
Statistical control of peptide and protein error rates in large-scale
targeted data-independent acquisition analyses

Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., ... Aebersold, R. (2017). Statistical
control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nature
Methods. https://doi.org/10.1038/nmeth.4398

Published in:
Nature Methods

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 Nature Research. This work is made available online in accordance with the publisher’s policies. Please refer to any
applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:10. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/226762132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/statistical-control-of-peptide-and-protein-error-rates-in-largescale-targeted-dataindependent-acquisition-analyses(aafa6639-0e86-4fef-a8f9-ce9c7d25c1f2).html


Statistical control of peptide and protein error rates in large-
scale targeted DIA analyses

George Rosenberger#1,2, Isabell Bludau#1,2, Uwe Schmitt3, Moritz Heusel1,4,§, Christie 
Hunter5,§, Yansheng Liu1,§, Michael J. MacCoss6,§, Brendan X. MacLean6,§, Alexey I. 
Nesvizhskii7,8,§, Patrick G. A. Pedrioli1,§, Lukas Reiter9,§, Hannes L. Röst1,§, Stephen 
Tate10,§, Ying S. Ting6,§, Ben C. Collins1,‡, and Ruedi Aebersold1,11,‡

1Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, 
Switzerland 2PhD Program in Systems Biology, University of Zurich and ETH Zurich, CH-8093 
Zurich, Switzerland 3ID Scientific IT Services, ETH Zurich, CH-8092 Zurich, Switzerland 4PhD 
program in Molecular and Translational Biomedicine, Competence Center Personalized Medicine 
(CC-PM), ETH Zurich and University of Zurich, CH-8044 Zurich, Switzerland 5SCIEX, 1201 Radio 
Road, Redwood City, CA 94065, USA 6Department of Genome Sciences, University of 
Washington, Seattle, WA 98195–5065, USA 7Department of Computational Medicine and 
Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA 8Department of Pathology, 
University of Michigan, Ann Arbor, MI 48109, USA 9Biognosys, Wagistrasse 25, CH-8952 
Schlieren, Switzerland 10SCIEX, Concord, Ontario L4K 4V8, Canada 11Faculty of Science, 
University of Zurich, CH-8057 Zurich, Switzerland

# These authors contributed equally to this work.

Abstract

Liquid chromatography coupled to tandem mass spectrometry is the main method for high-

throughput identification and quantification of peptides and inferred proteins. Within this field, 

data-independent acquisition (DIA) combined with peptide-centric scoring, exemplified by 

SWATH-MS, emerged as a scalable method to achieve deep and consistent proteome coverage 

across large-scale datasets. Here we discuss the adaptation of statistical concepts developed for 

discovery proteomics based on spectrum-centric scoring to large-scale DIA experiments analyzed 

with peptide-centric scoring strategies and provide guidance on their application. We show that 

optimal tradeoffs between sensitivity and specificity require careful considerations of the 
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relationship between proteins in the samples and proteins represented in the spectral library. We 

propose the application of a global analyte constraint to prevent accumulation of false positives 

across large-scale datasets. Furthermore, to increase the quality and reproducibility of published 

proteomic results, well-established confidence criteria should be reported for detected peptide 

queries, peptides and inferred proteins.

Introduction

Technological advances in liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS) have greatly advanced our capabilities to explore proteomes. In bottom-up 

proteomics, the most widely used approach, proteins are proteolytically digested into 

peptides to increase their accessibility by LC-MS/MS. These peptides are then ionized and 

processed to generate fragment ion spectra (i.e. MS/MS spectra) which can be used to derive 

the amino acid sequences. Several classes of bottom-up proteomic methods have been 

developed that differ in the way the peptide ions are selected for fragmentation and how the 

resulting spectra are processed computationally. Currently, three main data acquisition 

strategies are applied: data-dependent acquisition (DDA), targeted acquisition by selected or 

parallel reaction monitoring (SRM or PRM) and data-independent acquisition (DIA). Each 

class of methods has specific strengths and weaknesses that have been extensively 

discussed1–3. The acquired data can be analyzed by different strategies, where the two main 

approaches differ in their query unit and are referred to as spectrum-centric and peptide-

centric scoring methods, respectively4. In spectrum-centric scoring approaches, 

implemented for DDA and DIA5–8 data analysis, a spectrum or pseudo spectrum (when 

generated from DIA data), is queried against a peptide sequence database to associate the 

most likely peptide sequence. In peptide-centric scoring methods, mainly applied to SRM, 

PRM or DIA9–13 data, a peptide of interest is queried with specific peptide query 

parameters against the data to find the best candidate peptide signal(s)4. Peptide query 

parameters are also referred to as transition lists or “Tier 3” assays14 that include sets of 

precursor and product ion m/z pairs that, in combination, enable selective and sensitive 

detection of a peptide by a “peak group” of co-eluting fragment ion chromatograms 

(Supplementary Table 1).

