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ABSTRACT 

HASAN, MAHMOOD, AHMED., Masters : June : [2019]

Master of Science in Applied Statistics 

Title: TDEVELOPING A TWO-PHASE POST-STRATIFIED INVERSE SAMPLING 

TO REDUCE THE NONRESPONSE BIAS. CASE STUDY: STUDENTS’ 

SATISFACTION SURVEY IN QATAR UNIVERSITY 

Supervisor of Thesis: Mohamed Mahmoud Salehi. 

This research aims to develop a Two-phase Post-stratified Inverse Sampling 

(TPIS) to avoid or reduce the bias of nonresponse for students’ satisfaction survey of 

Qatar university. In the first phase, the students are partitioned into two groups of 

response and non-response. The second phase method of data collection is an intensified 

method to get information from nonresponse. An unbiased estimator of the mean of 

overall satisfaction and its variance estimator are developed. The efficiency of the 

estimator is assessed using a simulation study. Moreover, the efficiency of   (TPIS) is 

assessed.  The cased study results showed that the mean estimate of overall satisfaction 

was higher for the nonresponse groups than the response groups but the different was 

not statistically significant at level of 𝛼 = 0.05 but significant at level of 𝛼 = 0.10. 

However, the overall satisfactions were significantly different at 𝛼 = 0.05  for 13 majors 

out of 51 (25%). This results indicate that the non-response bias is exists. In addition, 

simulation study results show that the TPIS is more efficient than a SRS with equal 

effective sample size for TPIS. Based on the results some recommendation and 

suggestion are provided. 
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CHAPTER 1: LITERATURE REVIEW  

1.1Thesis Overview  

The outlines of this thesis are as follows: Chapter one includes a review of the 

current literature on decreasing response rates, factors affecting the sample member’s 

response behavior, the correlation between response rates and nonresponse bias; and it 

identifies nonresponse bias and its adjustment methods. Moreover, this chapter also 

focuses on the general inverse sampling design including general inverse of post-

stratified sampling design (GIPSD), Research problems, objectives, and research 

significance. Chapter two describes the design used with the theoretical parts of the 

mean and variance estimators based on combining data collected from census followed 

up by inverse sampling for post-stratification. Chapter three evaluates the bias of the 

old methods used by Institutional Survey Research Section (ISRS), using simulation to 

estimate the mean and the variance of general inverse for post-stratified sampling and 

compare it with estimated mean and variance for simple random sample. Chapter four 

compares the bias estimator of mean and variance of general inverse of post- stratified 

sampling (GIPSS) and sample random sample (SRS) based on the simulation; in 

addition, the chapter summarizes the findings of this study, presents general remarks, 

and points to future research. 

1.2 Introduction 

Due to advanced technologies, different online survey software have been 

developed for collecting survey data for their advantages (Ronald D., Fricker .J, 2008, 

Lee M. H, 2011). The advantages of online questionnaire are mentioned in details in 

Duffy et al. (2005) and Bethlehem (2010). The speed and low cost are the key 

advantages. The first advantage is that distributing questionnaires using online software 

requires low cost compared to hardcopy questionnaire and no cost required in mailing, 
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data entry and printing. Moreover, there is no need for a field researcher and that the 

influence of the field researchers is avoided. The second advantage of online surveys is 

that the researchers get the required data from respondents very quickly. In addition, 

using online surveys enable us to use sound, animation. Ronald  and  Fricker (2008) 

claimed that, the cost of collecting data using an online survey is approximately  zero. 

 However, online surveys have disadvantages especially on sampling issues 

under coverage and self-selection. Researchers such as (Duffy et al. 2005, Bethlehem, 

2010 and Lee 2011) mentioned that the online surveys lead to low response rates, which 

results in higher nonresponse rates increasing the chance of non-response bias in survey 

research. Grande, G., & Todd, C. (2002, p.171) states that “the expressions for nonresponse 

bias in survey estimates come in early survey researchers used approaches that 

assumed nonresponse was affixed”  

Ye Cong (2012) answered a rational question, “are there any advantages for 

online surveys if the non-response rate is high?  The answer of this question depends 

on the type of sampling design and efforts to overcome the factors affecting the decision 

of respondents. These factors include survey owner, advance notice, follow-up efforts, 

incentives and interest in the topic. Many researchers studied the results for each of 

these variables as follows:  

1) The likelihood of response generally increases if they receive prior 

notification (Sarndal, C.,  Swensson, B., Wretman, J., 1992).  2) Respondents are more 

likely to collaborate when the survey owner is a government sector than private sector 

(Groves and Peytcheva, 2008).  3) Barclay et al. (2002) showed that response rates are 

strongly correlated with the interest in the topic of the survey.  4) Response rates 

increase when the number of attempts increases. 5) Providing different types of 

incentives is effective positively in increasing response rate (Barcly.C, 2002). 



  

3 

 

Similarly, sending a personal email, privacy concerns, and language problem may 

effect on the response rates (Dillman 1991).  

From the researcher’s experience at QU, another factor may affect the response 

rate; that is the number of survey received by respondents during the limited period of 

time, which leads to survey fatigue. Even though, the survey section at QU exerts 

tireless efforts to overcome the previous factor such as design a surveys with Arabic 

and English languages, reviewing surveys by experts, using incentives, sending the 

survey from the vice president office, the response rate still small. For example, the 

response rate of student satisfaction survey for four cycles not exceeding in average the 

20% which means that the non-response rate is approximately 80%. The question 

arises: is the 20% of response rate adequate? 

 Previous studies (Lohr, S. , 2010; Robert M. Groves ,2006) provided a criteria 

for response rate required for analysis and report, these criteria are: at least 50 % 

response rate is appropriate; 60% response rate is good; a 70% response rate is very 

good.  Collecting data using interview surveys, 85 % response rate is adequate; less 

than 70 %, the non-response bias may have a chance to exist. Based on these criteria, 

the 20% response rate of Student Satisfaction is considered not appropriate and may 

lead to bias estimator, so this study needs to evaluate this bias.  

1.3 Nonresponse Error  

The main purpose of a questionnaire is to collect information about a population 

from a sample or from a census. The results driven from the data may be affected by 

several sources of error.  Some errors arise from the survey itself which  is called survey 

errors in addition to some other errors (Ronald D., Fricker, J, 2008). Groves (2006) 

mentioned several sources of survey error such as: coverage, sampling, nonresponse 

and measurement errors.  
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Coverage error occurs when some persons in the population do not have chance 

to be selected or some of population parts are not included in the sample. In addition, 

cover error exists when the population frame is not fully complete. To reduce the 

coverage error, we should obtain the sampling frame as fully as possible, stratify the 

sample and use the weight of each strata to match the population of inference on the 

important characteristics observed.  

 The sampling error arises when different samples from same population 

produce different survey data and is reduced by increasing sample size. Nonresponse 

error is the failure to collect data on all units in the sample 'and it happens when data is 

not collected on either individual responses (nonresponse unit) or individual survey 

item (Groves, 2006). The response rate helps in calculating the sampling error and gives 

the researcher an idea about confidence on generalizing the result to all population. 

Higher response rates indicate a lower likelihood of nonresponse bias.  

Non-response bias is one of the most types of errors that a survey suffers. It is a 

systematic error that occurs because individuals differ in their accessibility and 

tendency to participate in the questionnaire according to their characteristics as well as 

the characteristics of the survey itself. (Vandenplas C. et al, 2015).  

  Ronald D., Fricker, J, (2008) defined the measurement error as an accuracy of 

responses recorded on the toll of collecting data. It arises when there is a difference 

between respondents' responses to the real responses. For example, 

respondents may not answer certain questions honestly for different reasons, or they 

may  answer some questions incorrectly. Therefore, to minimize the measurement error, 

a researcher should first ensure that the survey is valid and reliable before disseminating 

the survey to the sample. In other words, the survey should be reviewed, free of 

sensitive questions, and written by clear language to be clearly understood to the 
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respondents (Ronald D., Fricke J., 2008). 

 

 Bethelehem (2010, p172) “provided a taxonomy of survey errors as shown in the figure  

 

  

 

   

 

 

 

 

 

Figure 1.1: Type of  survey errors, taken from Bethelehem (2010, p.172) 

 

The difference between the estimator calculated from a sample and the 

corresponding property in the population is called total survey error. This can be 

classified into sampling error and non-sampling error. The sampling error happens 

when some parts of population are not represented in the sample, sampling error 

disappears when the whole population is observed. 

Sampling error is divided into two parts: estimation errors and  specification 

errors. Estimation error occurs because new samples lead to different estimates. It is 

inevitable, but it can be measured by applying probability theory. Some Researchers 

use online survey to collect data from non-probability sample drawn by non-probability 

selection (self-selection).  

 Specification error occurs if the true selection probabilities differs from the selection 

probabilities specified in the sampling design. As stated before, in the case of online 
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Non-Sampling 
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Non-Observation 

Error 

Observation Error Over-Coverage Error 

Measurement Error 

Processing Error 

Figure 1.1 Type of  survey errors, taken from Bethelehem (2010, p.172) 
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surveys, Researchers cannot control the specification error because selection 

probability is unknown.  

Non-sampling error occurs due to multiple reasons such as unreliable and 

invalid questionnaires; low response rate; error in data entry and so on. This type of 

error can be classified into two parts: observation error and non-observation error.  

Observation error happens during collecting and recording responses. This can 

be classified into three types of error: measurement error, processing error and over-

coverage error. Measurement error occurs when survey response differs from the real 

value. It happens as results of respondents’ misinterpretation the survey items; 

respondents not tell the truth as a result of sensitive questions, mistakes happen by 

reviewers and so on. Processing error defined as an entry error. An over-coverage error 

occurs when some individuals are not in the target population included in the sample 

or because of duplication of selection, some individuals from the population frame. 

Non-observation error is the error resulting from the deletion of the intended 

measurements. This type of errors classified into under-coverage error and non-

response error. Under-coverage error arises when some individuals in the population 

cannot be in the sampling frame or cannot be invited or connected to participate in a 

survey. Non-response error occurs when selected people refuse to answer the survey 

questions.  All types of error mentioned above are common errors in the online survey; 

however, self-selection error (under-coverage error and sampling error) may be the 

most one occurs among all types of errors. 

1.4 Nonresponse Rates and Nonresponse Bias  

Nonresponse is the failure to find a response from the same individuals in a 

sample. It is of concern to survey methodologists and practitioners because complete 

response is assumed by the randomization or design-based theory that allows inference 
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from a sample to the target population. Nonresponse has ability to introduce bias into 

survey estimates and reduce the precision of survey estimates. As a result, survey 

practitioners make efforts to minimize nonresponse and its effects on inferences from 

sample surveys. However, even with the best efforts, there will be nonresponse; hence, 

it is essential to understand its potential effects and methods that can be used for limiting 

these effects (Brick JM, Montaquila JM, 2009).  

  When the difference between the answer of respondents and non-respondents 

are significantly different, the non-response may be considered as a real problem. In 

other words, non-response bias depends on both nonresponse rate and the difference 

between respondents and non-respondents. Non-response happens when a respondent 

does not answer certain items in the questionnaire or when a person does not accept to 

participate in a survey. (Ronad R. et al., 2015). 

Regarding how many response rate we need, there is no magic response rate number. 

The magic answer is: the survey results are representative to the population when the response 

rate is high; however, attaining these high response rates can be very costly. On the other hand, 

low response rates increase the likelihood that survey results will not be representative to the 

population as a whole (Ronald R. et al., 2015). 

 Elizabeth D. McInnis, BA, MA (2006) defined nonresponse bias as a bias that 

happens in survey results when the answer of respondents to a survey are different from 

the answer of those who did not respond in terms of some variable (eg. demographic 

variable or other variables measured by the survey. According to DDS Research, Inc., 

(2004) the existence of nonresponse bias is a threat to the external validity of research 

results. A general formula for measuring bias which present by Elizabeth D. McInnis, 

BA, MA (2006)  is: 

Bias (�̅�𝑟) =
𝑀

𝑁
 (�̅�𝑟 − �̅�𝑚),      (1.1) 
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Bias (�̅�𝑟) : The nonresponse bias of respondent mean; �̅�𝑟 : the mean of respondents in 

the target population; �̅�𝑚 : the mean of the no respondents in the target population, M: 

the number of no respondents in the target population, and: N: the total number in the 

target population. 

If we select a sample Bias (�̅�𝑟) = P (ý𝑟 – ým ) , where  𝑃:   non-response rate , 𝑦 is the 

answer based on observed responses;  𝑃 = ((𝑛 − 𝑟)/𝑛) 

Since (n) is the sample size, (r) is the number of respondents. ( Ý𝑟 ) is the respondent 

mean in the sample. (Ým ) is the non-respondent mean in the sample. 

Based on equation (1.1) which is provided by Elizabeth D. McInnis, BA, MA (2006), 

the increase in either non-response rate or in the difference between the observed and 

non-respondent answers will lead to an increase in bias. According to Robert M. Groves 

(2006), this expression indirectly assumed all other sources of bias are fixed. 

There is a growth in nonresponse rate as a result of using online survey to collect 

data, especially in social science, which has led to increased anxiety about the risk of 

non-response bias. Raphael Nishimura1 et al, (2016) provided in their simulation study 

a set of  indicators of when non-response bias is possible to occur and examine how 

each of these indicators performs in a variety of situations.  

Since non-response bias has an effect on generalizing sample results to the 

population, it is very important to discuss the identifying unit non-response bias in the 

next section.  

1.5 Identifying Non-Response Bias 

Related to Question mentioned in section 1.3 which is “How do we know if 

there is nonresponse bias?” Several studies have focused on answering this question 

(e.g. Sinibaldi, Trappmann, & Kreuter, 2014, Roberts, Vandenplas, & Ernst Stähli, 

2014). Some methods used to identify non-response bias are such as;  conducting a 
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nonresponse follow-up survey, comparing Initial and Late Respondents, comparing 

Survey results to known population parameters and using known database variables 

(Vandenplas et al. 2015). 

In some studies, (e.g., Sinibaldi, Trappmann, & Kreuter, 2014, Roberts, 

Vandenplas, & Ernst Stähli, 2014), non-response follow-up surveys (NRFS) are 

considered as a possible source of information about non-respondents. The advantage 

of NRFS is that the variables included in the survey can be chosen to be associated with 

response tendency and interest variables. However, it loses the benefit of having 

information about the entire sample, where there may still be a group of non-

respondents that participate neither in the main survey nor in NRFS. According to 

Roberts, Vandenplas, & Ernst Stähli (2014), the extent of this issue depends on how far 

these respondents to the NRFS differ from those non-respondents to the NRFS. This 

difference can be assessed with para data.  

