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Abstract
Developing predictive methods to forecast the impacts of existing and emerging invasive species is of 
critical importance to biodiversity conservation. However, invader impacts are context-dependent, 
making reliable and robust predictions challenging. In particular, it is unclear how temporal variabilities 
in relation to temperature regime shifts influence invader ecological impacts. In the present study, we 
quantify the functional responses of three coexisting freshwater fishes: the native freshwater River Goby 
Glossogobius  callidus, and the non-native Mozambique Tilapia Oreochromis mossambicus and Western 
Mosquitofish Gambusia affinis, under two temperature treatments using chironomid larvae as prey. This 
was used along with fish abundance data to determine temporal differences in ecological impacts of each 
fish species between seasons (i.e. at two corresponding temperatures). All three fish species exhibited 
potentially population-destabilizing Type II functional responses. Their maximum feeding rates were 
consistently higher in the warm temperature treatment, whereas attack rates tended to be reduced. Non-
native Mozambique Tilapia had the highest maximum feeding rate under both temperature treatments 
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(18 °C and 25 °C), followed by the non-native Western Mosquitofish and lastly the native River Goby, 
suggesting greater per capita impacts on native prey by non-native fishes. The predatory fish abundances 
differed significantly according to season, with native River Goby and non-native Mozambique Tilapia 
generally more abundant than non-native Western Mosquitofish. By multiplying functional response 
maximum feeding rates with abundances of each fish species across the seasonal gradient, the relative 
impact potential of non-native Mozambique Tilapia was consistently higher compared to that of native 
gobies. Western Mosquitofish impacts were less apparent, owing to their low abundances. We demonstrate 
how seasonal temperature fluctuations affect the relative impact capacities of introduced species and the 
utility of consumer functional response and the relative impact potential metric in impact forecasting.

Keywords
Context-dependence, impact assessment, introduced species, relative impact potential, seasonal 
abundance, thermal regime

Introduction

Biological invasions are a central driver of global biodiversity loss (Sala et al. 2000; 
Turak et al. 2016; Bertelsmeier and Keller 2018; Shuai et al. 2018). This loss has not 
only socio-economic impacts, but also threatens ecosystem functions and services (Ric-
ciardi et al. 2017). Biological invasions can occur through numerous pathways, such 
as human-mediated introduction, climate change and connectivity of systems, thus 
allowing extra-limital movement of species (Latombe et al. 2017). Upon arrival in a 
new environment, non-native species can cause ecological impact on native species 
assemblages through a range of biotic interactions (e.g. predation, competition and 
parasitism) (Vitousek et al. 1996; Thomsen et al. 2011; Havel et al. 2015; Seebens et al. 
2018). Competition and predation play particularly important roles in the structuring 
of ecological communities (Paine 1980; Gurevitch et al. 1992). Although the impact 
of invaders through predation and competition is well documented, the context-de-
pendency of these processes is often overlooked. In particular, direct biotic interactions 
(i.e. predation) can drive trophic cascades through alterations of prey abundance and 
native predator fitness (Gallardo et al. 2016; Penk et al. 2017).

Despite the considerable work conducted on invasive species, predicting ecological 
impacts of biological invasions has remained elusive (Simberloff et al. 2013; Dick et al. 
2014). Ricciardi et al. (2013) highlighted context-dependency as the largest confound 
for impact predictions in invasion biology. Therefore, robust predictive methods that 
include environmental contexts as factors are needed in invasion studies to improve 
impact forecasting. In particular, temperature regime is a key abiotic context that is 
pervasive across all ecosystem types, and particularly in aquatic ecosystems (Lang et al. 
2017). Specifically, temperature is a central determinant of the strength of predator-
prey interactions and mediates food web stability (Rall et al. 2010, 2012; Englund 
et al. 2011). Fish have physiological mechanisms (i.e. metabolism and reproductive 
success) that are directly and/or indirectly dependent on temperature (Roessig et al. 
2004). These mechanisms may differ between native and non-native species given dif-
ferences in geographical origins and their physiological tolerances (Sorte et al. 2013). 
If high temperatures are more physiologically optimal for invaders, ecological impacts 
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may be intensified (Iacarella et al. 2015), and seasonal changes, coupled with ongoing 
climatic warming, are key drivers of such temperature change in aquatic ecosystems. 
Indeed, interaction strengths are known to vary even with slight changes to seasonal 
temperatures (Sanford 1999, 2002). Therefore, failure to incorporate these factors 
in predictive approaches limits our ability to forecast invasive species impacts under 
changing environmental conditions across different spatiotemporal scales (Dick et al. 
2013, 2014, 2017).

