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ABSTRACT 

ZEDAN, RANDA, H, Masters: April: [2019], Environmental Science  

Title: Biological Control of Mycotoxigenic Fungi and Associated Mycotoxins by The 

Application of Bacterial and Yeast Antifungal Compounds 

Supervisor of Thesis: Prof. Samir Jaoua. 

Mycotoxins are secondary metabolites of mycotoxigenic fungi and are 

considered as a serious threaten to the life of humans and animals, since some of these 

mycotoxins are carcinogenic compounds. 

In this M.Sc research project, we demonstrated that the low fermenting yeast L. 

thermotolerans 751 has a great antifungal potential through the synthesis of Volatile 

Organic Compounds (VOC) that are able to act against the mycotoxigenic fungi and 

the synthesis of their mycotoxins. L. thermotolerans 751 has also shown a great 

adsorption potential to mycotoxins in in-vitro experiments. In addition, these VOCs 

were applied in in-vitro experiments to inhibit the fungal growth and spores’ 

germination and protection of fungi inoculated tomato fruit, for more than one month.  

On the other hand, our second biocontrol agent, the Qatari bacterial strain Burkholderia 

cepacia (QBC03) has shown a broad antifungal spectrum and a very efficient inhibition 

of the synthesis of mycotoxins.  
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CHAPTER 1: INTRODUCTION 

Mycotoxins are the secondary metabolites produced by the mycotoxigenic fungi 

that belong to three important genera, Aspergillus, Fusarium and Penicillium (Anfossi 

et al., 2016). These fungi can grow on fruits and vegetables and pre- or post- to their 

harvest if the favorable conditions are present, such as humidity and moderate 

temperature. The growth of these fungi on the food and feed products can lead to their 

contamination with the mycotoxins. Mycotoxins contaminated food is a great threaten 

to the life of humans and animals, since some of these mycotoxins are grouped as 

carcinogenic compounds. The common mycotoxins that contaminate the food and feed 

are Aflatoxins, Ochratoxins, Deoxynivalenol, Zearalenone and fumonisins (Freire & 

Sant’Ana, 2018). There are many ways for the detoxification of these mycotoxigenic 

fungi and their mycotoxins. Physical, chemical and biological approaches are possible 

options for the detoxification of the mycotoxigenic fungi. However, the biological 

control methods applying mainly yeast and bacteria for the bioremediation of the 

mycotoxigenic fungi and their mycotoxins have been receiving attention (Recep et al., 

2009). 

This M. Sc. Thesis project aims to explore and set up biological control methods 

based on microbial activities. In fact, we explored the biocontrol potentialities of two 

microbial strains, a low fermenting yeast L. thermotolerans 751 and a local strain of 

Burkholderia cepacia (QBC03). The antifungal potentials of both Lachancea and 

Burkholderia to control the growth of mycotoxigenic fungal species of Aspergillus, 

Fusarium and penicillium and the synthesis of their mycotoxins were investigated.  

1.1 Research objectives:  

1. Investigation of the yeast (Lachancea thermotolerans) and yeast derivatives 

for the control of mycotoxigenic fungi and mycotoxins.  
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2. The investigation of the antifungal activities of a local isolate (Qatari 

Burkholderia cepacia) against mycotoxigenic fungi. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Mycotoxins: 

Mycotoxins are the secondary metabolites produced by mycotoxigenic fungi. 

Mycotoxins can contaminate variety of food commodities. The main studied and 

investigated mycotoxins are Ochratoxin A, deoxynivalenol, T2 and HT2 toxin, citrinin, 

patulin, fumonisins, zearalenone, aflatoxins and trichothecenes (Figure 1). These 

mycotoxins are mainly produced by the mycotoxigenic fungi belonging to the genera 

of Aspergillus, Alternaria, Fusarium, and Penicillium (Anfossi et al., 2016).  

 

 

 

Figure 1: Chemical structure of mycotoxins contaminating food and feed products 

(Vila-Donat et al., 2018). 

 

 

One fungal species can produce more than one mycotoxin and a group of 

mycotoxigenic fungi might produce the same mycotoxin. Mycotoxins can be 

synthesized at any stage of the fungal growth; hence removal or inhibition of the fungal 

growth doesn’t necessarily mean that the mycotoxin is not synthesized (Turner et al., 
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2009; Yogendrarajah et al., 2014).  

The synthesis of the mycotoxins is affected by several environmental factors 

such as the nutrient availability, humidity, temperature, pH and pesticides application 

(Hameed et al., 2013; Anfossi et al., 2016). Therefore, mycotoxins contamination is 

more common in the subtropical and temperate countries compared to the tropical ones, 

where the climate doesn’t support the synthesis of mycotoxins by the fungi (FAO, 

2000). However, one factor of these environmental factors can affect the fungal growth 

and the synthesis of the mycotoxins differentially, hence, it is difficult to know the 

conditions that can foster the growth of the fungi and the production of the mycotoxins 

at the same pace (CAST, 2003; Garcia et al., 2009; Freire & Sant’Ana, 2018). 

Mycotoxins can contaminate a variety of different food commodities, such as cereals, 

fruits and spices. There are other food commodities that have higher contamination 

chances with mycotoxins, such as chocolates, bread and beverages, that is due to the 

fact that they are made from raw material that might be originally contaminated with 

mycotoxins (Kabak, 2009; Turner et al., 2009).  

One of the most important factors affecting mycotoxins synthesis is the 

agricultural practices. Traditional manufacturing and agricultural technologies can lead 

to increased synthesis of the mycotoxins which can explain why the developing 

countries are subjected to more mycotoxin’s exposure compared to the developed ones 

(Bhat et al., 2010). The occurrence of the mycotoxins can cause several health issues 

upon the ingestion of the food that is contaminated with mycotoxins. Health implication 

such as carcinogenicity, immunosuppression, mutagenicity, teratogenicity and 

genotoxicity can be caused by the ingestion of food that is contaminated with 

mycotoxins (Zhu et al., 2015). Table 1 represents the major health implications caused 

as a result to mycotoxins exposure. However, there are many factors that affect the body 

response to the mycotoxins’ intake, such as the gender, body weight, intake dosage, 
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age, body weight and the type of the mycotoxin (Hussein & Brasel, 2001; Richard, 

2007).  

 

 

Table 1: Mycotoxins contaminating food and feed.  

 [Permissible concentrations of mycotoxins in food and feed and their dosage intake 

concentrations.] 

Mycotoxin Health effect Permissible 

Dosage 

intake 

Fungal strains 

producing 

mycotoxins 

Reference 

Aflatoxins  Group 1 

carcinogenic, 

liver cancer 

10 µg/kg  A.  flavus, 

A. parasiticus 

WHO, 

(1998), 

JECFA, 

(2007); 

Gnonlonfin 

et al., 

(2013)  

Fumonisin  Group 2b 

possibly 

carcinogenic, 

nephrotoxicity 

2 µg/kg 

bw/day 

F. verticilloid, 

F. proliferatum 

IARC, (2002); 

WHO, (2001), 

Vila-Donat et 

al., (2018) 
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Mycotoxin Health effect Permissible 

Dosage 

intake 

Fungal strains 

producing 

mycotoxins 

Reference 

Ochratoxin A Acute toxicity 

at lower levels, 

carcinogenicity 

at long term 

effect 

100 ng/kg 

bw/week 

A. ochraceus, 

P. verrucous, 

P. viridicatum 

Vila-Donat et 

al., (2018) 

Deoxynivalenol Group 3, not 

classifiable as 

to its 

carcinogenicity 

to humans 

1 µg/kg 

bw/day 

F. graminearum IARC, (1993); 

WHO, (2001a), 

Zeidan et al., 

(2018) 

Zearalenone Group 3, not 

classifiable as 

to its 

carcinogenicity 

to humans 

0.5 µg/kg 

bw/day 

F. graminearum IARC, (1993); 

WHO, (2000), 

Vila-Donat et 

al., (2018) 

 

 

2.2 Control techniques of mycotoxins contamination: 

There are several ways for the detoxification of mycotoxins. Physical, chemical, 

and biological techniques are all possible approaches for the detoxification of 
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mycotoxins.  

 2.2.1 Physical Methods: 

The physical methods are considered as the traditional ones. Washing of the 

grains, irradiation and adsorption or filtration are all considered physical methods. 

Washing of the grains can reduce the concentration of the mycotoxins by making them 

float on the surface of the water due to their light density, and then the floating fraction 

on the top can be removed (Fandohan et al., 2005). 

Irradiation is another technique to reduce the concentration of the mycotoxins. 

Gamma and UV irradiations are used to eliminate mycotoxins contamination of AFB1 

and OTA, respectively (Ameer Sumbal et al., 2016). Filtration by binders or sorbents 

has also been studied and used for mycotoxins removal. Acid treated bentonite is an 

example on sorbents that can be used for the detoxification of mycotoxins, where the 

toxins can get attached to the pores of the bentonite (Jin et al., 2017). The clay is also 

considered one of the sorbents used to reduce the concentration of the mycotoxins in 

soil, especially OTA (Jouany, 2007).  

2.2.2 Chemical methods: 

Application of some chemicals can reduce the concentration of mycotoxins. 

Organic acids are known to have the ability to detoxify mycotoxins contaminated 

products. As example, the organic acids are used in the detoxification process is the egg 

albumin, which is known to reduce OTA contamination (Quintela et al., 2012). 

Oxidizing agents such ozone are also used in the detoxification process of many 

mycotoxins such as patulin and aflatoxins (Agriopoulou et al., 2016). However, using 

bases such as ammonia can reduce the concentrations of the mycotoxins as wells as 

reduction in the growth of the mycotoxigenic fungi. However, applying this approach 

in the detoxification of the fungal mycotoxins in the food is not permitted by the 

European Community (Peraica et al., 2002). 



  

8 

 

2.2.3 Biological techniques:  

In the recent years, more researches have been dedicated for the biocontrol of 

mycotoxigenic fungi by using microorganisms like yeast, bacteria and fungi (Recep et 

al., 2009). Mycotoxins can be transformed enzymatically into non-toxic metabolites by 

the enzymes synthesized by microorganisms such as yeast, bacteria and fungi. 

Biotransformation of the mycotoxins can happen through acetylation, deep oxidation, 

oxygenation, glucosylation, cleavage of the ring or side chain or isomerization 

(Wielogórska et al., 2016). The biotransformation process of the mycotoxins into other 

metabolites is not applied widely and is limited. The reason is that not much studies 

have been done on the transformed metabolites and the toxicity of the derived 

compounds and their effect if found in the feed (Wielogórska et al., 2016). 

2.2.3.1 Yeast as a biocontrol agent:  

Yeast strains have the potential to reduce the mycotoxins by producing 

antibiotics, enzymes and peptides that are considered antifungal compounds (Mari et 

al., 2012; Zhang et al., 2012; Liu et al., 2013). Many yeast genera are able to synthesize 

such metabolites and possess many antifungal activities. As examples, one can cite 

strains of Candida, Cryptococcus, Hansenula, Hanseniaspora, Kluyvermyces, 

Meyerozyma, Pichia, Rhodotorula, Saccharomyces and Tilletiopsis (Hershkovitz et al., 

2013; Urquhart & Punja, 2002; Calvente et al., 2001). 

Yeasts can produce volatiles that have the ability to act on the mycotoxigenic 

fungi. Volatile organic compounds are very light diffusible compounds that have the 

ability to diffuse in the atmosphere and soil due to their low molecular weight. These 

VOCs are produced in the primary or secondary metabolism and many of them are 

known to have a distinctive odor. Carbon is the main component of the VOCs that inter 

the gas phase at 20ºC under 0.01kPa (Morath et al., 2012).  

The function of these VOCs varies considerably, some of them can act against 
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the fungi and thus are considered antifungal VOCs. VOCs are being employed in many 

of the biotechnological applications. Example on that is the use of these VOCs in the 

biological control of some of the mycotoxigenic fungi in the agricultural and food 

industry and medicine field. The VOCs are capable of reducing the fungal growth even 

without any direct contact with the strain producing the VOCs and the mycotoxigenic 

fungal strain.  

One of the mechanisms of how the VOCs affects the production of the 

mycotoxins by the mycotoxigenic fungi is by altering its gene expression. When the 

fungus is exposed to those VOCs, many genes are being differentially regulated as a 

result to that, and the synthesis of the mycotoxins pathway is being affected and 

therefore the inhibition of their synthesis is accomplished by these VOCs (Farbo et al., 

2018). One of the important and major yeast VOC is the 2-Phenylethanol. The potential 

of this antifungal compound has been evaluated and it’s proved to inhibit the growth 

and spores’ germination of the antifungal compounds, in addition to the inhibition of 

the mycotoxins’ synthesis. 2-Phenylethanol has the potential to affect the gene 

expression of the mycotoxigenic fungi where it has been proved to down regulate the 

expression of aflatoxin synthesis genes to more than 10,000 folds (Hua et al., 2014). 

Gil-Serna et al., (2011) who studied the potential of yeast to reduce the biosynthesis of 

OTA, confirmed that the yeast is able to repress the expression of genes responsible of 

OTA biosynthesis when the yeast was co-cultured with A. westerdijkiae.  

In addition to the fact that these VOCs have an antifungal activity, they can also 

promote the growth of the plants. Some VOCs lead to the upregulation of the plants’ 

genes leading to the induction of the plant defense response against fungal infection 

(Morath et al., 2012). VOCs have been used in in-vitro researches to control the growth 

of mycotoxigenic fungi as well as the synthesis of the mycotoxins from these fungi that 

contaminate the food and feed (Zeidan et al., 2018). Fiori et al., (2014) have used this 
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approach to control the growth of Aspergillus carbonarius that infects the grape and 

grape juice, where they studied the effect of the VOCs produced by different yeast 

strains on the growth of A. carbonarius inoculated on grape berries in-vitro. They found 

that three out of the four tested strains managed to significantly reduce the growth of 

the fungus on the berries, in addition to the reduction of the OTA synthesized by the 

mycotoxigenic fungi.   

2.2.3.2 Bacteria as a biocontrol agent: 

Bacteria have the potential to reduce the mycelial growth of mycotoxigenic 

fungi such as Pseudomonas strains, they are known to inhibit the growth of B. 

cinerea and A. alternate (Luo et al., 2019; Zeidan et al., 2019, unpublished). 

In the environment, there are many microorganisms that can promote and 

enhance the growth of the plants whether directly or indirectly, and these 

microorganisms are called plant growth promoting rhizobacteria (PGPR). They have 

the ability to promote the growth directly by the solubilization of essential elements 

that are not readily available to the plants, and indirectly, by promoting the plants 

growth by the antagonism against plants pathogens such as pathogenic fungi. However, 

the bacteria belong to these PGPR group (Bhattacharyya & Jha, 2012).  Many bacteria 

from different genera have been identified to have antifungal activities. Some strains of 

those bacteria belong to the genera of Pseudomonas, Bacillus, Streptomyces and 

Serratia (Schmidt et al., 2009).  Pseudomonas species are very known to have 

antifungal activities against many pathogens. The strain Pseudomonas fluorescens is an 

example on the bacteria that can produce antifungal compounds and is used in the 

biological control of pathogenic fungi such B. cinerea and other Fusarium species 

(Kilani-Feki et al., 2010).    

- Burkholderia cepacia complexes: 

Burkholderia cepacia is a Gram negative, aerobic, non-fluorescent bacterium. 
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It belongs to ß subgroup of the proteobacteria. It was described as Pseudomonas 

cepacia by Walter Burkholder in 1950, as it was noticed to cause sour skin in onion 

(Burkholder, 1950). In 1992, the bacterial genus name was changed and given a new 

one and it was started to be called Burkholderia cepacia.  

Burkholderia has more than 50 described species which are very diverse in the 

environment and occupy different niches such as water, soil, pests or fungi. There are 

17 phenotypically heterogeneous groups for Burkholderia which have been classified, 

and these groups contain the species B. cepacia, B. multivorans, B. cenocepacia, B. 

stabilis, B. vietnamiensis, B. dolosa, B. ambifaria, B. anthina, B. pyrrocina, B. 

ubonesis, B. latens, B. diffusa, B. arboris, B. seminalis, B. metallica, B. lata, B. 

contaminas (Schmidt et al., 2009).   

B. cepacia has an antagonistic activity against a wide range of the 

mycotoxigenic fungi that are pathogenic to some crops (Recep et al., 2009). B. cepacia 

are considered among the bacteria that have the potential to enhance the plants’ growth. 

It is capable of doing nitrogen fixation and is able to adapt to many environmental 

stresses (Compant et al., 2008). Such bacteria are known to produce compounds with 

antagonistic activity against fungi infecting plants. B. cepacia produces iron chelating 

metabolites that are called siderophores, and these metabolites help the plants resists 

against pathogens (Pandey et al., 2005). Many studies regarding the antifungal 

antagonistic activity have been established using B. cepacia. Kilani-Feki et al., (2011) 

studied the potential of B. cepacia culture extract to inhibit the growth of mycotoxigenic 

fungi such as A. alternata, A. niger, F. culmorum, F. graminearum, F. oxysporum and 

R. solani.  According to their study, B. cepacia culture extract has an important 

antifungal activity. When B. cepacia extracts are applied in-vitro against many 

pathogenic fungi, they could inhibit the fungal mycelial growth, induce malformations 

in the mycelial shape as well as inhibition of spores’ germination.  However, B. cepacia 
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can promote the plant growth when it colonizes the plants roots, thus it protects the 

plants from the pathogenic fungi. The protection of the plants comes from a full 

colonization of B. cepacia to the plant’s roots, where the bacteria either produces 

sufficient antifungal compounds to protect the plant, or it can induce the defense 

mechanism in the plant against pests (Compant et al., 2005; Kilani-Feki et al., 2010). 

The antifungal compounds produced by some strains of B. cepacia are characterized by 

being thermostable, that their antifungal activity against some mycotoxigenic fungi 

doesn’t vanish even at very high temperatures. Table 2 shows some antifungal 

compounds produced by B. cepacia.  
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Table 2: Metabolites produced by B. cepacia.  

Antagonistic molecules  Reference  

Pyrrolnitrin Vial et al., (2007) 

Phenzazines Vial et al., (2007) 

2,4-diacethylephloroglucinol Vial et al., (2007) 

Lipopeptides Vial et al., (2007) 

Cepaciacheline  Compant et al., (2008) 

Cepabactine Compant et al., (2008) 

1-amino- cyclopropane-1-carboxylate  Pandey et al., (2005)  

Cepaciamide A Vial et al., (2007) 

Didecyl-phthalate Kilani-Feki et al., (2011) 

Alkyl-quinolone Kilani-Feki et al., (2011) 

Chitosanase Kilani-Feki et al., (2012) 

Phenazine  Ayyadurai et al., (2006) 

Pyoluteorin Ayyadurai et al., (2006) 

HCN Ayyadurai et al., (2006) 
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CHAPTER3: MATERIAL AND METHODS 

3.1 Materials  

3.1.1 Strains  

Table 3: List of microorganisms used in this project 

Reference Code Strain 

                         Bacterial strain 

QBC03 Burkholderia cepacia 

                           Fungal strain 

AC82 A. carbonarius 

CECT 2687 A. flavus 

Af14 A. fumigatus 

AN8 A. niger 

CECT 2948 A. ochraceus 

AF82 A. parasiticus 

AW82 A. westerdijkiae 

FAn01 F. anthophilum 

FCh01 F. chlamodosporum 

FCu11 F. culmorum 

FGr14 F. graminearum 

Fox9 F. oxysporum 

FS05 F. solani 

FSuF12 F. subglutinus 

FP08 F. prolifiratum 

FV04 F. verticilliod 

PC44 P. camemberti 
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Reference Code Strain 

PE82 P. expansum 

PD43 P. digitatum 

PI48 P. italicum 

TF11 P. verrucosum 

                        Yeast strain 

751 Lachancea thermotolerans 

 

 

3.1.2 Media preparations: 

NBY broth (Nutrient Broth Yeast Extract):  

3 g/L meat extract (Mikrobiologie, Darmstadt, Germany), 5 g/L peptone (Acumedia, 

Heywood, UK), 5 g/L yeast extract (HIMEDIA, Mumbai, India), 10 g/L mannitol 

(BDH, England), 1 mM/L ZnSO4.7H2O (BDH, England), 1 mM/L 

(NH4)6Mo7O24.4H2O (Analar, England). 

