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A Theoretical Model to Link Uniqueness and
Min-Entropy for PUF Evaluations

Chongyan Gu, Member, IEEE, Weiqiang Liu, Senior Member, IEEE, Neil Hanley, Robert Hesselbarth,
and Máire O’Neill, Senior Member, IEEE

Abstract—Physical unclonable functions (PUFs) are security primitives that enable the extraction of digital identifiers from electronic
devices, based on the inherent silicon process variations between devices which occur during the manufacturing process. Due to the
intrinsic and lightweight nature of a PUF, they have been proposed to provide security at a low cost for many applications, in particular
for the internet of things (IoT). Many metrics have been proposed to evaluate the security and performance of PUF architectures, two of
which are uniqueness and min-entropy. The uniqueness of a PUF response evaluates its ability to differentiate between different
physical devices, while the min-entropy estimation is a measure of how much uncertainty the PUF response contains. The min-entropy
is a lower-bound of real entropy. When the uniqueness of a PUF design is close to the optimal, it is unclear if this also implies that the
design has a significantly high entropy; hence it would be useful to ascertain the minimum uniqueness required to achieve a given
entropy. To date, a thorough investigation of the relationship between uniqueness and entropy for PUF designs has not been
conducted. In this paper, this relationship between the uniqueness and entropy is explored, and for the first time, to the authors’
knowledge, the relationship between them is modeled. To verify this model, both simulated and hardware-based experimental results
are performed, with a test-bed containing 184 Xilinx Artix-7 FPGA based Basys3 boards providing a large data set for granular results.
The experimental results demonstrate that the proposed model accurately estimates the relationship between uniqueness and
min-entropy, with both the theoretical analysis and software simulations closely matching the experimental results.

Index Terms—Entropy, Physical Unclonable Functions, Uniqueness.
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1 INTRODUCTION

THE internet of things (IoT) has revolutionized our
lives through remote health care, autonomous vehicles,

smart homes, etc.. However, it also brings security and
privacy issues by opening up new attack vectors for criminal
hackers to exploit for, e.g. the distributed denial-of-service
(DDoS) attack on Dyn used over 10, 000 Internet of things
(IoT) devices, taking down Twitter, SoundCloud, Spotify,
Reddit and a host of other sites [1]. The IoT is expected
to have a large impact on a wide range of markets, from
wearable health-care devices to embedded systems in smart
cars, many of which will be underpinned by devices which
are limited with regards to computation and power con-
sumption. Conventional security approaches based on com-
putationally complex cryptographic algorithms, are typi-
cally too resource intensive to implement on these resource
constrained devices. Additionally, an attacker will likely
have physical access to many of these embedded IoT devices
allowing implementation attacks such as side-channel anal-
ysis (SCA) or fault analysis (FA) to be performed [2]. Hence,
it is important to evaluate alternative, low-cost, security
approaches to secure lightweight IoT devices.
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Physical unclonable functions (PUFs) are a security
primitive which utilise the inherent process variations
present during manufacturing in order to generate a unique
digital fingerprint that is intrinsic to the device itself [3].
As this natural variation between the devices is outside the
control of the manufacturer, they are inherently difficult
to clone, as well as providing certain additional tamper-
evident properties [4], [5]. These properties have a num-
ber of advantages over current state-of-the-art alternatives,
opening up interesting possibilities for higher level se-
curity protocols such as secure non-volatile key storage
or lightweight device authentication, for both application-
specific integrated circuit (ASIC) and field programmable
gate array (FPGA) based designs. Hence, PUFs are poten-
tially a very promising candidate for increasing the security
of IoT devices.

In order to evaluate and compare PUFs designs from
a security viewpoint, a number of metrics have been sug-
gested [6], two of which we examine further here; unique-
ness and entropy. Uniqueness is the ability to distinguish
between different devices based on its PUF response to the
same challenge. As these PUF instantiations are identical,
the difference between the responses is based entirely on
the manufacturing process variation. While uniqueness tells
us how well the PUF can distinguish between devices, thus
giving us an indication of how random the responses are, it
does not provide us with the actual entropy available, which
is required to formalize security parameters [7].

In order to estimate the entropy of a PUF, a number of
methods have been proposed. The context-tree weighting
(CTW) lossless compression algorithm is employed to esti-
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TABLE 1
An Overview of Uniqueness, Min-entropy and CTW Ratio Results.