Methodological developments, which incorporate native/non-native species re-
source utilization across context-dependencies, have recently provided robust predic-
tive tools for invasion science (Laverty et al. 2015; Dick et al. 2017; Dickey et al. 
2018; Cuthbert et al. 2019). In particular, the functional response quantifies resource 
consumption as a function of resource density, and, in a predator-prey context, can 
quantify per capita ecological impacts of predators towards lower trophic groups (Hol-
ling 1959; Adams 1980; Dick et al. 2013, 2014, 2017; Alexander et al. 2014; Cuthbert 
et al. 2018). The types and magnitude of FRs quantify whether consumers will likely 
stabilize or destabilize resource populations (Murdoch and Oaten 1975; Rip and Mc-
Cann 2011; Uszko et al. 2017). The relationships between consumer resource uptake 
and resource densities results in three broad functional response 'Types', and each Type 
has a different effect to resource population stability: an increasing linear relationship 
with no handling time constraint (Type I, mechanistically exclusive to filter feeders; 
Jeschke et al. 2004); an inversely density-dependent response characterized by high 
resource consumption at low resource density (Type II, resulting in rapid resource 
depletion at low densities); and a sigmoidal positively density dependent relationship 
(Type III, where resources have a low-density refuge) (Holling 1959). Despite the two 
functional response components, i.e. attack rate and handling time, being strongly as-
sociated with variations in temperature (Englund et al. 2011; Rall et al. 2012; Sentis et 
al. 2012; South et al. 2017; Cuthbert et al. 2018), there is, however, very limited infor-
mation available on how temperature mediates species interactions at the population-
level (Viherluoto and Viitasalo 2001; Fussmann et al. 2014; O’Gorman et al. 2017). 
Temperature and/or season effects may differ depending on how species functional 
traits directly influence responses, and these traits may too change along environmen-
tal gradients (Chapin et al. 2000).

Classically, the functional response has been combined with the ‘numerical re-
sponse’ to determine the ‘total response’ of consumers (Solomon 1949; Holling 1959). 
The numerical response describes the consumer population-level response to changes 
in resource densities, while ‘total response’ can be defined as the multiplication of 
species’ numerical response with functional response (Solomon 1949; Holling 1959). 
Given that the numerical response, in comparison to the functional response, is dif-
ficult to ascertain, consumer abundance has recently been proposed as a proxy for 
numerical response in the development of the ‘impact potential’ and ‘relative impact 
potential’ metrics (Dick et al. 2017; Dickey et al. 2018). The ‘impact potential’ is the 
product of functional responses and abundance of consumers, while the relative im-
pact potential compares the impact of the invader to that of a native (Dick et al. 2017). 
The strength of the relative impact potential metric lies in its ability to incorporate 
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both species abundance and functional response under different environmental condi-
tions (e.g. temperature change) and thus predict the influence of context-dependencies 
on invader impact (Laverty et al. 2017). This metric provides a novel approach for as-
sessing existing and potential ecologically damaging species through the use of actual 
field abundance data under different environmental conditions.

