

to the cytokine levels, where they found that smoking altered the cytokine levels and 

the salivary microbiome composition (Rodríguez-Rabassa et al., 2018). 

 

 

6. Microbiome in disease: Microbial dysbiosis  

 A healthy individual maintains a unique balance between the microbiome, 

immune system for protection from invading bacteria (H.-J. Wu & Wu, 2012). 

Dysbiosis refers to the disturbance in the composition of microbiota at a particular site 

(Petersen & Round, 2014). Dysbiosis in gut microbiome for example, has been linked 
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to several diseases and conditions such as Crohn’s disease and irritable bowel 

syndrome (Frank et al., 2007; Ni, Wu, Albenberg, & Tomov, 2017). Another example 

of dysbiosis is bacterial vaginosis caused by dysbiosis of the vaginal microbiota which 

usually triggered by G. vaginalis (Younes et al., 2018). 

 Dysbiosis of the oral microbiome has been implicated in various oral diseases 

such as periodontitis where it promotes pathogenic bacterial growth and enables the 

dissemination of the oral bacteria systemically (Li, Kolltveit, Tronstad, & Olsen, 

2000).  

Many studies were conducted in order to assess the dental and periodontal health in 

association with the microbiome composition: In a study that compared caries free 

individuals versus caries experienced individuals, they found that caries free 

individuals had a greater microbial diversity (Yasunaga et al., 2017). Similar finding 

was also observed by other studies that showed that healthy individuals have a greater 

microbial diversity and a greater abundance of Neisseria, Haemophilus, and 

Fusobacterium, in contrast to those who have dental caries where Streptococcus was 

the most abundant genus detected (Belstrøm et al., 2017). 

 Moreover, the oral microbiome dysbiosis have been associated with systemic 

diseases including obesity, diabetes, cancer, rheumatoid arthritis, Parkinson's 

disease  and cardiovascular diseases among others (Acharya et al., 2017; Karpiński, 

2019; Pereira et al., 2017; X. Zhang et al., 2015).  

 A recent study by Janem et al  indicated that higher rates of  type 2 diabetes 

(T2D)  were observed in kids with improper oral health in comparison with lean and 

obese children without diabetes (Janem et al., 2017). The authors indicated that 

Fretibacterium was only found in the diabetic group but Alloprevotella, Haemophilus, 
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Lautropia  and  Pseudomonas were decreased in the diabetic group in comparison to 

healthy controls (Janem et al., 2017). A Thai study also support the previous in  which 

the acid-tolerant bacteria, which are also associated with dental caries, are found more 

prevalent in T2D patients (Kampoo, Teanpaisan, Ledder, & McBain, 2014). 

Moreover, the salivary microbiome composition differs in people who are obese 

compared to the lean controls, the study also proposed that  such microbial  differences 

can help predict the susceptibility of people with obesity to T2D o(Y. Wu, Chi, Zhang, 

Chen, & Deng, 2018).  

 

7. Tools used to assess the microbiome composition: 16S rRNA gene sequencing  

 The ribosomal RNA transcriptional machinery is an essential component of 

life(Wang & Qian, 2009). Thus, the gene that represents it has a conservative nature 

which led to an enormous opportunity for the exploration of many microbial 

communities by sequencing specific hypervariable regions of the 16S rRNA gene 

(Wang & Qian, 2009). Amplicons are generated using universal primers used to 

anneal with the conserved regions of the 16S rRNA gene sequences (Wang & Qian, 

2009). Those hypervariable region sequences are highly polymorphic, therefore, 

allowing the classification of the bacterial taxa from phyla to species levels (Cox, 

Cookson, & Moffatt, 2013). The resulting sequencing data is then aligned to the 16S 

rRNA reference database to yield the operational taxonomy units (OTUs) of bacteria 

(Nguyen, Warnow, Pop, & White, 2016). Despite being efficient and relatively cheap, 

the 16S rRNA sequencing has its limitations, as it only covers microbiota of the 

bacterial kingdom, thus neglecting other important microbes belonging to Fungi, 

viruses and others, in addition to biases generated due to the variability of the 16S 
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gene copy number in different bacteria (Liu, Gibbons, Ghodsi, Treangen, & Pop, 

2011).  