To increase the response rate for non-response, these surveys should be short 

while still gathering useful information. It is therefore important to identify the most 

relevant questions to be a part of the survey  

1.6 Adjusting Non-Response Bias 

The methods of identifying non-response bias, which mentioned in the previous 

section, give us information about whether the bias exists or not. However, it does not 

give us any information about how we deal with it. In literature, several studies tried to 

reduce the non-response bias using different Adjustment methods (e.g. Robert M. 

Groves ,2006; Bethlehem, 2010; Ye Cong, 2012; Vera Toepoel & Matthias Schonlau 

,2017; Rueegg, et al. ,2017; Tianji Cai and Hongyu Wang, 2018). According to (Vera 

Toepoel & Matthias Schonlau , 2017) The purpose of the non-response adjustment is 

to remove or avoid non-response biases while maintaining the accuracy of the estimate. 



  

10 

 

The following procedures are used for adjusting non-response bias. 

1.6. 1 Weighting Adjustment 

Weighting adjustment is a method that attempts to improve the precision of 

survey estimates using auxiliary variable (Bethlehem, 2010). Assume that additional 

variables are available (e.g. demographic data) for all individuals of the population. 

Based on this available variable respondents and non-respondents sub-population are 

created. Weights are then calculated based on the proportions in each sub-population 

and applied to the respondents to reflect the total population. Comparisons on the 

variables of interest are made between adjusted and unadjusted weighted respondents. 

If there is a significant difference, then non-response bias is supposed to be existing and 

the weighting adjustments are the alternative way to reduce the bias of results.  

1.6.2 Stratified and Post- Stratified Sampling 

Stratification is another technique similar to weighting adjustment, except that 

the procedure uses population size instead of the total sample size (Lin and Schaeffer 

1995; Curtin, Presser, and Singer 2005) . Based on Robert M. Groves (2006, P. 11), 

comparison between respondents selected by any sampling technique in stage one and 

respondents selected by stratification in stage 2 is made.    

To draw a sample using stratified sampling design, the first step is to divide the 

population of size into groups of 𝑁1, 𝑁2, … . , 𝑁𝐿 units. These groups are called strata. 

The summation of these strata must be equal to the whole population, so that 𝑁1 + 𝑁2 +

· · · +𝑁𝐿 = 𝑁.  In stratified sampling, each stratum has a degree of homogeneity 

between its units and the researcher should also ensure that there is no overlaying 

among these strata. For the full benefit from stratified sampling design, the size of 

population (𝑁), should be known. When the strata have been determined, a sample is 

drawn from each, the selection being made independently in different strata. The 
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sample sizes within the strata are indicated by 𝑛1, 𝑛2, … , 𝑛𝑙 , respectively. If unites are 

selected from each stratum by simple random sample design, the whole process is 

defined as stratified random sampling (Ozturk O. ,2014). 

If the stratified sampling happened in the second stage of sampling, it is called 

post-stratified sampling, which is considered as a calibration estimation technique to 

reduce the estimator variance and to reduce the bias that occurs as a result of  non-

coverage and/or non-response (Cervantes et al., 2009). In a survey research, it is 

important to have a representative sample of the population. However, the absence of 

such a sample often occurs intentionally or unintentionally. 

For example, the distribution of a particular property such as demographic 

variables (age, education level, sex, nationality) may differ in the sample from the 

distribution of the population. When responses are linked to demographic variables, 

this leads to increase of the probability of bias, for the reason that statistical procedures 

will give greater weight to the variables that have high response arte. Post-stratification 

technique provides a solution to overcome this problem by stratifying the sample into 

a number of cells, based on important features of the population, and then more weight 

is given to respondents with low response rate and  less weight  is given to those with 

high response arte.  

Doss, et al. (1979( provided an equation for the post-stratification weights 

which can be used for one or more demographic variables based on the percentage of 

those variables for stratum in both the sample and the target population. The weight 𝑊𝑖 

for an component 𝑖 in stratum ℎ is equal to: 𝑊𝑖 =
(

𝑁ℎ
𝑁

)

(
𝑛ℎ
𝑛

)
   Where 𝑁 is the population 

size,  𝑁ℎ is the sub- population size for stratum ℎ, 𝑛 is the sample size, and 𝑛ℎ is the 

sample size in stratum ℎ. Specific weight is given to all elements in the same stratum. 

Note that this equation cannot be applied if the population proportions in each stratum 
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are not available  

A judgment post-stratification sample technique, discussed by Ozturk (2014), 

begins with a simple random sample and uses further experimental units to produce 

post-strata among the observations that are already measured. The creation of this 

sampling technique requires selecting a sample size 𝑛 and set size z. One then selects a 

simple random sample, 𝑋𝑖 ;  𝑖 =  1, … . 𝑛, of size 𝑛 and measures all of them. For the 

𝑖𝑡ℎ measured unit, a JPS sample needs 𝑧 − 1 additional units to form a set of size 𝑧. The 

units in this set are ranked from smallest to largest without a measurement, and the rank 

of the measured unit, on which Xi is already measured, is recorded. The full judgment 

post-stratification sample data then consists of 𝑛 measured values and 𝑛 ranks 

associated with these measured values, (𝑋𝑖, 𝑅𝑖), 𝑖 =  1, . . . , 𝑛, where 𝑅𝑖 is the rank of 

𝑋𝑖. 

Singh. S (2003) in his book (Advanced Sampling Theory with Application) 

defended post-stratification as a sampling design whereby a simple random sample is 

selected  with or without replacement and he provided equations for estimate the mean 

and the variance based on this sampling design. These equations will be mentioned in 

chapter two when we describe the new sampling design (see also appendix A and B). 

Finally, although there are many advantages for this approach, there are some weakness 

such as  the differences between respondents and non- respondents are assumed to be  

captured in the subgroups, and that there is no rule of thumb for comparing adjustments 

to determine which to use. In addition, some stratum include small number of response, 

so that if the sample unite from any stratum = 0, the value of 𝑛ℎ in the denominator will 

be zero and then the results will be infinite.  One of the solution of this issue is using 

inverse sampling for post-stratification design. This design suggested by Seber G.A.F., 

Salehi M.M. (2012) and it will be discussed in detailed in section 1.7 . 
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1.6.3 Other Adjustment Techniques  

There are several other techniques to control non-response bias such as 

propensity models, which require some information (such as demographics) to be 

known for the whole population or any calibration methods, which make the use of 

auxiliary variable data similar to the data from census ( Rueegg .C, et al. ,2017).  

In the Swiss Childhood Cancer Survivor Study which was conducted by Rueegg 

C., et al. (2017), a comparison was made on the features of those who responded 

without any reminder, late respondents responded with one reminder and those who did 

not respond at all. In addition, based on the information available from the Swiss 

Childhood Cancer Registry for all population, they compared observed prevalence of 

typical outcomes in responders to the expected prevalence in a complete representative 

population. The complete population is generated using inverse probability of 

participation weights in order to estimate the impact of nonresponse bias. Results of 

comparison show that, nonresponse bias has only a small impact on the results of 

childhood cancer survivor study, so that the researcher has confident to generalize the 

results of this study to the whole population . 

Ye Cong (2012, p .7) mentioned in his Ph. D Dissertation that, the high non-

response rate leads to low confidence in the results. Many researchers focused on the 

impact of nonresponse, which is considered as a big problem, because the true values 

for the non-respondents are mostly unknown. It is not easy to estimate the amount of 

non-response bias or to avoid it.  So many researchers focused their effort on developing 

effective adjustment sampling design to eliminate or at least reduce the impact of 

nonresponse bias.  

Ye Cong (2012) used two set of data containing  records for each individual in 

the list to assess the effectiveness of adjustment methods that developed to avoid 
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nonresponse bias; to examine sample quality indicators, and to study the relative 

amount of non-response bias under different techniques such response propensity 

weighting (RPW) and generalized regression weighting (GRW). 

 The results show that both RPW and GRW are not effective in reducing 

nonresponse bias present in the study data. There are also some declines in error, but 

these declines are limited. the result  shows that there is a small difference on same set 

of auxiliary variables between these two techniques.  Finally, the researcher found that  

comparing the bias of non-response to other types of errors indicated that bias of non-

response in these two sets of data may be greater than the bias of sampling and coverage 

errors, but measurement bias can be the largest, especially when sensitive questions are 

not answered.  

Another study by Tianji Cai and Hongyu Wang (2018) studied four familiar 

weighting adjustments: 1) logistic regression model, 2) response propensity 

stratification (RPS) method, 3) generalized exponential model (GEM), and 4) the 

random forests model (RFM) for longitudinal non-response.  

The results indicated a similarity in the results of the logistic regression model, 

the RPS and GEM method, while there was a slight difference in the results of  GEM 

and RPS methods in many cases, whereas the results obtained by RFM were not as 

reliable as those of other methods. For categorical variables, there were significant 

differences in cross-category bias while the total difference compared to the baseline 

was not significant. In addition, relative bias and mean square error changes if 

correlated to the specification of non-response model, the baseline weight, as well as 

the intervals between the baseline, and the wave for weighting adjustment. 

 In conclusion, any Researcher using sampling survey needs to feel confident 

that the results from analyses are speaking the truth by following some steps to ensure 
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the data meet certain standards. Among these steps: screener survey targets the specific 

audience he /she wants, takes many steps to ensure the samples contain the target we 

need, weights respondents to match specific population demographics, etc. However, 

one of the most over-looked problems is that of non-response bias.  

In practice, any Researcher using online survey cannot fix all the mentioned 

factors that affect the response rate, and then nonresponse bias exists. Based on Rueegg 

C, et al. (2017) this nonresponse bias affects inferences drawn from online surveys 

across different populations. Many studies such as  Lin and Schaeffer (1995), Groves 

(2006) investigated biased estimators as the result of non- response rate using different 

sampling methods. However, this study attempted to evaluate the non-response bias 

using a new technique named, Tow-phase Post-stratified Inverse Sampling Design.  

1.7 Follow up Post Stratified Inverse Sampling 

1.7.1 Post Stratification Sampling Design 

Post-stratification is a sampling technique, which is used in the case whereby 

researchers would like to stratify on a key variable, but they are unable to find the 

required units from some strata after the sample is selected. Personal characteristics 

such as marital status, income, nationality and educational level are common examples 

of a key variable. The procedure consists of the following three steps: Take a simple 

random sample; classify the above sample into strata; and use the classified data to 

estimate the unknown population parameter by the usual method of stratified random 

sampling (Hang K., CLiu J., Chien-Pai H ,1998).  

The post-stratification technique is somehow precise compared to simple 

random sample, if each stratum weight is known, and the sample is reasonably large 

(Cochran, 1977 & Scheaffer et al. 1990). However if the sample is small, the post-

stratification may raise the following question : What can a researcher do if there is no 

response from one or more stratum? Doss et al. (1979) have answered this question. 
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To discuss their answer, the notations used in their paper will first be introduced as 

follows: 

N:  population size ; Nh: h
th stratum size 

n:  sample size ; ; 𝑛ℎ sample size in hth stratum 

𝜇:  population mean ;𝜇ℎ: population mean of the hth stratum 

𝜎2
∶ population variance σh

2   variance of the hth stratum 

Yi:  value obtained for the ith unit in the 

sample 

; Yhj: value of the jth unit in the 

subsample 

L:  number of strata Wh:  h
th stratum weight  

𝑦:  sample mean  

s2:  sample variance 

stratum thsample mean of h : h
-y 

�̅�𝑝:  estimator of y by post stratification 𝑠ℎ
2

 : sample variance of  hth stratum 

Based on the aforementioned notations, the Doss et al. (1979) made use of the following 

formulae: 

𝜇 = ∑
 

𝑊ℎ 

𝑙

ℎ=1

𝜇ℎ, 𝑊ℎ =
𝑁ℎ

𝑁
, �̅�ℎ =

1

𝑛ℎ
∑ 𝑦ℎ𝑗  ,

𝑛ℎ

𝑗=1

 ℎ = 1,2, … … 𝐿, 

�̅� =
1

𝑛
∑

 
𝑦𝑖 

𝑛

ℎ=1

, �̅�𝑝 =  𝑊ℎ�̅�ℎ, 

Where �̅� and �̅�𝑏 are estimators of 𝜇 obtained from simple random sampling and post-

stratification (nh ≥ 1, h = 1,2 .... , L), respectively. It is worth noting that the sample 

size n of the first stage (simple random sample) is a fixed number, while the sample 

size nh taken in the second stage is considered as random variables. Let �̅�𝑐  (𝑙) be the 

estimator of 𝜇 under this procedure. Then, when L = 2, we have 

�̅�𝑐(2) = {
�̅�𝑝 , if 𝑛1,𝑛2 ≠ 0

�̅�,       otherwise.
                        (1.1)  

When L ≥ 3, they assume the following prior information throughout their paper so 

that it is easy to define 'neighboring strata'.  

(X1) 𝜇1 ≤ 𝜇2 ≤ ⋯ . . ≤ 𝜇𝑙.    (X2) 𝜇ℎ − 𝜇ℎ−1 ≤ 𝜇ℎ+1 −  𝜇ℎ ; ℎ =  2, … , 𝐿 − 1 
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The above assumptions are realistic in practical survey sampling. For example, to 

estimate the population income mean, it can be classified into three strata: lowest, 

medium and highest; and the differences among lower income levels are usually less 

than those among higher income levels. Under assumptions (X1) and (X2), the ℎ𝑡ℎ 

stratum is the 'neighboring stratum of the (h + 1)th stratum', ℎ =  1, … , 𝐿 −  1. )Chang 

et al. ,1998). 

1.7.2 Inverse Sampling Design 

Inverse sampling is an adaptive method used where the sampling is continued 

until a trigger number of units is attained (Salehi M. and Seber G.,2004, Enrico F., 

Tomasz Z. , 2018).  

Seber G., Salehi M. (2013) focused on more traditional inverse sampling where 

the sampling is ongoing until a fixed number of individuals has been obtained. They 

introduced Murthy’s estimator and gave a proof using the Rao-Blackwell theorem that 

allows the estimator to be used for more general sampling schemes. 