The current study focuses on one native and two non-native fish species that co-
occur in irrigation ponds within the Sundays River Valley, Eastern Cape, South Africa. 
These are the native River Goby Glossogobius callidus (Smith, 1937), and two non-
native species, Mozambique Tilapia Oreochromis mossambicus (Peters, 1852) and West-
ern Mosquitofish Gambusia affinis (Baird and Girard, 1853). The native River Goby is 
naturally found in estuarine and freshwater habitats (Engelbrecht and Mulder 1999; 
James et al. 2007). The River Goby is an invertivorous species (Wasserman 2012; Mofu 
et al. 2019). The non-native Mozambique Tilapia is native to eastward flowing rivers of 
central and southern Africa but its natural distribution does not extend to the Sundays 
River (Skelton 2001). The non-native Mozambique Tilapia is an omnivorous species, 
with clear ontogenetic shifts in diet, where juveniles feed predominantly on zooplank-
ton and insects, while the diet of adults comprises of vegetative detritus (Zengeya et 
al. 2011). The non-native Western Mosquitofish is native to the lowland ponds, lakes 
and drainages of North America from Mexico to Alabama (Skelton 2001; Pyke 2008). 
It is an opportunistic omnivore feeding on algae, crustaceans, insects and amphibian 
larvae (Pyke 2008). Both non-native Mozambique Tilapia and Western Mosquitofish 
have been listed in the top 100 worst global invasive species database (IUCN 2006). 
Given that these three fish co-occur and are the most abundant within the Sundays 
River Valley irrigation ponds, this study sought to comparatively assess the potential 
relative ecological impacts of non-native Mozambique Tilapia and non-native Western 
Mosquitofish relative to the native River Goby towards native benthic prey across a 
seasonal temperature gradient.

Materials and methods

Ethical clearance and permits

The collection of animals and all experiments were carried out in compliance with 
the Eastern Cape Department of Economic Development and Environmental Affairs 
(DEDEA permit no. CRO 35/17CR and CRO 36/17CR) and ethical clearance was 
approved by the National Research Foundation – South African Institute for Aquatic 
Biodiversity (NRF-SAIAB reference no. 25/4/1/5_2017/03).

Functional response experimental design

River Goby, Mozambique Tilapia and Western Mosquitofish individuals were sourced 
using a 30 m × 2 m seine net with 12 mm mesh wings and an 8 mm mesh cod-end from 
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Dunbrody (33°27'53"S; 25°33'02"E) and Disco Chicks (33°27'26"S; 25°39'57"E) ir-
rigation ponds, Eastern Cape, South Africa. Upon capture, fish were transported to 
NRF-SAIAB, Grahamstown in continuously aerated containers with source water. 
Each fish species was housed separately in a controlled temperature and light labora-
tory and kept under a 12:12 light:dark cycle. Temperature was maintained at either 
18 ± 2 °C or 25 ± 2 °C (i.e. experimental temperature groups) for seven days prior to 
experimentation, with each species acclimated separately in 40 L fish tanks in a closed 
recirculating system. All fish were maintained on a standardized diet of larval chirono-
mids ad libitum. The chironomid larvae were collected by kick sampling from the 
Bloukrans River (33°19'06"S; 26°34'22"E) using a kick net (1000 µm). The chirono-
mids were then strained twice through 2.0 mm and then 1.0 mm sieves to obtain the 
experimental size class (total length (TL) ± standard deviation ((SD) 1.5 ± 0.11 mm) 
and then rinsed thoroughly with deionized water to remove any other food sources.

Functional response experiments were performed at 18 °C and 25 °C, reflecting 
respective spring and summer temperatures at the sampling locations. Following Alex-
ander et al. (2014), all fish were size matched (TL (mean ± SD): River Goby = 41.50 
± 4.10 mm; Mozambique Tilapia = 41.70 ± 4.10 mm; Western Mosquitofish = 41.60 
± 4.10 mm), in order to eliminate the influence of size-related differences on prey 
consumption and focus on species-specific differences (Rall et al. 2012). Individuals of 
River Goby, Mozambique Tilapia and Western Mosquitofish were randomly selected 
from the holding tanks 24 hours prior to the trial and transferred to experimental are-
nas (opaque 20 L spherical arenas: diameter: 290 mm; depth: 400 mm) containing 5 L 
of continuously aerated rainwater. In individual experimental arenas, each assigned fish 
was held for 24 hrs prior to the experiment without food to allow for acclimatization 
and standardization of hunger levels. Individual fish were then presented with chirono-
mid larvae at one of eight prey densities (n = 2, 4, 8, 16, 32, 64, 96 and 120; n = 7 repli-
cates per prey density). At the end of each experimental period, predators were removed 
and the total number of live prey items remaining, and hence numbers consumed, 
enumerated. One set of experiments (i.e. one randomized fully factorial replicate per 
experimental temperature group) was conducted in a day, and the experiments were 
initiated at 09:00 am, during photoperiod, with prey consumption examined after 2 
hrs. Controls consisted of larval chironomids in experimental tanks at each prey density 
in the absence of predators (n = 2 replicates per experimental group). Predators were 
only used once and therefore there was no re-use within or across experimental groups.