Type Uniqueness Min-entropy CTW Ratio Sample size

SRAM-NXP [9] 0.49 0.75 99.1 20

SRAM-TSMC [9] 0.50 0.76 100 20

DFF [9] 0.50 0.77 100 20

Buskeeper [13] 0.50 0.82 99 194

mate the upper bound of entropy (i.e. best case) [8], [9], [10],
[11], [12]. Min-entropy is another metric widely employed to
evaluate the lower bound of unpredictability of a response [9],
[11], [13], [14], [15]. It estimates the lower bound (i.e. worst
case) as described in the National Institute of Standards
and Technology (NIST) specification 800-90 [16]. The actual
entropy is expected to be somewhere between these two
bounds.

Table 1 provides an overview of some previously re-
ported results for the metrics of various PUF designs [17]. It
is reasonable to assume that as the randomness of the PUF
response increases, the hamming distance (HD) between the
responses tends to the ideal of 0.5. Although the uniqueness
results are very close to the ideal value of 0.5, the min-
entropy results are not as close to their optimal value of 1.
The CTW ratio represents the ratio of response information
before compression and after compression. Ideally, CTW
is expected to be 100%, i.e. it is difficult to compress the
response due to its randomness. Except for the results from
Simons et al. [13], the results in Table 1 are only evaluated
over a small number of experimental devices.

A combination of uniqueness and robustness using mu-
tual information was proposed to analyse the entropy of
PUFs [18], while a conditional entropy calculation was
also employed to determine whether a MUX PUF is linear
[19]. However, a thorough investigation of the relationship
between uniqueness and entropy for PUF designs has not
yet been conducted. When the uniqueness of a PUF design
is close to the optimal, it is unclear if the design has a
sufficiently high entropy. It is also interesting to consider
what is the minimum uniqueness required to achieve a
given entropy. Moreover, as it is not accurate to empirically
calculate the entropy over a small sample size, a model to
detail the relationship between uniqueness and entropy is
of practical relevance.

In the context of a security evaluation, worst-case analy-
sis is preferable to best-case. Hence, in this paper, we focus
on developing a theoretical link between the uniqueness
and min-entropy, and verifying its feasibility with both soft-
ware simulations and hardware-based experimental analy-
sis. Specifically, our research contributions are summarized
as follows.

• A novel model explaining the link between uniqueness
and min-entropy has been proposed, which can be used
to estimate the relationship between them. To the best
of the authors’ knowledge, this is the first time this link
has been investigated.

• A software simulation is conducted to evaluate the
feasibility and performance of the proposed model. The
simulation results show that the proposed model can
accurately estimate either uniqueness or min-entropy,

TABLE 2
List of Parameters.

Symbol Definition

m The number of devices, indexed by {i, j}
n The bit-length, indexed by {b}
Ri The response from the ith device

Ri,b The bth response bit from the ith device

HD(Ri,Rj) The HD between the responses from

devices i and j

HWb The hamming weight (HW) of the bth bit over

m devices

given the other.
• A hardware experiment based on a ring oscillator (RO)-

PUF, implemented on a large scale testbed of 184 Xilinx
Artix-7 FPGA based Basys3 boards, is presented. The
empirical min-entropy and uniqueness experimental
results are 0.73 and 0.48, respectively, which match
with both theoretical analysis and software simulation.

• The duration of the RO acquisition time significantly
impacts the robustness of the PUF responses. Therefore,
the effect of varying the duration of the RO on the
proposed model is also investigated. It shows that the
proposed method accurately estimates the trend and
lower bound of the relationship between uniqueness
and min-entropy.

The rest of this paper is organised as follows. Section 2
describes the basic concept of uniqueness and min-entropy.
Section 3 presents the proposed theoretical model. The ex-
perimental setup is described in Section 4. The experimental
analysis of both the software simulation and the hardware
implementation of a RO PUF are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2 PRELIMINARIES

In this work the link between uniqueness and min-entropy
is explored. In order to explain these two concepts, some
definitions are outlined in Table 2 and illustrated in Fig. 1.

Ri: 0 1 0 1 1 … 1 1 0 1 1 1

Rj: 1 0 0 0 1 … 0 1 0 0 0 1
HD(Ri,Rj)

R1: 0 1 0 1 0 … 0 1 0 0 1 1

Rm: 1 1 0 1 1 … 1 0 0 0 1 0

HD(Ri,b,Rj,b)

HWb

m

n

...

...

Fig. 1. Definitions used in this work.