Nutrient Agar:  

1.3% nutrient broth (HIMEDIA, Mumbai, India) corresponds to peptic digest of animal 

tissue (5 g/L), Sodium chloride (5 g/L), beef extract (1.5 g/L) yeast extract (1.5 g/L), 

and 1.5% agar (HIMEDIA, Mumbai, India). All components were suspended 100 mL 

of sterile dH2O. 

PDA (Potato Dextrose Agar):  

potato dextrose (FORMEDIUM, Hunstanton, England) which contains (200 g/L) 

potato infusion from dextrose (20 g/L). 41 g of potato dextrose agar were suspended in 

1 L of dH2O. 

Soft PDA:  

20.5 g of potato dextrose agar suspended in 1 L of dH2O. 
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YPDA (Yeast Potato Dextrose Agar):  

20 g/L D(+)Glucose (SCOTT SCIENCE UK, Headcorn, England), 20 g/L peptone 

(Acumedia, Heywood, UK), 10 g/L yeast extract (HIMEDIA, Mumbai, India), 15 g/L 

agar (HIMEDIA, Mumbai, India), all components were suspended in 1 L of dH2O 

All media were autoclaved at 121C, 15 psi for 15 minutes. 

All media were poured in equal volumes in all the experiments: 

50 mL volume of media were poured in 150 mm x 15 mm Petri dishes 

20 mL volume of media were poured in 90 mm X 15 mm Petri dishes 

12 mL volume of media were poured in 60 mm X 15 mm Petri dishes 

3.1.3 Solutions and Buffers 

Aflatoxins B1 extraction solvent:  

1 mL of formic acid was dissolved in 99 mL of Methanol-dichloromethane-ethylacetate 

(1:2:3). Methanol (SIGMA-ALDRICH, UK), dichloromethane (SIGMA-ALDRICH), 

ethylacetate (Analar, England), ethylacetate (Analar, England). 

Artificial mycotoxins: 

5 µg/mL total aflatoxin B1, B2, G1, G2 (4:1:4:1) in 10 mL acetonitrile  

100 µg/mL deoxynivalenol in 10 mL methanol  

10 µg/mL ochratoxin A in 5 mL methanol  

Buffer pH 5 (acetate):  

13.608 g of sodium acetate 3-hydrate (M.wt= 136.08) were dissolved in 900 ml dH2O 

and the pH was adjusted to 3 using acetic acid. The volume was then brought up to 1 L 

by adding dH2O to make a final concentration of 0.1 mol/L 

Buffer pH 7 (phosphate):  

A 0.1 mol/L were prepared from sodium di-hydrogen phosphate 2-hydrate by 

dissolving 15.601 g of NaH2PO4–2H2O (M.wt= 156.01) in 1 L of dH2O. A solution of 

di-sodium hydrogen phosphate 12-hydrate having 0.1 mol/L concentration was 
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prepared by dissolving Na2HPO4–12H2O (M.wt= 358.14) in 1 L of dH2O. The pH of 

Na2HPO4 solution was adjusted to 7 by adding the solution of NaH2PO4 to it. 

Chloramphenicol (100 mg/mL):  

1 g of chloramphenicol powder (SIGMA-ALDRICH, UK) was suspended in 10 mL 

absolute ethanol. The solution was filtered using 0.2 µm syringe filter (Acrodisc, USA) 

and kept at -20ºC. 

Normal saline:  

0.89 of NaCl (BDH, England) were dissolved in 100 mL sterile dH2O 

3.1.4 Kits: 

ELISA Kit of Aflatoxin (B1), DON and OTA (RIDASCREEN, Darmstadt, 

Germany): components are 96 microtiter plate, standards (1.3 mL), wash buffer salt 

tween, conjugate (6 mL), antibody (6 mL), substrate/chromogen (10 mL), stop solution 

(14 mL), washing buffer pH 7.4 (10 mM phosphate buffer in 0.025% Tween 20). The 

concentration of all standards of mycotoxins are listed in table 4. 

 

 

Table 4: Mycotoxins concentrations in ELISA kit's standards 

Standard 

no.  

AFB1 

(µg/L) 

DON 

(µg/L) 

OTA 

(ng/L) 

1 0 0 0 

2 1 3.7 50 

3 5 11.1 100 

4 10 33.3 300 

5 20 100 900 

6 50 - 1800 
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3.1.5 Equipment and machines  

- Autoclave (P SELECTA, Barcelona, Spain) 

- Centrifuge: Thermo SCIENTIFIC (Germany)  

- ELISA plate reader: (Multiskan FC, Thermo Scientific, Waltham, MA, USA) 

- Fridge: SANYO (Japan) 

- Incubator: BINDER (Germany) 

- Laminar: LABCONCO (USA) 

- Microscopes: Light Compound microscope (Leica, China) and (Zeiss, 

Germany), Inverted Light microscope (OPTIKA, Italy)    

- Oven: (Friedberg, Germany) 

- Shaking incubator: (SHEL LAB, USA) 

- Sonication machine: (BANDELIN SONOREX, W. Germany) 

3.2 Methods   

3.2.1 Investigation of the effect of yeast cells’ VOCs on the inhibition of 

mycotoxigenic fungal growth 

3.2.1.1 The exploration of the effect of yeast’s VOCs on the growth of point 

inoculated fungi on PDA 

A preserved yeast strain was taken out from -80ºC and was streaked on YPDA 

plate. A yeast preculture was prepared by transferring a single colony to 10 mL YPDB 

in a 50 mL conical tube using an inoculating loop, and the tube was incubated at 

26ºC/140 rpm for 8 hours.  A 100 µL of the preculture was transferred to 10 mL YPDB 

tube which was incubated at 26ºC/140 rpm for 24 hours. A suspension of yeast cells 

having a concentration of 107 cells/mL was prepared from the 24 h yeast broth culture 

by transferring 10 µL from the yeast culture to 990 µL of 0.9% saline. Yeast cells 

(107/mL) were counted using a hemocytometer chamber under a light microscope at 

40X lens. From that yeast suspension, 100 µL of the yeast cells suspension were 
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transferred to the YPDA plates and were spread on the media using sterile disposable 

plastic spreaders, and the plates were incubated at 26ºC for 48 h. Fungus spores’ 

suspensions of A. parasiticus, P. verrucosum and F. graminearum were prepared from 

7 days old fungi PDA plates by scratching the surface of the plate using an inoculating 

needle to transfer the inoculum to Eppendorf tubes each containing 1 mL 0.9% saline. 

The fungal spores’ suspensions for the three fungi were counted in the same way as the 

yeast’s and the concentration of spores was adjusted to be 106 spore/mL. From the 

spore’s suspension; an inoculum of 10 µL was transferred to the center of the PDA 

plates and those plates were sealed to the 48 h yeast YPDA plates using two layers of 

parafilm and transparent tape (Fiori et al., 2014). Figure 2 illustrates how the sealing 

process was done. The sealed plates where incubated at 26ºC for 10 days, and the 

diameters of the fungal colonies sealed to the yeast plates were measured on the 3rd, 5th 

and 7th day of incubation. The diameters of the fungal colonies exposed to yeast’s VOCs 

were compared to those in the control plates which were sealed to plates of YPDA 

media only.  
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Figure 2: Steps of the sealing process for the exploration of the yeast’s VOCs effect on 

mycotoxigenic fungi.  

[A: fungal plate and yeast prior to sealing; B: plates were placed top-to-top; C: plates were 

sealed with two layers of parafilm; D: plates sealed with transparent tape.] 

 

 

3.2.1.2 Effect of yeast’s VOCs on individual fungal growth on PDA 

Yeast’s cells suspension was prepared (107 cells/mL) and 100 µL of that 

suspension was spread on the YPDA plates, and they were later incubated for 48 h to 

be sealed with the PDA fungus plates. Fungal spores’ suspensions for A. parasiticus, 

P. verrucosum and F. graminearum were prepared to be 106 spores/mL and 1 µL of 

sterile Tween80 was added to the spores’ suspension to prevent spores’ coagulation 

(Cole, 1994). Spores suspension was serially diluted to 10-3 spores/mL and 100 µL of 

the spores’ suspension was spread on the PDA plates using sterile plastic spreaders. 

Both fungus and yeast plates were sealed together and incubated at 26ºC for 7 days. 

The diameters of single fungal colonies exposed to yeast VOCs were measured and 

compared to the ones in the control plates that were not exposed to the VOCs.  
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3.2.1.3 Investigation of the effect of yeast’s VOCs in different yeast’s 

concentrations on the growth of F. graminearum  

Two concentrations of the yeast cells were prepared to investigate the effect of 

yeast’s cells concentration on the growth of F. graminearum. From a 24 h yeast culture, 

a yeast cells stock solution was prepared in a concentration of 107 cell/mL. A 10 folds 

serial dilution was conducted from the stock solution and the concentration of 10-1 and 

10-3 cell/mL were selected to correspond to higher and lower yeast cells concentration, 

respectively. From each of the two concentration, 100 µL was transferred and spread 

on YPDA plates which were incubated at 26ºC for 48 hours. From a spore stock solution 

of F. graminearum having a concentration of 106 spore/mL, 10 folds dilution were 

made, and 10-4 spore/mL was chosen to work with. 1µL/mL of tween 80 was added to 

the 10-4 spore/mL suspension to prevent spores’ aggregation and 100 µL from that 

concentration were spread on PDA plates. Afterward, Those PDA plates having the 

fungal spores spread on them were sealed to the YPDA plates of high and low yeast 

concentrations. The sealed plates were then incubated at 26ºC and the radial diameters 

of the fungal colonies were measured. 

3.2.1.4 Investigation of the effect of the nutrients’ availability on the yeast’s 

VOCs production against F. graminearum  

The exploration of the effect of the nutrients’ concentration on the yeast 

potential to synthesize VOCs was examined through diluting the components of the 

YPDA media into two concentrations which were ½ and 1/10 the original concentrations 

of the YPDA components, keeping the agar concentrations the same as the original 

(1.5%).  Stock yeast cells solution of 108 cells/mL was 10 folds diluted to 10-6 cell/mL 

and dilutions from 10-1 to 10-5 cell/mL were chosen to be spread on the diluted YPDB 

media. 100 µL from these dilutions were transferred and spread on the ½ and 1/10 diluted 

YPDB media and on normal undiluted YPDA as well. The plates were incubated for 



  

22 

 

48 hours at 26ºC and yeast CFUs were counted on the three concentrations of YPDA 

media. The plates were sealed to PDA plates after which they were point inoculated in 

the center with 10 µL of F. graminearum spores’ suspension having a concentration of 

106 spore/mL. Sealed plates were incubated at 26ºC for 7 days and the diameters of the 

fungal colonies were measured and recorded alternatively for 3 days.  

3.2.1.5 Exploration of the effect of increasing yeast’s CFUs on the growth 

kinetics of F. graminearum 

To explore the kinetics of F. graminearum growth in response to VOCs exposure 

from increasing yeast cells numbers; a stock yeast solution of 108 cell/mL was prepared 

and was 10 folds diluted to 10-1 in 1 mL Eppendorf tubes. Those tubes of dilutions were 

also 10 times serially diluted and 100 µL from all dilutions were transferred and spread 

on ½ YPDA plates. The plates were incubated at 26 ºC for 48 h. Fungal spores of F. 

graminearum were prepared in a concentration of 106/ml and a point inoculum of 10 

µL was transferred to PDA plates. Fungal PDA plates were sealed to the yeast plates 

and were incubated at 26 ºC for 5 days. Radial diameters of the fungal colonies treated 

with yeast’s VOCs were measured on daily bases for 5 days and were compared to 

colonies which were not exposed to the yeast’s VOCs (Zeidan et al., 2018). 

3.2.2 Exploration of the yeast’s VOCs effect on the synthesis of mycotoxins  

3.2.2.1 Detection of Aflatoxin concentrations in A. parasiticus  

Yeast’s VOCs effect on the synthesis of aflatoxin B1 was tested from the point 

inoculated and individual colonies. Using a cork borer of 7 mm diameter, three plugs 

were cut from the treated and control point inoculated colonies of A. parasiticus. The 

plugs were taken from three consecutive spots; one from the center of the colony, the 

second was further away from the center and the third was closer to the margin of the 

colony. For the individual fungal colonies; plugs were cut using a sterile scalpel, and 

all plugs were weighed and transferred to 2 mL amber glass tubes. Figure 3 demonstrate 
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how the colonies were cut from point inoculated and individual fungus colony. 

Aflatoxin B1 extraction was conducted according to what was done by Smedsgaard., 

(1997) with a slight modification. 1 mL of the aflatoxin extraction solvent; methanol-

dichloromethane-ethylacetate (1:2:3) having 1% formic acid, was poured on the 

weighed cut colonies and the tubes were sonicated after that for 60 minutes.  After that, 

500 µL of the extract were transferred to clean Eppendorf tubes and the extract was 

dried using liquid nitrogen. When the tubes were completely dried out, the residues 

were resuspended with 500 µL of methanol: water (35:65) and the tubes were vortexed 

vigorously. The concentration of aflatoxin B1 in the colonies was determined using 

ELISA kit. In a 96 microtiter plates that is coated with antibodies specific to bind to 

anti-aflatoxin antibodies; 50 µL of the standards and the samples were loaded into the 

wells. 50 µL of the enzyme conjugate were loaded on the same wells and were followed 

by other 50 µL of the anti-aflatoxin antibody solution. The plate was gently shaken and 

incubated at room temperature for 20 minutes. Thereafter, the wells were emptied by 

pouring out the liquid to the sink and they were filled again with 250 µL of the washing 

buffer (PBS-Tween buffer) solution which was directly removed by poured out the 

liquid to the sink. The washing step was done twice, and 100 µL of the 

substrate/chromogen solution were added to the wells. The plate was gently shaken and 

incubated in the dark for 25 min. The reaction was stopped by adding 100 µL of the 

stop solution (1 N sulfuric acid) to all wells. The absorbance was measured directly at 

450 nm using an ELISA plate reader that was installed with Skanlt software. The 

concentrations of AFB1 was determined through comparing the absorbance values in 

the sample with a standard curve which was generated from the 5 standards absorption 

values. The absorbance values are inversely proportional to AFB1 concentrations in the 

samples. 
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Figure 3: Plugs cut from A. parasiticus colonies for the estimation of mycotoxins 

concentration. 

[A: three plugs removed by a cork borer from a point inoculated colony as the eleptic 

circle shows; B: individual fungal colony cut by a scalpel as the arrow points] 

 

 

3.2.2.2 Determination of Deoxynivalenol concentration by F. graminearum 

as an effect of increasing yeast’s CFUs 

DON concentrations were measured in F. graminearum colonies which were 

sealed to different yeast cells numbers on ½ YPDA media. Samples were cut from F. 

graminearum using a sterile scalpel as shown in figure 4. Three cuts were taken out 

from each of F. graminearum colonies which were sealed to yeast cells from different 

CFUs. The weight of the plugs cut sample was measured and they were transferred to 

brown glass vials. The cuts were soaked with 1 mL methanol (70%) for DON’s 

extraction and the tubes were sonicated for 60 min. 500 µL of the sonicated extract 

were transferred to clean Eppendorf tubes and were dried with liquid nitrogen. The 

residues were resuspended with 1 mL deionized H2O and the tubes were vortexed well. 
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DON’s concentration was determined in the extract using ELISA Kit. Concentration of 

DON in the extract of the treated colonies was referred to those of the control which 

were not sealed to yeast cells. Concentrations of DON in the fungal colonies sealed to 

yeast cells were compared to those which were not.  

 

 

 

Figure 4:  A demonstration of how samples were cut from F. graminearum colonies 

 

 

3.2.3 Exploration of the yeast cells adsorption properties to mycotoxins 

3.2.3.1 Preparation of living yeast cells  

Yeast culture was prepared from a 24 h yeast culture streaked YPDA by transferring 

one colony to 100 mL Erlenmeyer flask containing 20 mL YPDB. The flask was 

incubated at 26ºC/140 rpm for 16 h and from that preculture; 100 µL was used to seed 

20 mL of YPDB in a 100 mL flask. The culture was incubated at 26ºC/140 rpm for 24 

h. From this flask, a stock yeast cells suspension having a concentration of 108 cell/mL 

was used for the adsorption assay experiment. 
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3.2.3.2 Preparation of inactive yeast cells  

Inactive yeast cells were prepared from a living yeast cells culture. The live yeast 

culture was prepared in 50 mL conical. After the incubation period; the tube was 

centrifuged at 5000g/4ºC/5 min and the pellet was obtained and washed twice with 10 

mL of 0.9% saline. The tube was centrifuged, and the pellet was obtained again. The 

tube was transferred to the oven and was incubated at 80ºC overnight. The crusty dry 

yeast pellet was ground using the mortar and pestle, and the fine yeast powder was 

collected in an Eppendorf tube (Bzducha-Wróbel et al., 2014). 

3.2.3.3 Preparation of mycotoxins doses  

To test the adsorption of AFs, DON and OTA to the yeast’s cell wall; two doses for 

each of the three mycotoxins were prepared to be in the detectable limit of the ELISA 

kit. Therefore, a higher and lower concentration of each of the mycotoxins were 

prepared by diluting mycotoxins in dH2O to obtain the concentration shown in table 5.  

 

 

Table 5: Mycotoxins concentrations prepared for the adsorption assay 

Mycotoxin  High dose 

(µg/L) 

Low dose 

(µg/L) 

AFs 0.2 0.4 

DON 40 80 

OTA  0.9 1.8 

 

 

 



  

27 

 

3.2.3.4 Adsorption to viable yeast’ cell wall 

The live yeast cells stock which was prepared in section 3.2.3.1 was used to test the 

potential of AFs, DON and OTA to adsorb to the yeast’s cell wall. The adsorption was 

conducted in two buffer solutions having pH 5 (acetate) and 7 (phosphate). From the 

buffer solutions, 970 µL were transferred to Eppendorf tubes which were seeded with 

20 µL of the yeast cells stock solution. The tubes were vortexed and were divided into 

two sets; where the first was contaminated with 10 µL of the higher mycotoxin dose, 

and the second was contaminated with 10 µL of the lower mycotoxin dose. The tubes 

were shake incubated end-to-end at 37ºC/140 rpm for 30 min and were directly 

centrifuged after that at 9200g/4ºC for 10 min. The supernatant was separated from the 

pellet and was transferred to Eppendorf tubes. The pellet was resuspended in 10% 

methanol, dH2O or 0.13 M sodium hydrogen carbonate solution for the detection of 

AFs, DON and OTA. 

3.2.3.5 Adsorption to inactive yeast cell wall. 

The adsorption procedure of the inactive yeast cells to mycotoxin was done 

similarly to that of living yeast cells, with the change that the living yeast cells were 

exchanged with 5 mg of the ground yeast cells powder and were added to 990 µL of 

the buffer solutions. The tubes were contaminated with 10 µL of mycotoxins and the 

rest of the adsorption procedure was completed as done in 3.2.3.4. section for living 

yeast cells 

3.2.3.6 Determination of yeast’s adsorption potential using ELISA kits  

ELISA Kit was used to determine the adsorption potential of the mycotoxins to cells 

in the pellet of the viable and non-viable yeast incubated in buffer 5 pH and 7 pH. 50 

µL were transferred to the wells of ELISA from the tubes of the pellet and supernatant 

of all three mycotoxins and the percentage of the removal of the mycotoxin from the 

buffers were determined for the three mycotoxins in both buffer of pH 5 and 7. 
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3.2.4 Exploration of the In-Vitro effect of yeast’s VOCs on F. oxysporum 

contaminating tomato fruit 

Yeast’s VOCs effect on F. oxysporum growth was tested in an in-vitro experiment 

on the tomato fruits surface. The tomato washed with dH2O was contaminated on the 

surface with 5 µL of spores’ suspension having a concentration of 104 spore/mL. Ten 

tomato fruits having almost the same size (~0.8 g) were contaminated with F. 

oxysporum spores where five of them were added to an autoclaved glass box 

(Tupperware) having a 48 h streaked yeast plate, and the other five contaminated 

tomato were added to another glass box having a plate of YPDA only. The Petri dish’s 

size was small   (60 mm X 15 mm) in order to fit inside the glass boxes. The Petri dishes 

were covered with a sterile lid of a bigger Petri dish to serve as the base of which the 

tomato will be placed on. Small pieces of polystyrene were used to partially elevate the 

lid from the Petri dish. Small desiccator bags were placed in each box and the boxes 

were then covered with their tight lid (Figure 5). The experiment was performed in 

aseptic conditions and the boxes were then incubated at 26ºC for 33 days. 
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Figure 5: Tomato fruits and yeast sorted in the glass sealed box 

 

3.2.5 Investigation of the antifungal activities of a local isolate QBC03 

against mycotoxigenic fungi contaminating food  

3.2.6 QBC03’s growth conditions and extract sterilization 

Preserved QBC03 was taken out from -80ºC and streaked on a fresh plate of 

nutrient agar for 24 h at 30ºC. Thereafter, one colony was transferred to 50 mL conical 

tubes having 10 mL nutrient broth and 10 mL NBY broth (5) which was prepared 

according to Kilani-Feki & Jaoua., (2011). From these pre-cultures, 100 µL were 

transferred to 10 mL nutrient broth and NBY, and the tubes were incubated at 30ºC for 

48 h. The tubes were centrifuged at 5500g for 20 minutes and the supernatant was 

transferred to other tubes. To obtain a sterile QBC03’s supernatant; two ways of 

sterilization were used which were: using syringe filters of 0.2 µm and 0.45 µm for 

extract filtration, and sterilization by UV for 20 minutes. 100 µL from QBC03’s 

sterilized extract were added to wells drilled in PDA plates having 100 µL P. 
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verrucosum spores inoculum spread on them from a stock suspension of 106 spores/mL. 