 The shotgun sequencing as the name infers, is the process of fragmenting the 

whole genome into short oligonucleotide bases followed by sequencing and assembly 

of the contigs (Jovel et al., 2016). This method allows a greater depth of sequencing 

data in comparison to the 16S sequencing approach discussed previously (Vincent et 

al., 2016). The shotgun sequencing provides information about the taxonomic profile, 

functional composition and gene abundance of the microbiota (Quince, Walker, 

Simpson, Loman, & Segata, 2017). It can also provide information up to species/strain 

level compared to 16S rRNA gene sequencing (Quince et al., 2017). The major 

disadvantages of the shotgun sequencing is the huge amount of data it generates, 

which requires a high-throughput sequencing instruments and thus a higher cost 

(Franzosa et al., 2015). 

 

 

8. Aims of the project 

The aim of this project is to profile the salivary microbiome of 100 saliva samples 

collected from Qatari participants and correlate the microbial composition with the 

clinical data in order to identify specific signatures associated with various 

pathological conditions with a focus on diabetes and obesity being the most prevalent 

non-communicable diseases and pathological conditions in Qatar.  
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CHAPTER 3: METHODOLOGY 

The layout of the Methods used in this study in Figure 1. 

 

 

Figure 1:Summerized  method workflow 

1. Description of the study participants 

 A total of 100 participants were randomly selected from QBB, and included 

both females and males. Using the body mass index (BMI), samples were categorized 

in normal weight (BMI 18.5 to 24.9 kg/m2), overweight: (BMI  25 to 29.9 kg/m2) and 

obese (BMI is 30 kg/m2 or more). Also, the study subjects were stratified into normal 

and diabetic according to their HbA1C levels (diabetic: HbA1c ≥6.5% (48 

mmol/mol) ).  

 

2. Inclusion/ Exclusion criteria 

 The samples were collected by QBB from Qatari subjects participating in the 

Qatar Genome Project, who were eighteen years old and above. No exclusion criteria 

Sample collection

DNA extraction

PCR

PCR products purification

Sequencing

Data analysis

correlation
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were used in the subject’s selection. 

 

3. Sample collection  

 In this project, an agreement between QBB and Sidra Medicine was signed in 

order to collect de-identified salivary samples, phenotypic and clinical data from a 

total of 100 participants that were selected randomly.  

 Salivary samples were collected after obtaining the IRB (Institutional Review 

board) approval from QBB (E/2017/RES-ACC-0046/0003) and Sidra 

(IRB#1510001907). Samples were stored at – 80oC. Before processing, samples were 

kept at 4oC overnight.  The first step before extraction was to incubate the salivary 

samples at 50oC for 2 hours. 

 

4. DNA extraction from saliva using QIAsymphony 

 Automated extraction following Qiagen QIAsymphony protocol was carried on 

following the manufacturer’s instructions. Briefly, the procedure is composed of four 

steps including lysis, binding, washing, and elution.  As illustrated in Figure 1, the 

instrument utilizes binding of magnetic beads to the genomic DNA which is then later 

bound to a mechanical magnetic rod. One of the biggest advantages of the magnetic-

particle technology is the isolation of quality DNA without impurities. 
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Figure 2: Schematic representation of the QIAsymphony SP protocol used for DNA 

extraction 

 

 

Step 1: Lysis 

Reagent 1 is added to the sample which causes lysis to the cell and release of the 

genomic DNA, then the magnetic beads are added to bind to genomic DNA. 

Step 2: binding 

The magnetic rod is inserted into the well holding the sample and this attracts the 

magnetic beads. 

Step 3: washing 

The magnetic rod is inserted into another well, and the magnetic beads are released. 

Step 4: Elution 

Another reagent is added to elute the genomic DNA from the magnetic beads. Then 

the magnetic rod will attract the remaining magnetic beads leaving the eluted volume 



  

16 

 

in the DNA stock solution. 

5. DNA Quality control 

 The quality and quantity of the extracted DNA was checked using nanodrop 

(Thermo Scientific). The Nanodrop utilizes the concept of spectrophotometry that 

uses absorbance as a measurement of nucleic acid concentration.  

 

6. Amplification of 16S rRNA gene fragment by polymerase chain reaction 

  Polymerase chain reaction (PCR) of the 16S rRNA gene was carried on 

for each sample. The designed 27-F forward primers are linked to a specific sequence 

that is used as a barcode to distinguish each sample for the sake of multiplexing in 

downstream procedures. The primers are also designed to align with the conserved 

region of the 16S rRNA gene (Figure 2). The reverse primer, which also align with a 

conserved region, was common across all sample’s reactions. In this study, the 

targeted region as shown in Figure 2 is the V1 until V3 region which yield an amplicon 

size of 610 base pairs. 