When Seber G., Salehi M. (2013, pp. 50, 51) providing the new prod of 

Murthy’s Estimator, they began by assuming that the sample size may be random and 

they define ν to be the number of distinct units in the sample so that 𝑠𝑅 =

 {𝑖1 , 𝑖2 , . . . , 𝑖𝜈 }, the unordered distinct units. Let 𝐽𝑖 be an indicator variable that takes 

the value 1 (with probability 𝑝𝑖) when the 𝑖𝑡ℎ unit is selected as the first unit, and 0 

otherwise. As [ 𝐽𝑖  ]  =  𝑝𝑖 , a trivial unbiased estimator of μ is given by” 

�̂� =
1

𝑁
∑

𝑦𝑖

𝑝𝑖
𝐽𝑖

𝑁

𝑖=1

  

Since 𝐷𝑅 , the random variable with value 𝐷𝑅  =  {(𝑖, 𝑦𝑖 ) ∶  𝑖 ∈  𝑠𝑅 } is sufficient 

statistics for θ = (y1 , y2 ,..., yN )   

 by Theorem provided in Thompson and Seber (1996) which is: 

https://link.springer.com/chapter/10.1007%2F978-3-642-33657-7_5#CR4


  

18 

 

“Consider an adaptive or conventional design in which the selection probability of the 

sample does not depend on any of the y-values outside the sample. (The probability 

may depend on y-values within the sample and may depend on the order of selection.) 

Then DR is a minimal sufficient statistic for θ)” (in Seber G., Salehi M, 2013, p. 28). 

Seber G. and Salehi M. (2013) also use the Rao-Blackwell theorem to obtain 

the unbiased estimator and as shown below. They approved that:  

�̂�𝑅𝐵 = �̂�𝑀 

As 𝑃(𝑆_𝑅 | 𝑖 ) = 0 if the unit 𝑖 is not in 𝑆𝑅 . We see then that �̂�𝑅𝐵  is Murthy’s estimate 

(Murthy 1957 in Seber G.A.F., Salehi M.M. (2012, p. 4) 

�̂�𝑀 =
1

𝑁
∑ 𝑦𝑖  

𝑃(𝑆𝑅|𝑖)

𝑃(𝑆𝑅) 

 𝑛 
𝑖=1  , 

𝑉𝑎�̂�[�̂�𝑀] =
1

𝑁2
∑ ∑ (

𝑃(𝑆𝑟|𝑖, 𝑗)

𝑃(𝑆𝑅)
−

𝑃(𝑆𝑅|𝑖)𝑃(𝑆𝑅|𝑗)

[𝑃(𝑆𝑅)]2 ) (
𝑦𝑖

𝑝𝑖
−

𝑦𝑗

𝑃𝑗
)

2

𝑃𝑖𝑝𝑗
𝑛
𝑗<𝑖

𝑛
𝑖=1  , 

Based on Lavrakas, P. J. (2008) and Tang M.L., Ng H.K.T. (2011), inverse sampling 

is taken from a negative binomial distribution in that a series of Bernoulli experiments 

are carried out until a predetermined number of successful cases occurs. Under this 

design, the total sample size is considered as a random variable. Based on the 

binomial distribution, the traditional estimates of the attribute’s probability occurrence 

are biased. However, it can be shown that if the total size of the sample is X, the 

unbiased amount of the minimum uniform variance is: 

 �̂� =
𝑟−1

𝑋−1
 

Tang M.L., Ng H.K.T. (2011) provided a Statistical Model and Inference for 

study using inverse sampling whereby they continue to select individuals until the pre-

determined number r (≥1) of certain characteristics of interest are obtained. They 

supposed that Y be the number of individuals without the characteristics of interest.  

Finally accumulated in the sample before we obtain the first r individuals which 
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are in order. They denote the probability of choosing the individuals with the 

characteristics of interest randomly as p, where 0 < p < 1; according to them  the random 

variable Y follows a negative binomial distribution with parameters r and p with 

probability mass function.  

𝑓(𝑦|𝑝) = Pr(𝑌 = 𝑦|𝑝) =  (
𝑟 + 𝑦 − 1

𝑦
) 𝑝𝑟(1 − 𝑝)𝑦 , 𝑦 = 0,1,2, … 

 In practice, they used the maximum likelihood estimator (MLE) and the uniformly 

minimum variance unbiased estimator (UMVUE) to estimate p.  

The MLE of p is given by: 

𝑝ˆ =
𝑟

𝑁
  

Where N= r + Y  is the total number of trails required to obtain the predetermined number r. 

Tang M.L., Ng H.K.T. (2011) Shaw that the variance of 𝑝ˆ is   

𝑉𝑎𝑟(�̂�) =
𝑃2(1 − 𝑃)

𝑟
 

  and noticed that MLE is actually a biased estimator of p and that UMVUE of 𝑝 can be 

obtained by: 

�̂� =
𝑟 − 1

𝑁 − 1
 

𝑣𝑎𝑟(�̂�) = (𝑟 − 1)(1 − 𝑃) [∑
(−𝑝)𝑘

(1 − 𝑝)𝑘(𝑟 − 𝑘)
− ( 

−𝑃

1 − 𝑝
)

𝑟

log(𝑝)
 

𝑟−1

𝑘=1

] − 𝑃2 

And an unbiased estimator of 𝑣𝑎𝑟(�̂�)𝑓𝑜𝑟 𝑟 > 2 is given by:  

𝑉�̂�𝑟(�̂�) =
�̂� (1 − �̂�

𝑁 − 2
       (𝑖𝑏𝑖𝑑) 

In the case of small samples, it is possible to attain zero sample sizes in some strata, 

which makes sample not representing the population effectively. Thus, Seber G., 

Salehi M (2012), tried to find a solution to this problem by a multiple inverse sampling 

scheme to ensure that each stratum has specified number of observations. Simulation 
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study was conducted to compare the estimator obtained from the multiple inverse 

sampling with some other estimators obtained from other sampling design. The 

multiple inverse sampling is more efficient compared to simple random sample in 

identifying unbiased estimator. 

Under a simple random sampling design, the ratio estimator would be 

undefined if all observations of the denominator variable are zero.  Moradi M., Salehi 

M.(2007) considered the inverse sampling design  as a natural solution to this  problem 

whereby  the researcher continues to take a sample  until at least a predetermined 

number of nonzero values is observed for the denominator variable. 

Salehi and Seber (2004) controlled the problem of an undefined ratio estimator 

by proposing general inverse sampling, which is a more realistic version of inverse 

sampling. They derived asymptotic unbiased estimator of the ratio and an approximate 

variance estimator for a general inverse sampling design using Taylor expansion. 

Based on a real population, simulation study was used to evaluate the efficiency of the 

developed estimator compered to SRS. . 

Moradi M. Salehi M, (2007) claimed that when the population is divided into 

two subpopulations, one of which contains only a few units, the appropriate technique 

to be used is an inverse sampling design. Using this design, they derive the Horvitz-

Thompson estimator for the population mean, where subpopulation size is known. 

They then introduced an alternative unbiased estimator, corresponding to post-

stratification design.   Using a simulation study, they found that the alternative 

estimator is an efficient estimator compared to the Horvitz-Thompson estimator (in 

Salehi M., 2012, p. 333). 

General inverse sampling is generally a more appropriate sampling design than 

SRS when the event of interest is rare, and when estimator of the parameter of interest 
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is likely to be undefined (Salehi M., 2012, p. 333  ( . In the past decade it has received 

considerable attention by Changet al (1998, 1999), Christman and Lan (2001) and 

Salehi & Seber (2001) to name a few among many others. One deficiency, however, 

is that the final sample size is not fixed, which makes it difficult to plan budgets and 

survey logistics. As a result, surveys having an inverse sampling design are rarely used 

in practice. To deal with this problem, Salehi and Saber (2004) proposed the following 

design: 

Suppose that we can select at least 𝑛0 and at most, 𝑛1units based on a minimum 

and a maximum budget. We first take an initial sample of size 𝑛0. If we have the pre-

determined number of events in the sample we would stop sampling. Otherwise we 

would keep sampling until we either achieve the pre-determined number of events or 

reach the sample size 𝑛1. This sample design is called general inverse sampling (GIS). 

Salehi and Saber (2004) used Taylor series approximation to derive for any sampling 

design an estimator of the ratio as well as its variance and its variance estimator based 

on the Murthy estimator. To accomplish this, they used the Murthy estimator for 

deriving the variance estimator.  Also they derived a formulation for general inverse 

sampling (in Moradi M., Salehi M. ,2007, pp.137 -138). 

For traditional inverse sampling, population is partitioned into two 

subpopulations with unknown sizes and usually one of the subpopulations is rare 

(Haldane, 1945; Christman and Lan 2001). Chang et al. (1998) introduced a multiple 

inverse sampling (MIS) and supposed that population can be partitioned into 

subpopulations (post-strata) with known sizes. He claimed that MIS may avoid the 

undesirable events of obtaining no sample unit or very small sampled units from some 

post-strata in post-stratified sampling design. 

Salehi & Chang (2005) used a Truncated Multiple Inverse Sampling (TMIS) 
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and developed estimators and their variance estimators for the proportions of 

subpopulations under this sampling design. Using a simulation study, they found out 

that the TMIS estimator is reasonably efficient for estimating the proportions of rare 

subpopulations. 

To ensure that a reasonable number of cases are obtained, the researcher 

considers the use of two-phase post-stratified inverse sampling (TPIS) design. This 

sampling design to be used will be discussed clearly in chapter two, using simulation 

to evaluate the developed estimator, based on a real population from Student 

Satisfaction Survey applied at Qatar University in 2017-18. Moreover, we compute its 

relative efficiency over the usual SRS estimator. 

1.8 Problem Statement and Research Questions:  

The Survey Section at Qatar University is responsible for conducting several 

types of surveys to evaluate QU services along with Key Performance Indicators (KPI). 

One of these surveys is Student Satisfaction Survey which  is  well-developed to assess 

the satisfaction rate among the  undergraduate student at QU. However, the estimation 

of satisfaction rates of this survey is bias due to non-response rate. Thus, this study 

focuses on finding solutions to how to decrease or perhaps eliminate the bias of the 

satisfaction rate estimator and its variance estimator, which results from non-response 

rate by using a new techniques named, Follow Up Inverse Sampling for Post Stratified 

Sampling Design to Deal with Non –Response Bias and comparing this technique with 

simple random sample. 

This study tries to answer the following two questions: 

Q1: Are there any significant differences between Response and Non-response student 

on the satisfaction rate estimator? 

Q2- By running a simulation study, what is the effectiveness of Two-phase Post-
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Stratified Inverse Sampling  (TPIS) Design compared to simple random sample? 

1.9 Research Objectives  

 This research aims to: 

- Assess Non-response bias in student satisfaction at Qatar University. 

- Develop a new sampling technique through post stratified with different methods of 

data collection in order to reduce or eliminate Non-response bias effects. 

- Investigate the effectiveness of this sampling design by running a simulation study and 

comparing this technique a simple random sample. 

1.10 Research Significance: 

This research is important for the following reasons: 

- The present research study may provide a new sampling design, which can be a 

benchmark for all Institutions. 

- The results of this research may supply institutional research at QU a new sampling 

method which will aid in decision-making. 

- The results of this research will provide the institutional research with 

recommendations and suggestions that may increase efficiency of implementation of 

this sampling technique in large institutions. 

- This research is considered an extension for other research works in the field of 

implementation of sampling techniques to collect accurate data. 
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CHAPTER 2: A NEW SAMPLING DESIGN 

2.1 Describing the Old Method Used by Institutional Survey Research Section at QU  

Institutional Survey Research Section (ISRS) at QU is responsible for 

conducting Institutional survey research  to measure QU KPIs and to provide the 

necessary indicators and evidences to decision makers to tackle areas of concerns. A 

summary of the procedures is described below: 

For data collection, Institutional Survey review committee reviews and 

approves the survey. Then the survey is designed on the Qualtrics (online survey 

software). A list of population is taken from Data warehouse, then the link of the survey 

is sent to all in the list. Several reminders with incentive is done to increase response 

rate. Then the online survey is closed. 

For Data Analysis in the old method, The data was download from the Qualtrics 

(an online software used by QU) and it was cleaned to be ready for Analysis. Response 

rate is calculated which has been found   to average  20% . Then we estimate the 

satisfaction survey university wide by calculating the weighted mean for all items. 

Moreover, the estimated satisfaction survey is calculated also for gender, nationality, 

colleges, and programs from those who respond to the survey. 

This method has been criticized by many    owners as a result of low response 

rate especially for some programs which leads to high nonresponse bias. So that this 

research focuses on finding a new method to deal with non-response bias by finding a 

good estimator for Student Satisfaction at QU 

 2.2 New Methods Used to Deal with Non-Response Bias. 

2.2.1 Phase 1: Census  

The survey questionnaire is sent to all population members, say𝑁. Assume that 

𝑁𝑟 members respond to the questionnaires after several reminders. Thus, the population 

is partitioned into two subpopulations of  𝑁𝑟 responses and 𝑁𝑛 = 𝑁 − 𝑁𝑟 nonresponses. 
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We therefore have all information about response subpopulation and we should try to 

get some information about the nonresponse subpopulation. We assume that the entire 

population can also be partitioned in to L strata and we would like to estimate the mean 

population for these 𝐿 strata on top of estimating the mean population.   

2.2.2 Phase 2: Inverse Sampling for Post-Stratified Design 

  In order to collect some information from the nonresponse subpopulation, we 

change the data collection method to a more intensive method (e.g. from email to 

phone) to get response from the nonresponse subpopulation in the phase one. A Simple 

Random Sample (SRS) of size 𝑛𝑛
′  is taken from the nonresponse subpopulation. We 

now post-stratify the sample into 𝐿 strata and let 𝑛𝑛𝑟𝑖
′  be the responses from stratum 

𝑖, for 𝑖 = 1, ⋯ 𝐿. Let 𝑛𝑛𝑛𝑖
′ be nonresponses from stratum 𝑖.  We therefore have  𝑛𝑛

′ =

∑ (𝑛𝑛𝑟𝑖
′𝐿

𝑖=1  + 𝑛𝑛𝑛𝑖
′ ). Let 𝑛𝑛𝑟 = ∑ 𝑛𝑛𝑟𝑖

′𝐿
𝑖=1   be the number of responses from the 

nonresponses in the first phase.  At this stage, we assume that the response rate at this 

phase is reasonably high but not perfect such that the nonresponse bias is ignorable. 