Fish abundances

The fish predator abundance data were obtained from the NRF-SAIAB`s monitor-
ing program of irrigation ponds in the Sundays River Valley, Eastern Cape, South 
Africa. Abundance from two irrigation ponds were used, ML Swart (33°24'33"S; 
25°29'04"E), and River Bend (33°26'23"S; 25°42'25"E). The pond names represent 
either the property or farm owner’s name, as recorded by the Lower Sundays River 
Water User Association. These ponds were selected on the basis that they were surveyed 
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in both spring and summer and that all three species were captured to give abundance 
estimates. During each survey, the irrigation pond water temperatures were measured 
using a HANNA HI98129 combo pH and electrical conductivity meter (HANNA 
Instruments Inc., Woonsocket, USA). Spring (18 °C) and summer (25 °C) abundance 
estimates were used in this study as they were in line with the experimental tempera-
tures, and reflect seasonal temperature means.

The ponds were surveyed using a 30 m × 2 m siene net with 12 mm mesh wings 
and an 8 mm mesh cod-end. At least three hauls were conducted per pond and, upon 
completion of a single haul, all fish were kept alive in a continuously aerated container 
(20 L) until every seine haul was completed within a pond. Fish were then identified 
to species-level, enumerated and released back to the water. The abundance data were 
based on maximum catch field abundances using mean catch per 100 m2.

Statistical analyses

Generalized linear models (GLMs) assuming a Poisson error distribution and log link 
were used to analyze overall prey consumption with respect to species, temperature and 
prey supply. Likewise, GLMs were used to compare fish abundances with respect to 
species, season and pond. Non-significant terms and interactions were removed step-
wise to obtain minimum adequate models (Crawley 2007). Tukey’s comparisons were 
used to undertake post hoc tests of significant effects in each resulting model (Hothorn 
et al. 2008).

To distinguish between Type II and III functional responses, logistic regression 
of the proportion of prey consumed as a function of initial prey density was per-
formed (but see also Rosenbaum and Rall 2018). Selection between Type II and Type 
III models was further confirmed via comparison of Akaike’s information criterion. A 
significantly negative first-order term indicates a Type II functional response, whereas a 
significantly positive first-order term followed by a significantly negative second-order 
term indicates a Type III response (Juliano 2001). Rogers’ random predator equation 
was used to model functional responses as prey were not replaced as they were con-
sumed (Rogers 1972):

N N a N h Te e= - -( )( )( )0 1 exp  (1)

where Ne is the number of prey eaten, N0 is the initial density of prey, a is the attack 
rate, h is the handling time and T is the experiment duration (fixed at 1). To enable 
model fitting, the Lambert W function was used (needed as Ne appears on both sides 
of the equation; (Bolker 2008)). Differences in attack and handling parameters were 
assessed pairwise between fishes at each temperature using indicator variables (Juliano 
2001; Pritchard et al. 2017). Bonferroni corrections were used on raw p-values to ac-
count for multiple comparisons. Multiple estimates of the handling time parameter h 
were generated using non-parametric bootstrapping (n = 100), with maximum feeding 
rates then calculated via 1/h.
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We calculated relative impact potential (RIP) of native (i.e. River Goby) and non-
native (i.e. Mozambique Tilapia, Western Mosquitofish) species using the mean boot-
strapped functional response maximum feeding rate (FR) and abundance (AB) for the 
three species at each season and pond (Dick et al. 2017):

RIP FR non-native  non-native 
FR native 

AB
 AB nat

= 





×
iive 





 (2)

when RIP < 1, the predicted impact of the non-native fish is predicted to be less than 
the native; when RIP = 1, there is no difference in impact between the fish species; 
whereas when RIP > 1, the non-native has a greater impact than the native. To inte-
grate uncertainty into the RIP score, a probability density function (pdf ) was applied 
using the standard deviation (SD) of the FR and AB estimates and this generated 80% 
confidence intervals (CIs) (see Dick et al. 2017). Biplots were then generated to illus-
trate the RIP for both for non-native Mozambique Tilapia and Western Mosquitofish 
relative to the native River Goby at each season between ponds (Laverty et al. 2017). 
All analyses were carried out in R v. 3.4.2 (R Development Core Team 2017).