While these signal processing and scoring systems are applicable to datasets of varying size 

and complexity, special attention needs to be paid to appropriate methods of error rate 

control to prevent accumulation of false positive identifications, particularly in cases in 

which large sample cohorts are analyzed. The false discovery rate (FDR)15 is a metric used 

for controlling the error rate of identified or detected analytes in experiments affected by the 

multiple testing problem. It is currently the most commonly employed metric within the 

field of mass-spectrometry-based proteomics and can be estimated by different methods, 

including derivation from posterior error probabilities estimated without16 or with the help 

of decoys17 or by using non-parametric q-value estimation by the target-decoy approach18. 

Conversely, the false non-discovery rate (FNR)19–21 representing the rate of “missed” 

discoveries at selected thresholds, provides a controllable metric for sensitivity under the 

same assumptions as the FDR (Supplementary Note 1).
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Error rate control originally emerged as a critical issue in DDA-based discovery proteomics 

as a result of advances in experimental design and instrumentation that generate datasets of 

increasing size22. Peptide identification is generally established by spectrum-centric 

database searches and statistical modeling provides error rate control at different levels, 

including peptide-spectrum matches (PSMs)16,23 and inferred proteins24,25, and in 

different experimental contexts26–29. While the underlying algorithms for error rate control 

are different, their results have been shown to converge within the boundaries of their 

assumptions18,30.

In contrast, targeted proteomic methods are commonly used in cases where specific peptides 

need to be quantified across large sample cohorts with a high degree of reproducibility and 

quantitative accuracy31. In this type of measurement, it is expected that the majority of 

targeted peptides are detected in most samples, thus reducing the detection challenge mainly 

to selecting and quantifying the correct peptide fragment signals, also referred to as “peak 

groups”32. Data generated by SRM or PRM targeted proteomic measurements are therefore 

not affected by the same statistical challenges as typical spectrum-centric discovery 

proteomics experiments.

Recent developments in MS technology, specifically the development of DIA methods2,3 

and their application to cohorts consisting of hundreds of samples, have led to the generation 

of complex datasets, consisting of large numbers of measured peptides (typically thousands 

to tens of thousands per sample), the presence and quantity of which need to be established 

and compared over many samples. This presents challenges for peptide and protein-level 

error rate control in peptide-centric analysis of DIA data, particularly in cases in which 

comprehensive spectral libraries, i.e. covering a substantial fraction of the proteome33–36, 

are being used36. Such analyses conduct 10,000s of peptide queries per sample across tens 

to hundreds of runs, leading to substantial error accumulation when the resulting multiple 

testing challenges are not addressed appropriately.

Here we propose that the criteria established for confidence assessment of identified 

peptides and inferred proteins in spectrum-centric analysis should also be applied to peptide-

centric scoring methods on both peptide- and protein-levels for such studies. We show that 

data interpretation is dependent on the experimental context and offer considerations for 

designing an optimal analysis strategy. The applicability of the described concepts is 

demonstrated on the examples of the SWATH-MS inter-laboratory reproducibility study37 

and a human blood plasma dataset comprising hundreds of samples38. In this context, the 

tradeoffs between spectral library comprehensiveness and sample-specificity are discussed 

in light of their respective requirements for appropriate error rate control.

Results

Peptide queries based on sample-specific versus combined spectral libraries

Most published studies employing DIA with targeted data extraction have used sample-

specific spectral libraries generated either from corresponding DDA runs9,10,13,38–41 or 

from the DIA6 data itself. When sample-specific spectral libraries are used, it is usually 

sufficient to perform error rate control on the peptide query-level only. Because the content 
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of spectral libraries is restrictively filtered during the process of generating the library42, 

putative false positive proteins are unlikely to be included in the targeted data extraction step 

(Supplementary Note 2). This is not the case when spectral libraries are generated from 

multiple heterogeneous samples, e.g. different cell or tissue types. In such cases, the spectral 

library contains a large fraction of ‘false targets’ that are not detectable in a specific sample. 