This can be achieved by more follow ups. Since 𝑛𝑛𝑟𝑖
′  is random and can be very small 

such that the sample size creates problem to analysis the data at each stratum level we 

keep sampling from those strata for which  𝑛𝑛𝑟𝑖
′  is smaller than 10% of 𝑁𝑛𝑖, the 

population size for stratum 𝑖 for nonresponse in the first phase, until we reach the 

triggered size of response 𝑛𝑛𝑟𝑖 = 0.1𝑁𝑛𝑖.  

The first objective is to derive an estimator for the mean population, say µ which can 

be written as, 

𝜇 =
𝑁𝑟𝜇𝑟 + 𝑁𝑛𝜇𝑛

𝑁
 ,  

 where 𝜇𝑟 will be known after survey and we should estimate 𝜇𝑛.  

We now introduce the notations used in this chapter: 

N  : Number of population size;   
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N: Population size;   Nr: Responding sub-population  size;   

 𝑁𝑛: non- respondents sup-population;   

Nni :the 𝑖𝑡ℎ  stratum size in the non-response sup-population; 

L: Number of strata (Academic Programs)   

𝑛′𝑠𝑟 : Size of simple random sample selected from the non-response sup-population 

𝑁𝑛 . 

 𝑛𝑛𝑖 
′ : sample size in 𝑖𝑡ℎ stratum collected by SRS; 𝑖 =  1,2, … , 𝐿 

𝑛𝑖 : The required  sample size in 𝑖𝑡ℎ stratum collected by follow-up inverse sampling.  

𝑛𝑛𝑟
′ : Initial sample size selected by SRS,    𝑛+ “the predetermined minimum sample 

size from each program that we call it trigger. 

𝑛𝑛𝑟: The effective sample size size from all strata in non-response sup-population under 

TPIS  

𝑛𝑟 = 𝑁𝑟 :  Number of respondents from the first stage 

𝑦𝑟𝑖𝑗 :  The overall satisfaction of 𝑗𝑡ℎ   unit in 𝑖𝑡ℎ stratum in the responding subpopulation 

(𝑁𝑟) 

𝑦𝑛𝑖𝑗  : The overall satisfaction of 𝑗𝑡ℎ   unit in 𝑖𝑡ℎ stratum in the nonresponding sup-

population (𝑁𝑛) 

𝜇𝑟 : Respondents sup population mean ;  �̂�𝑛 ∶ The estimated  mean for non-respondents 

sup-population    

yij : Value obtained for the 𝑖𝑡ℎ unit in the 𝑖𝑡ℎstartum;  �̅�𝑖 : The mean of 𝑖𝑡ℎ  stratum ;  

𝜇 : Population mean ;   𝜎 ∶ Population variance 

𝜎1:  Variance of respondents population;   𝜎2 :  Variance of Non-respondents population   

𝑆𝑖
2  : Variance of 𝑖𝑡ℎ  stratum;    Wi : Weight of the 𝑖𝑡ℎstratum 

According post-stratify theorem, an unbiased estimator is  
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�̂�𝑛 = ∑
𝑁𝑛𝑖

𝑁𝑛
�̂�𝑛𝑖

𝐿

𝑖=1

, 

where, �̂�𝑛𝑖 is an unbiased estimator of 𝜇𝑛𝑖 the population mean for stratum 𝑖 of the first 

phase (Appendix A).   

For those strata that sample sizes are greater than or equal to 0.1𝑁𝑛𝑖, we do not 

take extra samples so that 𝑛𝑛𝑟𝑖 = 𝑛𝑛𝑟𝑖
′    and with assumption of the nonresponse being 

ignorable an approximate unbiased estimator of 𝜇𝑛𝑖 can be written as: 

�̂�𝑛𝑖 = �̅�𝑛𝑟𝑖 = ∑
𝑦𝑛𝑖𝑗

𝑛𝑛𝑟𝑖
′

𝑛𝑛𝑟𝑖
′

𝑗=1

 

where, 𝑦𝑛𝑖𝑗 is the variable of interest for unit 𝑗 in stratum 𝑖 for nonresponse 

subpopulation in the first phase. For those strata that response sizes are smaller 

than 0.1𝑁𝑛𝑖, we keep sample to reach the triggered response in the second phase size 

𝑛𝑛𝑟𝑖 = 0.1𝑁𝑛𝑖. 

From (Salehi and Seber; 2004) an unbiased estimator of 𝜇𝑖𝑛 is 

�̂�𝑛𝑖 = �̂�𝑖�̅�𝑛𝑟𝑖 + (1 − �̂�𝑖)�̅�𝑛𝑛𝑖 (1) 

where �̂�𝑖 = 𝑛𝑛𝑟𝑖/𝑛𝑛𝑖
∗ , where 𝑛𝑛𝑖

∗  is the total sample size from stratum 𝑖 until we get 𝑛𝑛𝑟𝑖 

responses, and �̅�𝑛𝑟𝑖and   �̅�𝑛𝑛𝑖 the sample means of responses and nonresponses from  

the  second phase respectively. Assuming the second phase nonresponse is ignorable, 

which can be achieved by more follow ups , �̂�𝑖 ≈ 1 and an approximate unbiased 

estimator for these strata are also the sample  mean. 

�̂�𝑛𝑖 = �̅�𝑛𝑟𝑖 = ∑
𝑦𝑛𝑖𝑗

𝑛𝑛𝑟𝑖

𝑛𝑛𝑟𝑖

𝑗=1

 

Therefore, 

�̂�𝑛 = ∑
𝑁𝑛𝑖

𝑁𝑛
�̅�𝑛𝑟𝑖

𝐿

𝑖=1

 

Consequently, an approximate unbiased estimator is  
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�̂� =
𝑁𝑟

𝑁
𝜇𝑟 +

𝑁𝑛

𝑁
�̂�𝑛                                                                                        ( 2.1)  

Its approximate variance is, 

𝑉𝑎𝑟(�̂�) = 𝑉𝑎𝑟 (
𝑁𝑟

𝑁
𝜇𝑟 +

𝑁𝑛

𝑁
�̂�𝑛) = 𝑉𝑎𝑟 (

𝑁𝑛

𝑁
�̂�𝑛)    = (

𝑁𝑛

𝑁
)

2

𝑉𝑎𝑟 (�̂�𝑛)                   (2.2)   
          

 

To find 𝑉𝑎𝑟(�̂�𝑛), 𝑤𝑒 use the terminology of Sarjinder Singh (2003), for the post 

stratifications used in phase 2 [See appendix ( B)] who proved that: 

𝑉𝑎𝑟(�̂�𝑛) = (
𝑁𝑛 − 𝑛𝑛𝑟

𝑛𝑛𝑟 ∗ 𝑁𝑛
)   ∑ (

𝑁𝑛𝑖

𝑁𝑛
)

𝐿

𝑖=1

𝜎𝑛𝑖
2

+
1

𝑛𝑛𝑟
2

(
𝑁𝑛 − 𝑛𝑛𝑟

𝑁𝑛 − 1
) ∑ (

𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
) 𝜎𝑛𝑖

2

𝐿

𝑖=1

                  (2.3) 

On substituting (2.3) in (2.2 ), 

  𝑉𝑎𝑟 (�̂�) = (
𝑁𝑛

𝑁
)

2

[(
𝑁𝑛−𝑛𝑛𝑟

𝑛𝑛𝑟∗𝑁𝑛
)   ∑ (

𝑁𝑛𝑖

𝑁𝑛
)𝐿

𝑖=1 𝜎𝑛𝑖
2 +

1

𝑛𝑛𝑟
2 (

𝑁𝑛−𝑛𝑛𝑟

𝑁𝑛−1
) ∑ (

𝑁𝑛−𝑁𝑛𝑖

𝑁𝑛
) 𝜎𝑛𝑖

2𝐿
𝑖=1 ] 

An approximate variance estimator is:  

𝑉𝑎�̂�(�̂�) =   (
𝑁𝑛

𝑁
)

2

[(
𝑁𝑛 − 𝑛𝑛𝑟

𝑛𝑛𝑟 ∗ 𝑁𝑛
)   ∑ (

𝑁𝑛𝑖

𝑁𝑛
)

𝐿

𝑖=1

𝑠𝑛𝑖
2 +

1

𝑛𝑛𝑟
2 (

𝑁𝑛 − 𝑛𝑛𝑟

𝑁𝑛 − 1
) ∑ (

𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
) 𝑠𝑛𝑖

2

𝐿

𝑖=1

]  (2.2) 

 Where  

𝑠𝑛𝑖
2 = (

1

𝑛𝑛𝑟𝑖−1
) ∑(

𝐿

𝑖=1

𝑦𝑛𝑖𝑗 − �̅�𝑛𝑟𝑖)
2 

A pictorial representation of two-phase post-stratified inverse sampling scheme is 

given in Figure 2.1. 
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Figure 2.1 Two-phase post -stratified inverse sampling design 

SRS 
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CHAPTER 3: CASE STUDY 

This chapter is dedicated to a case study to generate the population data that will 

be used for simulation studies in Chapter 4; in addition , the data collected from case 

study is also used for evaluating the new design(TPIS) using the real data. 

3.1 Estimation of Student Satisfaction by the New Design Using Case Study 

3.1.1 Collecting data using Student Satisfaction Survey 

The first (and possibly most important) step in reducing non-response bias is to 

create a properly designed survey. Whether it is online or by phone, the design of the 

survey can have a large impact on whether a respondent chooses to participate in the 

survey, and to what extent they complete the survey (Fuchs M, Bossert D, Stukowski 

S. ,2013). In this research, the researcher collects the data using the Student Satisfaction 

Survey for 2017 academic year which is used by Institutional Research and Analytics 

Department at Office of Chief Strategy & Development- Qatar University . This survey 

aims to estimate the students’ satisfaction on services offered by Qatar University.  

For each item in the survey, the students were asked to response a 4-point Likert-

type scale with the following weighs: (1) strongly dissatisfied, (2) somewhat 

dissatisfied, (3) somewhat satisfied, (4) strongly satisfied. The survey validity and 

reliability are tested, achieved and presented in Appendix (C). Having ensured that the 

survey is valid and reliable, the researcher started collecting the data by applying the 

new sampling Design [Two-Phase Post-stratified inverse sampling (TPIS)] explained 

in chapter two. In the following section 3.2 the researcher explained this new sampling 

design.  

3.2 Applying the New Design: (TPIS) 

3.2.1 Phase 1: Collecting Data from Census (Old method) 

The Student Satisfaction Survey was sent to all student (population 𝑁 =

16979 ). Some students responded to the online survey after several reminders (five 
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reminders), the number of students responded to the survey is (𝑁𝑟 = 3278). The 

response rate from this stage is 19%, which is approximately similar to the previous 

years. Figure (3.1) represents the cumulative response rate based on number of 

reminders and time. As shown in the figure (3.1) sending a reminder has been stopped 

at the fifth reminder because at the last reminders the changes in response rate is very 

small.  

 

 

Figure 3.1  Cumulative response rate based on number of reminders and time 

 

This step is similar to the old method used in the previous years to collect data 

through survey. Now, when the researcher stopped collecting data through e-mail, the 

population is partitioned into two subpopulations of 𝑁𝑟 = 3278 responses and 

𝑁𝑛 = 𝑁 − 𝑁𝑟 = 13701 nonresponses. The researcher therefore has all information 

about response subpopulation 𝑁𝑟 and an attempt was made to get some information 

about the nonresponse subpopulation of size 𝑁𝑛. The entire population can also be 

partitioned into programs as strata (L= 51) and we would like to estimate the mean 

population for these 𝐿 programs on top of estimating the mean population.  
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3.2.2 Phase 2: Post-stratified Inverse Sampling (PIS) 

  In order to collect some information from the nonresponse subpopulation 

(𝑁𝑛), 𝑤𝑒 change the data collection method to a more intensive method (e.g. from 

email to phone) to get response from the nonresponse subpopulation in the phase one. 

A Simple Random Sample (SRS) of size 𝑛𝑛
′  = 1000 is taken from the nonresponse 

subpopulation, and then we send the survey for them by e-mail followed by phone 

calling including several incentives. We now post-stratify the respondents from the 

sample into 𝐿 program= 51 and let 𝑛𝑛𝑟𝑖
′  be the responses from program 𝑖, for 𝑖 =

1, ⋯ 51. Let 𝑛𝑛𝑛𝑖
′ be nonresponses from program 𝑖. We therefore have 𝑛𝑛

′ = ∑ (𝑛𝑛𝑟𝑖
′𝐿

𝑖=1  

+ 𝑛𝑛𝑛𝑖
′ ). Let 𝑛𝑛𝑟 = ∑ 𝑛𝑛𝑟𝑖

′𝐿
𝑖=1  be the number of responses from the nonresponses in the 

first phase.  

At this stage, the response rate a proximately 50% (492/ 1000) which is 

reasonably high compared to the first stage (19%) but not perfect such that the 

nonresponse bias is ignorable. This can be achieved by more follow-ups. Since 𝑛𝑛𝑟𝑖
′  is 

random and can be very small such that the sample size creates problem to analysis the 

data at each program level we keep sampling from those programs for which 𝑛𝑛𝑟𝑖
′  is 

smaller than 7 of 𝑁𝑛𝑖, the population size for program 𝑖 for nonresponse in the first 

phase, until we reach the triggered size of response 𝑛𝑛𝑟𝑖 = 7.  

To estimate the mean of student satisfaction for the population (µ), we calculate the 

𝜇𝑟 from first phase, then we calculate the estimated men �̂�𝑛 for non-response students. 

According post-stratify theorem, an unbiased estimator is  

�̂�𝑛 = ∑
𝑁𝑛𝑖

𝑁𝑛
�̂�𝑛𝑖

𝐿

𝑖=1

, 

Using the equation (2.1),  
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𝜇 = (𝑁𝑟𝜇𝑟 + 𝑁𝑛

𝜇𝑛

𝑁  
 

  where 𝜇𝑟 will be known after survey and we should estimate 𝜇𝑛.  