Results

Functional response

Prey survival of larval chironomids was 99% in control groups with predators absent, 
and thus prey mortality in the experimental groups was attributed to predation. Over-
all consumption was significantly different among fish species (χ2 = 221.67, df = 2, p 
< 0.001). Native River Goby consumed significantly fewer prey than both non-native 
Mozambique Tilapia (z = 14.61, p < 0.001) and non-native Western Mosquitofish (z 
= 8.43, p < 0.001). Mozambique Tilapia, in turn, consumed significantly more prey 
than Western Mosquitofish overall (z = 6.41, p < 0.001). Consumption was also sig-
nificantly greater at the higher temperature, analogous with the summer season (χ2 = 
179.61, df = 1, p < 0.001), and consumption increased with temperature for all species 
as there was no significant ‘predator × temperature’ interaction (χ2 = 3.54, df = 2, p = 
0.171; Figure 1). Furthermore, consumption increased significantly with increasing 
prey supply (χ2 = 2019.88, df = 1, p < 0.001).

At 18 °C (i.e. spring temperature), all three fish species displayed a Type II func-
tional response (Table 1; Figure 1a). Attack rates did not differ significantly between 
fishes (River Goby and Mozambique Tilapia: z = 1.03, p = 0.301; River Goby and 
Western Mosquitofish: z = 0.42, p = 0.675; Mozambique Tilapia and Western Mos-
quitofish: z = 0.51, p = 0.611). However, native gobies exhibited significantly long-
er handling times compared to both non-native Mozambique Tilapia (z = 9.67, p 
< 0.001) and non-native Western Mosquitofish (z = 4.36, p < 0.001). Accordingly, 
maximum feeding rates were considerably higher in the non-native as compared to 
native fishes (Table 1). In turn, Mozambique Tilapia had significantly shorter handling 
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times, and thus higher maximum feeding rates, than Western Mosquitofish (z = 6.27, 
p < 0.001) (Figure 1a).

At 25 °C (i.e. summer temperature), all three fish species also exhibited a Type 
II functional response (Table 1; Figure 1b). There were significant differences in at-
tack rates between the native River Goby and the non-native Mozambique Tilapia (z 
= 2.62, p = 0.008). Attack rates between the native River Goby and the non-native 
Western Mosquitofish did not differ significantly (z = 0.24, p = 0.811). However, 
Mozambique Tilapia had significantly lower attack rates than Western Mosquitofish 
(z = 2.88, p = 0.004). Native gobies displayed significantly longer handling times than 
non-native Mozambique Tilapia (z = 12.55, p < 0.001) and non-native Western Mos-
quitofish (z = 7.18, p < 0.001), again driving substantially higher maximum feeding 
rates by the non-native fishes (Table 1). In turn, Mozambique Tilapia had significantly 
shorter handling times than Western Mosquitofish (z = 6.92, p < 0.001), and hence 
exhibited the highest maximum feeding rate (Figure 1b).

Table 1. Parameter estimates from first-order logistic regression of the proportion of consumed prey as a 
function of prey density, with rounded functional response estimates, a = attack rate; h = handling time, 
1/h = maximum feeding rate.

Predator Temperature First-order term, p a p h p 1/h
Native River Goby 18 °C –0.04, <0.001 4.34 <0.001 0.05 <0.001 20.00
Non-native Mozambique Tilapia 18 °C –0.03, <0.001 5.23 <0.001 0.02 <0.001 43.48
Non-native Western Mosquitofish 18 °C –0.03, <0.001 4.74 <0.001 0.04 <0.001 27.78
Native River Goby 25 °C –0.03, <0.001 3.65 <0.001 0.03 <0.001 34.48
Non-native Mozambique Tilapia 25 °C –0.01, <0.001 2.20 <0.001 0.01 <0.001 111.11
Non-native Western Mosquitofish 25 °C –0.02, <0.001 3.80 <0.001 0.02 <0.001 58.82

Figure 1. Functional response curves for native River Goby (blue circles, solid lines), non-native Mozam-
bique Tilapia (red squares, dashed lines) and non-native Western Mosquitofish (green triangles, dotted 
lines) at 18 °C (a) and 25 °C (b). Means are ± SE. Filled points are means and unfilled points are raw data.
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Fish abundances