This value is also referred to as π043. The π0 value is directly coupled to the error 

estimation within a dataset, where larger π0 require stricter multiple hypothesis testing as 

well as strategies to control for error accumulation from the PSM- or peptide query-level to 

the protein-level, as has been demonstrated for discovery proteomics27,44. This effect is 

further accentuated when repository-scale spectral libraries such as our combined human 

assay library (CAL) 36 are used to analyze large sample cohorts.

In light of these considerations, the ideal case would be peptide queries that exactly match 

the set of detectable targets in the DIA dataset. However, comprehensive libraries can 

substantially increase the sensitivity of peptide-centric scoring approaches36,37 and are 

required to quantitatively compare heterogeneous samples in larger sized cohorts such as 

clinical studies (Supplementary Note 3). Thus, it is crucial to apply robust error rate control 

methods in peptide-centric scoring workflows, similar to the situation in discovery 

proteomics, particularly in cases of high π0.

Protein FDR assessment

As stated above, error rate control on the peptide query-level only is insufficient to infer sets 

of proteins in workflows employing comprehensive spectral libraries leading to high π0 

values. For these cases, we previously suggested that the error rate should be controlled not 

only on the peptide query-level, but also on the peptide- and protein-levels36. This can be 

achieved, for example, by adapting a target-decoy approach as initially implemented for 

protein-level spectrum-centric analyses in MAYU27 or recently in SWATH2stats45. Another 

option is the application of non-parametric modeling strategies for computing posterior 

probabilities at the peptide- and protein-level17, as have been adapted for DIA analyses in 

DIA-Umpire6,46 and SWATHProphet47.

Alternatively, the q-value43 has been proposed for error estimation at the PSM-level as well 

as on the protein-level18. The q-value is a significance measure for analyte detection 

comparable to the p-value, but accounting for multiple testing analogously to the FDR. We 

have investigated whether peptide- and protein-level q-values could be estimated similar to 

the peptide query-level in our workflow consisting of OpenSWATH10 and PyProphet11, a 

reimplementation of the mProphet32 algorithm for DIA data. While OpenSWATH and 

related tools compute a set of scores for each peptide query, PyProphet combines these 

scores to a single discriminant score by applying semi-supervised learning to best separate 

decoys from high-scoring targets. The following peptide query-level q-value estimation step 

further uses the decoys to model a null distribution32. This concept can be extended to the 

protein-level by applying a similar strategy as has been suggested for discovery proteomics, 

only considering the best scoring PSM (or peptide query) for each peptide or protein for q-

value estimation22,28,29,48. The applicability of this extended q-value estimation approach 

is illustrated on an exemplary sample (one run) of the SWATH-MS inter-laboratory 
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reproducibility study37 that was analyzed with the CAL, containing 194,052 proteotypic 

peptide queries (Figure 1, Supplementary Figures 1-2). Here, only the best scoring peak 

group per protein (N=10,316) is considered for protein-level q-value estimation. The 

discriminant score distributions and p-value histograms43 indicate that, in analogy to the 

peptide query-level, peptide- and protein-level q-values can be applied as confidence metrics 

to avoid error-accumulation from the peptide query- to the protein-level.

Context-dependent estimation of error rates

The q-value estimation for individual peptide queries (or proteins) is dependent on the 

context of the query, i.e. on other queries to the data18. This encompasses all peptide queries 

in the same LC-MS/MS run, but, in the context of a multi-sample study, also peptide queries 

in different LC-MS/MS runs. In an individual run, the question is asked: ”Is the query 

peptide detected in this sample?”4. If several runs are compared, this question might be 

extended to: “In which subset of samples is the query peptide detected?”. Alternatively, it 

might be of interest whether the query peptide was detected in any one of the samples. 

Depending on which question should be answered, the context of the hypothesis and the 

method for estimating an appropriate q-value needs to be adjusted. In analogy to the 

situation in spectrum-centric approaches (Supplementary Note 4), we suggest considering 

three scenarios for DIA peptide-centric scoring and error rate control: run-specific, 

experiment-wide and global context.