For those programs that sample sizes are greater than or equal to 7, we do not 

take extra samples so that 𝑛𝑛𝑟𝑖 = 𝑛𝑛𝑟𝑖
′   and with assumption of the nonresponse being 

ignorable an approximate unbiased estimator of 𝜇𝑛𝑖 can be written as 

�̂�𝑛𝑖 = �̅�𝑛𝑟𝑖 = ∑
𝑦𝑛𝑖𝑗

𝑛𝑛𝑟𝑖
′  

𝑛𝑛𝑟𝑖
′

𝑗=1

 

where, 𝑦𝑛𝑖𝑗 is the satisfaction rate of student 𝑗 in program 𝑖 for nonresponse 

subpopulation in the first phase. For those program that response sizes are smaller 

than 7, we keep sample to reach the triggered response in the second phase size 𝑛𝑛𝑟𝑖 =

7. 

an unbiased estimator of 𝜇𝑛𝑖 is: 

�̂�𝑛𝑖 = �̅�𝑛𝑟𝑖 = ∑
𝑦𝑛𝑖𝑗

𝑛𝑛𝑟𝑖

𝑛𝑛𝑟𝑖

𝑗=1

 

Therefore,  

�̂�𝑛 = ∑
𝑁𝑛𝑖 

𝑁𝑛

𝐿

𝑖=1
 �̅�𝑛𝑟𝑖 

Consequently, an approximate unbiased estimator is  

�̂� =
𝑁𝑟

𝑁
𝜇𝑟 +

𝑁𝑛

𝑁
�̂�𝑛. 

To calculate the approximate variance estimator for population �̂�𝑎𝑟(�̂�), we using 

equation (2.2)  

𝑉𝑎�̂�(�̂�) =  (
𝑁𝑛

𝑁
)

2

[(
𝑁𝑛 − 𝑛𝑛𝑟

𝑛𝑛𝑟 ∗ 𝑁𝑛
)  ∑ (

𝑁𝑛𝑖

𝑁𝑛
)

𝐿

𝑖=1

𝑠𝑛𝑖
2 +

1

𝑛𝑛𝑟
2

(
𝑁𝑛 − 𝑛𝑛𝑟

𝑁𝑛 − 1
) ∑ (

𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
) 𝑠𝑛𝑖

2

𝐿

𝑖=1

]  

where 
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𝑠𝑛𝑖
2 = (

1

𝑛𝑛𝑟𝑖
) ∑(

𝐿

𝑖=1

𝑦𝑛𝑖𝑗 − �̅�𝑛𝑟𝑖)
2 

The results of this case study will be presented in the next section. 

 

3.3 Results of CAS Study 

3.3.1 Estimating the mean of Student Satisfaction using TPIS design 

The survey was sent to all population, then 𝑁 = 16979  

From phase 1: we found that, , 𝑁𝑟 = 3278, and 𝜇𝑟 = ∑ 𝑦𝑖
3278
1  = 3.43300  

From phase 2: we found that: 

  𝑁𝑟 = 3278,  𝑁𝑛 = 13701, 𝑛𝑛(𝑠𝑟𝑠)
′ = 1000, 𝑛𝑛𝑟

′ = 492 , 𝑛𝑛𝑟
′ = 492 , 𝑛𝑛𝑟 = 560 ,  

To estimate the �̂� 𝑎𝑛𝑑 �̂�(�̂�),  we recorded and organized the data needed and collected 

from phase 2  in table 3.1 below 

 

Table 3.1 Data collected from nonresponse subpopulation by program. 

Program 𝑁𝑛𝑖 𝑛𝑛𝑟𝑖
′  𝑛𝑛𝑛𝑖

′  𝑛𝑛𝑟𝑖 �̅�𝑛𝑟𝑖 𝑤 ∗ 𝑦 ̅ 𝑠𝑛𝑟𝑖
2  𝑤 ∗ 𝑠𝑛𝑟𝑖

2  
𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
∗ 𝑠𝑛𝑟𝑖

2  
1 395 14 381 14 3.5714 0.1030 0.2637 0.0076 0.2561 

2 83 12 71 12 3.7500 0.0227 0.3864 0.0023 0.3840 

3 115 9 106 9 3.3333 0.0280 0.5000 0.0042 0.4958 

4 78 5 73 12 3.8333 0.0218 0.1515 0.0009 0.1507 

5 87 13 74 13 3.5385 0.0225 0.2692 0.0017 0.2675 

6 253 11 242 11 3.6364 0.0671 0.2545 0.0047 0.2498 

7 109 14 95 14 3.6429 0.0290 0.2473 0.0020 0.2453 

8 184 6 178 11 3.0000 0.0403 0.6000 0.0081 0.5919 

9 202 12 190 12 3.0833 0.0455 0.6288 0.0093 0.6195 

10 142 14 128 14 3.0000 0.0311 0.6154 0.0064 0.6090 

11 177 6 171 9 3.2222 0.0416 0.4444 0.0057 0.4387 

12 95 8 87 8 3.5000 0.0243 0.2857 0.0020 0.2837 

13 18 5 13 10 3.5000 0.0046 0.5000 0.0007 0.4993 

14 269 15 254 15 3.1333 0.0615 0.4095 0.0080 0.4015 

15 213 9 204 9 3.5556 0.0553 0.5278 0.0082 0.5196 

16 187 16 171 16 3.2500 0.0444 0.3333 0.0045 0.3288 

17 106 8 98 8 3.1250 0.0242 0.4107 0.0032 0.4075 

18 228 15 213 15 3.4667 0.0577 0.2667 0.0044 0.2622 

19 1521 11 1510 11 3.6364 0.4037 0.4545 0.0505 0.4041 
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Program 𝑁𝑛𝑖 𝑛𝑛𝑟𝑖
′  𝑛𝑛𝑛𝑖

′  𝑛𝑛𝑟𝑖 �̅�𝑛𝑟𝑖 𝑤 ∗ 𝑦 ̅ 𝑠𝑛𝑟𝑖
2  𝑤 ∗ 𝑠𝑛𝑟𝑖

2  
𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
∗ 𝑠𝑛𝑟𝑖

2  
20 1821 12 1809 12 3.5833 0.4763 0.4470 0.0594 0.3876 

21 614 10 604 10 3.5000 0.1568 0.2778 0.0124 0.2653 

22 55 5 50 11 3.2727 0.0131 0.2182 0.0009 0.2173 

23 85 6 79 7 3.1429 0.0195 0.4762 0.0030 0.4732 

24 35 4 31 12 3.3333 0.0085 0.2424 0.0006 0.2418 

25 228 12 216 12 3.6667 0.0610 0.2424 0.0040 0.2384 

26 354 14 340 14 3.5000 0.0904 0.4231 0.0109 0.4121 

27 68 4 64 7 3.4286 0.0170 0.2857 0.0014 0.2843 

28 134 12 122 12 3.5833 0.0350 0.4470 0.0044 0.4426 

29 89 8 81 8 3.2500 0.0211 0.5000 0.0032 0.4968 

30 237 9 228 9 3.0000 0.0519 0.5000 0.0086 0.4914 

31 356 10 346 10 3.4000 0.0883 0.9333 0.0243 0.9091 

32 140 11 129 11 3.6364 0.0372 0.2545 0.0026 0.2519 

33 1115 11 1104 11 3.5455 0.2885 0.4727 0.0385 0.4343 

34 379 15 364 15 3.7333 0.1033 0.3524 0.0097 0.3426 

35 52 5 47 10 3.5000 0.0133 0.2778 0.0011 0.2767 

36 336 13 323 13 3.1538 0.0773 0.9744 0.0239 0.9505 

37 467 11 456 11 3.4545 0.1177 0.4727 0.0161 0.4566 

38 221 11 210 11 3.2727 0.0528 0.2182 0.0035 0.2147 

39 103 9 94 9 3.0000 0.0226 0.5000 0.0038 0.4962 

40 73 5 68 11 3.7273 0.0199 0.2182 0.0012 0.2170 

41 383 9 374 9 3.3333 0.0932 0.7500 0.0210 0.7290 

42 430 12 418 12 3.5000 0.1098 0.2727 0.0086 0.2642 

43 167 11 156 11 3.2727 0.0399 0.6182 0.0075 0.6106 

44 73 5 68 10 3.5000 0.0186 0.2778 0.0015 0.2763 

45 136 9 127 9 3.5556 0.0353 0.2778 0.0028 0.2750 

46 337 11 326 11 3.6364 0.0894 0.2545 0.0063 0.2483 

47 211 10 201 10 3.4000 0.0524 0.2667 0.0041 0.2626 

48 331 11 320 11 3.6364 0.0879 0.4545 0.0110  0.4436 

49 61 4 57 11 3.5455 0.0158 0.2727 0.0012  0.2715  

50 85 6 79 8 3.2500 0.0202 0.7857 0.0049 0.7808  

51 63 4 59 9 3.3333 0.0153 0.5000 0.0023 0.4977  

Total 13701 492 13209 560 3.4776 0.4171 0.4389  20.575  

 

 

�̂�𝑛 = ∑
𝑁𝑛𝑖 

𝑁𝑛

𝐿
𝑖=1  �̅�𝑛𝑟𝑖 = 3.47757    

�̂� =
𝑁𝑟

𝑁
𝜇𝑟 +

𝑁𝑛

𝑁
�̂�𝑛 =

3278

16979
∗ 3.43300 +

13701

16979
∗3.47757 = 3.468968 

95% CI = �̂� ± 𝑧 ∗ √(
𝑉𝑎𝑟

𝑛
) = 3.468968 ± 1.96 ∗ √(

0.4389

560
) = 3.468968 ± 0.054871 

 

3.523839 ≥  𝜇 ̂ ≤3.414097 

 

We found that the 𝜇�̂�  = 3.447757 is greater than the 𝜇𝑟 = 3.43300, which mean 
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that those who did not respond in the first phase has higher satisfaction than those who 

responded in the first phase. Our interpretation to this difference, those who response 

in first phase may have some issues about the services provided by Qatar University 

and they need to rise their sound to the QU leaders. 

3.3.2 Estimating of the Overall variance of Student Satisfaction using invers sampling 

for post stratified design  

To estimate the variance of student satisfaction based on the new design (TPIS), 

we used the data collected from Phase 1 and phase 2 and the formula 2.2 which is: 

 

All components of the variance equation above are calculated based on the data 

collected in Phase one and Phase 2 which presented in the previous section (Table 3.1). 

Summary results for the variance equation components derived from table 3.1 are 

presented in table 3.2 .  

 

Table 3.2  Summary results for the variance equation components derived from case 

study. 

𝑁= 16979 (𝑁𝑛 − 𝑛𝑛𝑟)/(𝑛𝑛𝑟 ∗ 𝑁𝑛) = 0.0017 

𝑁𝑛 = 13701 (𝑁𝑛 − 𝑛𝑛𝑟)/(𝑁𝑛 − 1) = 0.9592 

𝑛𝑛𝑟 560 𝑠𝑢𝑚((
𝑁𝑛𝑖

𝑁
) 𝑆𝑛𝑖

2  = 0.43890 

(
1

𝑛𝑛𝑟
)

2

 0.32000                       
𝑁𝑛−𝑁𝑛𝑖

𝑁𝑛
 𝑆𝑛𝑖

2  
20.57524 

(
𝑁𝑛

𝑁
)

2

 0.65115 𝑉𝑎�̂�(�̂�)  
0.000530 

 

 

By substituting the values in table 3.2 in variance equation above,  

We found that : 𝑉𝑎�̂�(�̂�) = 0.000530. This value is very small compared to the variance 
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calculated from Phase one alone (old methods) 𝑉𝑎𝑟 (𝜇𝑟) = 0.444. 

This mean that the new design is beater for estimating the student satisfaction compared 

to the old methods. 

3.3.3. Evaluating the Bias of Non-respondents on Student Satisfaction  

In a survey research, there are several ways to evaluate the non-response bias as 

mentioned in the literature review in chapter 1(section 1.4.2).One way is following up 

on non-respondents which is considered an excellent way to reduce the non-response. 

Because late-respondents, or those that respond after several attempts, are theorized to 

have some similarities with non-respondents. One approach to evaluate whether there 

is non-response bias or not, the population may be divided into two sup-populations 

(Response and non-response), then the comparison between the estimated variable from 

response and the estimated variable from nonresponse subpopulations is made. If there 

is a significant difference between two estimated of the variable, this means that, the 

nonresponse bias is existing, otherwise not. 

 In our case study, we compare the mean of student satisfaction for those who response 

in the first phase (response sup-population) with the mean of student satisfaction 

estimated in Phase two (nonresponse subpopulation). In other words, we try to evaluate 

the non-response bias by testing the following null hypothesis: 𝐻0 ∶ 𝜇𝑟 −  𝜇𝑛 = 0, The 

alternative hypothesis is 𝐻1 ∶ 𝜇𝑟 −  𝜇𝑛 ≠ 0 

 Z test was used to test the null hypothesis. Using the following equation: 

𝑍 =
�̂�𝑛𝑟−𝜇𝑟

√𝑉 ̂𝑎𝑟(�̂�)
             (3.1) 

   By substituting the values in table 3.2 in equation 3.1   

𝑍 =
�̂�𝑛𝑟 − 𝜇𝑟 − 

√𝑉 ̂𝑎𝑟(�̂�)
=

3.43300 − 3.477573

√0.0005
=   1.940237209  

The value of Z shows that the estimated mean of overall satisfaction was higher for the 
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nonresponse groups than the response groups but the difference was not statistically 

significant at level of 𝛼 = 0.05 but significant at level of 𝛼 = 0.10.  

  The non-response bias of estimator in terms of programs are also evaluated by 

comparing the satisfaction mean of students in each program who responded in the first 

phase and those who responded in the second phase. The results show that there is a 

significant difference between the two means of respondents in the first Phase and non-

respondents in the second for 13 programs out of 51 (25%). The significant differences 

mean that our estimation of the student satisfaction is biased for 25% of program. This 

means that we reject the null hypothesis:  for 13 programs and accept the alternative 

hypothesis  

Table 3.3 presents the results of programs that have z values that have 

significant differences between two means of respondents and non-respondents and the 

z test results for all programs are posted in the appendix C. 