There was a significant ‘species × season × pond’ interaction (χ2 = 92.54, df = 2, p < 
0.001; Figure 2), with seasonal responses of fish species abundance differing between 
the two ponds. From ML Swart in spring, native River Goby abundances were not sig-
nificantly different to non-native Mozambique Tilapia (z = 0.63, p = 0.988), but were 
more abundant than non-native Western Mosquitofish (z = 4.44, p < 0.001). In turn, 
the non-native Mozambique Tilapia were also more abundant than the non-native 
Western Mosquitofish (z = 4.73, p < 0.001). In summer, ML Swart abundances of the 
native gobies did not differ significantly either to non-native Mozambique Tilapia (z 
= 0.48, p = 0.990) or non-native Western Mosquitofish (z = 2.71, p = 0.070). In ad-
dition, there were no significant differences between non-native Mozambique Tilapia 
and non-native Western Mosquitofish abundances (z = 2.23, p = 0.223). On the other 
hand, from River Bend in spring, native gobies were significantly more abundant than 
both non-native Mozambique Tilapia (z = 4.52, p = 0.001) and non-native Western 
Mosquitofish (z = 6.28, p < 0.001). Non-native Mozambique Tilapia abundances were 
significantly greater than non-native Western Mosquitofish (z = 3.51, p = 0.006). In 
summer, however, gobies were significantly less abundant than non-native Mozam-
bique Tilapia (z = 10.74, p < 0.001) yet more abundant than non-native Western Mos-
quitofish (z = 4.12, p < 0.001). Similarly, the non-native Mozambique Tilapia were 
more abundant than the non-native Western Mosquitofish here (z = 5.74, p < 0.001).

Figure 2. Abundance box plots for native River Goby (blue), non-native Mozambique Tilapia (red) and 
non-native Western Mosquitofish (green) from ML Swart and River Bend irrigation ponds, Eastern Cape, 
South Africa. Sampling occurred in spring (18 °C) and summer (25 °C).
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Table 2. Relative Impact Potential (RIP) using mean bootstrapped maximum feeding rates for non-
native Mozambique Tilapia and non-native Western Mosquitofish against native River Goby. Field abun-
dance data are integrated from ML Swart and River Bend ponds in spring and summer. Uncertainties are 
reflected through 80% confidence intervals (CIs).