Run-specific context—For the research question “Which peptides can be detected within 

one LC-MS/MS run (i.e. one sample injection)?”, the run-specific context applies. Q-values 

or the FDR are therefore estimated from the single best scoring peak group per peptide 

query within one specific run, independently from the other runs that may have been 

acquired in the course of an experiment. Given a specified confidence threshold, the number 

of detectable peak groups, peptides or inferred proteins per run can be compared to the 

numbers achieved in other runs. This mode offers granularity for different levels of target 

peptide prevalence, since π0 values are estimated for each run separately. Samples with a 

low π0 thus benefit in sensitivity, because only limited multiple testing correction is 

required. In contrast, samples with a high π0 are more strictly corrected for multiple 

testing43. This has various implications for the analysis of comparative studies containing 

heterogeneous samples with truly different π0 between runs, e.g. AP-MS experiments or 

fractionated samples. This means that if peptides are queried using parameters based on the 

same spectral library against two runs that result in the same π0, peak groups with identical 

discriminant scores will also have the same estimated q-values. However, if the same 

peptides are queried against two runs with truly different π0, peak groups with identical 

discriminant scores will have substantially different q-values (Fig. 2).

Experiment-wide context—The experiment-wide context asks the question: “In which 

subset of samples is the query peptide detected?” In contrast to the run-specific, the 

experiment-wide context assesses detected peptides and inferred proteins within an 

experiment consisting of multiple runs, estimating π0 from the best scoring peak group 

matrix over all peptide queries and runs. A main assumption of this type of analysis is that 

the runs and π0 are different, because the samples represent different proteome subsets (e.g. 
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comparison of whole cell lysate and fractionated samples) but not the quality of the samples 

or runs. These conditions are more frequently met in peptide-centric than in spectrum-

centric scoring methods, because in comparative studies individual runs are queried for 

many peptides that might not be detectable in the sample. In this case, peptides with 

identical q-values will have an identical discriminant score (Fig. 2).

Both the run-specific and experiment-wide contexts can be used to generate matrices of 

detectable peak groups, peptides, or inferred proteins while controlling the error rate. 

However, when the analytes are summarized across a large study, false positive detections 

are accumulated. This effect is illustrated in Figure 3, which shows the cumulatively 

detected peak groups, peptides and inferred proteins across the 229 runs that constitute the 

inter-laboratory SWATH-MS study37 and independently, across the 246 runs of a previously 

published study measuring undepleted human blood plasma samples of 116 individuals38. 

The corresponding decoy accumulation rate is shown in Supplementary Figures 3-6. When 

using the CAL and applying a q-value cutoff of 1% on the peptide query-level, as estimated 

within the experiment-wide context, the cumulative number of target proteins inferred 

reaches almost the respective number of proteins covered by the spectral library. Applying 

an experiment-wide context with a q-value cutoff of 1% on peptide query- and 1% on 

protein-level decreases the number of inferred proteins, but still results in an accumulation 

of detected peptides and inferred proteins in the HEK-293 samples. This is not the case for 

the samples of the plasma dataset, which contain in average more peptides per inferred 

protein, but a much lower total number of proteins. To prevent such accumulation of 

potentially false positives in studies where this accumulation is problematic, the global 

context can be applied.

Global context—The global context asks the question: “Which peptides can be detected in 

at least one LC-MS/MS run of the experiment?” For this purpose, it considers only the best 

scoring detected peak groups, peptides or inferred proteins over all runs for the error-rate 

control. The resulting global protein master list can then be used to define a set of overall 

inferred proteins in the entire study which can be used to filter the matrix obtained by using 

either the run-specific or the experiment-wide context. The effect of applying constraints 

based on the global context is shown in Figure 3. Applying a peptide query- and protein-

level global FDR cutoff of 1% (in addition to the 1% peptide query-level, experiment-wide 

FDR cutoff) results in a consistent number of cumulatively detected analytes across all 229 

runs of the inter-laboratory SWATH-MS study, even when using the large CAL. In the 

plasma dataset, accumulation at the inferred protein level is already reasonably well 

controlled by the experiment-wide FDR on protein level and the application of the global 

context constraint further reduces the observed accumulation.