The sterilized extract was also added to wells in PDA media having 100 µg/L 

chloramphenicol and all plates were incubated at 26ºC for three days. 

3.2.7 Estimation of the antifungal activity of QBC03 strain by overlaying 

assay  

QBC03’s antifungal spectrum was tested against 20 fungal species belonging to 

the genera of Aspergillus, Fusarium and Penicillium (Table 1). The dual-culture 

overlaying assay method was used to determine the inhibition zone of QBC03 against 

the fungal strains (Santos et al., 2004). QBC03 was streaked on a fresh plate of nutrient 

agar and was incubated at 30ºC for 24 h. The streaked plate was used to transfer QBC03 

to the center of NA plates using a sterile toothpick and the plates were kept at 30ºC for 

48 h. Spores’ suspension was prepared from 7 days old fungal colonies by transferring 

a scratch from those plates with an inoculating needle to 1 mL 0.9% saline in Eppendorf 

tubes. Spores suspension prepared for the 20 species were counted using a 

hemocytometer and their concentration was adjusted to 106/mL. Each of the spores’ 

suspension was resuspended in 10 mL soft PDA in 50 mL conical tubes. 2 mL from 

those tubes were assayed very closely around the 48 h QBC03 colonies and the tubes 

were vortexed vigorously each time the spores were assayed. The plates were incubated 

at 26ºC and diameters of zones around QBC03 were measured after 3 days of 

incubation. 

3.2.8 Evaluation of QBC03’s antifungal compounds by well-diffusion 

method 

The activity of the antifungal compounds of QBC03 supernatant was evaluated 

on PDA using the wells-diffusion method that is modified from Eloff (1998). QBC03 

was cultured in 10 mL NBY (5) in 50 mL conical tubes and was incubated in the shaker 

at 30ºC/140 rpm for 24, 48 and 72 h. After that, the extract was collected from those 
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cultures by centrifuging the tubes at 5500g for 20 min and transferring the supernatant 

to other tubes. The supernatant of the 24, 48 and 72 h culture was obtained and diluted 

in saline to 1%, 20%, 60% and 80%. PDA media having 100 µg/L chloramphenicol 

was prepared and poured in 150 X 15 mm Petri dishes. Spores suspension for A. 

carbonarius, F. culmorum and P. verrucosum were prepared (106/mL) and 200 µL were 

transferred and spread on the PDA plates. A cork borer (7mm) was used to drill wells 

on the PDA media, and 100 µL of 1%, 20%, 60%, 80% and 100% extract were loaded 

to the wells. The plates were incubated at 26ºC for 3 days and diameters for zones 

around the wells were recorded.  

3.2.9 Evaluation of QBC03’s antifungal compounds by incorporation of the 

supernatant with PDA 

A preculture of QBC03 was prepared and 100 µL were transferred to 10 mL 

NBY (5) broth which was shake incubated at 30ºC/180 rpm for 48 h. The extract was 

obtained by centrifuging the tubes at 5500g for 20 min. PDA media with 100 µg/L 

chloramphenicol was prepared in 500 ml flasks and different volumes of the bacterial 

extract were incorporated to correspond to the percentages of 2.5%, 3.5%, 4.5%, 5.5%, 

6.5%, 7.5%, 8.5%, 9.5%, 10.5%, 11.5% & 12.5%, 13%, 14% and 15%. The control 

plates were prepared in the same way, but the bacterial extract was exchanged with 

NBY (5) broth instead. Fungal spores’ suspensions for A. carbonarius, F. culmorum 

and P. verrucosum were prepared (106 spore/mL), and 3 µL were loaded to the center 

of the PDA plates of the control and the treatment. The plates were incubated at 26ºC 

for 7 days and the diameters of the fungal colonies were measured and referred to the 

control and the inhibition ratio was calculated using the below formula (Kilani-Feki et 

al., 2011). 

 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑖𝑜 = ,-.
,
∗ 100		                                                                      

C: diameter of colony in the control  
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T: diameter of colony in the treatment 

3.2.10 Evaluation of QBC03’s antifungal compounds effect on fungal 

mycelial biomass 

To explore the effect of QBC03’s antifungal compounds on the fungal 

mycelium biomass; a 6 h preculture of QBC03 was prepared in 10 mL NBY (5) in 50 

mL conical tube out of which 100 µL were transferred to other 10 mL NBY (5). The 

culture was shake-incubated at 30ºC/180 rpm for 48 h. The bacterial extract was 

obtained through centrifugation at 5500g for 20 min and was shifted to other tubes. The 

extract was serially diluted (1% to 6%) in 100 mL flasks having 20 mL PDB and 500 

µg/L chloramphenicol. The control contained only PDB+500 µg/l chloramphenicol. 10 

µL inoculum of fungal spores’ suspension (A. carbonarius and P. verrucosum) having 

a concentration of 106 spores/ml was transferred to all flasks which were shake 

incubated at 26ºC/140 rpm for 72 h. After the incubation period, the fungal growth was 

estimated by measuring the fungal dry mass through filtration. Nitrocellulose filter 

papers were kept in the oven at 60ºC for 24 h prior to the filtration and their initial 

weight was measured using an analytical balance. The mixture of fungi and PDB was 

filtered through nitrocellulose filter paper in Buchner funnel which was connected to a 

vacuum pump (Figure 6). The dry biomass was calculated in the treatment and the 

control as described in the formula below, and the filtrate of each treatment was 

collected separately in Eppendorf tubes for the analysis of mycotoxin concentration. 

Microscopic morphological alterations of the mycelia were examined under the 

microscope. 

𝐷𝑟𝑦	𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑒𝑚𝑝𝑡𝑦	𝑓𝑖𝑙𝑡𝑒𝑟	𝑝𝑎𝑝𝑒𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑓𝑖𝑙𝑡𝑒𝑟	𝑝𝑎𝑝𝑒𝑟	𝑎𝑓𝑡𝑒𝑟	𝑓𝑖𝑙𝑡𝑟𝑡𝑖𝑜𝑛             
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Figure 6: Fungal biomass filtration system 

 

 

3.2.11 Estimation of the effect of temperature on the stability of QBC03’s 

antifungal compounds 

QBC03’s supernatant treated with different temperatures was tested against A. 

carbonarious, F. culmorum and P. verricusom in well-diffusion method. From a 

7 hr preculture of QBC03, 100 µL were transferred to 10 ml NBY broth which 

was incubated at 30ºC/180 rpm for 48 h. The extract was obtained by centrifuging 

the tube at 5500g/20 min. 1 mL of the supernatant was transferred to Eppendorf 

tubes where each was incubated at different temperatures (-80º, -20º, 4º, 26º, 30º, 

40º, 60º, 80º & 100ºC) for 30 mins. PDA having 100 µg/mL chloramphenicol 

was poured in plates (150 mm X 15 mm)  and 200 µL from fungal spores’ 

suspension (106/mL) were spread on the media surface. Using a cork borer (7 

mm), wells were drilled in the PDA plates and a 100 µL of the treated extract 
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were loaded each in each well. The plates were incubated at 26ºC for 72 h and 

zones around the wells were measured. 

3.2.12 Evaluation of the effect of QBC03’s antifungal compounds on the 

germination of fungal spores. 

 The influence of QBC03’s antifungal compounds on the germination of fungal 

spores was explored by culturing the spores with the extract in a 96-microtiter tray as 

done by Joo et al., (2015). The fungal spores were transferred from 7 days old colonies 

on PDA to 1 mL dH2O Eppendorf tubes using a sterile needle. The tubes were 

centrifuged at 5000 rpm for 5 min and the pellet was washed with 1 mL dH2O, and the 

process was repeated twice. The fungal spores (A. carbonarius, A. westerdijkiae, F. 

oxysporum, F. culmorum and P. verrucosum) were counted and adjusted to 106 

spore/mL. The bacterial supernatant of QBC03 was obtained by centrifugation at 5500g 

for 20 min and 100 µL of the extract were added to wells in 96 microtiter plate 

containing 900 µL PDB and 500 µg/L of chloramphenicol. In the negative control 

wells; the supernatant was replaced with 100 µL of NBY broth and 2 µL of spores were 

inoculated in all wells. The effect of the antifungal compounds from the supernatant on 

the spores’ germination was detected using an inverted light microscope after 24 h of 

incubation.  
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CHAPTER 4: THE INHIBITION OF MYCOTOXIGENIC FUNGAL GROWTH 

AND SYNTHESIS OF THEIR MYCOTOXINS BY YEAST’S VOCS 

Introduction 

Mycotoxins are secondary metabolites produced by toxigenic fungal species 

and are produced by three main genera that are Aspergillus, Fusarium and Penicillium. 

Such mycotoxigenic fungi can contaminate different crops and cereal either pre or post 

the harvesting (Milani, 2013). Mycotoxins are very stable compounds and they can’t 

be degraded in routine cooking processes, which makes them problematic due to the 

health issues they can cause (Abbas et al., 2009). Due to their toxigenic profile; AFA 

B1, DON, OTA, fumonisins and zearalenone are considered on the top of the list of 

more than 400 identified mycotoxins (Bhat et al., 2010). Biocontrol agents like yeast 

are used to control the mycotoxigenic fungal growth as well as their mycotoxins. The 

biocontrol approach is considered a promising strategy due to the potential it has in 

decreasing economical losses caused by the contamination of the mycotoxigenic fungi. 

Yeast can antagonize the mycotoxigenic fungi by several mechanisms; like the 

production of antifungal compounds, formation of a biofilm or competition on the 

nutrients and space, and many other mechanisms (Pfliegler et al., 2015). Yeast produce 

volatiles that can inhibit the fungal growth of mycotoxigenic fungi (Farbo et al., 2018). 

There are more than 30 yeast strain that have been proved to have antifungal activities 

against mycotoxigenic fungi. However, the use of yeast can be problematic due to the 

production of alcoholic compounds by the yeast in the fermentation process (Liu et al., 

2014; Fiori et al., 2014). To meet with the Islamic standards which prevent the presence 

of alcoholic substance in food and beverages; the use of a low- or non-fermenting yeast 

can resolve the problem (Fiori et al., 2014).  

In this work, L. thermotolerans 751 strain has been used as a biocontrol agent 

against the mycotoxigenic fungal strains A. parasiticus AF82, F. graminearum FGr14 
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and P. verrucosum TF11. Besides the VOCs inhibition of the mycotoxigenic fungal 

growth; this work has also focused on the reduction of the associated mycotoxins 

synthesized by fungal species. A study of the effect of L. thermotolerans 751 VOCs on 

the inhibition of point inoculated and individual fungal colonies was conducted. The 

synthesis of AFB1, DON and OTA were measured from the fungal colonies exposed to 

the yeast’s VOCs was done in this project. In addition, we study, the effect of nutrients 

availability to the yeast cells on their biocontrol potential against F. graminearum 

FGr14.  

4.1 Investigation of the effect of yeast’s VOCs on the growth of point inoculated 

fungi  

4.1.1 Growth inhibitory effect of yeast’s VOCs on A. parasiticus AF82  

The diameters of an inoculum of A. parasiticus AF82 that was transferred to PDA 

and sealed to yeast cells were measured and compared to those which were sealed to 

empty YPDA plate. It was noticeable that the yeast’s VOCs were able to reduce the 

growth of the A. parasiticus AF82 compared to the control colonies in the 3rd, 5th and 

7th day, where the inhibition percentage reached 25%,15% and 6%, respectively (Figure 

7). However, the decrement in the diameter on the 7th day was not much different than 

colony diameter in the control (control: 45 mm, treated: 48 mm). At the 7th day and 

after, the colony size of the treated A. parasiticus AF82 started increasing reaching to 

that of the control. The radial growth of the treated fungal colonies wasn’t the only 

thing affected by the yeast’s VOCs where the pigmentation of the fungus was also 

affected too (Figure 8). The coloration of the fungal colonies which were treated was 

completely different than the control which was not exposed to the VOCs. The treated 

colonies had a white cottony shape, unlike the colonies in the control plates which 

retained the yellow brown pigmentation in the center of their colony. Figure 8 shows 

how exposure to yeast VOCs has resulted in undefined margins in the fungal colony.  
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Figure 7: Effect of VOCs on the size of colonies of point inoculated A. parasiticus 

AF82. 

[The  sizes of the A. parasiticus AF82 colonies were measured after 3, 5 and 7 days of 

sealing] 

 

 

  
Figure 8: Effect of yeast VOCs on the characteristics of A. parasiticus AF82. 

[A: control fungal colony without VOCs; B: fungal colony treated with VOCs] 

 

 

4.1.2 Effect of yeast’s VOCs on F. graminearum FGr14 growth 

From the diameters measured for the treated and untreated colonies of F. 

graminearum FGr14 with VOCs, there was a clear decrease in the radial dimeter and 
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growth of the colonies (16 mm, 34 mm, 50 mm) on the 3rd, 5th and 7th day, respectively 

(Figure 9). Yeast VOCs were able to inhibit the growth of the point inoculated F. 

graminearum FGr14 colonies when sealed to yeast cells, compared to the control. More 

inhibition has happened to the fungal growth as per to the measured diameters of the 

colonies on the 3rd day, where after that, the fungus was growing gradually and 

inhibition zones were recorded as 46%, 31% and 23% for the three days, respectively. 

A loss in the pigmentation was also observed for the treated colonies which had 

completely lost the pink color in the center compared to the control colonies that 

retained it. Undefined margins were seen in colonies exposed to VOCs as shown in 

figure 10. 

 

 

 

Figure 9: Effect of VOCs on the colonies sizes of point inoculated F. graminearum 

FGr14. 

[The  sizes of the F. graminearum FGr14 colonies were measured after 3, 5 and 7 

days of sealing] 

 

 

0

10

20

30

40

50

60

70

Day 3 Day 5 Day 7

Co
lo

ny
 d

ia
m

et
er

 (m
m

)

Control Treated



  

39 

 

 

Figure 10: Effect of yeast VOCs on the characteristics of F. graminearum FGr14. 

[A: control fungal colony without VOCs; B: fungal colony with VOCs] 

 

 

4.1.3 Effect of yeast’s VOCs on P. verrucosum TF11 growth 

P. verrucosum TF11 point inoculated colonies sealed to yeast showed a great 

inhibition in their radial diameter making P. verrucosum TF11 the most sensitive 

towards exposure to yeast’s VOCs compared to A. parasiticus AF82 and F. 

graminearum FGr14. On the 3rd, 5th and 7th day post-sealing, the diameters of the 

treated P. verrucosum TF11 colonies reached to 6 mm, 9.5 mm and 10 mm accounting 

for an inhibition percentage of 32%, 37.91%, and 43.72%, respectively (Figure 11). 

The colony development rate in the colonies exposed to the yeast’s VOCs was faster 

after the 3rd day. Moreover, the VOCs affected the pigmentation of the fungal colonies 

exposed to the yeast’s VOCs, where the treated colonies were pale white compared to 

the colonies of the control which appeared pigmented in dark green (Figure 12).  
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Figure 11: Effect of VOCs on the colonies sizes of point inoculated P. verrucosum 

TF11. 

[The  sizes of the F. graminearum FGr14colonies were measured after 3, 5 and 7 

days of sealing] 

 

 

 

Figure 12: Effect of yeast VOCs on the characteristics of P. verrucosum TF11. 

[A: control fungal colony without VOCs; B: fungal colony exposed to VOCs] 
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4.2 Effect of yeast’s VOCs on individual fungal spores’ germination spread on 

PDA. 

4.2.1 Effect of yeast’s VOCs on individual colonies of A. parasiticus AF82 

Appropriate volumes of diluted spores’ suspension (106 spore/mL) of A. 

parasiticus AF82 were plated on PDA in order to obtain isolated colonies on the surface 

of the plate and were sealed to the yeast cells (106 /mL) on YPDA; the diameters of 

fungal colonies were recorded. The results showed a slight inhibition of fungal growth. 

On the third day post to sealing; the fungal colonies development rate was high and 

individual colony sizes continued to increase to become almost as close in size (17 mm) 

as those which were not exposed to the VOCs (18.8 mm). Due to the fungal cells fast 

developing rate, there was a slight change in the diameter growth of the treated colonies 

accounting for 9.7% on the 3rd day of sealing (Figure 13). However, the shape of the 

individual developing colonies of A. parasiticus AF82 was different upon the exposure 

to yeast’s VOCs compared to the colonies which weren’t exposed to VOCs. The 

colonies of the treatment have totally lost their color to white and appeared in a cottony 

buffed shape compared to the untreated colonies which have appeared in a brown 

yellow color concentrated in the center of each colony (Figure 14).  
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Figure 13: Effect of yeast’s VOCs on the growth of individual colonies of A. 

parasiticus AF82 

 

 

  

Figure 14: Effect of yeast VOCs on  individual cells of A. parasiticus AF82.  

[A: control fungal colony without VOCs; B: fungal colony exposed to VOCs] 
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4.2.2 Effect of yeast’s VOCs on individual colonies of F. graminearum 

FGr14 

The diameters of F. graminearum FGr14 colonies exposed and non-exposed to 

yeast cells VOCs were measured and compared. The growth of F. graminearum FGr14 

individual cells sealed to yeast cells (106 cells) was 100% inhibited compared to the 

cells growth in the control which reached up to 26.6 mm on the third day of sealing 

(Figure 15). No visible germination of the spores was noticed for those exposed to the 

yeast VOCs, unlike the spores in the control (not exposed to VOCs), where they 

germinated and gave big colonies having a pink color in the center. The colonies 

exposed to the VOCs were returned back to the incubator to see if the spores could 

germinate with the time. However, even after a month of the incubation at 26ºC; the 

spores exposed to the VOCs didn’t germinate at all. In contrast, colonies which were 

not exposed to the VOCs continued to grow normally. 

 

 

    

 

Figure 15: Effect of yeast VOCs on  individual cells of F. graminearum FGr14  

[A: control fungal colony without VOCs; B: fungal spores’ inoculum exposed to 

VOCs] 
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4.2.3 Growth inhibitory effect of yeast’s VOCs on individual colonies of P. 

verrucosum TF11 

The diameters of P. verrucosum TF11 colonies exposed and non-exposed to yeast 

cells VOCs were measured and compared. When individual spores of P. verrucosum 

TF11 were sealed to yeast cells, the spores which were spread on PDA didn’t germinate 

at all on the third day of sealing, and the P. verrucosum TF11 was 100% inhibited. In 

the control (without yeast’s VOCs), the spores germinated and continued to grow 

reaching to 7.5 mm on the third day of sealing. Hence, yeast’s VOCs were able to 

completely suppress the spores’ germination of P. verrucosum TF11 and the plates 

appeared clear from any fungal growth (Figure 16). The plates which had the spores 

exposed to the yeast VOCs were kept incubated at 26ºC for a month, but the spores 

didn’t germinate at all. 