Species Season Pond Mean FR maximum 
feeding ± SD

Mean field 
abundance ± SD

RIP CIs Prip>1

Non-native Mozambique 
Tilapia, native River Goby

Spring ML Swart 45.40 ± 11.31, 19.96 
± 3.53

2.41 ± 2.84, 2.25 
± 3.10

7.25 0.42 – 16.32 75.17

Non-native Mozambique 
Tilapia, native River Goby

Spring River Bend 45.40 ± 11.31, 19.96 
± 3.53

2.04 ± 0.69, 5.22± 
4.80

1.69 0.35 – 3.57 55.21

Non-native Western 
Mosquitofish, native River Goby

Spring ML Swart 26.68 ± 2.87, 19.96 
± 3.53

0.19 ± 0.17, 2.25 
± 3.10

0.35 0.29 – 0.78 70.78

Non-native Western 
Mosquitofish, native River Goby

Spring River Bend 26.68 ± 2.87, 19.96 
± 3.53

2.04 ± 0.69, 5.22 
± 4.80

1.01 0.22 – 2.11 33.40

Non-native Mozambique 
Tilapia, native River Goby

Summer ML Swart 125.02 ± 54.57, 
32.60 ± 4.10

15.50 ± 4.80, 13.70 
± 11.10

7.30 1.58 – 15.35 96.40

Non-native Mozambique 
Tilapia, native River Goby

Summer River Bend 125.02 ± 54.57, 
32.60 ± 4.10

20.10 ± 8.02, 5.41 
± 2.77

18.26 5.21 – 36.15 99.98

Non-native Western 
Mosquitofish, native River Goby

Summer ML Swart 97.17 ± 148.60, 
32.60 ± 4.10

20.70 ± 21.20, 
13.70 ± 11.10

7.58 0.30 – 16.56 69.64

Non-native Western 
Mosquitofish, native River Goby

Summer River Bend 97.17 ± 148.60, 
32.60 ± 4.10

0.06 ± 0.13, 5.41 
± 2.77

0.05 0.00 – 0.09 40.20

Relative impact potential

Under both spring and summer treatments, the non-native Mozambique Tilapia 
consistently displayed relative impact potential scores > 1 relative to the native River 
Goby irrespective of focal ponds, suggesting greater impact than the native species 
(Table 2). In contrast, non-native Western Mosquitofish had relative impact poten-
tial scores of < 1 from ML Swart and approximately 1 from River Bend in spring, 
respectively suggesting lower or similar impacts to native River Goby (Table 2). In 
summer, non-native Western Mosquitofish had a relative impact potential score > 
1 from ML Swart, but had a relative impact potential score < 1 from River Bend. 
This suggests less impact in River Bend and higher impact in ML Swart relative to 
native River Goby.

The relative impact potential biplots concur with the relative impact potential scores 
(Figure 3). In spring, non-native Mozambique Tilapia had the highest impact potential 
followed by native River Goby and lastly by non-native Western Mosquitofish in both 
ML Swart and River Bend (Figure 3a, b). In summer, there is inconsistency between 
the ponds, whereby the native River Goby has the lowest relative impact potential in 
ML Swart compared to the non-native Mozambique Tilapia and the non-native West-
ern Mosquitofish (Figure 3c). The relative impact potential biplots from River Bend in 
summer are more reflective of the trends observed in both ponds in spring, where the 
non-native Mozambique tilapia had the highest impact potential followed by the na-
tive River Goby and lastly the non-native Western Mosquitofish, which had no impact 
owing to its absence here (Figure 3d).
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Discussion

Using the relative impact potential metric proposed by Dick et al. (2017), this study 
provides insights into how the ecological impacts of non-native species are mediated 
by temporal variabilities associated with seasons through the multiplying of functional 
responses and population abundances. Irrespective of seasonal variations, our results 
corroborate with studies that identified Mozambique Tilapia as a particularly impact-

Figure 3. Relative impact potential (RIP) biplots (see also Table 2) of native River Goby (blue circles), non-
native Mozambique Tilapia (red squares) and non-native Western Mosquitofish (green triangles) in spring 
(18 °C): (a) ML Swart (b) River Bend; and in summer (25 °C): (c) ML Swart and (d) River Bend. Ecological 
impact increases from bottom left to top right. Note differences in axes scaling. Values are mean ± SD.
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ful non-native species (Canonico et al. 2005; Maddern et al. 2007), whilst Western 
Mosquitofish impacts were less pronounced. We first show that all three fish species 
display a Type II functional response across the seasonal gradient, conducive to high 
resource utilisation at low densities. Whilst Type II functional responses are common 
in comparative laboratory-based studies (e.g. Dick et al. 2013), if included experi-
mentally, additional context-dependencies such as habitat structure may have driven a 
significant impact on functional response form (Vucic-Pestic et al. 2010a; Vucic‐Pestic 
et al. 2010b; Kalinkat et al. 2013; Barrios-O’Neill et al. 2016). Moreover, greater in-
cremental low-density prey resolution, different feeding durations and larger experi-
mental aquaria volumes may further alter functional response forms (e.g. to Type III) 
(Sarnelle and Wilson 2008; Uiterwaal and DeLong 2018). Nevertheless, in the present 
comparative study, interspecific variation in functional responses between the species 
showed that both the non-native species exert higher per capita impacts than the native 
species on native prey and that predatory impacts are more profound during the sum-
mer season. These findings concur with a considerable number of studies comparing 
impact between invasive and native species (Alexander et al. 2014; Dick et al. 2014; 
Cuthbert et al. 2019).

Temperature differences had a significant effect on the functional response param-
eters, wherein attack rates were high in spring (i.e. 18 °C) and were reduced in sum-
mer (i.e. 25 °C). This result concurs with Grigaltchik et al. (2012), where an increase 
in temperature resulted in reduced attack rates, but contrasts with other studies (e.g. 
Wasserman et al. 2016) wherein attack rates exhibit a non-monotonic temperature 
response. Furthermore, we showed that during the summer season, handling times 
were reduced and hence these species exhibited higher maximum feeding rates. The 
findings from Englund et al. (2011) corroborate with ours, and this effect is mostly 
related to predators’ metabolic rate changes. For instance, for a predator’s metabolic 
activity to reach its maximum efficiency (i.e. high per capita effects), temperatures need 
to be optimal; yet if temperatures are too high this will result in reduced metabolic 
rates through catabolism (Clarke and Johnson 1999).