 

 

 

Figure 3: 16S rRNA gene: the red boxes represent the variable regions, whereas the blue 

areas in between the boxes represents the conserved region. 
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Table 1 

The sequence of the forward and reverse primers to target V1V3 region of 16S rRNA 

gene 

Prime

r 

Illumina adaptors Barcode Forward Primer 

Pad 

Link

er 

Forward 

primer 

sequence 

27F1 AATGATACGGCGACC

ACCGAGATCTACACGC

T 

AGCCTT

CGTCGC 

TATGGTAATT GT AGAGTTTG

ATCMTGG

CTCAG 

534-R 

 

CAAGCAGAAGACGGC

ATACGAGAT 

 

- 

 

AGTCAGCCAG 

 

CC 

 

ATTACCGC

GGCTGCTG

G 

 

 

Table 2 

PCR reaction mix 

# Reagent Volume 

1 PCR gradient, water  adjusted for each sample to reach a 

reaction volume of 50 µl 

2 Phusion Master Mix catalogue #f531L 25 µl 

3 27-F1 primer (F1-F96) 1 µl 

4 534-R primer 1 µl 

5 Samples DNA Adjusted with water to reach 10 ng/ 

µl 

Total volume 50 µl 
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To set-up the PCR reaction each sample template concentration was adjusted with 

water to reach the optimum concentration of 10ng/50uL reaction. The forward primer 

that is designated for each sample was then added. Then followed by addition of the 

reverse primer and the master mix. The master mix is a readymade (cat# F531L) that 

includes all the essential PCR components such as dNTPs, DNA polymerase enzyme, 

Buffer, and MgCl2. . The final volume of the PCR reaction is 50 µl. 

 

7. PCR thermal conditions and duration 

 The thermal cycling conditions used to amplify the 16S rRNA gene were set  as  

following: 5 min of initial denaturation at 94 °C; 30 cycles of denaturation at 94 °C 

for 30 s, annealing at 62 °C for 30 s, and elongation at 72 °C for 30. Finally, after the 

30 cycles at 72 °C the samples were incubated for additional 10 minutes. 

 

8. Gel electrophoresis 

 The quality of the amplified PCR products was assessed using 2% agarose gel 

electrophoresis. 100 bp DNA ladder (Thermo Scientific) was used to check the size 

of the product.  

 Once the libraries of each sample were constructed, the samples were pooled in 

one tube. Since each sample has a unique sequence barcode, the sequencing analyzer 

can read and demultiplex each sample in a separate FASTAQ file. The optimum 

volume of each sample to be pooled is 5uL (Intense band), 10uL (Moderate band), 

15uL (Faint band).  
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9. 16S library magnetic bead purification  

 This step (Figure 3) employs the use of magnetic beads that is combined with a 

carboxyl molecule that allows the separation of negatively charged DNA. This  

technique  is termed solid phase reversible immobilization or SPRI (Hawkins, 

O'Connor-Morin, Roy, & Santillan, 1994). There are many advantages for this 

technique: easy to perform as  it does not require centrifugation nor filtration and that 

it does favor the isolation of PCR products over excess primers or genomics DNA.  

 

 

 

Figure 4: AMPure XP magnetic beads purification of the PCR product 

 

 

10. AmpPure magnetic bead purification  

We followed the procedure below:  

1. Add 100 µl of PCR pool to 112 µl of Ampure beads. 

2. Mix the solution thoroughly by pipetting up and down for 10 times. 

3. Incubate the solution for 2 minutes at room temperature on the magnetic stand. 

4. Discard the supernatant. 

5. Add 200 µl of 80% freshly prepared ethanol. 
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6. Incubate the solution for 30 seconds at room temperature on the magnetic 

stand. 

7. Discard the supernatant. 

8. Repeat step 5-7  one more time. 

9. Allow to air dry for 10 minutes. 

10. Elute with 55 µl 10 mM Tris pH 8.5. 

 

11. Assessment of the PCR product quality using Agilent bioanalyzer and Qubit 

fluorometer 

11.1. Agilent High sensitivity kit 

 The High sensitivity DNA kit was used to assess the quality of the PCR 

constructed libraries. The Agilent bioanalyzer uses the concept of small capillary 

electrophoresis. The samples were run against a ladder and a marker. To start up the 

run, the following procedure was performed: 

1. The High Sensitivity DNA dye concentrate (blue) and High Sensitivity DNA 

gel matrix (red) has to reach room temperature for 30 minutes before 

proceeding. 

2. The blue vial with High Sensitivity DNA dye concentrate has to be vortexed 

for 10 seconds followed by centrifugation or spin down.  