Tradeoff between spectral library specificity and comprehensiveness

As discussed above, sample-specific spectral libraries have the benefit of less error rate 

control being required (low π0), but the achievable proteome coverage depends on the 

completeness of the library. In contrast, repository-scale spectral libraries covering 

additional peptides that are detectable in the sample but not found in the sample-specific 

spectral library can reach higher coverage of the studied proteome when additional 
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detections are not lost to the stricter multiple testing adjustments (high π0) required. Adding 

new undetectable targets only will reduce sensitivity when multiple testing correction is 

correctly applied, as was demonstrated in a recent study49 (Supplementary Note 3).

To further illustrate these effects we have applied three spectral libraries of different levels of 

sample-specificity and comprehensiveness to query the inter-laboratory SWATH-MS 

study37. A sample-specific library (SSL) was generated from the spectra obtained in six 

DDA runs of the SWATH-MS study sample. The CAL was used as a second, repository-

scale library, which consists of 331 runs, of which 134 were acquired from fractionated and 

unfractionated HEK-293 samples. The third library applied was a HEK-293 subset of the 

CAL (HEK), only containing spectra observed in unfractionated and fractionated HEK-293 

samples that were included in the original library. To assess the effects of library size and 

specificity on a real-world dataset, we applied the CAL to the plasma dataset38 and 

additionally generated a plasma-specific subset of the results. This is an extreme scenario, 

because the CAL itself contains only 8 runs acquired from plasma samples and the vast 

majority of peptides in the CAL is not expected to be detectable from unfractionated plasma 

samples. Figure 4a illustrates the size and protein overlap between the different libraries 

used for the analysis of the inter-laboratory SWATH-MS study. In Figures 4b, the global 

protein-level discriminant score distributions of targets and decoys are shown, illustrating 

the different π0 between the libraries. The reported proteins were compared after 

independent q-value estimation at a global protein-level cutoff of 1% (Figure 4c). When 

applying peptide queries based on the HEK-293 sample-specific spectral library, all proteins 

could be recovered from the DIA data of the inter-laboratory SWATH-MS study. For the 

queries based on the CAL, a global set of 4989 proteins was inferred at 1% protein FDR. 

This corresponds to a protein-level recovery of roughly 50% compared to the CAL and is 

almost twice the number of proteins that could be inferred by using the sample-specific 

spectral library, indicating that the additional proteins were not identified in the sample-

specific DDA runs or did not fulfill the requirements for peptide query parameter generation. 

For the HEK-293 subset of the CAL, 4841 proteins out of the 6019 proteins queried were 

confidently inferred. The relatively small discrepancy between the proteins inferred using 

the CAL and its HEK-293 subset illustrates the tradeoff of a larger but more comprehensive 

query space requiring strict multiple testing correction. The 380 (7.8% of total) proteins 

exclusively found with the HEK-293 subset illustrates a loss of sensitivity, while the 

additional 503 (10% of total) proteins illustrates the opportunity gained. Figures 4d-f 

illustrate the size and protein overlap between the different libraries, the global protein-level 

discriminant score distributions, and the reported protein overlap at 1% global protein-level 

FDR for the plasma dataset. Even though the subset of proteins that can be inferred in the 

plasma dataset is smaller compared to the ones from the inter-laboratory SWATH-MS study, 

the relative results are qualitatively similar. This analysis shows that large comprehensive 

spectral libraries can achieve sensitive results at appropriate error rate control. On the other 

hand, decreasing the number of peptide queries can lower the requirement for multiple 

testing adjustments at the potential cost of proteome coverage. The optimal tradeoff for a 

study depends on how well the spectral library represents the actual sample content.
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Discussion

With the increasing numbers of peptides queried in samples acquired in data-independent 

acquisition mode by peptide-centric targeted data extraction, it is imperative to adopt strict 

quality assessment metrics such as the established criteria from spectrum-centric discovery 

proteomics to ensure reproducible reporting of results. Here, we have discussed the 

challenges associated with error rate control in the analysis of DIA data. We have 

demonstrated that the FDR should be controlled not only on peptide query-, but also on 

peptide- and protein-level in peptide-centric scoring workflows applying comprehensive 

spectral libraries. Furthermore, we propose the application of different context-dependent 

error rate estimation strategies. While the run-specific context offers per-run granularity, the 

experiment-wide context provides comparable result matrices across large heterogeneous 

datasets. The global context can be used to generate a list of detected peak groups, peptides, 

and inferred proteins that can be confidently detected in a study. We suggest that a practical 