 

Table 1.3 Evaluating non-response bias by program using z-test 

𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠 𝑁𝑟𝑖  𝑛𝑛𝑟𝑖 (𝜇𝑟𝑖) 𝜇𝑛𝑟𝑖 𝑉𝑎�̂�(�̂�) 𝑧 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

Computer Science 51 14 3.4510 3.0000 0.0048 6.5401 0.0000 

General Pharmacy 25 12 3.5600 3.3333 0.0014 6.1355 0.0000 

General Health Sciences 25 11 3.5200 3.2727 0.0021 5.3963 0.0000 

Social Work 19 10 3.7368 3.4000 0.0053 4.6144 0.0000 

Health Sciences Foundation 20 7 3.8000 3.4286 0.0084 4.0419 0.0001 

Industrial and Systems Eng. 45 9 3.3556 3.0000 0.0114 3.3294 0.0009 

Computer Engineering 87 12 3.3448 3.0833 0.0067 3.1945 0.0014 

Dawa 35 9 3.5143 3.2222 0.0096 2.9741 0.0029 

Psychology 50 11 3.5000 3.2727 0.0083 2.4970 0.0125 

Civil Engineering 136 11 3.1765 3.0000 0.0061 2.2575 0.0240 

Education Foundation 8 10 3.6250 3.5000 0.0033 2.1779 0.0294 

English Literature 64 16 3.3438 3.2500 0.0021 2.0234 0.0430 

General Education 148 10 3.6554 3.5000 0.0062 1.9758 0.0482 
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Since the non-response bias exists for several programs, this means that the old 

method explained in chapter two needs to be changed. This research attempts to find a 

solution to reduce the bias existing in the old method (only collecting data by e-mail as 

first phase) by creating a new design called TPIS  and we consider it as an important 

contribution of this research. So that, we need to evaluate the bias estimators based on 

this new design by generating data and simulations. Section 3.4 will focus on the 

generating population by linking survey respondents to non-respondents while chapter 

four will focus on the simulation to evaluate the bias estimator for mean and variance. 

In addition, it will evaluate the effectiveness of this design compered to SRS. Chapter 

4 will focus on this simulation studies. 

3.4 Generating the Non –Response Population by linking Survey Respondents to 

Non-respondent. 

Based on the sampling design explained in chapter 2, we collect data from Non-

respondent sup population, by SRS followed by inverse sampling for post stratification 

as explained in section 3.2.  

 

From the students list, we have 𝑁 = 16979, from case study  𝑁𝑟 = 3278, 𝑁𝑛𝑟𝑖 = 560 

then we need to generate: 

𝑁𝑛𝑛 = 𝑁 − (𝑁𝑟 + 𝑁𝑛𝑟)= 13142. 

This number should be distributed by program, since we have the list of all students. 

The 𝑁𝑖 is known for each program where 𝑁𝑖 number of student in program𝑖. From case 

study we know the 𝑁𝑟𝑖 𝑎𝑛𝑑 𝑁𝑛𝑟𝑖 those who respond from program 𝑖 in phase one and 

two. Then we determine the 𝑁𝑛𝑛𝑖 those who did not respond to the survey in phase one 

or two. 

𝑁𝑛𝑛𝑖 = 𝑁𝑖 − (𝑁𝑟𝑖 + 𝑁𝑛𝑟𝑖) 

Now, to generate the 𝑁𝑛𝑛𝑖 non response with satisfaction, we use the data collected from 

student satisfaction survey in phase two for nonresponse subpopulation, we estimate 
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the probability of each survey response [strongly satisfied (4), satisfied (3), dissatisfied 

(2) and strongly dissatisfied (1)]. Then the distribution of data is consider as a 

Multinomial Distribution by considering an experiment with 𝑛 independent traiels. 

Each traile can result in any of 𝑟 possible outcomes (1,2,3,4).  

𝑝𝑖 denotes the propability of outcome 𝑖, ∑ 𝑝𝑖 =

4

𝑖=1

 1 

𝑛𝑖𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑖𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖, ∑ 𝑛𝑖 =

4

𝑖=1

 𝑛 

𝑃 = (𝑝1, … , 𝑝𝑟), 𝑛 = (𝑛1, … , 𝑛𝑟) the maximum likelihood estimator for 𝑝𝑖 is 

𝑙(𝑝) = ∏ 𝑝𝑖
𝑛𝑖

4

𝑖=1

 

By taking the first derivation and equaling it to zero , the ML is  𝑝�̂� =
𝑛𝑖

𝑛
 

We calculate the 𝑝�̂� for each program from data collected in the second phase. Table 

3.4 shows the number of non-responses needed from each program with probability of 

responses for (1, 2,-3, 4).  The overall non-response to the survey in phase one and 

phase two 𝑁𝑛𝑛 = 13141 are generated using 𝑅 software. [R code is attached in the 

Appendix (D)]. The generated non- response was added to the non-respondents from 

calling (𝑛𝑛𝑛 = 560). The total non-respondents 𝑁𝑛 =  13701. 

The total mean for all population is calculated.  𝜇 = 3.479800  

The estimated mean from case study = 3.468968 

The relative bias of estimator mean (RBE) = 
3.479800−3.468968

3.479800
  = 0.3%  

The RBE is very small and approximately zero   which mean that the estimated 

mean from case study is not bias. Generated population will be used for simulation 

study in chapter 4. 
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CHAPTER 4: SIMULATION STUDY 

 4.1 Simulation Using New Design (TPIS) 

In this section, we evaluate the TPIS design by conducting simulation studies 

based on generated data explained in chapter three. The TPIS design is evaluated in 

terms of properties and efficiencies of the estimators�̂�; �̂�𝑎𝑟(�̂�), which were calculated, 

based on 10,000 samples (𝑛𝑛𝑛
′ ) taken according to post-stratified inverse sampling 

design from the generated populations. The different samples taken are;  

 𝑛′𝑛𝑛 = 452, 550, 600, 700, 800, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700) 

With fixed predefined numbers (trigger) 𝑛+ = 7 and 𝑛+ = 10 . Moreover, we tried to 

evaluate the new design when we fixed a sample size with different triggers 𝑛+ =

5,7,10, 12,14, 16,17 . 

More details about TPIS designed evaluation in terms of properties (bias) and 

efficiencies of the estimators �̂�, �̂�𝑎𝑟(�̂�) are explained in the following sections. 

Simulation R- code is attached in Appendix (E). 

4.1.1 Evaluating the Bias of Estimator for Population Mean  

Simulation study is used to evaluate the bias of estimator for population mean. 

The Mont carol mean and variance of estimator are computed as follows; 

�̂� =
1

10000
∑ �̂�𝑅

10000

𝑅=1

 

The relative bias of estimator (RBE) for population mean is calculated using the 

following formula: 

𝑅𝐵𝐸 = (�̂� − 𝜇)/ 𝜇 ̂ , 

where 𝜇 = 3.479800 (for all population) 

Table (4.1) shows the relative bias estimator of mean for different sample size 

𝑛𝑛𝑛
′  at trigger (𝑛+ = 7; 𝑛+ = 10). Graph 4.1 illustrates the relationship between sample 
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size and relative bias estimator of 𝜇 at the trigger 𝑛+ = 7, and 10, w 𝑛𝑛𝑛 = 𝑛𝑛𝑛
′ + 𝑛+ 

 

 

Table 4.1  RBE for population mean based on different sample size n_nn selected based 

on TPIS design 

R=10000             Trigger (n+=7)                                Trigger (n+=10)                      

𝑛𝑛𝑛
′  𝑛𝑛𝑛 𝜇 ̂  

RBE 

 For 𝜇 ̂  
𝑛𝑛𝑛 𝜇 ̂  

RBE 

 For 𝜇 ̂  

492 597 3.479687 -0.0032% 695 3.479725 -0.002% 

550 644 3.479782 -0.0005% 735 3.479499 -0.009% 

600 685 3.479583 -0.0062% 771 3.479889 0.003% 

650 727 3.479996 0.0056% 808 3.479667 -0.004% 

700 770 3.479362 -0.0126% 847 3.479781 -0.001% 

800 859 3.479968 0.0048% 927 3.479659 0.013% 

900 949 3.47937 -0.0124% 1010 3.480249 0.001% 

1000 1041 3.479805 0.0001% 1097 3.479851 0.001% 

1100 1135 3.479769 -0.0009% 1184 3.479851 0.001% 

1200 1229 3.479773 -0.0008% 1365 3.479852 0.001% 

1300 1324 3.479675 -0.0036% 1364 3.479852 0.001% 

1400 1421 3.479931 0.0038% 1457 3.479878 0.002% 

1500 1518 3.479809 0.0003% 1550 3.480009 0.006% 

1600 1615 3.479583 -0.0062% 1643 3.479881 0.002% 

1700 1713 3.479939 0.0040% 1738 3.479881 0.002% 

 

 

 

From table (4.1) we found that the relative bias of estimator for population mean 

is very small (between -0.002% - 0.013%). This small percentage of RBE considered 

as a simulation error as we show the estimator is unbiased. 
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Figure 4.1  RBE for population mean based on different sample size 𝑛𝑛𝑛 

 

4.1.2 Evaluating the Variance of Estimators (�̂�) 

The simulation study explained in the previous section also used to evaluate the 

variance of estimator�̂�𝑎𝑟 (�̂�). In the simulation study, an approximate variance 

estimator is calculated based on the following formal. 

𝑉𝑎�̂�(�̂�) =  (
𝑁𝑛

𝑁
)

2

[(
𝑁𝑛 − 𝑛𝑛𝑟

𝑛𝑛𝑟 ∗ 𝑁𝑛
) ∑ (

𝑁𝑛𝑖

𝑁𝑛
)

𝐿

𝑖=1

𝑠𝑛𝑖
2 +

1

𝑛𝑛𝑟
2

(
𝑁𝑛 − 𝑛𝑛𝑟

𝑁𝑛 − 1
) ∑ (

𝑁𝑛 − 𝑁𝑛𝑖

𝑁𝑛
) 𝑠𝑛𝑖

2

𝐿

𝑖=1

]   

Where 

𝑠𝑛𝑖
2 = (

1

𝑛𝑛𝑟𝑖 − 1
) ∑(

𝐿

𝑖=1

𝑦𝑛𝑖𝑗 − �̅�𝑛𝑟𝑖)
2 

Mean Square Error of the mean 𝑀𝑆𝐸(�̂�) is also calculated based on the following 

formula: 

𝑀𝑆𝐸(𝜇 ̂) =
1

9999
∑ (�̂�𝑅 − 𝜇 )

2

10000

𝑅=1

 

Based on the results we got from the simulation, the relative bias of estimator (RBE) 

for population variance is calculated using the following formula: 

𝑅𝐵𝐸 = �̂�𝑎𝑟(�̂�) − 𝑀𝑆𝐸 (𝜇 ̂)/ �̂�𝑎𝑟(�̂�)  
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Table (4.2) shows the relative bias estimator (RBE) of mean for different sample size 

𝑛𝑛𝑛
′  at trigger (𝑛+ = 7; 𝑛+ = 10) . Figure 4.2 also demonstrate the relationship between 

sample size 𝑛𝑛𝑛
′  and relative bias estimator of Varaince at the trigger 𝑛+ = 7, and 10. 

From table (4.2) and figures (4.2, 4.3) we found that: when the sample size 

increases the RBE decreases, which means that the precision of estimator increases. 

Moreover when the sample size is approximately > 900 with any trigger (n+ = 7 or 10), 

the RBE is less than 5% which means that the 𝑀𝑆𝐸 (�̂�) is very closes to �̂�𝑎𝑟 (�̂�) at 𝑛𝑛𝑛
′ ≥

900. In other word the variance estimator is over estimating the variance of estimator 

which mean that the 𝜇 ̂ has high precision to estimate mean of population especially at 

the sample size 𝑛′𝑛𝑛 ≥ 900.  

 

Table 4.2 RBE for population variance based on different sample size 𝑛𝑛𝑛
′  at trigger 

(n+  = 7,n+=10) 

                     Replicates =10,000 , n+=7                                  Replicates =10,000 , n+=10         

𝑛𝑛𝑟
′  𝑛𝑛𝑟 𝐸[�̂�𝑎𝑟(�̂�)] 𝑀𝑆𝐸 (�̂�𝑛𝑟) 

RBE of  

𝜇 ̂ 
𝑛𝑛𝑟 𝐸[�̂�𝑎𝑟(�̂�)] 𝑀𝑆𝐸 (�̂�𝑛𝑛) 

RBE 

of  

𝜇 ̂ 
492 597 0.000870777 0.000763246 12.3% 695 0.000870886 0.000718868 17.5% 

550 644 0.000767828 0.00069763 9.1% 735 0.000768229 0.000644036 16.2% 

600 685 0.000696998 0.000637049 8.6% 771 0.000696035 0.000593648 14.7% 

650 727 0.000637307 0.000594523 6.7% 847 0.00058666 0.00051042 13.0% 

700 770 0.000587086 0.000547659 6.7% 927 0.000637602 0.000561739 11.9% 

800 859 0.000505533 0.000484624 4.1% 1010 0.000505759 0.000454254 10.2% 

900 949 0.000443447 0.000424793 4.2% 1097 0.000442924 0.000419541 5.3% 

1000 1041 0.000393483 0.000383481 2.5% 1184 0.000393662 0.000374292 4.9% 

1100 1135 0.000356226 0.000345735 2.9% 1365 0.00035344 0.000338191 4.3% 

1200 1229 0.000320471 0.00031013 3.2% 1364 0.000320064 0.000312176 2.5% 

1300 1324 0.000292784 0.000287606 1.8% 1457 0.000292642 0.000283676 3.1% 

1400 1421 0.000268856 0.000268398 0.2% 1550 0.000269003 0.00026324 2.1% 

1500 1518 0.000248294 0.000246127 0.9% 1643 0.000248378 0.000241886 2.6% 

1600 1615 0.000230607 0.000224139 2.8% 1738 0.000230456 0.000226051 1.9% 

1700 1713 0.000214755 0.00021402 0.3% 1738 0.000214845 0.000213306 0.7% 

 



  

45 

 

 

Figure 4.2 RBE for population variance based on different sample size 𝑛𝑛𝑛
′  

 

Now let us look for the influence of the trigger 𝑛+ when we fixed the sample 

size 𝑛𝑛𝑛
′  at 900 at different triggers 𝑛+ = 5, 7,10, 12, 15, 16,17. 