3. Pipette 15 µl of the blue dye concentrate (blue) into a High Sensitivity DNA 

gel matrix vial (red). Store the dye concentrate at 4 °C in the dark again. 

4. Take the entire gel- dye mix to the top part of the spin filter.  

5. Centrifuge the spin filter for 10 minutes at 6000 rpm at room temperature.  

6. Discard the filter and label the tube with the preparation date. 
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7. Loading the Gel-Dye mix:  place a new High Sensitivity DNA chip on priming 

station. Pipette 9.0 µl of the gel-mix at the well-labled. 

8. Loading the marker: dispense 5 µL of green- High Sensitivity DNA marker 

(green) into the well labeled with the ladder figure and also into all sample 

wells. 

9. Dispense 1 µl of the High Sensitivity DNA ladder vial (yellow) in the well-

labeled with the ladder figure. In each of the 11 sample wells, dispense 1 µl of 

sample  or 1 µL of marker for the unused wells. 

10. Start the Chip Run.  

 

11.2. Qubit Fluorometer 

 

 The Qubit™ 4 Fluorometer is a benchtop fluorometer that can be used for the 

quantitation of DNA. The measurement of the fluorescence in samples reflect the 

concentration of DNA. In this study, Qubit™ 4 Fluorometer was used to measure the 

concentration of the constructed libraries before proceeding to sequencing in order to 

ensure the optimal concentration needed for sequencing. 

 

12. Sequencing 

 In order to sequence the constructed libraries, the Illumina Miseq platform was 

used in this study. The principle that Illumina follows is sequencing by synthesis and 

reversible termination. This principle is based on the addition of fluorescently labeled 

dNTPs that are reversible terminators. All the added terminator bases are added at the 

same time; thus, less competition of incorporation is seen. According to Illumina 

MiSeq protocol, the Illumina sequencing workflow is composed mainly of four steps: 
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samples preparation, cluster generation, sequencing and data analysis. 

Sample preparation: the libraries are customized as mentioned in the PCR step above. 

Each forward primer is designed with a unique barcode and an illumina compatible 

adaptor. In addition, the reverse strands are also linked with illumina compatible 

adaptors. 

Cluster generation: the flow cell contains oligo adaptors that are complementary to 

the adaptors of the library fragments. The pooled libraries are loaded to the flow cell. 

When hybridization of the forward strand with the flow cell adaptor occurs, the 

reverse strand is then synthesized. Next, when the forward strand is washed away, the 

reverse strand folds hybridizing to the neighboring adaptor. Then, a bridge 

amplification by the DNA polymerase follows. This process forms the clusters that 

will be later sequenced. 

Sequencing: The four fluorescently labeled nucleotide are added at the same time in 

which they compete to bind to the template attached to the flow cell. The added 

nucleotide are called reversible terminators since they are blocked for further reaction 

at the 3-OH end (Ambardar, Gupta, Trakroo, Lal, & Vakhlu, 2016). The instrument 

captures the fluorescence of the designated base and records the read. After the 

cleavage of the terminating moiety and the fluorophore molecule, another cycle begins 

again. This cycle is repeated 300 times for the read 1 and the same number of cycles 

for read 2.  Figure 4 illustrates the sequencing workflow step by step. 
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13. Sequencing Procedure 

 Before loading the purified pooled libraries, dilution and denaturation following 

the protocol provided by Illumina (document # 15052877) should be followed. In the 

case of using customized primers, the primers also should be added to the reagent 

cartridge. 

Sequencing was performed using MiSeq Reagent Kit v3 600 cycle kit which consists 

of a reagent cartridge, flow cell and PR2 reagent. The MiSeq System Guide for Local 

Run Manager (15027617 v04) illustrate the full procedure in setting up the instrument 

and loading the reagent cartridge. The procedure was performed according to the 

manufacturer’s instruction and recommendations. 

 

 

Figure 5: Sequencing by synthesis, Source:(Mardis, 2013) 

 



  

24 

 

14. Data Analysis 

 Sequenced data were demultiplexed using MiSeq Control Software (MCS) in 

MiSeq (Illumina) sequencer. Generated demultiplexed data were revised for quality 

control using FastQC (Andrews S, 2012). Forward and reverse end sequences of 

respective samples were merged through PEAR tool (J. Zhang, Kobert, Flouri, & 

Stamatakis, 2014)) and sequence reads of quality score < 30 were discarded. All 

merged reads were trimmed to 160bp>Reads<500bp using Trimmomatic tool (Bolger, 

Lohse, & Usadel, 2014). Trimmed FASTQ files were converted into FASTA files. 