Some basic mathematical functions, e.g. HD and HW,
are utilised to calculate the PUF metrics, which will be
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introduced in this section. The function HD(Ri,Rj) over two
n-bit responses, Ri,b and Rj,b, is calculated as

HD(Ri,Rj) =
n∑

b=1

HD (Ri,b,Rj,b) (1)

The function HWb is defined as:

HWb =
m∑
i=1

Ri,b (2)

2.1 Uniqueness
Uniqueness represents the ability of a PUF to uniquely
distinguish a device from a population of identical devices.
It measures the inter-chip variation by evaluating the HD
between a group of m devices. When m is sufficiently large,
this can then be extrapolated to the population of devices
as a whole. Ideally, for a well designed PUF architecture,
the expected HD between any two devices for a randomly
selected challenge should be close to 0.5, indicating that
approximately half the response bits are different between
the two devices.

Accordingly, uniqueness can be expressed as shown in
(3).

U =
2

m (m− 1)

m−1∑
i=1

m∑
j=i+1

HD (Ri,Rj)

n
(3)

where a PUF circuit is implemented on m devices, each
device i returning a response Ri for a randomly selected
challenge C which is applied to all devices; then the unique-
ness is defined as the expected HD between any two of the
k devices.

Subsequently combining with (1) gives:

U =
2

m (m− 1)× n

m−1∑
i=1

m∑
j=i+1

n∑
b=1

HD (Ri,b,Rj,b)

=
1

n

n∑
b=1

 2

m (m− 1)

m−1∑
i=1

m∑
j=i+1

HD (Ri,b,Rj,b)

 (4)

This allows the uniqueness for each bit, Ub, to be calculated
independently according to (5).

Ub =
2

m (m− 1)

m−1∑
i=1

m∑
j=i+1

HD(Ri,b,Rj,b) (5)

Assuming the uniqueness per bit, Ub, is independent and
identically distributed (IID)1;

U =
1

n

n∑
b=1

Ub (6)

It is clear that where the uniqueness for each bit Ub is close
to 0.5, then the overall uniqueness U will also tend to the
optimal. However, conversely a value of U = 0.5 does
not guarantee that the individual bits are well balanced,
and a hidden bias can exist. Hence, the uniqueness of the
individual bits should also be examined when evaluating a
PUF response.

1. While this is the goal for a PUF architecture, in practice this is not
assured and must be carefully examined for a given design.

2.2 Min-entropy

Min-entropy is a measure of the lower bound of the unpre-
dictability of the response, i.e. the entropy provided in the
worst case scenario. The commonly used method in the liter-
ature to calculate this employs the method outlined in NIST
specification 800-90 [16] for evaluating the min-entropy of
a binary source. The n-bit responses of m devices have an
occurrence probability at each bit of p1 and p0 for the values
of 1 and 0, respectively. p1 and p0 are calculated by HWb

m and
1− HWb

m , respectively, where HWb is the number of 1’s in m
devices. The maximum probability, pbmax = max (p0, p1), is
used to estimate the min-entropy per bit as outlined in (7).

H̃min,b = − log2 (pbmax) (7)

where,

pb max =

{
HWb

m HWb >
m
2

1− HWb

m HWb ≤ m
2

(8)

The full min-entropy of the design is then given by (9),
and is calculated by averaging the estimated min-entropy of
each bit. The ideal case where H̃min = 1, is returned when
the probability of a given bit being equal to 0 or 1 is equal,
i.e. pbmax = 0.5, hence HWb =

m
2 .

H̃min =
1

n

n∑
b=1

H̃min,b (9)

3 MODEL FOR RELATIONSHIP BETWEEN UNIQUE-
NESS AND MIN-ENTROPY

To build up a model for uniqueness and min-entropy, the
relationship between the HW and uniqueness is first ob-
tained. Following (5), let HDb be the HD between each pair
of m devices for a single bit b of the n-bit response.