 

 

 

Figure 16: Effect of yeast VOCs on  individual cells of P. verrucosum TF11  

[A: control fungal colony without VOCs; B: fungal spores’ inoculum exposed to 

VOCs] 
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4.3 Effect of yeast’s cells concentration on the growth of F. graminearum FGr14 

individual colonies 

Two yeast cells concentrations were tested to investigate their effect on the 

production of VOCs and hence the levels of the fungal growth. Yeast cells suspensions 

having a concentration of 106 cells/mL and 104 cell/mL were spread on YPDA plates 

which were sealed to PDA plates having spores of F. graminearum FGr14 spread on 

them. F. graminearum FGr14 was chosen to be the reference strain to be tested in this 

experiment and the latter ones. The sensitivity of F. graminearum FGr14 toward 

yeast’s VOCs falls in between that of P. verrucosum TF11 and A. parasiticus AF82, 

whereas P. verrucosum TF11 was too sensitive and its spores weren’t germinating upon 

the treatment with VOCs, and A. parasiticus AF82 was growing with minimal inhibition 

in its radial growth. The yeast suspension of 106 cell/mL and 104 cell/mL were supposed 

to account for the large and lower yeast cells numbers; hence more crowded and less 

crowded plates of yeast growth would be obtained, respectively. 

The growth of the fungal colonies exposed to VOCs of yeast cells of both 

concentrations were compared to the spores which were not exposed to VOCs. The 

VOCs produced by yeast cells (103) in the lower concentration were able to inhibit the 

fungal growth completely and the fungus was not able to grow at all. In higher yeast 

CFUs (105), the spores could germinate and grow but the shape of colonies was 

different from those in the control. The colonies treated with higher yeast CFUs had 

lost their pigmentation and had foggy boarders (Figure 17). It was shown that very low 

yeast CFUs (104/mL) inhibited the growth and germination of F. graminearum FGr14 

completely.  
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Figure 17: Effect of different yeast’s CFUs on F. graminearum FGr14 growth. 

[A: negative control, no yeast; B: fungal cells exposed to 105 yeast CFUs; C: fungal 

cells exposed to 103 yeast] 

 

 

4.4 Effect of nutrients availability on the production of yeast’s VOCs for the 

inhibition of F. graminearum FGr14 

In order to study the effect of nutrients availability on the antagonistic effect of 

yeast on F. graminearum FGr14 growth, the yeast growth medium was diluted to 2 and 

10 folds. The ability of yeast cells’ VOCs to inhibit the fungal growth on the diluted 

media was compared to their ability to inhibit the fungal growth on normal non-diluted 

YPDA. Yeast CFUs counting was done for both media, and the plates having close 

CFUs were sealed with F. graminearum FGr14. The CFUs for the 2 folds diluted media 

were close to those of the normal YPDA, but they were less. After measuring the 

diameter for the fungal colonies after the sealing, it turned out that the less numbers of 

yeast CFUs on the 2 folds diluted YPDA were able to inhibit the fungal growth more 

than the higher CFUs on the normal media (data not shown). As result to that, the ½ 

diluted YPDA was chosen for the latter experiments.  

4.5 Effect of increasing yeast’s CFUs on the growth kinetics of F. graminearum 

FGr14. 

The potential for yeast VOCs to inhibit the growth of F. graminearum FGr14 
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was explored in a range of yeast’s CFUs spread on ½ YPDA and sealed to point 

inoculated fungal inoculum. Yeast cells range started from 7 CFUs to 598 CFUs. The 

½ YPDA medium was chosen based on the results obtained in the previous experiment 

(section 4.4). The diameters of all fungal colonies were recorded for 5 consecutive days. 

The yeast CFUs counted in all plates allowed to work with different ranges of CFUs. 

Diameters of F. graminearum FGr14 colonies exposed to VOCs from different yeast 

CFUs were compared to the ones in the control plates which were not exposed to yeast’s 

VOCs. It was shown that the inhibition of the fungal colony growth of F. graminearum 

FGr14 has started even from 7 yeast CFUs (Figure 18). The inhibition of the radial 

growth continued to decrease gradually with increasing the yeast’s CFUs, and the 

highest inhibition in colony diameters (48.8%) was shown in the range of 145-305 

CFUs. The fungal diameter (15.08 mm) decreased to almost half the diameters of 

colonies in the control plates (29.8 mm). The diameters of the fungal colonies were 

increased with yeast CFUs of 402-500. From 500 to 598 yeast CFUs, the diameters of 

the fungal colonies didn’t increase (22.5 mm). The results of this experiment confirm 

that there is an optimum yeast CFUs affecting fungal growth, and that the increase of 

yeast’s CFUs inhibit fungal cell growth.  
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Figure 18: Effect of increasing yeast CFUs on F. graminearum FGr14 

 

 

4.6 Effect of the yeast VOCs on the fungal synthesis of mycotoxins  

4.6.1 Determination of Aflatoxin’s concentrations in point inoculated and 

individual colonies 

The synthesis of Aflatoxins was measured in point inoculated and individual 

colonies of A. parasiticus AF82 which were exposed to VOCs produced by 105 yeast 

CFUs. Three plugs were extracted from the solid medium for AFB1 extraction. AFB1 

was extracted and the concentration of AFB1 was determined by ELISA. Although the 

radial growth for both individual and point inoculated colonies wasn’t significantly 

different from the control after exposure to the yeast VOCs, AFB1 concentration in the 

treated colonies was significantly decreased. In the point inoculated treated colonies (7 

mm), AFB1 was detected as 1.43 µg/kg compared to the control which had 8.01 µg/kg. 

This accounts for 82.1% reduction in the synthesis of AFB1 in point inoculated colonies. 
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In the individual colonies of the control (19.25 mm); the concentration of AFB1 was 

7.09 µg/kg, while in the treated colonies it was 0.03 µg/kg (Figure 19). The reduction 

percentage of AFB1 synthesis from individual colonies reached up to 99.5%. 

 

 

 

Figure 19: Effect of yeast VOCs on Aflatoxin synthesis by A. parasiticus AF82. 

[AFB1 was measured in samples of point inoculated and individual colonies of A. 

parasiticus AF82]  

 

 

4.6.2 Detection of Deoxynivalenol concentrations in F. graminearum FGr14 

as an effect of increasing yeast’s CFUs  

DON concentration was measured in F. graminearum FGr14 colonies which were 

exposed to VOCs from a wide range of yeast CFUs. For the determination of DON 

concentration; plugs were cut using a cork borer (7 mm) and were soaked with 70% 

methanol. The extract was dried and was resuspended with water and DON 

concentration was determined by mycotoxin’s ELISA kit. Interestingly, the 

concentration of DON was gradually decreasing with increasing yeast CFUs, following 
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the same trend of the growth inhibition (results of section 4.5). As shown in figure 20; 

starting from the lowest yeast CFUs of 7 reduction of the synthesis of DON in F. 

graminearum FGr14 colonies was noticed. The concentration of DON started to 

decrease gradually from 7 CFUs and down to 200 CFUs. Colonies of F. graminearum 

FGr14 sealed to yeast CFUs from 145 to 398 cells have shown the most reduction in 

the synthesis of DON, where the concentration was below the detectable limit of 

ELISA. From 201 to 398 cells, DON’s concentration was below the detectable limits 

of ELISA. DON’s concentration started to gradually increase again from 402 to 598 

CFUs. 

 

 

 

Figure 20: Effect of yeast CFUs on DON concentration measured in F. graminearum 

FGr14 
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Discussion: 

In order to explore the yeast’s VOCs potentials to inhibit the growth of 

mycotoxigenic fungi, yeast (L. thermotolerans 751) VOCs from a concentration of 

107/mL were able to inhibit the radial growth of individual colonies of P. verrucosum 

TF11, A. parasiticus AF82 and F. graminearum FGr14. The inhibition rate for the 

individual spores of F. graminearum FGr14 and P. verrucosum TF11 (100% both) was 

higher than the rate of inhibition in point inoculated colonies.  

According to a study done by Virgili et al., (2012), when they used different yeast 

strains isolated from dried ham for the biocontrol of P. nordicum, they were able to 

demonstrate that yeast cells (108 /mL) sealed to fungal colonies of variable conidia 

concentration were able to inhibit the lesser concentration of fungal conidia (102/mL) 

better than other two higher concentration (104 and 106/mL). The fungal growth was 

almost vanished for the conidia having a concentration of 102/mL. Their findings 

confirmed the results obtained for the co-culture experiment of F. graminearum FGr14 

and P. verrucosum TF11, where the individual spore colonies were 100% inhibited by 

the VOCs. However, their findings don’t agree with our results for sealing individual 

spores of A. parasiticus AF82 with yeast cells. The inhibition of the individual colonies’ 

growth (9%) wasn’t bigger than the inhibition of the radial growth of the point 

inoculated colonies (25%) for the 106 spore/mL concentration. Nevertheless, the 

concentration of the synthesis of AFs had an opposite pattern. From the individual 

colonies, lower concentrations of AFs were detected compared to those measured in 

point inoculated colonies. 

Similar to our results obtained on the morphology of the fungal colonies exposed 

to yeast’s VOCs, Fiori et al., (2014) studied the antagonistic activity of four yeast 

strains including L. thermotolerans. They proved the effect of the yeast’s VOCs to 
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inhibit the growth of point inoculated A. carbonarius colonies sealed to yeast cells (108 

/mL). They also proved that upon the treatment with yeast VOCs; fungal colonies of A. 

carbonarius lost their color, sporulation and the borders of the colonies become uneven 

or undefined. This comes in line with our findings where all the treated fungal colonies 

(individual and point inoculated) have lost their color to white and became uneven in 

the margins and mycelia were shown scattered. 

From a yeast called K. apiculate, Liu et al., (2014) managed to identify an 

antifungal compound (2-phenylethanol) and they described its mode of action on 

Penicillium species. From the analysis of the transcriptome of exposing P. italicum 

culture to 2-phenylethanol, they found that 1304 genes in the treated culture were 

differentially regulated compared to the transcriptome analyzed from the control 

culture. Through functional analysis, they managed to find the pathways which have 

been altered after the treatment of 2-phenylethanol. Some of these pathways is related 

to the fungal programmed cell death. In addition, some genes responsible for the DNA 

replication and cell cycle were found down-regulated when the transcriptome of P. 

italicum exposed to the VOCs was analyzed. These findings came supporting to the 

obtained results conducted in our work about P. verrucosum TF11 being so sensitive 

against the VOCs of yeast hence it couldn’t grow at all. 

In a transcriptomic based work; Hua et al., (2014) confirmed that 2-phenylethanol 

produced by the yeast (P. anomala) was responsible for a down regulation for more 

than 10,000 folds in the genes of A. flavus. 2-phenylethanol has hindered the production 

of AFB1 by reducing the expression of its structural genes. They also managed to 

elucidate the effect of 2-phenylethanol on the expression of chromatin modifying genes, 

and according to their results, the down regulation in those genes is directly linked to 

the down regulation of the genes responsible for the biosynthesis of AFB1 in A. flavus. 
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This confirms the reduction of AFB1 measured in the point inoculated and individual 

colonies of A. parasiticus.  

In an in-vitro application of yeast to reduce the vegetative growth of two Aspergilli 

species, yeast’s VOCs were successful to inhibit the radial growth of the colonies sealed 

to the yeast but also inhibit the sporulation and the synthesis of OTA as well (Farbo et 

al., 2018). Farbo et al., (2018) studied the effect of VOCs from yeast having an 

antifungal activity. They demonstrated that 2-phenylethanol is the major compound 

responsible for the inhibition of the radial growth and synthesis of OTA in Aspergilli 

species. The effect of 2-phenylethanol on OTA genes expression was experimented and 

it was proved that the yeast has down regulated the genes responsible for the 

biosynthesis of OTA, in addition to some regulatory genes. VOCs of yeast were able to 

cause a 99% demolition in the expression of acpks gene, and this gene is responsible 

for the synthesis of OTA in A. ochraceous.   

Similar to what we found on the effect of yeast’s VOCs the reduction of DON 

synthesis, Armando et al., (2013) experimented the inhibitory effect of two 

Saccharomyces cerevisiae strains in different conditions. A significant reduction in the 

radial growth of F. graminearum and A. carbonarius was obtained on a solid medium 

inoculated with a yeast inoculum. The concentration of DON was measured and found 

significantly reduced compared to the control, proving yeast as a good biocontrol agent 

to reduce concentrations of DON by F. graminearum, which comes in line with our 

findings.  

We explored the effect of yeast VOCs on the growth kinetics and DON synthesis 

by F. graminearum, and the results showed that there was an optimum yeast CFUs 

range at which the highest inhibition for the fungal growth and DON synthesis were 

exhibited. However, above that yeast CFUs range, the inhibition of the fungal growth 
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started to decrease and DON’s concentrations were started to increase as well. This 

could be explained by the fact that higher yeast CFUs account for more oxygen 

consumption, and due to the fact that the sealed plates create anaerobic medium, the 

oxygen will eventually deplete and synthesis of VOCs by the yeast cells would 

decrease, hence, less effect on the fungal growth at higher yeast CFUs would result, in 

addition to less inhibition in DON synthesis as well. 

Similar to what we deduced in our results about having an optimum yeast CFU 

range where best inhibition can occur; Petersson et al., (1998) tested the impact of 

increasing yeast (Saccharomyces cerevisiae) CFU in the media on the growth of P. 

verrucosum and the synthesis of mycotoxin. They found that CFUs of yeast as low as 

103 /mL were able to show an inhibition in the radial growth of P. verrucosum and that 

from as low as 102/mL yeast cells, reduction in the concentration of OTA to below 

detectable limits was achieved. 

Conclusion:  

Our findings demonstrated that L. thermotolerans 751 has a great potential for 

the inhibition of fungal growth (specially P. verrucosum TF11) and the synthesis of 

mycotoxins. The results also showed that yeast’s VOCs can reduce the synthesis of 

mycotoxins more in individual colonies of A. parasiticus AF82 rather than in point 

inoculated colonies. It was also shown that the nutrients availability for the yeast cells 

has an impact on the synthesis of VOCs and that yeast can still synthesis VOCs on ½ 

diluted media as efficiently as it can on normal non-diluted media. Antagonistic activity 

of the yeast cells was demonstrated to start even at 7 yeast cells, there’s a certain 

colonies range for an optimum fungal growth inhibition in F. graminearum FGr14 to 

occur. 
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CHAPTER 5: DETERMINATION OF YEAST CELLS ADSORPTION 

POTENTIAL TO MYCOTOXINS (AFS, DON AND OTA)  

Introduction 

Mycotoxins are secondary metabolites known to contaminate food and feed, 

especially those from plant origin such as cereals and other agricultural feed or food 

consumed by the human beings or by animals. Food is not the only source of 

mycotoxins transfer to humans’ body; where the carry-over can help transferring the 

mycotoxins from animal products such as milk and eggs to humans (Ji et al., 2016). 

Mycotoxins can impose many health issues due to their carcinogenic, mutagenic, 

teratogenic and immunosuppressive effect (Vila-Donat et al., 2018). Apart from their 

dangerous effects; mycotoxins can also affect the economic status by leading to the loss 

of livestock, crops and feed (Ji et al., 2016). There have been different approaches 

utilized to reduce the harmful effects of mycotoxins, where the biological ones were 

the most successful (Ringot et al., 2005). Detoxification methods using biological 

control agents are thought to be more efficient when compared to organic and inorganic 

adsorbents and this is due to the need of applying the antagonistic microorganisms post 

and pre to harvest which reduces the use of synthetic chemical in the environment 

(Droby et al., 2009).  

In this chapter, we explored the adsorption potentials of L. thermotolerans 751 

yeast cells and its derivatives in decontaminating mycotoxins. Heat inactivated and live 

yeast cells were used as binders to AFs, DON and OTA, where two different 

concentrations for each mycotoxin were used in the adsorption process. In addition to 

that, the effect of pH on the adsorption of the three mycotoxins was studied. The 

removal percentage of the mycotoxins from the buffer and the adsorption percentage of 

mycotoxins to the sediments of both types of yeast cells were obtained in the mentioned 

conditions.  
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5.1 Exploration of Aflatoxin binding onto yeast cells 

5.1.1 Aflatoxin binding to living yeast cells 

Living yeast cells (2x106) were transferred to two buffers of pH 5 and 7 which 

were contaminated with two concentrations of AFs, 0.2 and 0.4 µg/L (Figure 21). After 

30 min of shaking at 37ºC, the mixture was centrifuged, and the supernatant was 

separated from the formed pellet and concentration of AFs was measured in supernatant 

and pellet. At pH 5 for the buffer contaminated with 0.2 µg/L AFs, 15% of AFs were 

removed from the supernatant and 10% were detected in the pellet (Figure 21, A). The 

percentage of AFs which was detected in the pellet accounts for the percentage of 

adsorption of AFs to the cell wall of the live yeast cells. Removal of AFs at pH 5 was 

better than at pH 7 which had a removal percentage of 7.97%. The percentage of AFs 

detected in the pellet at pH7 was 2.34%, which is lower compared to what was detected 

in pellet of pH 5. When the buffers were contaminated with higher concentration of 

AFs (0.4 µg/L), the percentages of removal and adsorption for AFs were found higher 

in pH 5 and higher than when low concentration of AFs (0.2 µg/L) were used (Figure 

21, B). At pH 5 in the buffer contaminated with 0.4 µg/L, live yeast cells were able to 

remove 34.7% of AFs, and the percentage of AFs which was detected in the pellet was 

25%. In contrast to the higher removal and adsorption of AFs at pH 5; pH 7 had the 

lowest percentages of removal and adsorption of AFs. The percentage of AFs’ removal 

from the supernatant was only 5.25% and what was detected in the pellet was 3.63%. 

The results showed that pH 5 has increased the percentage of binding of AFs to the cell 

wall of the live yeasts, unlike the binding capacity of AFs at pH7, which was the least 

at both contamination levels.  
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Figure 21: Adsorption potentials of living yeast cells (L. thermotolerans 751) to AFs.   

[The removal and adsorption rates at pHs 5 and 7 of AFs ((A): 0.2 µg/L; (B): 0.4 µg/L) 

to yeast cells were determined in the supernatant and the pellet of the suspension.] 

 

 

5.1.2 Aflatoxin binding to inactive yeast cells 

Dried inactive yeast cells were used to study their adsorption potentials to AFs 

(Figure 22). At pH 5 in the buffer having lower concentration of AFs (0.2 µg/L) (Figure 

22, A), the removal of AFs from the supernatant has reached 20.45% and 18.75% of 

which were found in the pellet. The concentration that was detected in the pellet 

accounted for the binding of AFs to the cell walls of the inactive yeast cells.  

At pH 7 of the same concentration of AFs, removal of AFs of 9.17%, and 8.27% was 

found adsorbed to the yeast cell walls in the pellet. When the buffer of pH 5 was 

contaminated with higher concentration of AFs, the removal percentage of AFs was 

28%, and what was found bound to the yeast cells in the pellet was 24.45% (Figure 22, 

B). Both removal and adsorption of AFs at high concentration were higher in pH 5 than 

in pH 7. At pH 7, removal percentage of AFs was 9.71% and what was found bound to 
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the inactive yeast cells was 7.23%. Binding of the inactive yeast cells to AFs was always 

best at pH 5 than at pH 7.  

 

 

 

Figure 22: The adsorption potential of inactive yeast cells (L. thermotolerans 751) to 

AFs. 

[The removal and adsorption rates at pHs 5 and 7 of AFs ((A): 0.2 µg/L; (B): 0.4 µg/L) 

to inactive yeast cells were determined in the supernatant and the pellet of the 

suspension.] 