Demultiplexed FASTA files were analyzed using QIIME software v1.9.0 pipeline 

(Caporaso et al., 2010). QIIME is a an open-source software which analyzes raw data 

as an input to generate output data in the desired format. such as OTUs (Kuczynski et 

al., 2011) by aligning against the Human Oral Microbiome Database or  HOMD 

(Escapa et al., 2018). Alpha diversity was calculated using phyloseq package in R 

platform  (McMurdie & Holmes, 2013). Beta diversity was calculated using Unifrac 

distance method for all microbial communities of the sample through principal 

coordinates analysis (Chang, Luan, & Sun, 2011). Association between clinical 

metadata and salivary microbiome data were done using Hierarchical All-against-All 

significance testing or abbreviated HAllA (Gholamali Rahnavard). In order to assess 

the microbial changes  that were statistically significant, LefSe analysis ( linear 

discriminant analysis of effect size) was used (Segata et al., 2011). The predictive 

functional profiling of microbial communities in association with BMI categories and 

diabetic versus non-diabetic categories was analyzed using PiCrust (Langille et al., 

2013). 
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CHAPTER 4: RESULTS 

 

1. Description of the study participants 

 

 

Table 3 

Demographic data of Studied Qatari Population 

 

FEMALE MALE Total 

AGE 40.63±11.44 38.76±10.04 

 
GENDER 48 52 100 

 

BMI 

   
Normal 11 (22.92%) 11 (21.15%) 22 

Overweight 14 (29.17%) 18 (34.62%) 32 

Obese 23 (47.91%) 23 (44.23%) 46 

 

Diabetes 

   
Non-Diabetic 34 (70.8%) 37 (71.15%) 71 

Diabetic 14 (29.2%) 15 (28.85%) 29 

    

    

    

Note-Age - Average ± Standard deviation 
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2. Microbial DNA Quality and Quantity 

 The quality and quantity of DNA were measured using spectrophotometery. 

The optimal amount of DNA needed for PCR is 10 ng . The absorbance ratio  of 

A260/A280 of 1.7–2.0 is the optimum in terms of DNA quality. 

 

3. PCR product visualization using agarose gel electrophoresis 

 PCR product from each sample was checked against a ladder using 2% agarose 

gel electrophoresis. Figure 5 is an example of amplified PCR libraries used for 

sequencing.  

 

Figure 6: Gel electrophoresis for PCR products 
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4. Taxa summary  

 Characterization of the relative abundance of salivary microbiome at the 

phylum level in saliva samples collected from normal, overweight and obese Qatari 

participants revealed that Bacteroidetes, Firmicutes and Proteobacteria were the most 

common phyla detected (Figure 6). The results showed that Firmicutes was higher in 

normal subjects (35.4%) compared to overweight (25%) and obese (29.3%) 

participants.  

 

Figure 7: Relative abundance of bacterial phyla among salivary samples 

 

 

On the other hand, Bacteroidetes was higher in overweight (52.8%) and obese subjects 

(52.8%) when compared to normal weight participants (45.8%) (Figure 7). 

Abundance of Proteobacteria was slightly higher in normal weight (6.6%) than 

overweight (5.3%) and obese (5.2%) participants (Figure 7).  

 The relative abundance of salivary microbiome at phylum level between normal  

(non-diabetic) and diabetic group revealed that Firmicutes was higher in the diabetic 

group (33.3%) compared to the normal (non-diabetic) group (28.1%). On the other 

hand, Bacteroidetes was elevated in the normal group (52.3%) than diabetic group 
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(48%) (Figure 8). Proteobacteria was higher in the normal group (5.8%) compared to 

the diabetic group (4.7%). Fusobacteria, Saccharibacteria, Abscondibacteria and 

Actinobacteria were the least abundant phyla (Figure 8). Although there were many 

differences in the relative abundance at both the phyla level and genus level, statistical 

analyses using Kruskal Wallis test did not detect any significant differences (p 

value>0.05). 
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Figure 8: Comparison of the microbial taxa at the phylum level in normal weight, overweight 

and obese 
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Figure 9: Taxa summary of the phylum level for Diabetic Versus Normal 

 

 

5. Relative abundance of the salivary microbiome at the Genus level  

 Characterization of the relative abundance of the salivary microbiome at genus 

level in saliva samples collected from normal, overweight and obese Qatari 

participants revealed that Prevotella sp., Streptococcus sp., Veillonella sp., and 

Porphyromonas were the most abundant genera (Figure 9). The results showed that 

Streptococcus sp., was higher in the normal group (19%) compared to the overweight 

(9.9%) and obese (13.2%) participants. Likewise, Porphyromonas sp., was higher in 

normal (11.8%) compared to the overweight (7.5%) and obese participants (7.5%). 