HDb =
m−1∑
i=1

m∑
j=i+1

HD(Ri,b, Rj,b) (10)

The uniqueness per bit Ub from (5) can then be represented
as:

Ub =
2

m (m− 1)
· HDb (11)

The HD can be considered as a sum of the appearance of
pair (0,1) between each of the m devices for each bit. It can
be represented as q(m− q), where q is the number of 1’s in
the m devices, and HWb = q in this case. Hence, the HD is
related to the HW according to (12);

HDb = HWb · (m− HWb) (12)

Therefore, the uniqueness for a single bit in (11) can be
expressed as:

Ub =
2

m (m− 1)
· (HWb · (m− HWb)) (13)

Switching the terms around and solving the quadratic al-
lows us to calculate HWb as a function of Ub as shown in
(14);
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HWb =
m

2
·
(
1±

√
2 · Ub +m− 2 · Ub ·m

m

)
(14)

thus allowing us to derive the relationship between the
uniqueness Ub and the min-entropy H̃min.b from (7). For the
first min-entropy probability condition of (8), (14) can be
substituted in allowing us to calculate it as a function of the
uniqueness:

HWb >
m

2

m

2
·
(
1±

√
2 · Ub +m− 2 · Ub ·m

m

)
>
m

2

Ub >
m

2 · (m− 1)

(15)

The above transformation process can also be used for
the second condition in (8). Hence, we can calculate the
min-entropy in (7) as a function of uniqueness by using the
probability pbmax of a response bit as defined in (16).

pbmax =


1
2 ·
(
1 +

√
2·Ub+m−2·Ub·m

m

)
Ub >

m
2·(m−1)

1− 1
2 ·
(
1 +

√
2·Ub+m−2·Ub·m

m

)
Ub ≤ m

2·(m−1)

(16)
It can be seen that the min-entropy is not only related

to the uniqueness but also the number of devices m. The
dependency on m is shown in Fig. 2, where it can be seen
that the uniqueness when measured bit-wise tends to the
ideal value of 0.5 as m increases. Therefore, we can see that
when m . 200 an estimation of the entropy provided by a
given bit will have an inherent bias. As the uniqueness is
generally calculated over the full response vector, this can
return a value of 0.5, masking individual bit biases.

101 102 103

No. of devices (m)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

U
b

Fig. 2. The uniqueness as a function of the number of devices.

Fig. 3 shows the relationship between uniqueness and
min-entropy when calculated per bit over a varying number
of devices. As the uniqueness increases, the related min-
entropy grows accordingly as expected. However, when the
number of devices used for calculations is small, e.g. m =
10, the maximum min-entropy is 0.6, considerably lower
than the ideal value of 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Uniqueness (U
b
)
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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 (

H
m

in
)

No. of devices: 10

No. of devices: 20

No. of devices: 40

No. of devices: 80

No. of devices: 160

No. of devices: 320

No. of devices: 640

No. of devices: 1280

No. of devices: 2560

No. of devices: 5120

Fig. 3. The relationship between uniqueness and min-entropy for differ-
ent numbers of devices. It is derived by using the proposed relationship
model as shown in (7) and (16).

Fig. 4. Ring-oscillator architecture.

A ratio as shown in (17) is defined to clearly quantify the
relationship between uniqueness and min-entropy.

ρ =
Hmin

U
(17)

Ideally, for an ideal uniqueness of 0.5 and min-entropy
of 1, the ratio ρ is equal to 1

0.5 = 2.

4 EXPERIMENTAL SETUP

To verify and demonstrate the efficiency of the proposed
model, acquisitions are evaluated from both a hardware
implementation and a software simulation of an RO PUF
design.

4.1 Hardware Experiment

For the hardware experiment, a set of acquisitions taken
from m = 184 Digilent Basys-3 boards containing a Xilinx
Artix-7 FPGA [20] are recorded. A RO-PUF [21] is utilised
to generate an n-bit response for each device, where n = 64.
We implement the core RO on the FPGA, with the subse-
quent post-processing in software. The ROs are the entropy
source of the PUF, while the post-processing can at best
retain the existing entropy, it can never increase it hence
does not need to be implemented in hardware. The design
under test is a three stage RO, as shown in Fig. 4.

An enable input activates or stops the oscillator and an
output buffered by a toggle flip flop is used to generate a
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signal. It can compactly fit in a single Xilinx Artix-7 slice.
We fix the physical placement and routing paths of the ROs
over all the FPGAs.

Fig. 5 shows one module of the experimental setup,
which consists of four modules in total, each of which holds
60 Basys-3 boards, 10 7-port USB hubs, a Raspberry PI-2,
and power supply. The USB connection between the PI-2
and Basys3 boards powers the FPGA as well as providing
a JTAG interface to program the FPGA with the design
under test, and a UART interface to communicate with
the configured design and receive the measurement results.
The Raspberry-Pi communicates over a local area network
(LAN) with a global experiment control server, which also
stores the measured data. The array was built as part of the
FP7-Sparks project, and a more detailed description can be
found in [22].