method to control the error rate is to filter the result matrices generated from either the run-

specific or experiment-wide contexts using the set of analytes confidently detected in the 

global context. We have shown that this results in a uniform set of inferred proteins with 

negligible accumulation of false positives over a large number of samples. The error rate 

control strategies we have described are implemented and available in an updated PyProphet 

version (Online Methods) and are available in Spectronaut 1113. Future developments might 

extend the statistical models to adjust probabilities for the detection of peptides and 

inference of proteins across multiple runs to improve detection sensitivity26,47. Other 

extensions and adaptations may be necessary if heterogeneous datasets, e.g. acquired on 

different instrument types, are analyzed together or if the parameters and assumptions of the 

algorithms are changed (Supplementary Note 5, Supplementary Figure 7). Despite the herein 

proposed strategies to control error rates in large-scale targeted proteomics experiments, the 

increased query space in repository-scale spectral libraries compromises the detection 

sensitivity. We have illustrated by means of the inter-laboratory SWATH-MS study37 and 

the plasma dataset38 that different spectral library specificity and comprehensiveness have 

profound effects on the importance of multiple-testing corrections and the respective 

analysis results. Therefore, it might be interesting for future applications to consider 

strategies for reducing the query space to provide an optimal tradeoff between proteome 

coverage and the fraction of undetectable targets. For this purpose, several different 

strategies have been suggested previously (Supplementary Note 6); however, further 

investigations are required to evaluate the optimal tradeoffs for different studies and future 

algorithmic development will continue to abolish the borders between spectrum-centric and 

peptide-centric scoring approaches to provide fully integrated workflows.

The development and application of DIA as an enabling tool in quantitative proteomics has 

undergone rapid expansion in recent years and this is set to continue for the foreseeable 

future. We hope that this article will serve to stimulate community discussion on these 

topics, and to aid researchers in choosing appropriate strategies for error rate control broadly 

improving the quality of data emerging from DIA-based quantitative proteomics studies.
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Online Methods

PyProphet

We have implemented the described error rate control strategies in an updated and extended 

version of PyProphet11. PyProphet is a Python-based reimplementation of the mProphet32 

algorithm originally developed for semi-supervised learning and statistical validation of 

targeted proteomics data. The PyProphet implementation reported here extends the original 

approach by the following options:

Semi-supervised learning—Instead of conducting independent iterations of learning 

and statistical validation separately per run, PyProphet conducts subsampling of paired 

target and decoy peak groups29 over all runs to learn a single, experiment-wide linear 

discriminant analysis (LDA) scoring model. From the LDA function, a discriminant score is 

derived by computation of the z-score using the decoy peak group mean and standard 

deviation as described previously32. The purpose of this integrated step is to ensure that the 

peak groups can be sorted according to their quality in a unified way across heterogeneous 

samples or samples of variable quality.

Statistical validation—In addition to the original parametric assumptions32, PyProphet 

now also supports non-parametric, empirical estimation of p-values43. To estimate q-values 

on different levels, PyProphet enables aggregation over peptide- or protein-level groups by 

selection of the best scoring peak group. For each level, q-values, FDR15/FNR19,20 or 

pFDR/pFNR21 are computed independently using the corresponding decoys as null model. 

For the different contexts, PyProphet supports different modes to either conduct q-value 

estimation per run (run-specific context), across all runs (experiment-wide context) or in a 

global fashion (global context).

Multi-run and high-throughput processing—To process large datasets, for example 

the inter-laboratory SWATH-MS study37, we improved the scalability of PyProphet under 

conditions where hundreds of runs each with a file size of 5 – 10 Gb need to be analyzed 

concurrently. The new PyProphet version is optimized for parallel processing in a cluster 

environment (IBM® Platform LSF™ or OpenLava) but can be readily adopted to other 

environments by Python extensions. Using subsampling and integrated scoring, q-value 

estimation can be conducted using very large numbers of peptide queries for hundreds of 

runs within hours using a common cluster or cloud environment: A full analysis of the 229 

reports of OpenSWATH (9 GB per run) using 1-32 CPUs (depending on the individual step), 

4-48 GB RAM (depending on the individual step) required a processing time of 1.5h, using 

several sequential and parallel jobs. Because the OpenSWATH results are stored as text files, 

the main requirement for the processing is throughput of filesystem input / output operations 

and temporary storage capacity.