On the other hand, Prevotella sp., was higher in overweight (42.8%) and obese 
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(42.8%) compared to the normal weight participants (30.9%) (Figure 9). Abundance 

of Veillonella sp. was slightly higher in obese (11.8%) compared to overweight 

(10.9%) and normal weight participants (11.2%) (Figure 9).  

 The relative abundance of salivary microbiome at genus level between normal 

and diabetic group revealed that Streptococcus sp was slightly higher in the diabetic 

group (15%) compared to the normal group (13%). On the other hand, Prevotella sp., 

was elevated in the normal group (41.5%) than diabetic group (36.5%) (Figure 10). 

Although there were many differences in the relative abundance at both the phyla level 

and genus level, statistical analyses using Kruskal Wallis test did not detect any 

significant differences (p value>0.05). 

 
 

  

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Normal Overweight obese 

g__Porphyromonas  11.8% 7.5% 7.5% 

g__Prevotella 30.9% 42.8% 42.8% 

g__Streptococcus 19.0% 9.9% 13.2% 

g__Veillonella 11.2% 10.9% 11.8% 

Figure 10: Taxa summary of the genus level for BMI categories with most abundant genera 

g: Porphyromonas 

g: Prevotella 

g: Streptococcus 

g: Veillonella 

javascript:gg('g__Porphyromonas');
javascript:gg('g__Prevotella');
javascript:gg('g__Streptococcus');
javascript:gg('g__Veillonella');
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Figure 11: Taxa summary of the genus level for Diabetic versus Normal with most abundant 

genera  

 

 

6. Comparative relative abundance between various categories 

 The top common 25 bacterial genera were compared for normal weight 

participants, overweight and obese (figure 11). It can be noticed that the genus 

Prevotella is less abundant in normal weight individuals as compared to the 

overweight and obese groups similar to Campylobacter, Leptotrichia, 

Saccharibacteria, Megashaera. On the other  hand,  Granulicatella, Gemella, 

Capnocytophaga, Actinomyces, Bergeyella, Fusobacterium are the higher genera in 

the normal weight group when compared to the overweight and obese groups. Figure 

12 shows the differential representation of the top  25 bacterial genera in the normal 

(non diabetic) group and diabetic groups. 

 Diabetic Normal 

g__Prevotella 36.5% 41.5% 

g__Porphyromonas 8.7% 8.4% 

g__Streptococcus 15.0% 13.0% 

g__Veillonella 12.5% 11.1% 

g: Prevotella 

g: Porphyromonas 

g: Streptococcus 

g: Veillonella 

javascript:gg('g__Prevotella');
javascript:gg('g__Porphyromonas');
javascript:gg('g__Streptococcus');
javascript:gg('g__Veillonella');
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Figure 12: Hierarchical clustering heatmap of top 25 genera between Normal, Overweight and 

Obese group. Heat map generated using the relative abundance (percent) of top 25 abundant 

bacterial genera. The heat map was generated using the gplots package in R by clustering of 

diabetic and normal group relative abundance of bacterial genera. The heat map scale displays 

the row Z score (Z score = [actual relative abundances of a genus in relevant group − mean 

relative abundance of the same genus in the relevant group]/standard deviation) 
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Figure 13: Hierarchical clustering heatmap of top 25 genera between diabetic and normal group. 

Heat map generated using the relative abundance (percent) of top 25 abundant bacterial genera. 

The heat map was generated using the gplots package in R by clustering of diabetic and normal 

group relative abundance of bacterial genera. The heat map scale displays the row Z score (Z 

score = [actual relative abundances of a genus in relevant group − mean relative abundance of 

the same genus in the relevant group]/standard deviation) 

 

 

7. Interindividual and intraindividual variability: Alpha and beta-diversity 

 Microbiome measurements can be used as indicators of health and disease 

especially when performing a case-control study (J. K. Goodrich et al., 2014). Also, 

it can be an indicator of prognosis by conduction of longitudinal studies (Fukuyama 

et al., 2017) An alpha diversity measure refers to the mean species diversity or species 

richness in a given ecosystem or sample while a beta diversity score identifies whether 

two samples or communities are similar or not (Wagner et al., 2018). Interindividual 
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variability was assessed using measurement of the alpha diversity for each sample. 