 

Table 4.3 RBE for population variance based on different trigger (n+) at affixed sample 

size 𝑛𝑛𝑛
′ = 900) 

𝑛𝑛𝑟
′  𝑛𝑛𝑟 𝐸[�̂�𝑎𝑟(�̂�)] 𝑀𝑆𝐸 (�̂�𝑛𝑟) 

RBE of  

𝜇 ̂ 

5 921 0.000442933 0.00043062 2.8% 

7 949 0.000443447 0.00042479 4.2% 

10 1010 0.000442924 0.00041954 5.3% 

12 1062 0.000428101 0.00040355 5.7% 

15 1151 0.000404285 0.00037692 6.8% 

16 1183 0.000441918 0.00040648 8.0% 

17 1218 0.000442842 0.00038707 12.6% 

18 1253 0.000428611 0.00037586 12.3% 
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Figure 4.3  RBE for population variance based on different trigger (n+) at affixed 

sample size 𝑛𝑛𝑛
′  =900) 

 

The results in table 4.3 shows that the precision of estimator decreases if the 

trigger 𝑛+ increases. The best precision is when the trigger 𝑛+ ≤ 10. 

We conclude that the bias of estimator not only depend on a sample size 𝑛𝑛𝑛
′  but also 

by the trigger 𝑛+. 

4.1.3  Evaluating the Effeminacy of New Design Compared to SRS  

  To estimate the gain in precision due to TPIS design or to evaluate its efficiency 

of this design, it is important to compare variance estimator of this design with any 

other design used in the survey research. In this section we will compare the 

𝑀𝑆𝐸 (�̂�𝑇𝑃𝐼𝑆) under TPIS design with the 𝑀𝑆𝐸 (�̂�𝑠𝑟𝑠) under simple random sample 

(SRS) without stratification. This comparison gives us an idea about the gain in 

efficiency due to TPIS design. 

Efficiency of new design (TPIS) is calculated using the formula: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑎𝑛𝑐𝑦 𝑜𝑓 𝑇𝑃𝑃𝐼𝑆 =
𝑀𝑆𝐸(�̂�𝑠𝑟𝑠)
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𝑀𝑆𝐸 (�̂�) = (
𝑁𝑛

𝑁
)

2

∗  �̂�(�̂�)  (4.2 ); 

sinse the �̂�(�̂�) is calculated by the simulation. 

  From the simulation,  𝑀𝑆𝐸(�̂�𝑠𝑟𝑠) is calculated as below; 

𝑀𝑆𝐸(�̂�𝑠𝑟𝑠)= �̂�𝑎𝑟 (�̂�𝑠𝑟𝑠) + (𝑏𝑖𝑎𝑠)2  (4.3) , 

Using the above equations and the known values for the below items 

𝑁𝑟= 3838, 𝜇 = 3.479800, 𝜇 ̂= 3.463369 

Variance= 0.444, Bias= 0.007431, Replicates= 10,000 

The results of simulation are shown in tables 4.4; 4.5 and figure 4.3  

 

Table 4.4  Efficiency of new design (TPIS) compared to SRS (n+=7) 

𝑛𝑛𝑟
′  𝑛𝑛𝑟 𝐸[�̂�𝑎𝑟(�̂�)] 𝑀𝑆𝐸(�̂�𝑇𝑃𝐼𝑆) 𝑀𝑆𝐸(�̂�𝑆𝑅𝑆)) Eff. Gain Eff. 

492 597 0.00087077 0.0005216 0.000683253 131% 31% 

550 644 0.00076783 0.00045994 0.000628976 137% 37% 

600 685 0.000697 0.00041751 0.00058771 141% 41% 

650 727 0.00063731 0.00038175 0.000550264 144% 44% 

700 770 0.00058709 0.00035167 0.000516158 147% 47% 

800 859 0.00050553 0.00030282 0.000456415 151% 51% 

900 949 0.00044345 0.00026563 0.000407395 153% 53% 

1000 1041 0.00039348 0.0002357 0.000366047 155% 55% 

1100 1135 0.00035623 0.00021338 0.000330724 155% 55% 

1200 1229 0.00031947 0.00019137 0.000300804 157% 57% 

1300 1324 0.00029278 0.00017538 0.000274882 157% 57% 

1400 1421 0.00026886 0.00016105 0.000251991 156% 56% 

1500 1518 0.00024829 0.00014873 0.000232025 156% 56% 

1600 1615 0.00023001 0.00013778 0.000214457 156% 56% 

1700 1713 0.00021275 0.00012744 0.000198729 156% 56% 

 

 

 

 

 



  

48 

 

Table 4.5   Efficiency of new design (TPIS) compared to SRS (n+=10) 

nnr
′  nnr V̂μ̂nr

̅̅ ̅̅  𝑀𝑆𝐸(�̂�𝑇𝑃𝐼𝑆) 𝑀𝑆𝐸(�̂�𝑆𝑅𝑆)) 
Eff. 

Gain 

Eff.  

492 695 0.00087089  0.0005217  0.000578383 111% 10.9% 

550 735 0.00076823  0.0004602  0.000543616 118% 18.1% 

600 771 0.00069603  0.0004169  0.00051541 124% 23.6% 

650 808 0.0006376  0.0003819  0.000489039 128% 28.0% 

700 847 0.00058666  0.0003514  0.000463738 132% 32.0% 

800 927 0.00050576  0.0003030  0.000418499 138% 38.1% 

900 1010 0.00044292  0.0002653  0.000379138 143% 42.9% 

1000 1097 0.00039366  0.0002358  0.000344275 146% 46.0% 

1100 1184 0.00035344  0.0002117  0.000314535 149% 48.6% 

1200 1255 0.000330064  0.0001977  0.000293319 148% 48.4% 

1300 1364 0.00029264  0.0001753  0.000265048 151% 51.2% 

1400 1457 0.00026900  0.0001611  0.00024427 152% 51.6% 

1500 1550 0.00024838  0.0001488  0.000225986 152% 51.9% 

1600 1643 0.00023046  0.0001380  0.000209772 152% 52.0% 

1700 1738 0.00021385  0.0001281  0.000195001 152% 52.2% 

 

 

 

Figure 4.4  Efficiency of new design (TPIS) compared to SRS (n+=7)  

 

0%

10%

20%

30%

40%

50%

60%

70%

0 500 1000 1500 2000

Ef
fe

ci
an

cy
 o

f 
TP

P
IS

 v
s.

 S
R

S

n_nr

Eff. at n+=7 



  

49 

 

 

 

Figure 4.5  Efficiency of new design (TPIS) compared to SRS (n+=10) 

  

From tables (4.4 & 4.5 ) and graphs (4.4 & 4.5 ), we found that efficiency of TPIS 
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in the efficiency is still constant at 56%. From table 4.4 and Figure 4.4 we found that 

when we increase the trigger from 𝑛+ = 7 to 𝑛+ = 10 the efficiency approximately 

fixed at 52% for both. This means that the highest sample size that give more efficiency 

for the new design compared the SRS is approximately 1300 after that any increase in 

Sale size the efficiency will be fixed. 
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′  
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more efficiency in estimator the population mean and variance than SRS without 

stratification at any value of trigger 𝑛+ whoever this efficiency increases when the 

trigger 𝑛+ decrease. The highest efficiency of TPIS is when(𝑛+ ≤ 10) . 

 

Table 4.6  Efficiency of new Design (TPIS) compared to SRS with different trigger 

(n+) with fixed simple size n_nn'=900 

𝑛+ nnr V̂μ̂nr
̅̅ ̅̅  𝑀𝑆𝐸(�̂�𝑇𝑃𝐼𝑆) 𝑀𝑆𝐸(�̂�𝑆𝑅𝑆)) Eff. Gain Eff. 

5 921 0.000442933 0.000265321 0.000421619 159% 59% 

7 949 0.000443447 0.000265628 0.000407395 153% 53% 

10 1010 0.000442924 0.000265315 0.000379138 143% 43% 

12 1062 0.000428101 0.000256436 0.000357614 139% 39% 

15 1151 0.000404285 0.00024217 0.000325286 134% 34% 

16 1183 0.000441918 0.000264712 0.000314851 119% 19% 

17 1218 0.000442842 0.000265266 0.000304067 115% 15% 

18 1253 0.000428611 0.000256741 0.000293884 114% 14% 

 

 

 

Figure 4.6   Efficiency of new design (TPIS) compared to SRS with different trigger 

(n+) with fixed simple size 𝑛𝑛𝑛
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4.2 Conclusions 

This research aims to 1) Develop a new sampling technique through post 

stratified with different methods of data collection in order to reduce or eliminate Non-

response bias effects. 2) Investigate the effectiveness of this sampling design by running 

a simulation study and 3) compare this technique with a simple random sample (SRS). 

To achieve this objective, new sampling design was developed and case study followed 

by simulation were conducted.  

The results from case study show that the mean estimate of overall satisfaction was 

higher for the nonresponse groups than the response groups but the difference was not 

statistically significant at level of 𝛼 = 0.05 but significant at level of𝛼 = 0.10. 

However, the overall satisfactions were significantly different for 13 majors out of 51 

(25%). Moreover, we introduce TPIS design to eradicate the bias for both cases. Under 

condition that the second phase response rate is 100% the nonresponse bias will be 

eradicated. In the case, the response rate is more than 50%, the bias will be reduced 

significantly. 

The results from simulation study show that: 1) Estimator of mean (𝜇 ̂) is un-

bias estimator of the mean 𝜇 for any sample size (𝑛′𝑛𝑛) under TPIS because the relative 

bias of estimator (RBE) for population mean is very small and it is considered as a 

simulation error. 2) Under TPIS, the precision of estimator increases when the sample 

size is approximately ≥ 900. In this case, the RBE is less than 5% and variance 

estimator is over estimating the variance of estimator. 3) TPIS design is more efficient 

in estimating the population mean and variance compared to SRS at equal sample size. 

The efficiency of TPIS increases to 56% when sample size increases to approximately 

1300. After this value of sample size, the efficiency remains constant at approximately 

56%. 4) By taking in our consideration the pre-determined number of sample from each 
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program 𝑛+, the precision of estimator and the efficiency of TPIS compared to SRS not 

only depends on the sample size but also depends on the trigger 𝑛+. The highest 

precision and efficiency of TPIS happen when 𝑛+ is small (≤ 10 ). In this case, the 

RBE of population mean is less than 5%.  

There are three advantages of the new design (TPPSI):  1) We reduce the bias 

of nonresponse in phase one,  2) We are able to analyses the data at program level using 

the TPIS design and  3) TPIS design is more efficient than SRS with the same sample 

size. 

4.3 Recommendations and suggestions: 

 On the result of this research, we provide the following recommendations and 

suggestions: 

- For Qatar University, we recommend Institutional Survey Research to use this new 

design (ITPS) which reduce the impact of non-response bias especially when the 

analysis needed by programs. 

- For any institution has a frame of population, and needs to estimate any parameter by 

strata, it is recommended to use the TIPS, which reduce the bias of estimator and 

provide more precision estimators. 

- In this research, the Two-phase post-stratified inverse Sampling Design (TPIS) used 

with subpopulation sizes known, we suggest to conduct this new design with 

subpopulation sizes unknown. 

- For future research, this work may be extended to multi inverse post-stratified 

Sampling Design (MIPS) with subpopulation sizes known and with subpopulation 

sizes unknown. 
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APPENDICES  

Appendix (A): Unbiased Estimator for Population Mean using TPIS 

We use the terminology of Sarjinder Singh (2003), for the post stratifications 

used in phase 2.  In this phase, 𝑛2
′  is subdivided into L homogeneous subgroups called 

strata such that the 𝑖𝑡ℎ stratum consist of 𝑛2𝑖
′  unites where ℎ = 1,2, … … … … , 𝑙 and 

∑ 𝑛2𝑖
′ = 𝑛2

′𝑙
ℎ=1 . 

From the 𝑖𝑡𝑖 stratum consisting of 𝑛2𝑖
′  units, a sample of size 𝑛2𝑖 is drawn using any 

sampling technique such that      ∑ 𝑛2𝑖 = 𝑛2
𝑙
𝑖=1 , the required sample size. 

Let 𝑦1𝑖be the value of the study variable  in  the 𝑛1
′  and the 𝑦2𝑗   is the sample value of 

the study variable in non-respondents unites  𝑛2
′ .  

Then       

�̅�1 =
1

𝑛1
′ ∑ 𝑦𝑗                                                                         (1)

𝑛1
′

𝑗=1

 

�̅�𝑑 =
𝑛1

′

𝑛′
�̅�1

′ +
𝑛2

′

𝑛′
�̅�𝑠𝑡

′                                                             (2) 

Let  𝑦2𝑖𝑖 be the 𝑖𝑡𝑖 population value of the study variable in the 𝑖𝑡𝑖 stratum , 𝑖 =

1, 2 , … , 𝑛2𝑖
′  such that  the 𝑖𝑡𝑖 stratum population mean  is  given by : 

𝑦 ′̅
2𝑖

=
1

𝑛2𝑖
′ ∑ 𝑦2𝑖𝑖

𝑛2𝑖
′

𝑖=1

                    for 𝑖 = 1,2, … , 𝑙 

Using the concept of weighted average the true population mean at the whole strata can 

be written as: 

All the through us i rather h 

�̅�2 =
𝑛21

′ �̅�21 + 𝑛22
′ �̅�22 + ⋯ , +𝑛2𝑙

′ �̅�2𝑙

𝑛21
′ + 𝑛22

′ + ⋯ , 𝑛2𝑙
′                           (3) 

�̅�2 =
𝑛21

′ �̅�21 + 𝑛22
′ �̅�22 + ⋯ , +𝑛2𝑙

′ �̅�2𝑙

𝑛2
′                                                     
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                   = (
𝑛21

′

𝑛2
′  ) �̅�21 + (

𝑛22
′

𝑛2
′  ) �̅�22+⋯, (

𝑛2𝑙
′

𝑛2
′  ) �̅�2𝑙                               

�̅�2 = 𝑊21�̅�21
′ + 𝑊22�̅�22+⋯, + 𝑊2𝑙�̅�2𝑙 = ∑ 𝑊2𝑖

𝑙

𝑖=1

�̅�2𝑖 

Where 𝑊2𝑖 =
𝑛2𝑖

′

𝑛2
′  

�̅�2𝑖 =
1

𝑛2𝑖
′ ∑ 𝑦2𝑖𝑗

𝑛2𝑖
′

𝑖=1

    

Consider a sample of size of 𝑛2𝑖 is drawn using sampling technique such that  

∑ 𝑛2𝑖 = 𝑛2
𝑙
𝑖=1  , the required sample size from post stratified sampling. 