Code availability

Our software is implemented in Python, available for all major platforms and released under 

the 3-clause BSD license. PyProphet is available along with detailed instructions from 
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https://github.com/PyProphet. Further documentation of our workflow is available on http://

openswath.org.

Analysis of the SWATH-MS inter-laboratory reproducibility dataset

Spectral library and peptide query parameter generation—Combined human 
assay library: The combined human assay library (CAL) for the 64 variable windows 

setting36 was filtered for proteotypic peptides and complemented by 30 additional SIS 

peptides as described previously37.

HEK-293 subset library: The HEK-293 subset library (HEK) was generated by filtering 

the CAL to only contain spectra from HEK-293 samples. The peptide query parameters 

were derived from the HEK-293 filtered spectral library as described previously36.

Sample-specific library: The sample-specific library (SSL) was generated from the spectra 

collected by six LC-MS/MS runs in DDA mode of the identical unfractionated HEK-293 

tryptic digest, as described previously36.

Combined human + M. tuberculosis library: Based on the SpectraST consensus library of 

the CAL36 and the M. tuberculosis34,41 libraries, we generated a merged library by 

appending the M. tuberculosis to the CAL library using SpectraST (TPP 5.0). The protein 

identifiers were updated using the combined original FASTA files of the two libraries, to 

later exclude any shared peptides between the two organisms. Peptides and fragment ions 

were selected identically as described previously36,42 (msproteomicstools: 

master@c10a2b8) and OpenMS (version 2.1) was used with OpenSwathDecoyGenerator to 

generate combined target-decoy libraries (method: shuffle, similarity_threshold: 0.05, 

identity_threshold 0.7, exclude_similar: true, append: true).

DIA data analysis—The analysis of the inter-laboratory SWATH-MS dataset was 

conducted identically as described previously37. The SWATH-MS data analysis was 

performed using OpenSWATH (OpenMS v2.0) essentially as described10 with the following 

modified parameters: m/z extraction window = 75 ppm, RT extraction window = 900 

seconds. The analysis was performed separately for the four different spectral libraries 

described above: combined human assay library, HEK-293 subset library, sample-specific 

library, and combined human + M. tuberculosis library.

Semi-supervised learning and statistical validation were performed using the above 

described extended version of PyProphet (PyProphet-cli v0.19 - https://github.com/

PyProphet). PyProphet was run for all three available contexts to conduct q-value estimation 

per run (run-specific context), across all runs (experiment-wide context) or in a global 

fashion (global context), with a fixed λ of 0.4. The set of peptide peak groups used for 

learning the score weights of OpenSWATH sub-scores to produce a single discriminant 

score were sampled with a ratio ≈ 1/(no. of samples), for aggregated analysis of all sites a 

ratio of 0.005 was used.
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A global “master list” of detected peak groups and proteins across the entire dataset was 

generated by filtering the results from the global context at 1% peptide query FDR and 1% 

protein FDR.

The results from the experiment-wide context were filtered on three different stringency 

levels: 1% peptide query FDR, 1% peptide query FDR and 1% protein FDR, and 1% peptide 

query FDR and additional filtering based on the global “master list” of peptide queries and 

proteins.

For the analysis of the three different libraries (Figure 4), separate scoring models were 

trained.

Analysis of the plasma dataset

The combined human assay library (CAL) for the 32 fixed windows setting36 was used to 

analyze the plasma dataset38 identically as described above with the following differences 

for OpenSWATH: m/z extraction window = 0.05 Da, RT extraction window = 600 seconds. 

The following set of scores was used: xx_lda_prelim_score, intensity_score, 

isotope_correlation_score, isotope_overlap_score library_corr, library_rmsd, log_sn_score, 

massdev_score, massdev_score_weighted, norm_rt_score, xcorr_coelution, 

xcorr_coelution_weighted, xcorr_shape, xcorr_shape_weighted.

The OpenSWATH results were filtered to only contain proteotypic peptides. To generate the 

results for the plasma subset analysis, the OpenSWATH results were filtered to only contain 

peptides mapping to proteins that were confidently detected (confidence threshold for 

inclusion in original library36) in at least one of the eight DDA plasma runs part of the CAL. 

This approach is equivalent to using a subset library for data extraction by OpenSWATH.