Chao1 analysis was used to compare the alpha diversity between normal and diabetic 

group. (Figure 11) shows that the diabetic samples are less diverse than the normal. 

Also, when the BMI categories are compared (Figure 12) the normal weight has a 

greater diversity than the obese and overweight groups. 

 

 

 

 

Figure 14: Alpha diversity of diabetic and normal (non-diabetic) subjects 
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Figure 15: Chao1 analysis for alpha diversity of BMI categories 

 

 

Beta diversity were also calculated, and the results were visualized using Principle of 

Coordinate Analysis (PCoA) by applying weighted UniFrac in which the similarities 

among samples can be illustrated. When Beta diversity was compared among the BMI 

categories, it did not show any form clustering according to the sample category, 

Figure 15. The same was noticed when diabetic group was compared to normal, 

Figure 16. 
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Figure 16: Principle of Coordinate Analysis (PCoA) by applying weighted UniFrac of BMI 

category; red triangle: normal, blue: obese, circle: overweight 

 

 

 

 

Figure 17: Principle of Coordinate Analysis (PCoA) by applying weighted UniFrac of 

diabetic and normal; blue: normal, red: diabetic 

 

 

8. Correlation between clinical variables and microbial data: HALLA 

 Hierarchical All-against-All significance testing or abbreviated HAllA 

considers two data sets and tries to find positive and negative correlation between 

them. In this case, we considered the clinical parameters of all and each group in 
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relation to their microbial composition. When all the participants’ data were tested, 

the genus Catonella and the genus Peptostreptococcus were positively correlated with 

parameters related to hypertension (Figure 17).  

 

 

 

 

Figure 18: Associations between clinical parameters and  microbial composition (genus level) 

for all participants 

 

 

Figure 18 shows that the genera Rothia, Lautropia, Corynebacterium, 

Pseudopropionibacterium are positively correlated with parameters related to glucose 

such as glucose level and HbA1C. 
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Figure 19: Associations between clinical parameters and microbial composition (genus level) 

for the  Diabetic group 

 
 

 The association between participants group according to their BMI and 

microbial composition were tested. We found that Pseudopropionibacterium is 

positively correlated with glucose level in normal weight participants (Figure 19)., 

while the genus Peptostreptococcacea is positively correlated with the insulin level 

in obese group (Figure 20). The genera Capnocytophaga, Fusobacterium, 

Butyrivibrio, Pseudopropionibacterium, and Lautropia were positively correlated 
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with parameters related to blood glucose in overweight group in Figure 21. 

 
 

Figure 20: Associations between clinical parameters and microbial composition (genus level) 

for the normal weight group 

 

 

 
 

Figure 21: Associations between clinical parameters and microbial composition (genus level) 

for the obese group 
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Figure 22: Associations between clinical parameters and microbial composition (genus Level) 

for Overweight group 

 

 

9. Significant differences among clinical categories using LDA (Linear 

discriminant analysis) Effect Size (LEfSe) 

 In order to assess what microbial changes are statistically significant, we ran the 

LefSe analysis. The microbial composition of the BMI groups which include normal, 
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overweight and obese where checked. When comparing the three groups, we 

identified the genus Catonella as the most significantly associated with obesity 

(Figure 22). While when the normal weight group was compared to the overweight 

group, Mogibacterium and Solobacterium were significantly correlated with the BMI 

increase in addition to Catonella (Figure 22). Moreover, when the microbial 

composition of diabetic versus normal was compared, there was no significant genera 

associated with either conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Predictive functional profiling of microbial communities using PiCrust 

 Predictive functional microbial profiles of each taxa were studied against each 

subject category. We found that the N-glycan biosynthesis is highly associated with 

 

Figure 23: LefSe analysis of BMI groups and their microbial composition 
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diabetes and obesity (Figure 23 and 24). There was also not any other significant 

predictive functional profile associated with obesity specifically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: PiCrust analysis of Normal and diabetic in relation to N-glycan biosynthesis 

(significant difference was observed, p value <0.05) 
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Figure 25: PiCrust analysis of normal weight and obese in relation to N-glycan biosynthesis 

(significant difference was observed, p value <0.05) 
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CHAPTER 5: DISCUSSION 

 

 The salivary microbiome can be a promising diagnostic biomarker as well as a 

forensic marker since the sample is easy to collect and the saliva contents are relatively 

stable. We observed that each individual saliva sample possesses a specific microbial 

signature. Through measurements of alpha and beta diversity, we were able to find 

the interindividual diversity within each sample and between all the samples tested as 

well. We found common shared phyla which resembles Bacteroidetes, Firmicutes and 

Proteobacteria respectively. 