 

 

5.2 Exploration of the Deoxynivalenol binding to yeast cells 

5.2.1 Deoxynivalenol binding to living yeast cells 

Living yeast cell adsorption capacity to DON was determined in buffers of pH 

5 and pH 7 which were contaminated with DON at two concentrations (40 and 80 µg/L) 

(Figure 23). The binding capacity of the living yeast cell wall to DON was best in the 

buffer of pH 7 at which better removal of DON from the supernatant has occurred in 

both contamination levels (Figure 23). In the buffer having a concentration of 40 µg/L 
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of DON, 10.1% of DON was removed at pH 5 and no detectable concentration of DON 

was found bound in the pellet (Figure 23, A).  Higher removal percentage of DON has 

occurred at pH 7 where 52.11% was removed from the supernatant of the buffer 

contaminated with 40 µg/L of DON, and the pellet showed no detectable concentrations 

of DON bound to the yeast cells. In buffer of pH 5 which was contaminated with higher 

concentrations of DON (80 µg/L), 17.05% of DON were removed from the supernatant 

while in the pellet, DON’s concentration was below the detectable limit, therefore the 

binding percentage of the living yeast cells to DON in the pellet was zero (Figure 23, 

B). At pH 7 there was higher removal percentage of DON (42.72%) and no detectable 

concentration was found bound to the yeast cells of the pellet.  

 

 

 

Figure 23: Adsorption potentials of living yeast cells (L. thermotolerans 751) to DON. 

[The removal and adsorption rates at pHs 5 and 7 of DON ((A): 40 µg/L; (B): 80 µg/L) 

to yeast cells were determined in the supernatant and the pellet of the suspension.] 

 

 

5.2.2 Deoxynivalenol binding to inactive yeast cells 

DON binding potential to inactive yeast cells was tested in buffers of pH 5 and 
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7 at lower and higher level of contamination, which were 40 and 80 µg/L, respectively 

(Figure 24).  At a lower contamination level (40 µg/L), pH 5 has shown less removal 

and adsorption level of DON to yeast’s cells compared to pH 7 (Figure 24, A). At pH 

5, the removal percentage of DON from the supernatant was 3.17% and what was found 

bound to the pellet accounted for 2.5%. Removal and adsorption of DON were shown 

to happen at pH 7 better than pH 5. The buffer of pH 7 which was contaminated with 

40 µg/L of DON had 18.17% removal from the supernatant and 14.08% were bound to 

inactive yeast cells in the pellet (Figure 24, A). In the buffers contaminated with higher 

percentage of DON (80 µg/L), pH 5 showed less removal and adsorption capacity than 

pH 7 (Figure 24, B).  In the supernatant, 2.5% were removed of DON and 4.3% were 

detected in the pellet. pH7 had shown higher adsorption than in pH 5. In the supernatant 

of pH 7 buffer, 15.01% of DON was removed and 6.42% were detected in the pellet.   
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Figure 24: Adsorption potentials of inactive yeast cells (L. thermotolerans 751) to 

DON. 

[The removal and adsorption rates at pHs 5 and 7 of DON  ((A): 40 µg/L; (B): 80 µg/L) 

to inactive yeast cells were determined in the supernatant and the pellet of the 

suspension.] 

 

5.3 Exploration of the Ochratoxin binding to yeast cells 

5.3.1 Ochratoxin binding to living yeast cells 

The removal and adsorption of OTA having the concentration of 0.9 µg/L were 

not greatly different at pH 5 and 7 (Figure 25, A). The removal percentage of OTA 

from the supernatant was 63%, and 29% was found adsorbed to yeast cells in the pellet. 

However, at pH7, 67% of OTA was removed from the supernatant and 30% was found 

adsorbed to the pellet. Higher percentage of adsorption was shown for the higher 

concentration of OTA (1.8 µg/L) (Figure 25, B). At pH 5, 75% of OTA was removed 

from the supernatant and 32% were found adsorbed to the live yeast cells in the pellet. 

At pH 7, higher adsorption percentage was shown for OTA where 49% were detected 

in the pellet and 71% were removed from the supernatant (Figure 25, B).  
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Figure 25: Adsorption potentials of living yeast cells (L. thermotolerans 751) to OTA. 

[The removal and adsorption rates at pHs 5 and 7 of OTA ((A): 0.9 µg/L; (B): 1.8 µg/L) 

to yeast cells were determined in the supernatant and the pellet of the suspension.] 

 

 

 

5.3.2 Ochratoxin binding to inactive yeast cells 

The results obtained (Figure 26) show that at low concentration of OTA (0.9 

µg/L) and at pH 5, 71% of OTA were removed from the supernatant and 68% were 

detected in the pellet. pH 7 showed better removal and adsorption of OTA, where 74% 

was removed from the supernatant and 71% were detected in the pellet (Figure 26, A). 

When the buffers were contaminated with higher concentration of OTA (1.8 µg/L), 

82% of it were removed from the supernatant and 80% were found adsorbed to the 

pellet (Figure 26, B). pH 7 showed less removal and adsorption potentials of OTA than 

at pH 5, and 79% of OTA were removed from the supernatant and 75% were detected 

in the pellet (Figure 26). It might be concluded that high adsorption potentials were 

evidenced for OTA to the inactive yeast cells compared to the live yeast cells. 
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Figure 26: Adsorption potentials of inactive yeast cells (L. thermotolerans 751) to OTA. 

[The removal and adsorption rates at pHs 5 and 7 of DON ((A): 0.9 µg/L; (B): 1.8 µg/L) 

to inactive yeast cells, were determined in the supernatant and the pellet of the 

suspension.] 

 

Discussion:  

The potentials of mycotoxins AFs, DON and OTA to adsorb to L. 

thermotolerans 751 were explored in vitro, where both living and inactive yeast cells’ 

adsorption rates were explored. An inoculum from living yeast cell culture and heat 

inactivated yeast cells were used to inoculate two buffers of pH 5 and 7 which were 

later contaminated with mycotoxins. The tubes were then shake incubated for 30 min 

at 37ºC and were centrifuged, and the supernatants were separated from pellets. The 

adsorption of mycotoxins to the yeast cells was determined by dividing the detected 

concentration of mycotoxin in the pellet over the original concentration used in the 

buffer solution and multiplied with 100% to obtain the adsorption percentage. The 

removal percentage of the mycotoxin was calculated by referring the detected 

mycotoxin concentration to the original mycotoxin concertation added to the buffer as 

described in the equation below.   
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	%	𝑜𝑓	𝑚𝑦𝑐𝑜𝑡𝑜𝑥𝑖𝑛	𝑟𝑒𝑚𝑜𝑣𝑎𝑙

=
	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑐𝑒𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 100% 

Based on the calculated adsorption rates for the mycotoxins in the pellet of 

living yeast cells; OTA has shown the greatest binding affinity to the living yeast cell 

walls, where OTA adsorption percentage was the highest compared to AFs and DON. 

Adsorption efficacy of AFs to the living yeast cells was less than OTA, but better than 

DON. DON was not detected in the living yeast cells although it was greatly removed 

from the supernatant of the living yeast cells at pH 7. For the inactive yeast cells, in pH 

5 buffer and at concentration of 80µg; higher numerical value of DON adsorbed to the 

pellet was more than what was removed from the supernatant. When the yeast cells 

were heat dried; the adsorption potentials of the mycotoxins to the yeast cell wall has 

been generally enhanced, and more removal of mycotoxins from the supernatant was 

noticed. OTA showed the highest adsorption potentials to the heat inactivated yeast 

cells compared to AFs and DON. However, DON showed the least adsorption 

potentials to the yeast cell wall among the three mycotoxins.    

There are many factors to which the adsorption of mycotoxins to yeast depends 

on. Some characteristics of the yeast cell wall such as the porosity, surface area and the 

charge and its distribution are considered very important features of the adsorbent (Dogi 

et al., 2011). However, some characteristics of the mycotoxins like their shape, polarity 

and charge are considered important too. In addition, the pH of the buffer is also 

considered as an important factor which can greatly affect the adsorption process. The 

cell wall of the yeast is derived from important components such as the glucans. The 

glucans are found in the inner layer of the cell wall attached to the chitin which is 

another component in the cell wall of the yeast. The outer cell wall is composed of some 

proteins which are called mannoproteins. The adsorption process of the mycotoxins can 

be explained by the fact that the functional groups found on the cell wall of the yeast 
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cells get attached to some other functional groups found on the structure of the 

mycotoxins. The type of interactions which allow the binding of the mycotoxins and 

yeast cell wall are weak hydrophobic interaction, ionic exchange forces and 

complexations. The b-glucan part of the yeast cell wall is responsible for the binding 

which occurs between the mycotoxins and yeast. These forces can be van der Wal 

forces which are the ones responsible for the stacking that happens between the b-

glucan fraction and functional groups found in the mycotoxins structure, just like 

lactones, ketones and hydroxyl groups (Faucet-Marquis et al., 2014; Kolosova & 

Stroka, 2012). 

We demonstrated in our results that OTA adsorption was the highest compared 

to AFs and DON, which agrees with what came in the study of the binding potential of 

OTA, AFB1 and ZEA to baker’s yeast cell wall by Joannis-Cassan et al., (2011), where 

they showed that AFB1 has less binding potential to the yeast cell wall (29%) compared 

to ZEA and OTA which had adsorption rates of 68% and 62%, respectively. However, 

the adsorption of the OTA to the yeast cells increased with increasing its concentration 

in the buffer solution. The same results were concluded by Pereyra et al., (2015) who 

proved that yeast cell wall can be a good adsorbent to OTA, by studying two types of 

yeast cell wall to bind with OTA in different concentrations. They found that the 

adsorption percentage of OTA reached the highest (89.3%) when the concentration of 

the yeast was the highest.  

In our study, when the adsorption of both active and heat inactive L. 

thermotolerans 751 was studied against AFs, DON and OTA, the pellet of the heat 

inactive yeast had more mycotoxins adsorption efficacy compared to the active yeast 

cells. These findings come confirming to what was found by Bejaoui et al., (2004) who 

demonstrated that heat killed yeast were able to remove mycotoxin (OTA) from grape 

juice better than the living yeast cells. The heat killed cells were able to remove 90% 
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of OTA compared to the active yeast cells which removed only 35%. In our case, L. 

thermotolerans 751 was able to remove OTA up to 82% and 79% at higher level of 

OTA contamination, even when the medium’s pH different (pH 5 and 7 respectively). 

Enhanced adsorption in the heat-killed yeast could be attributed to the fact that with 

heating, more proteins are being denatured and therefore more products of the cell wall 

are being removed leaving more space for mycotoxins to adsorb to cell wall (Bejaoui 

et al., 2004). Therefore, the viability of the yeast cells is not a pre-requisite for better 

adsorption to occur, since heat treatment of yeast cells up to 120ºC is known to increase 

the adsorption potential of AFB1 to the yeast’s cell wall (Shetty et al., 2007; Gonçalves 

et al., 2015). In this research, binding of AFs to the dried yeast at pH5 was almost the 

same as its binding to the viable yeast cells at concentration 0.4 µg/L, which was 

24.45% and 25%, respectively. 

The adsorption of DON to the viable and non-viable L. thermotolerans 751 was 

shown to be lower when compared to the adsorption of AFs and OTA, which was 

similar to what was obtained by Dvegowda et al., (1998) when they studied the 

adsorption of DON to yeast cell wall and found that DON’s adsorption (12.6%) was 

less than that for other mycotoxins like ZEA (66.7%), fumonisins (67%) and T-2 toxin 

(33%). The molecular geometry of the mycotoxin plays an important role in its 

adsorption to the yeast cell wall; therefore, some mycotoxins can bind better to the yeast 

cell wall than others. D-glucans have a 3D helical shape which allows for the 

mycotoxins that have similar shape to inter their helices and strongly bind to it. The 

structure of AFB1 which is similar to the D-glucan structure helps the lactone, ketone 

and aromatic ring of AFB1 to form polar or electron bonds with the glucose found on 

the glucan helices resulting in more affinity and stronger binding. In contrast to AFB1; 

DON’s geometrical shape has less similarity to the helical shape of the D-glucans, 

hence; less van der Waals forces will form between it and D-glucan on the yeast’s cell 
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wall, which explains why it had less affinity to the yeast cell wall compared to OTA 

and AFs in our results. However, DON can still bind to D-glucans through the 

interaction of two of its hydroxyl bonds with the glucose group on the D-glucans 

(Jouany et al., 2005). 

One way of the mycotoxins’ detoxification is biotransformation of the 

mycotoxins into putative metabolites which possess less toxigenic effect than their 

original forms, such as 3-epi-DON and 3-epi-DOM1 which are transformed forms of 

DON (Nathanail et al., 2016; Vanhoutte et al., 2017). This attribution can explain the 

results obtained in our study on DON’s adsorption to the viable yeast cells where DON 

was not detected at all in the sediments of the live yeast cells although it was still greatly 

removed from the supernatant. In this case, it’s believed that the yeast has transformed 

DON into other putative metabolites (Nathanail et al., 2016).     

Conclusion: 

This part of the research study focused on the adsorption efficacy of three 

mycotoxins AFs, DON and OTA to a low-fermenting yeast L. thermotolerans 751. Our 

results obtained on this part from the in-vitro studies of yeast cells adsorption to 

mycotoxins postulated that the yeast L. thermotolerans 751 is proved to be a great 

biocontrol agent in mycotoxins decontamination. Even when the contaminating 

concentration of the mycotoxins increased; both living and heat-treated yeast cells were 

still able to decontaminate the mycotoxins and efficiently remove them from the 

supernatant. Changing the pH of the buffer has also been shown to affect the adsorption 

process of both active and inactive yeast cells. Yeasts are known to have the potential 

to adsorb mycotoxins in in-vitro experiments, but more studies need to be conducted 

on the efficacy of yeast cells adsorption potentials to mycotoxins in in-vivo experiments 

(Oliveira, 2013). In addition, more studies need to be conducted on the mechanism of 
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mycotoxins binding to the yeast and biotransformation (bioconversion) of these 

mycotoxins in living yeast cell bioreactors, specifically for DON.  
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CHAPTER 6: IN-VITRO BIOCONTROL APPLICATION OF YEAST L. 

THERMOTOLERANS 751 VOCS AGAINST F. OXYSPORUM CONTAMINATION 

IN TOMATO FRUITS 

Introduction  

The application of the biocontrol approach in controlling many fungi causing 

diseases is now achieving more attention compared to other approaches. In general, 

microorganisms can develop resistance to chemicals, and these chemicals, in turn, can 

be accumulated and therefore affect the environment. As best alternative, using 

biological agents to control pest population has been a favorable option recently 

(Wisniewski & Wilson, 1992; Parafati et al., 2015). Mycotoxigenic fungi which 

contaminate the food and feed post- and pre- harvest pose a great concern due to their 

ability to synthesize mycotoxins which contaminate the harvest. Therefore, many 

public concerns have been raised regarding mycotoxigenic fungal contamination and 

more demand is directed towards biological approaches (Milićević et al., 2010; Klich 

et al., 1991).  One of the biocontrol methods that concerns using microorganisms as 

antagonists to mycotoxigenic fungi is employing the yeast and its VOCs in such an 

approach. The research on that subject matter has increased over the time to reach 

hundreds each year (Wisniewski et al., 2016; Zeidan et al., 2018).   

In this part of the research, the yeast VOCs synthesized by L. thermotolerans 

751 have been used in-vitro to study their potential effect on the growth of one of the 

mycotoxigenic fungi F. oxysporum. To study the effect of the VOCs produced by the 

yeast cells, a 48 h yeast streaked plate was kept with tomato fruits in a glass box which 

was tightly sealed and incubated at 26ºC for 33 days. The growth of mycelia on the 

tomato fruits surface was compared to those which were incubated with only YPDA 

plate having no yeast cells (control), and the contamination percentage was estimated 

based on the mycelial coverage.  
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6.1 Study of in-vitro effect of yeast’s VOCs on the growth of F. oxysporum on 

tomato fruits surface:  

The yeast’s VOCs potential to affect the fungal growth and spores’ germination 

of F. oxysporum contaminating tomato fruits surface was evaluated. An inoculum of 5 

µL of F. oxysporum spores’ suspension (104 spore/mL) was loaded on the surface of 

five tomato fruits which were transferred to a glass box containing a YPDA plate having 

48 h streaked yeast cells, and the box was tightly sealed and closed. In another box 

serving as the control; five tomatoes were also contaminated with 5 µL of F. oxysporum 

and were transferred to a glass box having a plate of only YPDA medium without yeast. 

Both boxes were incubated at 26ºC for 33 days and the activity of yeast’s VOCs was 

evaluated after that. When the incubation period was complete, the boxes were opened 

and the tomatoes in the VOCs treated box was compared to the non-treated ones 

(control). The tomatoes which were exposed to yeast’s VOCs remained intact and rigid, 

and the fungal spores did not even germinate on the surface of the tomato which 

remained fresh. In contrast with the tomatoes which were not exposed to yeast’s VOCs; 

the spores germinated, and the fungal mycelia was seen obvious covering the tomatoes 

surface. The average of the mycelia covering the tomatoes surface in the control was 

used to estimate the contamination rate which reached an average of 76% compared to 

0% for the tomatoes which were exposed to yeast’s VOCs. Figure 27 shows the 

difference between the VOCs exposed and non-exposed tomatoes.    
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Figure 27: In-vitro Biocontrol of F. oxysporum contaminating the surface of tomato 

fruits by the application of L. thermotolerans 751 VOCs.  

[A: tomatoes contaminated with F. oxysporum and exposed to yeast’s VOCs. Arrow #1 

shows the Petri dish cover used as a stand for the tomato, arrow #2 shows the plate of 

YPDA streaked with yeast; B: tomatoes contaminated with F. oxysporum which were 

not exposed to yeast’s VOCs. The arrows indicate the fungal growth contamination on 

the surface of the tomatoes.] 

 

 

Discussion: 

The potential of the VOCs produced by L. thermotolerans 751 was in-vitro 

explored against the fungal contamination of F. oxysporum on tomato fruits surface. 

After the tomatoes were infected with the fungus, they were incubated in two boxes 

where in one of them the tomatoes were exposed to yeast’s VOCs, and in the second 

the tomatoes were not exposed to the VOCs at all. After 33 days of incubation at 26ºC, 

the boxes were opened and the VOCs effect on the fungal growth was evaluated. Yeast 

VOCs managed to completely inhibit the fungal growth on the surface of the tomatoes 

and the spores’ germination was completely ceased. The tomatoes which were treated 
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with the VOCs remained solid and intact as if they were preserved or bought freshly, 

while the contaminated tomatoes were very fragile and were watery from inside and 

their walls were breaking quickly.  

There are many techniques by which the yeast can control and antagonize the 

contaminating mycotoxigenic fungi, and one of them is the production of VOCs which 

can affect the fungal growth (Pfliegler et al., 2015; Farbo et al., 2018). Yeast is known 

to produce volatiles such as 2-phenylthanol which inhibits the mycotoxigenic fungal 

growth (Farbo et al., 2018). The antifungal compound 2-phenylthanol is known to 

affect the fungus growth through differentially regulating the genes of the fungus, and 

hence inhibiting its growth (Liu et al., 2014).  

  Our results on the inhibition of F. oxysporum on the surface of tomatoes agrees 

with the findings of Fiori et al., (2014), who studied the effect of VOCs produced by 

the yeast to inhibit the growth of A. carbonarius infecting grape bunches in an in-vitro 

study. The yeast managed to significantly inhibit the fungal contamination on the grape 

bunches compared to the control where the bunches were not exposed to yeast VOCs. 

In a recent study which was conducted by Chen et al., (2018) to investigate the 

inhibitory effect of yeast’s VOCs on B. cinerea, strawberry fruits surface was injured 

and infected with B. cinerea, and the fruits were then placed in a container having yeast 

plates. The yeast managed to control the rot in the strawberry contaminated fruits, and 

it was significantly lesser than the rot covering the strawberry fruits which were not 

exposed to the yeast’s VOCs.  