PyProphet was executed as described above, however the scoring model (LDA weights) of 

the plasma subset analysis was applied to the whole CAL analysis to ensure that the 

differences of the comparison originated only from the different library sizes. The analysis 

was conducted independently for both the parametric and the non-parametric methods.

Data availability

The raw data and processed results of the analysis of the SWATH-MS inter-laboratory 

reproducibility study have been deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository50 (http://

www.ebi.ac.uk/pride/archive/) with the dataset identifier PXD004884.

The processed results of the analysis of the twin plasma study have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 

partner repository50 (http://www.ebi.ac.uk/pride/archive/) with the dataset identifier 

PXD006625.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Q-value estimation on peptide query-, peptide- and protein-level.
The peptide query-, peptide- and protein-level discriminant score density plots for one DIA 

run of the SWATH-MS inter-laboratory study analyzed with the combined human assay 

library (CAL) are depicted. The distributions indicate a large false target to total target ratio 

(π0 ≈ 0.6) on peptide query-level. The false target to total target ratio decreases slightly on 

peptide-level and more on protein-level (π0 ≈ 0.5), compared to the peptide query-level.
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Figure 2. Schematic illustration of the different context-dependent error-estimation strategies.
The run-specific context conducts separate q-value estimation for each sample. This method 

results in run-specific q-values which can represent different peak group qualities between 

runs with varying π0. This means that if the same peptide is queried in two samples using 

the same parameters, run 1 with a low π0 and run 2 with a high π0, and the scored peak 

groups have a similar discriminant score (d-score), they might get a low q-value in run 1 and 

a high q-value in run 2. The experiment-wide context considers all runs of an experiment for 

error rate control. The resulting q-values can be compared in terms of peak group quality 

between runs but should not be considered outside the context of the whole experiment. The 
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global context only considers the best scoring peak group per analyte across the entire 

experiment. This approach enables the total set of detectable peptides or inferred proteins to 

be determined within the experiment. The global set of proteins can optionally be used as a 

constraint for the experiment-wide context to obtain the number of detected analytes in 

single runs.
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Figure 3. Analyte accumulation across multiple runs.
The number of cumulatively detected peak groups (a: inter-laboratory SWATH-MS study, b: 

plasma dataset), and inferred proteins (c: inter-laboratory SWATH-MS study, d: plasma 

dataset) is shown. While the different approaches for error rate control show the same result 

for the sample-specific spectral library (SSL) in the inter-laboratory SWATH-MS study, the 

accumulation of putative false positive analytes using peptide queries with higher fractions 

of non-detectable targets is largely influenced by the applied filtering strategies (combined 

human assay library (CAL), HEK-293 subset of the CAL (HEK), plasma subset of the 

Rosenberger et al. Page 18

Nat Methods. Author manuscript; available in PMC 2018 February 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



CAL). Error rate control on peptide query-level in the experiment-wide context (dotted 

lines) shows accumulation of targets on all levels, almost until library saturation. Further, 

additional strict filtering on protein-level reduces the number of detected peak groups and 

inferred proteins, highlighting the importance of considering accumulation of putative false 

positives (dashed lines). The third strategy shows how applying a global analyte constraint 

on peptide query- and protein-level in addition to experiment-wide peptide query-level error 

rate control lowers the accumulation of proteins with low confidence in the global context, 

reaching an early saturation of inferred proteins across all runs (solid lines).
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Figure 4. Comparison between peptide queries with varying target prevalence.
a) Number and overlap between proteotypic proteins in the combined human assay library 

(CAL), a HEK-293 subset of the CAL (HEK), and a sample-specific spectral library (SSL). 

b) The discriminant score distributions illustrate the different π0 values between the CAL, 

HEK and SSL. c) Comparison of the sets of proteins inferred at 1% protein FDR in the 

global context of all 229 DIA runs of the SWATH-MS inter-laboratory comparison study 

using the CAL, HEK and SSL spectral libraries. Using the CAL and HEK spectral libraries, 

a substantially higher number and overlapping set of proteins can be inferred compared to 

using the SSL. The CAL enables the detection of 503 proteins that are not detectable when 

using the HEK subset library. In contrast, using the HEK subset library allows the detection 

of 380 proteins that are not detected using the CAL, despite all of the peptides for these 

proteins being part of the CAL. Panels d-f) show the corresponding results of the analysis on 

the plasma dataset.
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