 Although the salivary microbiome of many population remained unexamined, 

there are many studies that support the existence of differences in the microbial 

composition based on the ethnicity (Gupta, Paul, & Dutta, 2017). 

 When we examined the alpha diversity, samples from the diabetic subjects were 

less diverse than the non-diabetic subjects. In addition, when the BMI categories were 

compared, saliva samples from the normal weight subjects showed a greater microbial 

diversity as compared to the obese and overweight groups. A study conducted by 

(Lambeth et al., 2015) to examine the gut microbiome of prediabetic and diabetic 

microbiome composition did not find any relatedness between diversity and HbA1C 

level which may be due to their small sample size. Similar findings from another study 

that compared the alpha diversity between healthy controls, obese and diabetic 

individuals did not find any significant differences in the alpha diversity between the 

three groups (Janem et al., 2017).  In contrast, a  recent study examined the  salivary 

microbiome of diabetic and non-diabetic subjects and stratified the samples according 

to their periodontal health (Sabharwal et al., 2019). In this study, the authors found 
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that  in the diabetic group, microbial alpha diversity was decreased in association with  

periodontal disease.  

 We considered HAllA analysis to find association between clinical parameters 

and microbial composition. We found that the genus Catonella and the genus 

Peptostreptococcus were positively correlated with parameters related to 

hypertension. Moreover, the genera Rothia, Lautropia, Corynobacterium, 

Pseudopropinibactrium are positively correlated with parameters related to glucose 

such as glucose level and HbA1C. 

 In this study, we also investigated the effect of BMI in relation to the microbial 

composition, we show that in the normal weight group, a balanced abundance of 

Bacteroidetes and Firmicutes was observed, whereas, in the overweight and obese 

subjects,  Bacteroidetes were almost double the abundance of Firmicutes. A study on 

a chinese population investigated the salivary microbiome composition in obese 

subjects and found  significant differences between the obese group and normal 

weight group at a more specific taxonomic levels, mainly Haemophilus and 

Cardiobacterium were more abundant in  normal weight group, while Prevotella were 

more abundant in  the obese group (Y. Wu et al., 2018). When we compared the genus 

level of BMI categories, we found that Prevotella are more abundant in both the 

overweight and obese groups as compared to the normal weight group. Moreover, we 

show that Streptococcus and Porphyromonas were decreased in both the obese group 

and the overweight group. 

 When we tested the BMI categories in relation to microbiome profile using 

significant differences among clinical categories using LDA (Linear discriminant 

analysis) Effect Size  or (LEfSe), we found that the two genera Catonella and 
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Solobacterium are constantly associated with obesity which is consistent with the 

findings of the above mentioned study (Y. Wu et al., 2018). 

 We have also studied the predictive functional profiling of microbial 

communities using PiCrust, in which it had revealed that N-Glycan biosynthesis is 

associated with the diabetic group and obese subjects. N-Glycan biosynthesis is a 

feature  known to be associated with eukaryotes(Dell, Galadari, Sastre, & Hitchen, 

2010). However, it is also shared by some bacterial species such as Campylobacter 

jejuni (Kelly et al., 2006). 

In the case of assessing the diabetes and obesity there were some limitations to this 

study due to the small sample size. Moreover sequencing 16S rRNA has its 

limitations, therefore metagenomic or meta-transcriptomic analyses can further 

extend our knowledge in this regard. 

 Our study is the first to assess the salivary microbiome of the Qatari population. 

We show that the salivary microbiome is highly diverse between subjects and changes 

according to the health status. More in depth analysis is needed to understand how the 

identified microbial signatures described in our study, can contribute to disease. While 

the small sample size is a limiting factor of this study, promising results indicated that 

a specific salivary microbial signature can be detected in overweight or obese 

individuals. While using 16S rRNA sequencing technology is sufficient to assess the 

microbial composition in any body site, a deep understanding of the function of those 

microbes is still needed. Hence, applying more in-depth techniques such as shotgun 

metagenomics, metatranscriptomics, microbial metabolomics will enrich our 

understanding on the role of microbiome in various disease conditions including 

obesity and diabetes. Unfortunately, this was not possible in our study due to limited 
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funds allocated to this project.  

Despite its limitations, this study will pave the way towards the possibility to find 

microbial biomarkers that can later be used to detect certain pathological conditions 

such as diabetes and obesity.  
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