Conclusion:  

In this part, we demonstrated the effect of yeast VOCs on the growth of F. 

oxysporum in an in-vitro study. Our results showed that yeast’s VOCs were able to 

significantly inhibit the growth of F. oxysporum spores inoculated on the tomatoes 

when they were sealed incubated with yeast streaked plate. In this type of in-vitro 
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experiment, we proved the yeast VOCs as an excellent antagonist to mycotoxigenic 

fungi where L. thermotolerans 751 VOCs were able to 100% inhibit the fungal growth 

on the tomatoes for 33 days, while also keeping their quality intact and rigid as if they 

were freshly harvested. Therefore, we consider L. thermotolerans 751 as an excellent 

biocontrol agent against the mycotoxigenic fungi, that it might be safely used for many 

food and fruit preservation application as well as in fruit and vegetable product’s safe 

exportation worldwide. We consider those fungicide very applicable in short term 

preservations.  
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CHAPTER 7: INVESTIGATION OF THE ANTIFUNGAL ACTIVITIES OF A 

LOCAL STRAIN B. CEPACIA (QBC03) AGAINST MYCOTOXIGENIC FUNGI 

Introduction  

The biological control of the mycotoxigenic fungi has received good attention 

in order to reduce the use of the chemical treatments for better preservation to the 

environment and to reduce plant diseases. Bacteria can act against mycotoxigenic fungi 

by possessing some mechanisms like having antagonistic potential, predation, 

antibiosis or hyper-parasitism and many other mechanisms more (Kilani-Feki et al., 

2010).  Many bacterial genera such Burkholderia and Pseudomonas are known for 

producing antifungal compounds which is directly correlated to the biocontrol process. 

These compounds can be developed later to help in the control of the agricultural 

chemicals (Ligon et al., 2000). Burkholderia spp. are common to inhibit the soil and 

they are especially present in the rhizosphere. They can also be endophytic to 

grapevines and to some legumes. Burkholderia spp. have been reported to have a good 

biocontrol effect against soil borne diseases. However, it also has been regarded as plant 

growth promoting bacteria (PGPB), where it promotes the plants growth by producing 

many substances that can support the plants growth directly or indirectly.   

In this part of the study, a bacterial strain QBC03 isolated from maize grains by 

our team (Jaoua et al. unpublished) belonging to the Burkholderia genus was used in 

the biocontrol of the mycotoxigenic fungi and their mycotoxins. Burkholderia cepacia 

antifungal activities were screened against mycotoxigenic fungi from different genera, 

and the effect of its antifungal compounds on the fungal biomass formation and spores’ 

germination was evaluated too. Moreover, the stability of the antifungal compounds 

produced by this bacterium was also evaluated through treating the antifungal 

compounds with a range of different temperatures.  
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7.1 Optimization of QBC03 growth conditions and anti-fungal compound 

sterilization methods 

7.1.1 Evaluation of QBC03’s anti-fungal compound synthesis in nutrient 

broth and NBY broth  

In order to evaluate the activity of QBC03 anti-fungal compound existing in the 

culture extract, the choice of the broth of the bacteria was defined. The bacteria were 

cultured in two types of broth, NB and NBY to define which broth is more suitable for 

the bacterial growth and production of antifungal compounds. To evaluate the bacterial 

antifungal production in both broths, well-diffusion method was used, where the 

supernatant was loaded into wells drilled on PDA media that was spread with 105 spores 

of P. verrucosum TF11. For accurate results and in order to avoid bacterial biofilm 

formation around the wells, the supernatant was sterilized using different sterilization 

methods.  

When the supernatant of the cultures was UV sterilized, the inhibition zone 

appeared with bacterial growth around the wells, and the extract wasn’t 100% sterile 

and it gave an inhibition zone of 33 mm. However, the inhibition zones resulted from 

the extract which was filtered in the 0.2 µm and 0.45 µm syringe filters, and UV 

sterilizations were compared in figure 28. It was found that 0.2 µm filter prevented the 

antifungal compounds from passing through it, hence, there was no zone appearing 

around the wells. Filters of 0.45 µm prevented part of the extract from passing through 

and the zones of. Inhibition appeared smaller. However, the 0.45 µm didn’t prevent the 

bacteria from growing around the wells. To evaluate the antifungal compounds 

produced by QBC03 in NB and NBY, the zones of inhibition of both extracts were 

compared together (Figure 29), and it was obvious that the supernatant of NBY had 

bigger zones of inhibition compared to the small zone for the extract of NB. 
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Figure 28: Evaluation of different sterilization methods of QBC03's antifungal extract 

in well-diffusion method. 

[1: zone of the well loaded with the extract sterilized by UV; 2: zone of the well loaded 

with the extract sterilized with 0.45 µm syringe filter; 3: zone of the well loaded with 

the extract sterilized with 0.2 µm syringe filter] 

 

 

 

Figure 29: Evaluation of the antifungal activity of QBC03's extract harvested from 

NBY and NB culture in well-diffusion method. 

[A: the inhibition zone of P. verrucosum TF11 by QBC03’s culture extract in NBY; B: 

the inhibition of P. verrucosum TF11 by QBC03’s culture extract in NB] 

 

 

7.2 Screening for the antifungal activity of QBC03 strain 

7.2.1 Determination of the spectrum of the anti-fungal activity of QBC03 

strain against Aspergillus species 

The activity of QBC03 antifungal extract was evaluated against 7 Aspergillus 

species which were A. carbonarius AC82, A. westerdijkiae AW82, A. parasiticus AF82, 

A. niger AN8, A. flavus CECT 2687, A. ochraceous CECT 2948 and A. fumigatus Af14. 
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QBC03 was streaked on NA plate for 24 h, and from an individual colony the bacteria 

were tooth-picked on the center of new NA plates. The plates were incubated at 30ºC 

for 48 h and they were later overlaid with 3 mL (104 spores) of fungal spores’ 

suspension. The overlaid plates were incubated at 26ºC for 3 days and the average of 

the diameters for the inhibition zones was recorded. Figure 30 represents the zone of 

inhibition recorded for each of the Aspergillus species after three days of incubation.  

 

 

 

Figure 30: Evaluation of QBC03’s antifungal compounds agaisnt 7 Aspergillus species 

in overlaying assay method. 

[1: A. carbonarius; 2: A. flavus; 3: A. fumigatus; 4: A. niger; 5: A. ochraceus; 6: A. 

parasoticus 7: A. westerdijikae] 

 

 

To compare the inhibition zones for each species, Duncan test was done (Figure 

31), and it was found that the highest inhibition zone which was also significantly 

different from the rest of the species belongs to A. carbonarius AC82 was greatly 

sensitive towards QBC03’s diffusible compounds, and its zone of inhibition reached up 

to 59.1 mm. A. fumigatus had the second largest inhibition zone which was 41.9 mm, 

and that zone was significantly different from the rest. A. ochraceous was the third most 

affected species and its zone of inhibition reached 37.7 mm which was not significant 

from A. westerdijikae (36.7 mm). The diameters of the inhibition zones for A. 

parasiticus, A. niger AN8 and A. flavus CECT 2687 were relatively close and 
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corresponded to 35 and 34.1 mm respectively.  

 

 

 

Figure 31: Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Aspergillus species.  

[The diameters of the zones of inhibtion of Aspergillus species exposed to  QBC03’s 

antifungal compounds were measured. Duncan test was done to comapre the average 

of the inhibition zones, and those sharing the same letter are not significantly different 

from each other.]  

 

 

7.2.2  Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Fusarium species 

QBC03 antifungal activity has been studied against 9 Fusarium species (F. 

anthophilum, F. chlamodosporum, F. culmorum, F. graminearum, F. oxysporum, F. 

solani, F. subglutinus, F. prolifiratum and F. verticilliod) in the overlaying assay 

method. The diameters of the inhibition zones were measured around QBC03 colony.  
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To compare the diameters of the inhibition zones of the Fusarium species together, 

Duncan test was done (Figure 32). F. chlamodosporum was one of the most sensitive 

species to QBC03 diffusible compounds and it had the largest inhibition zone (36.8 

mm) which was significantly higher than the inhibition zones for the rest of the species. 

F. culmorum (34.8 mm) and F. graminearum (35 mm) showed very close diameters in 

their zone of inhibition and were not significantly different from each other. The 

antifungal activity of QBC03 corresponded to less inhibition zones in the rest of the 

species, but the least sensitive two species were F. prolifiratum and F. verticilliod and 

their inhibition zones were significantly lower than that for the rest of the species and 

their inhibition zones were 6.7 and 2.5 mm, respectively. 
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Figure 32: Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Fusarium species.  

[The diameters of the zones of inhibtion of Fusarium species exposed to  QBC03’s 

antifungal compounds were measured. Duncan test was done to comapre the average 

of the inhibition zones, and those sharing the same letter are not significantly different 

from each other.] 

 

 

7.2.3 Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Penicillium species.  

Through co-culture overlaying assay, the antifungal potential of QBC03 was 

explored against five species of Penicillium (P. cambeberti, P. digetatum, P. expansum, 

P. italicum and P. verrucosum). QBC03 was inoculated in the center of the NA plate 

and was incubated for 48 h, after that the spores of the Penicillium (104) were assayed 

around the bacteria, and the plates were incubated at 26ºC for three days. The zone of 

inhibition was measured around the wells for all the species as they appear in figure 33. 
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Figure 33: Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Penicillium species.  

[The diameters of the zones of inhibition of Penicillium species exposed to QBC03’s 

antifungal compounds were measured. 1: P. camemberti, 2: P. digitatum, 3: P. 

expansum, 4: P. italicum, 5: P. verrucosum] 

 

 

To compare the inhibition zones between the different species, Duncan test was 

conducted, and significant and non-significant species are labeled on figure 34. Among 

the five studied species of Penicillium, P. cambeberti turned to be the most sensitive 

species and was significantly higher than the rest and it had the largest inhibition zone 

that reached to 37.3 mm. The species P digitatum, P. italicum and P. verrucousm had 

inhibition zones which were not significantly different from each other, and their 

inhibition zones were 35.8, 35.3 and 35.1 mm, respectively. The least sensitive 

Penicillium specie was P. expansum which had an inhibition zone’s diameter of 34.1 

mm. 
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Figure 34: Determination of the spectrum of anti-fungal activity of QBC03 strain 

against Penicillium species.  

[The diameters of the zones of inhibtion of Penicillium species exposed to  QBC03’s 

antifungal compounds were measured. Duncan test was done to comapre the average 

of the inhibition zones, and those sharing the same letter are not significantly different 

from each other.] 

 

 

7.3 Evaluation of the antifungal activity of the supernatant of QBC03 strain in 

PDA 

7.3.1 Evaluation of QBC03’s antifungal compounds in well-diffusion 

method at different incubation periods 

The antifungal compounds produced by QBC03 were evaluated against three 

species; A. carbonarius, F. culmorum and P. verrucosum in well-diffusion method. 

QBC03 extract was prepared from 24, 48 and 72 h culture of QBC03 in 10 mL NBY 

that was incubated at 30ºC/140 rpm in 50 mL conical tubes. The tubes were centrifuged 
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at 5500g for 20 min and the supernatant was harvested. PDA amended with 100 µg/L 

chloramphenicol was poured in Petri dishes and 200 µL from the fungal spores’ 

suspension (106/mL) were spread on the media. Thereafter, 7 mm wells were drilled in 

the media and different concentration of QBC03’s extract (1%, 20%, 60%, 80% and 

100%) were loaded in those wells. The plates were incubated at 26ºC for 3 days and 

diameters of the inhibition zones were recorded. 

7.3.1.1 Evaluation of QBC03’s antifungal compounds against A. carbonarius 

in well-diffusion method 

The extracts of 24, 48 and 72 h of QBC03 were evaluated against A. carbonarius 

in well-diffusion method. The extract was diluted to 1%, 20%, 60%, 80% and 100%, 

and 100 µL were loaded in all wells. After 3 days of incubation at 26ºC, the diameters 

around the inhibition zones were measured and recorded around the wells. As 

summarized in the graph of figure 35. The 1% and 20% extract of the 24 h QBC03 

culture didn’t show any inhibition zone around the wells, thus both percentages of the 

extract corresponded to zero inhibition. The extract’s activity of the 24 h culture started 

to appear at 60% were an average of 15.2 mm inhibition zone was recorded. The 

extract’s activity was increasing with both percentages 80% and 100%, and the 

inhibition zones recorded for both treatments were 17.1 mm and 19.4 mm, respectively. 

The antifungal activity of the 48 h culture was the best compared to the 24 h and 72 h 

extracts. The extract’s antifungal activity started at 20% where an inhibition zone of 

13.5 mm was measured around the wells. The antifungal activity of the extract started 

increasing gradually while increasing the percentage of the extract added to the wells, 

to reach 17.4 mm and 20.4 mm for 60% and 80% of the extract, respectively. The largest 

inhibition diameter recorded for the 48 h culture was when 100% of the extract was 

used and the diameter was 22.4 mm.  The 72 h culture extract had an antifungal activity 

that was less than the activity of the 48 h cultural extract more than 24 h culture extract. 
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However, the antifungal activity of the 72 h culture extract had started at 20% at an 

inhibition zone of 12.2 mm, and the activity had continued to increase while increasing 

the percentages of the extract. At 60%, 80% and 100% extract, the inhibition zones 

were 16, 18.6 and 20.3 mm, respectively. 

 

 

 

Figure 35: Effect of the antifungal compounds concentration on the growth of A. 

carbonarius AC82 .  

[The diameters of the zones of inhibition for A. carbonarius AC82 by the antifungal 

compounds of 24, 48 and 72 h cultures of QBC03 in well-diffusion method.] 

 

 

7.3.1.2 Evaluation of QBC03’s antifungal compounds against F. culmorum 

The well-diffusion method was used to evaluate the extract antifungal activity 

against F. culmorum. QBC03 was cultured in NBY and the supernatants of 24, 48 and 
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72 h cultures were harvested and loaded in wells of PDA spread with 200 µL spores of 

F. culmorum spores’ suspension (106/mL). For each culture extract, five concentrations 

were used (1%, 20%, 60%, 80% and 100%) and loaded in the wells. The diameters of 

the inhibition zones were measured and recorded after 3 days for incubation at 26ºC. In 

figure 36, the antifungal activity of the three cultures started at 20% of the extract, 

where for all, 1% of the extract showed no inhibition zones at all. Nevertheless, the F. 

culmorum growth rate was fast and the mycelia were growing quickly and therefore 

they were able to cover zones around the wells of 20% treatment of the extract. At 20% 

of the extract, the highest inhibition zone was measured for the 48 h culture (14.2 mm), 

and the zones for the 24 and 72 h culture extracts were almost the same (12.4 and 12.6 

mm, respectively). The antifungal activity started increasing for the three cultures when 

the percentages of the extract were increasing. At 60%, the 48h culture had the highest 

inhibition zone that corresponded to 18.2 mm, and it was followed by the diameters of 

24 h culture then the 72 h culture which corresponded to 16.4 and 14.6 mm, 

respectively. When 80% of the extract was used, the cultures of 24 h and 72 h had 

almost the same antifungal activity and diameters for the zones of inhibition (20.2 and 

20.1, respectively) followed by the activity of the 72 h culture that had smaller 

inhibition zone (18.3 mm). Using the 100% extract for the three cultures resulted in 

higher inhibition zones in the extract of the 48 h culture (25 mm), followed by the 

activity of the 24 h culture (23.1 mm). The lowest activity was shown for the 72h 

culture, where it corresponded to an inhibition zone of 18.8 mm. 
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Figure 36: Effect of the antifungal compounds concentration on the growth of F. 

culmorum.  

[The diameters of the zones of inhibition for F. culmorum by the antifungal compounds 

of 24, 48 and 72 h cultures of QBC03 in well-diffusion method.] 

 

 

7.3.1.3 Evaluation of QBC03’s antifungal compounds against P. verrucosum 

The extracts of three cultures of QBC03 which were incubated from 24, 48 and 

72 h were collected to study their antifungal activity against P. verrucosum in well-

diffusion method. The extract of the three cultures were loaded into wells in different 

percentages (1%, 20%, 60%, 80% an 100%), and the zones of inhibition around the 

wells were recorded after three days of incubation at 26ºC. As shown in figure 37, at 

1% of the extract, there was no antifungal activity for the extract collected from the 

three cultures and therefore zero inhibition zone was recorded. The 24 h culture extract 

had the best antifungal activity, where the inhibition zones were recorded starting from 

using 20% of the antifungal extract, unlike the activity of the 48 and 72 h culture extract 
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that started after 20%. However, the antifungal activity of the extract was increasing 

gradually with the increasing percentages, and the zones of 16.4, 11.4 and 8.2 mm were 

recorded for the 48, 72 and 24 h culture, respectively. Higher inhibition zone was 

recorded for the 48 h culture using 80% of the extract (18.1 mm) compared to those 

recorded for 72 and 24 h culture extract (13 and 13.1 mm, respectively). Using 100% 

of the extract taken from the three cultures resulted in higher activity for the 48 h culture 

extract giving 19.5 mm inhibition zone compared to the activity of the other two 

cultures of the extract which had the same antifungal that gave 17.2 mm zone of 

inhibition. 

 

 

 

Figure 37: Effect of the antifungal compounds concentration on the growth of P. 

verrucosum TF11.  

[The diameters of the zones of inhibition for P. verrucosum TF11 by the antifungal 

compounds of 24, 48 and 72 h cultures of QBC03 in well-diffusion method.] 
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7.3.2 Evaluation of QBC03’s antifungal compounds through the 

incorporation of the supernatant with PDA 

The antifungal activity of 48 h QBC03 culture extract was evaluated by 

incorporating different volumes of the extract in molten PDA. The supernatant of 

QBC03 was collected by centrifuging the cultures at 5500g/20 min. Hereafter, the 

supernatant was added in different percentages to molten PDA amended with 100 µg/L 

of chloramphenicol. The media was poured in equal volumes in the Petri dishes (20 

mL) and 3 µL of the fungal spores’ suspension (106/mL) was loaded in the center of 

the PDA plate. The plates were incubated at 26ºC for five days and the diameters of the 

fungal growth on the media were measured at day 2nd and 5th day of incubation. The 

inhibition ratio for the radial growth diameters was calculated by referring to the control 

that didn’t have bacterial extract (NBY broth instead).  

7.3.2.1 Effect of increasing the volume of QBC03’s supernatant on the 

inhibition of A. carbonarius growth 

The antifungal activity of QBC03’s culture extract was evaluated by inoculated 

spores of A. carbonarius on the PDA incorporated with the bacterial extract. PDA plates 

containing different concentrations (2.5%, 3.5%, 4.5%, 5.5%, 6.5%, 7.5%, 8.5%, 9.5% 

and 10.5%) of QBC03’s culture extract were used to study their effect of the growth of 

A. carbonarius. The diameters were recorded on 2nd and 5th day post the incubation. On 

the second day of incubation, the fungal growth was gradually decreasing on the PDA 

having the following percentages: 2.5%, 3.5%, 4.5% and 6.5%. The 100% inhibition of 

the fungal spores’ germination was observed from the extract percentages of 7.5% to 

10.5%. 

  On the fifth day of incubation, the diameters of the fungal colonies for the 

concentrations 2.5%, 3.5%, 4.5% and 6.5%, were increasing in a slower rate compared 

to that on the control. However, starting from 7.5% of the bacterial extract, the fungal 



  

89 

 

spores didn’t germinate at all, hence the 100% inhibition was achieved at 7.5%, 8.5%, 

9.5% and 10.5%. In figure 38, the fungal colony growing on the 2.5% treatment was 

significantly different from the control, and the colonies margins appear white having 

the spores concentrated in the center. The colonies grow on the plates amended with 

6.5% extract, they had few spores germinating in the center, but their radial diameter 

was slightly increasing with the times.  

 

 

 

Figure 38: The inhibition of the radial growth of A. carbonarius AW82 on PDA by 

QBC03’s antifungal compounds.   

 

 

On the 1st day post incubation, the fungal spores of A. carbonarius inoculated 

on PDA of the treatment 2.5% and 7.5% were observed under the light microscope at 

40X and they were compared to spores of the control (Figure 39). The spores in the 

inoculum of the control have germinated finely and the long, thin ramified mycelia can 
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be seen protruding from the margin of the colony. In the PDA having 2.5% extract, the 

fungal spores were seen swollen and the germination tube was seen some of the spores, 

but not in all of the spores. The spores inoculated on the 7.5% PDA with extract, the 

spores have remained the way are, and the germination was completely hindered in all 

the spores, and it remained in the same way even after weeks from the incubation. 
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Figure 39: Effect of the antifungal compounds of QBC03 on the spores germination of 

A. carbonarius AW82 inoculated on PDA. 

[A: control (only PDA); B: PDA having 2.5% of QBC03’s extract; C: PDA having 

7.5% of QBC03’s extract] 

 



  

92 

 

7.3.2.2 Effect of increasing the volume of QBC03’s supernatant on the 

inhibition of F. culmorum growth 

The extract of QBC03 was also used to study its antifungal effect on F. 

culmorum.  The spores were inoculated on PDA medium that was amended with the 

extract in different concentrations ranging from 2.5% to 15.5%. The plates were 

incubated at 26ºC and diameters were taken on the 2nd and 5th day post to incubation. 