Secondly, we show that there was significant variation in fish abundances among 
species according to season, and also between ponds. Such variation in fish abundances 
seems to be a common theme, especially in fish communities that co-occur in environ-
ments and this is driven by spatial and temporal variation in life-history traits (Amezc-
ua and Amezcua-Linares 2014). All three fish species were generally less abundant in 
spring and more abundant in summer. Mozambique Tilapia were the most abundant 
species overall, followed by River Goby and, lastly, Western Mosquitofish. By combin-
ing the fish maximum feeding rates and abundances (as per Dick et al. 2017) to give 
the relative impact potential score, we showed that the non-native Mozambique Tila-
pia consistently had the highest impact across seasons whereas, in the majority of cases, 
impacts of non-native Western Mosquitofish were less apparent relative to the native 
River Goby given currently low abundances.

Changes in relative impact potential scores with seasonal temperature fluctuations 
and fish abundances from different localities demonstrate how such context-depend-
encies can have a critical effect on the relative field impact capacities of introduced 
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species through time (Dick et al. 2017). The effects of temperature regime shifts on 
interaction strengths are profound across habitat types and trophic groups (Englund 
et al. 2011; Rall et al. 2012), and increasing temperatures may exacerbate invader 
ecological impacts as species approach thermal optima (Iacarella et al. 2015). This is 
supported by the heightened functional responses observed for the non-native Mo-
zambique Tilapia and non-native Western Mosquitofish as experimental temperature 
was increased to near their thermal preferendum (̴ 28°C; Jobling 1981). Therefore, the 
explicit inclusion of temperature change will be critical in future studies which seek 
to predict invader impacts across regime shifts associated with climatic warming and 
seasonal variability. Since the relative impact potential metric was 100% predictive of 
ecological impact across taxonomic and trophic groups (Dick et al. 2017), the current 
results, whereby relative impact potential is high for the non-native Mozambique Tila-
pia, gives confidence that this species can be forecast to cause major ecological impacts.

The present study further demonstrates the usefulness of numerical response prox-
ies such as abundances in rapid assessments of potential impacts of introduced species. 
Indeed, in many cases, impact predictions are inherently limited if based on per capita 
impacts alone, given the importance of abundances in discernments of overall offtake 
rates by consumer populations (Dick et al. 2017). Importantly, our results suggest that 
ecological impacts of non-native species are likely to change across seasonal gradients 
associated with both changing functional responses and abundances, with summer 
impacts generally more profound than those in spring. We thus propose that further 
studies should incorporate such seasonal variability. Our study demonstrates that spe-
cies-specific shifts in abundances may alter interaction strengths within ecosystems 
towards native populations. Therefore, quantitative assessments of species abundances 
can ultimately bridge the gap in decision-making and can be used to forecast future 
invader impacts under different climatic conditions when combined with per capita 
effects. Nevertheless, our study additionally demonstrates that individual systems (e.g. 
ponds) can differ substantially in predator community composition over time, and 
this system-specific population variability should be also considered in future studies.

Overall, this study provides further evidence of the strength of the relative impact 
potential metric in predicting ecological impacts of species and provides an extension 
to the framework by integrating an environmental gradient, which reflects seasonal 
temperature fluctuations. The identification of temporal shifts in impact across seasons 
and habitats in our study presents novel insights into invader impact. In many ecosys-
tems, data on species abundances are still lacking, but since the relative impact poten-
tial metric enables impact predictions for species without invasion histories, we recom-
mend more surveys to estimate abundance of potential invaders and/or for practition-
ers to incorporate other proxies (such as fecundity) into the metric (see Dickey et al. 
2018). Crucially, the ability of both Mozambique Tilapia and Western Mosquitofish 
to thrive in novel habitats highlights their ecological plasticity, and with an increase 
in environmental temperatures, their impacts may be intensified through changes to 
functional responses and fish abundances. The relative impact potential metric thus 
allows for rapid assessment of current and future invasive species under shifting envi-
ronmental contexts and can identify priority species for management.
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