�̅�𝑑 =
𝑛1

′

𝑛′
�̅�1

′ +
𝑛2

′

𝑛′
�̅�𝑠𝑡

′                                                                                       

   �̅�𝑠𝑡 = ∑
𝑛2𝑖

′

𝑛2
′  �̅�2𝑖

𝑙
𝑖=1  ,                              �̅�2𝑖 =

1

𝑛2𝑖
′ ∑ 𝑦2𝑖𝑗

𝑛2𝑖
′

𝑗=1  

𝐸(�̅�𝑑) = 𝜇 

𝐸(�̅�𝑑) = 𝐸𝐸𝐼𝐼𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆1, 𝑆𝐼𝐼 )                                                                                (4)  

   𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆1, 𝑆𝐼𝐼 ) = 𝐸(
𝑛1

′

𝑛′ �̅�1 +
𝑛2

′

𝑛′ 
∑

𝑛2𝑖
′

𝑛2
′ �̅�2𝑖|𝑆𝐼 , 𝑆𝐼𝐼)                                            𝐿

𝑖=1     

=
𝑛1

′

𝑛′ 
�̅�1 +

𝑛2
′

𝑛′ 𝐸𝐼𝐼(∑
𝑛2𝑖

′

𝑛2
′ �̅�2𝑖)

𝐿
𝑖=1                                                            (5)                                       

 According stratified Sampling theory: 

  𝐸𝐼𝐼(∑
𝑛2𝑖

′

𝑛2
′ �̅�2𝑖 )

𝐿
𝑖=1 =  𝐸𝐼𝐼( ∑

𝑛2𝑖
′

𝑛2
′

1

𝑛2𝑖
′ ∑ 𝑦2𝑖𝑖

𝑛′
2𝑖

𝑖=1  𝐿
𝑖=1 ) 

 = 𝐸𝐼𝐼( 
1

𝑛2
′ ∑  ∑ 𝑦2𝑖𝑖) = �̅�2

′𝑛′
2𝑖

𝑖=1                                                    (6)𝐿
𝑖=1    

By substituting (6) in (5)  

𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆1, 𝑆𝐼𝐼) =
𝑛1

′

𝑛′ 
�̅�1 +

𝑛2
′

𝑛′
�̅�2

′                                                (7) 

By substituting (7) in (4)     (�̅�𝑑) = 𝐸𝐸𝐼𝐼 (
𝑛1

′

𝑛′ 
�̅�1 +

𝑛2
′

𝑛′ �̅�2
′ |𝑆𝐼) =  𝜇                                       
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Appendix (B): Condition Variance of Estimator �̂� in Second Phase 

Following to the details in Appendix (A), we found the Condition variance of estimator 

in Second Phase as follow: 

 𝑉𝑎𝑟(�̅�𝑑) = 𝑉𝑎𝑟𝐼𝐸𝐼𝐼(�̅�𝑑|𝑆1) + 𝐸𝐼𝑉𝑎𝑟𝐼𝐼((�̅�𝑑|𝑆1)     

= 𝑉𝑎𝑟𝐼𝐸𝐼𝐼𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼) +   𝐸1𝑉𝑎𝑟𝐼𝐼𝐸𝐼𝐼(�̅�𝑑|𝑆1, 𝑆𝐼𝐼)   

+ 𝐸𝐼𝐸𝐼𝐼𝑉𝑎𝑟𝐼𝐼(�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼)                                                           (8) 

By theorem,  

𝑉𝑎𝑟11(�̅�𝑑|𝑆1, 𝑆2) =
𝑛2

′

𝑛′
(

1

𝑛2𝑖
−

1

𝑛2𝑖
′ ) 𝑆2/𝑛2𝑖    

𝐸𝐼𝐼𝑣𝑎𝑟𝐼𝐼(�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼) = 𝐸𝐼𝐼 (

𝑛2
′

𝑛′ (
1

𝑛2𝑖
−

1
𝑛2𝑖

′ ) 𝑆2

𝑛2𝑖
) =          

=  
𝑛2

′

𝑛′

(𝐸 (
1

𝑛2𝑖
) −

1
𝑛2𝑖

′  ) 𝑆2

𝑛2𝑖
                                       (9) 

𝐸 (
1

𝑛2𝑖
) = ? 

𝑓(𝑥) =
1

𝑥
    ; 𝑎 = 𝐸(𝑋)         ; 𝑥 = 𝑛2𝑖           𝑎 = 𝑛2

𝑛2𝑖
′

𝑛2
′  

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + 𝑓" (𝑎) (𝑥 − 𝑎)^2 +  … 

𝑓′(𝑥) =  −
1

𝑥2
     ;  𝑓"(𝑥) =

2

𝑥3
    

𝑎 = 𝑛2

𝑛2𝑖
′

𝑛2
′  

𝑓(𝑛2𝑖) ≈
𝑛′

𝑛2𝑛2𝑖
′ −

𝑛′2

𝑛2
2𝑛2

2𝑖
′  (𝑛2𝑖 − 𝑛2

𝑛2𝑖
′

𝑛2
′ ) +

2𝑛3
2
′

𝑛2
3 𝑛3

2𝑖
′

 
 (𝑛2𝑖 −

𝑛2𝑛2𝑖
′

𝑛2
′ )

2

 +  

 𝐸 (
1

𝑛2𝑖
 ) ≈

𝑛′

𝑛2𝑛2𝑖
′  +

2𝑛3
2
′

𝑛2
3 𝑛3

2𝑖
′

 
 𝑉𝑎𝑟(𝑛2𝑖)       

𝐸 (
1

𝑛2𝑖
 ) ≈

𝑛′

𝑛2𝑛2𝑖
′  +

2𝑛3
2
′

𝑛2
3 𝑛3

2𝑖
′

 

𝑛2𝑛2𝑖
′

𝑛2
′  (

𝑛2
′ − 𝑛 2𝑖

′

𝑛2
′   ) (

𝑛2
′ − 𝑛2

𝑛2
′ − 1

)     
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𝐸 (
1

𝑛2𝑖
 ) ≈

𝑛′

𝑛2𝑛2𝑖
′  +

2𝑛′ 

𝑛2
2 𝑛2

2𝑖
′

 
  (𝑛2

′ − 𝑛2𝑖
′  )(

𝑛2
′ − 𝑛2

𝑛2
′ − 1

)     

𝐸 (
1

𝑛2𝑖
 ) ≈

𝑛′

𝑛2𝑛2𝑖
′  +

2𝑛2
′

𝑛2
2 𝑛2

2𝑖
′

 
  (

𝑛2
′ − 𝑛 2𝑖

′

𝑛2
′   ) (

𝑛2
′ − 𝑛2

𝑛2
′ − 1

)             (10)   

Substituting (10 ) in  (9) 

𝐸𝐼𝐼𝑉𝑎𝑟𝐼𝐼(�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼) = =  
𝑛2

′

𝑛′

(𝐸 (
1

𝑛2𝑖
) −

1
𝑛2𝑖

′  ) 𝑆2

𝑛2𝑖
 

𝐸𝐼𝐼𝑉𝑎𝑟𝐼𝐼(�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼) = =  
𝑛2

′

𝑛′

1

𝑛2𝑖
  (

𝑛′

𝑛2𝑛2𝑖
′  +

2𝑛2
′

𝑛2
2 𝑛2

2𝑖
′

 
(

𝑛2
′ −𝑛 2𝑖

′

𝑛2
′   ) (

𝑛2
′ −𝑛2

𝑛2
′ −1

) −
1

𝑛2𝑖
′  ) 𝑆2      (11)   

𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆1, 𝑆𝐼𝐼) =
𝑛1

′

𝑛′ 
�̅�1 +

𝑛2
′

𝑛′ �̅�2
′  

𝐸𝐼𝐼𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆1, 𝑆𝐼𝐼) = 𝐸𝐼𝐼 (
𝑛1

′

𝑛′ 
�̅�1 +

𝑛2
′

𝑛′
�̅�2

′) = 𝜇 

𝑉𝑎𝑟𝐼𝐸𝐼𝐼𝐸𝐼𝐼𝐼 (�̅�𝑑|𝑆𝐼 , 𝑆𝐼𝐼) = 𝑉𝑎𝑟1(𝜇) = 0  

𝐸11(�̅�𝑑|𝑆1, 𝑆2) = �̅�2 =
1

𝑛2
′ ∑ 𝑦𝑖

𝑛2
′

𝑖=1

                                          (12) 

So,  

𝑉𝑎𝑟𝐼𝐼𝐸𝐼𝐼(�̅�𝑑|𝑆1, 𝑆𝐼𝐼) = 𝑉𝑎𝑟𝐼𝐼(
1

𝑛2
′ ∑ 𝑦𝑖)

𝑛2
′

𝑖=1

=
1

𝑛2
′ 𝜎2

2                     (13)  

By substituting  (11), (12),(13) we found that:  

𝑉𝑎𝑟(�̅�𝑑) = 𝑉𝑎𝑟(�̂�𝑛)

= (
𝑛2

′ − 𝑛′

𝑛′ ∗ 𝑛2
′ )   ∑ (

𝑛2𝑖
′

𝑛2
′ )

𝐿

𝑖=1

𝜎𝑛′𝑖
2 +

1

𝑛′2
(

𝑛2
′ − 𝑛′

𝑛2
′ − 1

) ∑ (
𝑛2

′ − 𝑛2
′

𝑛2
′ ) 𝜎𝑛𝑖

2

𝐿

𝑖=1
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Appendix (C): Survey Validity Using Confirmatory Factor Analysis 

The survey structure validity was identified by Confirmatory Factor Analysis (CFA)  

Using AMOS program. There are some assumption should be achieved before using CFA, 

Alsouidi A. (2015, p.15)  presented these assumptions as follow: 

Table 5  Assumption of confirmatory factor analysis 

fit indices required values 

Goodness of Fit Index (GFI)  <=0.90 

Root Mean Square Error Approximation (RMSEA)  <= 0.08 

𝑋𝑑𝑓
2  <= 3 

Comparative Fit Index (CFI)  ≥ 0.90 

Non-normed Fit Index (NNFI)  ≥ 0.90 

Source: (in Al-Swidi, A., 2015, p.15) 

` To confirm the structure validity, factor loadings can be used to ensure that all 

the items designed to measure a construct should load highly and significantly on the 

constructs they were designed to measure (Chau & Hu ,2001 ; Hair et al., 2010, Al-

Swidi et al, 2015).  

To ensure that the structural validity is achieved, factor loadings are considered to 

ensure that all survey items designed to measure a particular factor must be heavily and 

significantly loaded on the corresponding factor (Chau & Hu, 2001; Hair et al., 2010, 

Sweden et al., 2015). ) 

Figure 5.1 shows that all assumptions are achieved and all items were highly and 

significantly loaded on corresponding factor which mean that the structural validity of 

the survey is acceptable. 
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Figure 5  Confirmatory factor analysis for student satisfaction survey 
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Appendix (D): R-Code for Generating Non-response Subpopulation 

 

## Generated non-response population 

 

prog = read.table("D:\\prog.txt",header=F) 

sm = sum(prog[,1]) 

vec = c() 

for(i in 1:51){ 

  n = prog[,1][i] 

  prob1 = prog[i,][-1] 

   

  rmultinom(n, size = 1, prob = prob1) 

  snr=t(rmultinom(n, size = 1, prob = prob1)) 

  snr1=data.frame(snr) 

   

  snr1[,1] = snr1[,1]*1 

  snr1[,2] = snr1[,2]*2 

  snr1[,3] = snr1[,3]*3 

  snr1[,4] = snr1[,4]*4 

   

  vec = c(vec,apply(snr1, 1,sum)) 

} 

vec 

nam = rep(1:51, prog[,1]) 

rs = cbind(nam, vec) 

rslt = write.table(rs, "D:\\rslt.xls", col.names=F,row.names=F,sep="\t") 
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Appendix (E): R-Code of Simulation Study 

 

library(haven) 

pop <- read_sav("pop.sav") 

#View(pop) 

dim(pop) 

dim(pop) 

POP2=data.frame(1:13701,pop[,7],pop[,5]) 

#View(POP2) 

dim(POP2) 

#PPstra(POP2,492,7) 

PPstra=function(pop,n,nn){ 

  res=c() 

  sa=sample(pop[,1],n) 

  rem=pop[,1][-sa] 

  sam=pop[sa,] 

  nsam=pop[rem,] 

  N=dim(pop)[1] 

  Ni=as.vector(table(pop[,2])) 

  ni=as.vector(table(sam[,2])) 

  L=length(Ni) 

  a=matrix(0,L,1) 

  row.names(a)=1:L 

  b=table(sam[,2]) 

  a[names(b),]=b 

  a=nn-a 

  a[,1][a[,1]<=0]=0 

  a=as.vector(a) 

  M=0 

    me=0 

    varmuh=0 

    for(i in 1:L){ 

      if(a[i]>0){ 

      sta=nsam[,1][nsam[,2]==i] 

      ssa=sample(sta,a[i]) 

        sam=rbind(sam,pop[ssa,]) 

      } 

      y=sam[,3][sam[,2]==i] 

      m=length(y) 

      M=M+m 

      me=me+(Ni[i]/N)*mean(y) 

      varmuh=varmuh+(N-n)/(n*N)*(Ni[i]/N)*var(y)+(1/n^2)*(N-n)/(N-1)*(N-

Ni[i])/N*var(y) 

    } 

    res=c(me,varmuh,M) 

  res 

} 

 

restt=c() 
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for(i in 1:1000) 

restt=rbind(restt,PPstra(POP2,700,7)) 

apply (restt,2,mean) 

must=mean(restt[,1]) 

nut=mean(restt[,3]) 

RV=(MSEt-MSESt)/MSEt 

MSEt=sum((restt[,1]-mean(restt[,1]))^2)/(dim(restt)[1]-1) 

MSESt=(mean(restt[,2])+(mean(POP2[,3])-must)^2) 

#var(POP2[,3]) 

MSEt 

MSESt 

#hist(restt[,1]) 

#hist(restt[,2]) 

##ad.test(res15[,1]) 

 