On the 2nd day post to incubation, the decrease of the diameters was significantly 

noticed decreasing even in the colonies growing on the PDA having the lowest extract 

concentration (2.5%). In figure 40, the fungal growth on the plates having extract 

percentages of 2.5% to 10.5% was generally decreasing with increasing extract 

concentration. The fungal colony diameter has decreased to more than half its size in 

the control (56%) starting at 2.5% of the extract. It was observed that on the PDA that 

had extract percentage of 11.5%, 12.5%, 13.5%, the fungus spores were almost about 

to germinate but the process was hindered, therefore some white prints appeared exactly 

on the same place where the spores were loaded, but they never continued to germinate 

and there was no mycelia growing out of the colony’s circumference, therefore, the 

percentages of 11.5%, 12.5%, 13.5%, 14.5% and 15.5% corresponded to 100% 

inhibition.  
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Figure 40: Inhibition of the radial growth of F. culmorum on PDA by QBC03’s 

antifungal compounds   

 

 

On the 5th day post to the incubation, the fungal growth was gradually 

decreasing with increasing the concentration of the extract, and 58% inhibition ratio 

was obtained at the lowest extract concentration (2.5%). The fungus inoculated on the 

PDA having extract from 2.5% to 10.5% was growing in a slow rate, and the fungal 

colonies never grew further on the PDA having 11.5%, 12.5%, 13.5%, 14.5% and 

15.5% of extract, hence the 100% inhibition of F. culmorum was achieved at 11.5% of 

the extract. Even after keeping the plates incubated for a month, the fungal colonies 

never grew on the previously mentioned percentages. Figure 41 shows the inhibition 

zones obtained on the 5th day of incubation. 
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Figure 41: Reduction of F. culmorum growth on PDA containing different 

concentrations of QBC03’s antifungal compoundsranging from 0 % to 15.5%  

 

 

7.3.2.3 Effect of increasing the volume of QBC03’s supernatant on the 

inhibition of P. verrucosum growth 

The effect of QBC03’s extract was studied against P. verrucosum. The extract was 

added to PDA medium in different concentrations (2.5%, 3.5%, 4.5%, 5.5%, 6.5%, 

7.5%, 8.5%, 9.5% and 10.5%), and the 3 µL inoculum was loaded on the surface of 

these PDA plates. The inhibition ratios were calculated by referring to the control and 

were plotted in figure 42. On the second day post-incubation, the fungal growth was 

observed only on the medium plates having 2.5% of the bacterial extract, and there was 

28.5% inhibition in the growth of the fungus for the 2.5% extract. The fungal spores 

were not germinating at the 2nd day on the plates having extract concentration from 

3.5% to 10.5%. On the 5th day post incubation, the decreased fungal growth was seen 

only on the PDA having the percentages of 2.5% to 5.5%. The 100% inhibition was 

witnessed on the PDA having 6.5%, 7.5%, 8.5%, 9.5% and 10.5% extract, where the 

fungal spores didn’t germinate at all (figure 43).  
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Figure 42: Inhibition of the radial growth of P. verrucosum TF11 on PDA by QBC03’s 

antifungal compounds   

 

 

 

Figure 43: Reduction of P. verrucosum TF11 growth on PDA containing different 

concentrations of QBC03’s antifungal compounds  ranging from 0 % to 10.5% 

 

 

After a microscopic observation of the fungal inoculum on the PDA medium 

containing the extract, the spores’ germination was compared in the control and in the 

PDA amended with the extract. Figure 44 shows the difference in the spores’ shape of 

the control and PDA having 2.5% and 6.5% bacterial extract.  
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The spores in the control have started to germinate at day one post to incubation, 

and the mycelia ware already growing appearing tall and thin. The spores which were 

inoculated on the PDA that had 2.5% bacterial extract were starting to germinate, but 

the mycelia that were growing were shorter than those in the control. However, these 

mycelia showed more fragmentation hence appeared shorter than those grown in the 

control. There was no obvious germination for the spores for the treatment with 6.5% 

and above when observed under the microscope, and no mycelia were shown in any of 

these treatments. 
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Figure 44: The effect of the antifungal compounds of QBC03 on the spores 

germination of P. verrucosum TF11 on PDA. 

[A: control (only PDA); B: PDA having 2.5% of QBC03’s extract; C: PDA having 

6.5% of QBC03’s extract] 

 

 

7.4 Evaluation of QBC03’s antifungal compounds effect on the mycelial biomass 

of mycotoxigenic fungal strains in PDB 

In this part of the study, the effect of QBC03’s antifungal compounds on the fungal 

growth was investigated by the measurement of the biomass of the fungal cells exposed 
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to different concentrations of QBC03 extract. The activity of QBC03’s antifungal 

extract was tested against two fungal species, A. carbonarius and P. verrucosum. The 

fungal biomass that grew in the flasks was measured and was compared to the fungal 

biomass of the control which was not treated with anything (only PDB).  

7.4.1 Evaluation of QBC03’s antifungal compounds effect on the mycelial 

biomass and OTA synthesis of A. carbonarius  

The antifungal activity of 48 h culture extract of QBC03 was evaluated for its 

antifungal activity against A. carbonarius in 20 mL PDB. 10 µL from a 106 spore/mL 

A. carbonarius spores’ suspension were seeded in flasks having different 

concentrations of QBC03 extract (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% and 

100%). After 72 h, the morphology of the treated mycelia was observed by light 

microscopy and their morphology was compared to those in the control. Then, the 

fungal biomass was estimated by measuring the dry weight of the filtered mycelia. In 

addition to the biomass determination, the synthesis of OTA by the treated and non-

treated fungal biomass of A. carbonarius was determined. The concentration of OTA 

in the extract treatments was compared to its concentration in the control. 

After 72 h of incubation of the spores with the filtrate, there was an obvious decrease 

in the biomass of the fungus among the treatments while increasing the percentage of 

the extract in PDB. In figure 45, the fungal biomass dramatically decreased into half 

when only 1% of the extract was used, where the biomass measured in the control was 

60.45 g and 30.43 g measured in 1% treatment. The fungal biomass continued to 

decrease where it reached 14.17 g when the extract percentage was increased to 2%. 

Even lower biomass was measured for the fungus in the presence of 3% of the extract 

in PDB, and the fungal biomass reached to 1.83 g. The fungal growth had started to 

become unseen starting from 3% of the extract and above, therefore, the point of 3% 

extract can be considered as the minimum inhibitory concentration for A. carbonarius. 



  

99 

 

The spores weren’t able to germinate and grow in the 100% extract at all. 

 

 

 

Figure 45: Effect of QBC03’s antifungal compounds on the biomass of  A. carbonarius 

AW82. 

[The dry weight of the mycelium of A. carbonarius AW82 was measured for different 

concentrations of QBC03’s antifungal compounds in PDB.]  

 

 

From the treatment of 1% and 2%, the effect of the extract on the morphology 

of the mycelia was visualized under the microscope. Table 6 demonstrates the effect of 

the extract on the mycelia that were treated with 1% and 2% compared to the mycelia 

of the control (0% extract). In the control where the mycelia were not treated with the 

extract, the mycelia appeared thin and long, compared to the treated one. With 

increasing the percentage of the extract, the thickness of the mycelia was increasing, 

and the formation of bulbous structures protruding from the mycelia was also evident. 
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Moreover, the mycelia treated with the extract was shown to have branched, while that 

was not seen in the mycelia of the control that appeared longer and unbranched.   

 

 

Table 6: Effect of QBC03’s antifungal compounds on the morphology of the  mycelium 

of  A. carbonarius AW82 and P. verrucosum.  

[The treatment was done with 1% and 2% of QBC03’s antifungal compounds and 

compared to the non-treated mycelia.]  

 A. carbonarius P. verrucosum 

Control  

  

1% extract  

  

2% extract 

  

 

 



  

101 

 

The concentration of OTA produced by A. carbonarius was determined by 

ELISA, and the concentration of OTA was estimated in the control and all treatments. 

Figure 46 represent the concentrations of OTA synthesized by the biomass of A. 

carbonarius in the control and those treated with different concentrations of the extract. 

In the control, the concentration of OTA was higher than the detectable limit 

concentration of ELISA (> 36 ng/20 mL), and when 1% of the extract was added, the 

concentration of OTA has decreased a little bit to become 34.51 ng/20 ml. At 2% of the 

extract, OTA concentration was above the detectable limit, however, in the treatment 

of only 3% of the extract, there was an apparent sharp decline in the concentration of 

OTA detected. The trend was similar for the rest of the percentages (4% to 10%), where 

OTA synthesis was greatly reduced compared to the control, and OTA was not detected 

at all in the 100% extract treatment. 
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Figure 46: Effect of QBC03’s antifungal compounds on OTA synthesis by A. 

carbonarius AW82 upon treatment with different concentrations of QBC03’s antifungal 

compounds in PDB.  

 

 

7.4.2 Evaluation of QBC03’s antifungal compounds effect on the mycelial 

biomass of P. verrucosum. 

The effect of the antifungal compounds produced by QBC03 was studied on the 

growth of P. verrucosum. The extract of a 48 h QBC03 culture was collected.  When 

different concentrations of the extract were used, the fungal biomass growth was 

different than the control, and there was a general decreasing trend in the biomass of P. 

verrucosum. As shown in figure 47, the incorporation of 1% and 2% of the bacterial 

extract in the 20 mL PDB didn’t result in a big difference in the inhibition of the fungal 

biomass, and the measured dry weight of the fungal biomass was almost similar to the 

dry weight of the control.  Hereafter, increasing the volume of the extract to 3% resulted 

in a great decrease of the fungal biomass to 1.4 mg, compared to the control biomass 
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weight which was 65.37 mg. However, when the concentration of the antifungal 

compounds was increased to only 3%, the dry mycelial biomass was reduced to half of 

the dry weight of the mycelia measured in the control, and the weight was 35.9 mg 

compared to the control which had 65.3 mg. Increasing the concentration of the extract 

further to 4% resulted in even more decrease in the dry biomass weight where it reached 

1.4 mg. The fungal cells were not seen in the further percentages after 4%, hence, 4% 

of the extract can be considered as the minimal inhibitory concentration. When the 

weight of the dry fungal mycelia was measured in the rest of the concentrations, the 

weight was reduced to more than half of the mycelial weight in the control.     

 

 

 

Figure 47: Effect of QBC03’s antifungal compounds on the biomass of  P. verrucosum. 

[The dry weight of the mycelium of P. verrucosum was measured for different 

concentrations of QBC03’s antifungal compounds in PDB.]  

 

 

0

10

20

30

40

50

60

70

80

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 100%

M
yc

el
ia

l d
ry

 b
io

m
as

s (
m

g)

percentage of QBC03's extract



  

104 

 

7.5 Effect of the temperature on the stability of QBC03’s antifungal compounds 

In this study, the effect of different temperature treatments on the antifungal 

compounds of QBC03 was explored in well-diffusion method. The extract of QBC03 

was incubated at different temperatures for 30 min. The extract was then poured into 

wells drilled in PDA media amended with 100 µg/L of chloramphenicol. The plates 

were incubated at 26ºC and the diameters of the inhibition zones around the wells were 

measured after 3 days post to incubation. 

7.5.1 Effect of the temperature on QBC03’s antifungal compounds activity 

against A. carbonarius growth  

The effect of different heat treatments on the activity of the antifungal 

compounds was studied in this part. The antifungal compounds with different heat 

treatment were tested against A. carbonarius. The extracts were incubated at -80º, -20º, 

4º, 26º, 30º, 40º, 60º, 80º and 100ºC for 30 min. 200 µL of A. carbonarius spores’ 

suspension (106/mL) were spread on PDA having 100 µg/L chloramphenicol. Wells 

were drilled in PDA and 100 µL of treated extract were loaded in wells in PDA. The 

plates were later incubated at 26ºC for 72 h and the inhibition zones for the treatments 

were measured and compared to the inhibition zone around the well which was loaded 

with QBC03 supernatant harvested from the culture that was not exposed to any heat 

treatment. Figure 48 shows different inhibition zones in PDA around the wells as a 

result of different heat treatment of QBC03’s antifungal compounds. 
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Figure 48: Effect of the temperature on QBC03’s antifungal compounds activity against 

A. carbonarius AW82.  

[Inhibition zones of A. carbonarius AW82 by the antifungal compounds of QBC03 

treated with different temperatures (-80º, -20º, -4º, 26º, 30º, 40º, 60º, 80º and 100ºC).] 

 

 

Duncan test was used to compare the effect of applying different temperatures 

on the extract and it was found that (Figure 49), when the extract was treated with low 

temperatures  such as -80º, -20º and 4ºC, its activity remained close to that of the control 

(no heat treatment was applied), and the zones of inhibition were 22.5, 22.1 and 21.8 

mm, respectively, also, they weren’t significantly different from each other. Increasing 

the temperature of the extract to 26ºC has shown the best inhibition activity that 

corresponded to the largest zone of inhibition (24.8 mm), which was significantly 

different from all other treatments and the control. 

However, increasing the temperatures more than 26ºC resulted in a gradual 
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decrease in the antifungal compounds activity and the zones of inhibition were getting 

smaller. The extract’s antifungal activity has significantly decreased when it was treated 

with 100ºC, thus, it had the smallest inhibition zone appeared around its wells (15.1 

mm) which was significantly lower than any other diameter of the other treatments.  

 

 

 

Figure 49: Effect of the temperature on QBC03’s antifungal compounds activities 

against A. carbonarius AW82 

[The inhibition zone diameters of A. carbonarius AW82 by heat treated QBC03’s 

antifungal compounds  were measured. Duncan test was done to compare the average 

of the inhibtion zones, and those sharing the same letter are not significantly different 

from each other.] 

 

 

7.5.2 Effect of the temperature on QBC03’s antifungal compounds activity 

against F. culmorum growth  

The antifungal compounds with different heat treatments were tested against F. 
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culmorum. The extracts were incubated at -80º, -20º, 4º, 26º, 30º, 40º, 60º, 80º and 

100ºC for 30 min. 200 µL of F. culmorum spores’ suspension (106/mL) were spread on 

PDA having 100 µg/L chloramphenicol. Spores’ suspension of F. culmorum was 

prepared (106/mL) and 200 µL were spread on PDA, and wells were then created in the 

plates using a cork borer. 100 µL of the antifungal extract incubated at different 

temperatures were loaded into the wells, and the inhibition zones around these wells 

were measured and compared to the zone around the well having the antifungal 

compounds extract that harvested from the centrifuged culture (control). After 3 days 

incubation of plates at 26ºC, the inhibition zones were very clear around the wells as 

shown in figure 50. 
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Figure 50: Effect of the temperature on QBC03’s antifungal compounds activities 

against F. culmorum. 

[The inhibition zones of F. culmorum by the heat treated antifungal compounds of 

QBC03 were measured . Temperatures were -80º, -20º, -4º, 26º, 30º, 40º, 60º, 80º and 

100ºC.] 

 

 

As a result of different heat treatment of QBC03’s antifungal compounds, the 

activity of this extract was influenced, where some heat treatments led to enhancement 

of the activity, and some other treatment decreased the efficiency of the extract (Figure 

51). Duncan test was done to compare the diameters of the inhibition zones resulted 

from the different temperature treatments. When the extract was treated with low 

temperatures, its activity was affected in that it was gradually decreasing. Therefore, 

treatments at -80º, -20º and 4ºC of the extract showed diameters which were 

significantly different from each other, and diameters recorded for them were 17, 18 
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and 20 mm, respectively. Increasing the temperatures from 26ºC to 30ºC resulted in the 

increase of the extract activity where it was at its highest at 30ºC, and the diameters for 

both treatments were 21 and 21.6 mm. Increasing the temperatures further, starting from 

40ºC to 100ºC has caused a gradual decline in the activity of the extract, and the lowest 

activity was at 100ºC making an inhibition zone of 9.8 mm.  

 

 

 

Figure 51: Effect of the temperature on QBC03’s antifungal compounds activities 

against F. culmorum  

[The inhibition zone diameters of F. culmorum by heat treated QBC03’s antifungal 

compounds were measured. Duncan test was done to compare the average of the 

inhibtion zones, and those sharing the same letter are not significantly different from 

each other.] 
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7.5.3 Effect of the temperature on QBC03’s antifungal compounds activity 

against P. verrucosum TF11growth 

The antifungal compounds with different heat treatments were tested against P. 

verrucosum TF11. The extracts were incubated at -80º, -20º, 4º, 26º, 30º, 40º, 60º, 80º 

and 100ºC for 30 min. 200 µL of P. verrucosum TF11 spores’ suspension (106/mL) 

were spread on PDA having 100 µg/L chloramphenicol. Wells were created in PDA 

using a cork borer, and they were filled with 100 µL of the heat-treated extract. The 

inhibition zones around the wells were measured and compared to the zone of the 

extract which wasn’t heat-treated (control). Figure 52 shows the different inhibition 

zones around the wells which were recorded and compared. 
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Figure 52: Effect of the temperature on QBC03’s antifungal compounds activities 

against P. verrucosum. 

[The inhibition zones of P. verrucosum by the heat treated antifungal compounds of 

QBC03 were measured. Temperatures were -80º, -20º, -4º, 26º, 30º, 40º, 60º, 80º and 

100ºC.] 

 

 

Duncan test was done to compare the diameters for the zones of inhibition 

resulting from the different temperature treatments of the extract (Figure 53). The 

antifungal compounds of QBC03 exposed to low temperatures such as -80º, -20º and 

4ºC stayed as efficient as control in inhibiting the growth of P. verrucosum around the 

wells, and the diameters recorded for them were 26.3, 26.7 and 26 mm, respectively, 

and the control had a zone of 25.6 mm. However, increasing the temperatures 

furthermore resulted in increasing the activity of the antifungal compounds were the 

highest activity was achieved at 30ºC and it has created an inhibition zone of 28.1 mm, 

which was significantly higher those of the rest of the treatments. However, with 
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increasing the temperatures starting from 40ºC and above, the extract’s antifungal 

activity started to gradually decrease reaching its lowest at 100ºC, at which the lowest 

inhibition zone was 14.5mm. Furthermore, the diameters of the inhibition zones of 60º, 

80º and 100ºC were not significantly different from each other. 

 

 

 

Figure 53: Effect of the temperature on QBC03’s antifungal compounds activities 

against P. verrucosum. 

[The inhibition zones of P. verrucosum by the heat treated antifungal compounds of 

QBC03 were measured. Temperatures were -80º, -20º, -4º, 26º, 30º, 40º, 60º, 80º and 

100ºC. Duncan test was done to compare the average of the inhibtion zones, and those 

sharing the same letter are not significantly different from each other.] 

 

 

7.6 Effect of QBC03’s culture extract on the germination of fungal spores  

In this part of the work, we studied the effect of the antifungal compounds of 

QBC03’s on the germination of fungal spores of four fungal species, P. verrucosum A. 
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carbonarius AW82, A. westerdijikae and F. oxysporum by culturing the spores in the 

presence of QBC03’s extract. The microscopic images of the treatment vs. the control 

for each fungal species were summed in table 7. There were significant differences 

between the spores that were treated with the extract and the spores of the control. The 

effect of the antifungal compounds produced by QBC03’s in the 48 h culture had 

significantly affected the spores’ germination and growth of the four studied fungal 

specie. There was a 100% inhibition in the spores’ germination of P. verrucosum A. 

carbonarius, A. westerdijikae and F. oxysporum after the treatment with the 48 h 

bacterial extract, where the spores couldn’t germinate in any of the treated wells of the 

three replicates. Unlike the treated fungal spores, in the control where the spores were 

not treated with the extract, all the spores finally germinated, and the germination was 

seen protruding from their conidia. 

 In the treated spores for P. verrucosum A. carbonarius and A. westerdijikae, the 

spores couldn’t germinate, and they were characterized by a spherical shape. In contrast 

to the untreated conidia of P. verrucosum A. carbonarius and A. westerdijikae, the 

germination tube was clearly seen emerging from the conidia for the four species and 

was forming small extensions. For F. oxysporum, the treated conidia appeared swollen 

upon the treatment of the bacterial extract and looked short and stumpy compared to 

the morphology of the non-treated conidia that appeared thin and long. Nevertheless, 

the spores were kept in the incubator for longer time (3 weeks) to check if the spores 

can germinate with the time, but the result was that no conidial germination was noticed 

in the treated spore.   
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Table 7: Effect of QBC03’s antifungal compounds on spore germination of P. 

verrucosum, A. carbonarius, A. westerdijikae and F. oxysporum  

 Control Treated 

P. 

verrucosum 

  

A. 

carbonarius  

  

A. 

westerdijikae  

  

F. 

oxysporum 
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Discussion: 

In this part, the antifungal activity of our Qatari Burkholderia cepacia (QBC03) 

strain was investigated. The effect of QBC03’s antifungal compounds was screened on 

several species of three fungal genera (Aspergillus, Fusarium and Penicillium), and 

their stability was evaluated. The bacterial antifungal spectrum of QBC03 was studied 

through overlaying assay of the fungal spores against 20 fungal species (A. carbonarius, 

A. westerdijkiae, A. parasiticus, A. niger, A. flavus, A. ochraceous, A. fumigatus, F. 

anthophilum, F. chlamodosporum, F. culmorum, F. graminearum, F. oxysporum, F. 

solani, F. subglutinus, F. prolifiratum and F. verticilliod, P. cambeberti, P. digetatum, 

P. expansum, P. italicum and P. verrucosum). All Aspergillus species were sensitive to 

QBC03 compounds. However, A. carbonarius AW82 was the most sensitive (59.1 mm) 

and A. flavus the less sensitive (33.7 mm). These results demonstrate that the antifungal 

activity efficiency is species specific. 

For Fusarium, the results showed that QBC03’s antifungal compounds inhibited 

some of the studied Fusarium species, where F. verticilliod and F. prolifiratum showed 

the smallest inhibition zones (2.6 and 6.7 mm, respectively) compared to F. 

chlamodosporum which had the largest inhibition zone (36.8 mm). The studied 

Penicillium species also showed sensitivity towards the diffusible antifungal 

compounds of QBC03, and all the five species had shown a zone of inhibition around 

QBC03. The most sensitive specie among the Penicillium group was P. camemberti 

having a zone of inhibition of 37.3 mm, and the least inhibited species was P. expansum 

having a zone of 34.9 mm. Several bacteria from different genera have the potential to 

produce cyclic lipopeptides. Lipopeptides have binding potential to the bilayer lipid 

membrane of the pathogen. These cyclic lipopeptides can be classified into three 

categories that are, surfactants, iturin or fengycin. However, fengycin and iturin possess 

antifungal activities against some of the pathogenic fungi, but they don’t have any 
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antibacterial activity. Some of these lipopeptides are produced by Burkholderia cepacia 

such as cepaciamides A & B, cepacidines, siderophores, altericidin, pyrrolntrin, 

glidobactins and volatile compounds (Haidar et al., 2016). B. cepacia diffusible 

compounds containing ammonia have been reported to inhibit the fungal growth on 

PDA. In addition to that, it is also known to produce volatiles on PDA and that is why 

it’s capable of controlling the growth of soil pathogens (Rahman et al., 2007).  

QBC03’s production of antifungal compounds in the broth was optimized in 

NBY broth that was modified in the work of Kilani-Feki & Jaoua (2011), thus, 

QBC03’s extract was always prepared from the broth of NBY. The antifungal 

compounds in the culture of QBC03 in NBY were evaluated in solid media by applying 

two methods that were well-diffusion method and incorporation of the extract in molten 

media (PDA). In both methods, the results showed that increasing the concentrations 

of the extracts resulted in more inhibition of the three fungi A. carbonarius, F. 

culmorum and P. verrucosum.  

When the supernatant of QBC03 was incorporated in PDA, even very low 

concentrations of the extract accounted for a very significant reduction in the radial 

growth of the three studied fungal species (A. carbonarius AW82, F. culmorum or P. 

verrucosum TF11). The complete inhibition for the fungal growth was at 8.5%, 11.5% 

and 6.5% for A. carbonarius AW82, F. culmorum and P. verrucosum TF11, 

respectively, where beyond these concentrations, the extract has 100% inhibited the 

germination of the fungal spores on PDA and they never germinated again after that. 

However, after the second day of incubation, the mycelia of P. verrucosum TF11 

appeared fragmented and shorter than those growing on the control. For A. carbonarius 

AW82, on the second day, the spores had few germination tubes protruding from them 

and very few mycelia were seen. The antifungal compounds of the bacteria can have 

different modes of actions in order to disrupt the growth of the fungal cells upon the 
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treatment with these antifungal compounds. The antifungal compounds can either act 

on the cell wall of the fungi or inhibit the synthesis of some nucleic acids. Antifungal 

compounds can be enzymes having the ability to interfere with the DNA, RNA leading 

to disrupted protein synthesis (Ghannoum & Rice, 1999). However, another mechanism 

of action of different antifungal peptides is by acting on the cell wall integrity and 

permeability (Yeaman & Yount, 2003). Rahman et al., (2007) studied the effect of the 

bacterial extract of B. cepacia and P. aeruginosa strain on the spores’ germination of 

C. gloeosporioides in PDA incorporated with the sterile bacterial antifungal extract or 

cell suspension. The cells suspension and extract of B. cepacia managed to completely 

inhibit the germination of the spores of C. gloeosporioides after 24 hr of incubation, 

while P. aeruginosa inhibited 3.7% and 1.31% of the spores’ germination in the PDA 

having the cell suspension or extract, respectively.  

San-Lang et al., (2002) studied the effect of incorporating different volumes of 

the antifungal compounds of B. subtilis W113 strain in molten PDA on the radial 

inhibition of F. oxysporum. Their results postulated that increasing the concentration of 

the bacterial fungicides resulted in better inhibition of F. oxysporum. Increasing the 

concentrations of the bacterial extract up to 25% resulted in 50% inhibition in the fungal 

growth. Compared to our results, incorporating the lowest concentration of QBC03’s 

antifungal compounds resulted in more than 50% inhibition (56%) of F. culmorum 

growth on PDA. 

The effect of the antifungal compounds on the biomass of the fungal mycelia 

was explored in this study as well. The 48 h culture extract of QBC03 was added in 

different concentrations (1%-10%) to PDB. The fungal spores (104) of A. carbonarius 

AW82 and P. verrucosum TF11 were inoculated in the broth and the dry weight of the 

mycelial biomass was measured. The weight of A. carbonarius AW82 mycelial biomass 

was shown to decrease dramatically at only 1% of the extract, where the biomass 
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decreased to 50%. The biomass continued to decrease further with increasing the 

concentrations of the extract in the PDB. However, no visible fungal biomass was seen 

after 3%. The study of the effect of QBC03 antifungal extract on the synthesis of OTA 

concentration showed that 3% extract decreased the concentration of OTA drastically, 

and it became 3.1 ng/20 mL. However, the concentration of OTA remained close to 

that except for the 100%, where OTA concentration was zero. The effect of the QBC03 

antifungal extract was studied on the biomass of P. verrucosum TF11, and it was shown 

that there was a gradual decrease in the biomass of the fungal mycelia. The antifungal 

bacterial compounds managed to decrease the fungal biomass of P. verrucosum TF11 

to half when only 3% of the extract was used. 

In another experiment which was done at the same conditions (data not shown), 

where fungal spores were treated with different concentrations of QBC03’s extract 

(0.75-10%) in 10 mL PDB in order to study the viability of the fungal cells, 100 µL 

from each treated fungal cells in 10 mL PDB were transferred and spread on PDA 

media, and the plates were incubated for two days at 26ºC. The fungal growth was 

detected in the PDA of the treatments from 0.75% and up to 2.75%. The PDA which 

was spread with 100 µL of 3% and above, the fungal cells didn’t grow on them at all. 

The same results were obtained when 100 µL were transferred from the 100% QBC03 

extract treatment to PDA, were the fungal cells didn’t grow at all. These results can 

explain the weight which was measured for the treatments beyond 3%, since the fungal 

cells were not visible but there was still mass that was detected. This weight measured 

in the extract can be attributed to dead mycelia cells which were trying to grow but their 

growth was ceased in the presence of the extract. Hence, since an inoculum from each 

percentage was transferred to PDA and nothing grew, this explains the weight measured 

was non-viable fungal cells.  

The bacterial antifungal compounds are known to cause several damages to 
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fungal mycelia when they are exposed to them (San-Lang et al., 2002). Kilani-Feki et 

al., (2011) studied the potential of Burkholderia cepacia strain Cs5 to inhibit the fungal 

growth of F. oxysporum, F. culmorum, F. graminearum, in solid media and R. solani 

and A. niger in liquid culture. The extract of Cs5 was increased in the PDB starting 

from 0.25% to 3 %. The antifungal compounds of Cs5 were able to cause 50% 

inhibition in A. niger growth by incorporating 0.45% of the extract. The extract of Cs5 

managed to delay sporulation in A. niger, and the morphology of the hyphae of the 

fungus was altered. Some aggregations of bulbous structures were shown on the sides 

on the hyphae and didn’t appear after treatment with 0.6% of the extract. Mycelia 

fragmentation was also shown upon the treatment of the antifungal compounds of Cs5 

in the liquid culture. Cell wall deterioration was observed in the treated mycelia of the 

F. solani proving that one way of the mechanism of action of the antifungal compounds 

is changing the permeability of the fungus cell wall. In PDA medium, 0.25% of the 

extract accounted for 50% inhibition in the growth of F. graminearum and F. solani on 

PDA.  

Kilani-Feki & Jaoua, (2011) studied the effect of B. cepacia strain Cs5 on the 

inhibition of B. cinerea by adding the bacterial extract in different concentrations (0-

2%) in PDB, where a fungal inoculum was added too. They were able to demonstrate 

the effect of these antifungal compounds on B. cinerea by measuring the biomass of 

the treated mycelia. The incorporation of 0.25% of the extract accounted for more than 

60% inhibition, and a 100% inhibition was reached when 1.25% of the extract was used. 

These results prove that B. cepacia has a great antifungal potential corroborating with 

the results that were obtained in this work. However, the effect of the extract on the 

fungal mycelial was taken into account for this study, where we observed several 

changes caused by the extract on the morphology of the mycelia. The extract has 

obviously caused swellings in the mycelia of P. verrucosum and the mycelia appeared 
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short and fragmented in both treatments, compared to the mycelia of the control which 

was thin, long and not fragmented. The mycelia of A. carbonarius AW82 appeared very 

swelled and the tips of the hyphae appeared swelled too with enlarged ends. The hyphae 

were short, and many aggregations were seen in 2% extract treated mycelia. These 

aggregations were larger in width than that of the mycelia and they were characterized 

with thick walls. These structures are formed by the fungal conidia or hyphae and they 

play a major role in the survival strategy of the host and they are named as 

chlamydospores (Oliveira et al., 2012). Figure 54 shows the aggregations and 

morphology of the chlamydospores that appeared as a result of 2% bacterial extract 

treatment in A. carbonarius AW82 hyphae. Chlamydospores were also noticed to grow 

terminally in the tips of A. carbonarius hyphae. These structures can survive in the 

environment, specifically in the soil better than conidia do. However, the presence of 

some bacteria in the soil can induce the formation of such structures. Li et al., (2005) 

have demonstrated in their studies that the treatment of very low concentration of a 

bacterial antifungal compound referred to as 10M has induced the formation of the 

chlamydospores in the conidia of T. harzianum in addition to their appearance in the 

hyphae tips. The findings of Li et al., (2005) match the results obtained in this part in 

using the antifungal compounds of QBC03 to inhibit the fungal growth of A. 

carbonarius AW82. The chlamydospores appeared in A. carbonarius AW82 and were 

characterized with thick walls. The chlamydospores couldn’t appear at treatments 

above 2% of QBC03 extract. 
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Figure 54: Effect of QBC03’s antifungal compounds on the mycelia of A. carbonarius 

AW82 treated with 2% of the extract showing formation of chlamydospores.  

[Mycelia of A. carbonarius AW82 treated with 2% were stained with methylene blue 

and their morphological changes were obsereved under the oil lense (100X)]  

 

 

Similar to our findings, when San-Lang et al., (2002) studied the effect of 

incorporating different volumes of B. subtilis extract in PDB inoculated with F. 

oxysporum spores’ suspension, they showed that the bacterial extract causes several 

morphological changes in the hyphae of the fungus, such as swellings, lysis and 

degradation of the fungal cells. In another study regarding the effect of the bacterial 

extract on the fungi, Rahman et al., (2007) evaluated the effect of B. cepacia antifungal 

compounds on the mycelial morphology of C. gloeosporioides and they found that the 

morphology of the treated mycelia had changed in that the hyphae became thicker with 

vacuolation appearing in the tips, unlike the hyphae in the control which appeared 

normal and smooth.    

In another part of this work, we studied the effect of heat treatment on QBC03’s 
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antifungal compounds stability. When QBC03’s extract was tested against A. 

carbonarius, F. culmorum and P. verrucosum, the effect of decreasing the temperatures 

of the extract on A. carbonarius from 4ºC down to -80ºC didn’t affect the extract 

efficiency. Increasing the temperatures caused a decrease of the antifungal activity of 

the extract, specially at 100ºC. For F. culmorum, decreasing the temperatures of the 

extract from 4ºC to -80ºC has affected the antifungal activity of the extract. The 

optimum temperature at which the extract had shown the best activity was at 30ºC. 

However, increasing the temperature after 30ºC was causing a decline in the activity 

and smallest inhibition zone appeared at 100ºC (9.8 mm). In P. verrucosum, the 

extract’s antifungal activity remained constant when it was treated with lower 

temperatures from 4ºC to -80ºC. The activity remained the same from -80º until 40ºC, 

except at 30ºC where the highest activity was noticed. 

Li et al., (2005) studied the thermostability of a purified antifungal compound 

termed 10M by applying different heat treatments. 10M was tested against T. 

harzianum and G. roseum, and they found that keeping the extract at room temperature 

for a month didn’t reduce its antifungal activity. On the other hand, treating the extract 

with a 100ºC for 30 min has reduced the activity of the extract to 40%.  

Kadir et al., (2008) also studied the effect of different temperatures treatments 

on the crude extract of B. cepacia against C. gloeosporioides. The antifungal 

compounds were treated with several different temperatures ranging from 28ºC to 

121ºC, and their results showed that activity of B. cepacia supernatant didn’t decrease 

and it retained its activity after being treated with high temperatures.   

For our results, treating the extract with 100ºC had significantly decreased its 

activity, especially against F. culmorum where the inhibition zone of the 100ºC treated 

supernatant was 9.8 mm, compared to A. carbonarius and P. verrucosum that had 

inhibition zones of 15.1 mm and 14.5 mm, respectively.    
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Another study that confirms our findings was conducted by San-Lang et al., 

(2002) who studied the effect of pH and temperatures on the stability of the antifungal 

compounds produced by two strains of B. subtilis against F. oxysporum and found that 

even after heating the antifungal compounds at 100%, they still showed an antifungal 

activity. However, increasing the temperatures of the antifungal compounds has caused 

a drastic decrease in their activity. These findings come along with our results, 

regarding to what was found in the thermostability of the antifungal compounds of 

QBC03 against the fungal growth, especially against F. culmorum. 

Conclusion:  

In this part of the study, our local Qatari Burkholderia cepacia strains (QBC03) 

was investigated for its antifungal spectrum and potential of inhibiting the 

mycotoxigenic fungi and the synthesis of mycotoxins. QBC03’s antifungal activities 

were screened against 21 mycotoxigenic fungal species belonging to the three genera 

Aspergillus, Fusarium and Penicillium. It was found that QBC03 has a strong antifungal 

activity against those mycotoxigenic fungi, except for two of the Fusarium species (F. 

verticilliod and F. prolifiratum). The antifungal compounds were able to completely 

inhibit the growth of three mycotoxigenic fungi A. carbonarius, F. culmorum and P. 

verrucosum at low concentrations. The use of 8.5%, 6.5% and 11.5% has inhibited the 

fungal growth of A. carbonarius, F. culmorum and P. verrucosum on solid media, 

respectively. In PDB, very low concentrations of the extract inhibited the fungal 

growth, were the fungal mycelia were not visualized by naked eye. The incorporation 

of only 3% and 4% of the antifungal compounds of QBC03 in the liquid media caused 

a drastic decrease in the fungal biomass of A. carbonarius and P. verrucosum, and 

beyond these treatments, the fungal growth was not being visual to the eye. Moreover, 

very low concentrations of the extract (1% and 2%) were able to cause the 

fragmentation and swelling of the mycelia of both A. carbonarius and P. verrucosum. 
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In addition to that, the extract of QBC03 was able to cause a 100% inhibition of the 

germination of the fungal spores, where even after being kept for longer time incubated, 

still the spores never managed to germinate. The antifungal compounds of QBC03 are 

very stable at very high and low temperatures. This thermostability of QBC03’s 

antifungal compounds make them promising potential candidates for the biocontrol of 

mycotoxigenic fungi. All these very interesting characteristics of QBC03’s antifungal 

compounds make them very promising biocontrol agents useful for the control of 

mycotoxigenic fungi in Qatar particularly due to their high activities at wide ranges of 

temperatures and environmental conditions.  
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CHAPTER 8: CONCLUSION AND FUTURE PERSPECTIVES  

In this M. Sc. Thesis, we explored the biocontrol potentialities of two microbial 

strains, a low fermenting yeast L. thermotolerans 751 and a local strain of Burkholderia 

cepacia (QBC03). The antifungal potentials of both Lachancea and Burkholderia to 

control the growth of mycotoxigenic fungal species of Aspergillus, Fusarium and 

penicillium and the synthesis of their mycotoxins was investigated.  

The low fermenting yeast L. thermotolerans 751 had shown a great antifungal 

potential through the synthesis of VOCs which are able to act on the mycotoxigenic 

fungi by either inhibiting their growth, sporulation, spores’ germination or most 

importantly, the synthesis of their mycotoxins. L. thermotolerans 751 also has shown a 

great adsorption potential to mycotoxins in in-vitro experiments. Production of VOCs 

by L. thermotolerans 751 was assessed in an in-vitro experiments to inhibit the fungal 

growth and spores’ germination of the fungi inoculated on the tomato fruit. This has 

resulted in very positive results where the yeast was able to inhibit the growth of the 

fungus completely on the tomato fruits.  

In addition, we demonstrated for the first time that depending on the yeast’s 

CFUs, the inhibition of the mycotoxigenic fungal growth and the synthesis of 

mycotoxins varies a lot. What’s more significant in this study in using the yeast as a 

biocontrol agent was the part dealing with the preservation of the tomato fruits from the 

fungal infection by the VOCs, where the fruits were preserved at 26ºC for more than a 

month without any damage or spoilage. Such experiments can be developed in the 

future to preserve more food commodities for short periods of time, or to preserve 

vegetables and fruits from the post-harvest infection by the mycotoxigenic fungi during 

their transportation from a place to another.  

We believe that more comprehensive studies should be conducted in the future 

to study the mechanism of action of yeast VOCs against the mycotoxigenic fungi. The 
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mechanism of yeast cells adsorption to the mycotoxins and the conversion of these 

mycotoxins to putative metabolites by the living yeast cells deserve more future 

attention. 

Our Qatari bacterial strain Burkholderia cepacia (QBC03) has shown a broad 

antifungal spectrum against a wide range of mycotoxigenic fungi belonging to different 

genera. Through the production of very promising antifungal compounds, QBC03 was 

able to inhibit the growth, spores’ germination and synthesis of mycotoxins of these 

mycotoxigenic fungi. In addition, the antifungal compounds produced by QBC03 have 

shown a distinctive thermostability at a wide range of temperatures. Those antifungal 

compounds can be exploited and used as very stable and highly active biofungicides in 

all environments particularly locally in the region, substituting the chemical fungicides 

that are harmful for the environment. 

We believe that more researches should be conducted to purify and study the 

antifungal compounds produced by QBC03 and identify the genes that are responsible 

for the synthesis of the antifungal compounds. In addition to that, since QBC03 is also 

known to produce VOCs that have antifungal activity, studies can be conducted more 

on this aspect to study the mechanisms of mycotoxigenic fungal growth inhibition by 

QBC03.  
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