Fig. 5. The hardware testing platform.

4.2 Software Simulation
The software simulation is carried out in Matlab 2016

TM
. A

group of m×n arrays of responses is generated by using the
algorithm shown in Algorithm 1, where m is the number of
devices and n is the number of bits of each response. In this
work, m is set to (1 k or 10 k) depending on the case study
and n is set to 64.

5 EXPERIMENTAL ANALYSIS

Based on the analyses in Section 2, there are three important
related cases to investigate:

• Case one: Given the estimated min-entropy of a PUF
design, how well can it be used to distinguish between
different devices, i.e. what uniqueness does it provide?

• Case two: Given the empirical uniqueness of a PUF
design, how much min-entropy does it provide?

• For a RO-PUF, what is the relationship between unique-
ness and min-entropy for different evaluation times.
How do the experimental results match the proposed
theoretical model?

Algorithm 1 Response Generation Algorithm
procedure RESPONSE–GENERATION

for prob = 0.1 to 0.5 do
% prob is the probability of 0 and 1 in a response
for i = 1 to m do

% m is the number of devices
R (m)← RandomNumberGenerator (prob, n)
% n is the number of bits of each response

end for
Uniqueness← HammingDistance(R)
Min-entropy← (9)

end for
end procedure

5.1 Case One - Uniqueness for a Given Min-entropy

To evaluate the uniqueness result under different min-
entropy values, the probability of occurrence of 1 is set
from 0.1 to 0.5 (or 0.5 to 0.9) with a step of 0.1, i.e.
pb max ∈ [0.1 . . . 0.5]. The theoretical uniqueness value as
a function of min-entropy is then calculated using (8) and
(13) with these values of pb max.

101 102 103

No. of devices (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U
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qu

en
es

s 
(U

b
)

Simi H
min

 = 0.15

Simi H
min

 = 0.32

Simi H
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 = 0.51

Simi H
min

 = 0.74

Simi H
min

 = 1

Theo H
min

 = 0.15

Theo H
min

 = 0.32

Theo H
min

 = 0.51

Theo H
min

 = 0.74

Theo H
min

 = 1

Expr H
min

 = 0.73

Fig. 6. The uniqueness results over different devices for a given min-
entropy. The solid lines exhibit the results from software simulation
(Simi), the lines with only markers represent the results from the pro-
posed theoretical model (Theo), and the black line shows the experi-
mental result (Expr) from 184 devices.

Fig. 6 shows the uniqueness results of the theoretical
expectation and software simulation over an increasing
number of devices m, with a specified min-entropy value
Hmin; as well as the calculated values from the test-bed
acquisitions. For the hardware results from the entire set
of 184 FPGAs, the calculated uniqueness and min-entropy
values are 0.48 and 0.73, respectively, with the estimated
values closely following the theoretical expectation. The
hardware-based experimental result presented in Fig. 6
matches both the theoretical and simulated results, as a
solid line, particularly for a large number of devices. Hence,
we can see that the theoretical model is verified by both
simulated results and actual experimental results.

As previously mentioned, to achieve an optimal value
for the min-entropy, pb,max should tend towards 0.5; there-
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fore the HW should be approximately m
2 . Hence, from (13),

Ub =
2

m(m− 1)
· m
2
·
(
m− m

2

)
=

m

2 · (m− 1)

(18)

Assuming m is large, as m → ∞, the uniqueness Ub =
0.5. This shows the benefit of a large test-bed in order to
accurately estimate the uniqueness for a given min-entropy,
with m & 150 devices desirable.

5.2 Case Two - Min-entropy for a Given Uniqueness
In a similar manner, for a given uniqueness calculated
from a PUF design, the expected min-entropy can now be
calculated. In the software simulation, the uniqueness Ub

is set from 0.18 to 0.5, derived once again from pb max ∈
[0.1 . . . 0.5] similar to case one. A theoretical expectation is
calculated by (7), (9) and (16) with these values of Ub. In an
ideal scenario, assuming the uniqueness of a given bit is 0.5,
Ub = 0.5, pb max can be derived from:

pb max = 1− 1

2
·
(
1 +

√
2 · 0.5 +m− 2 · 0.5 ·m

m

)

= 1− 1

2
·
(
1 +

1√
m

) (19)

Assuming that m is large, m→∞, where pb max → 1
2 , then

the min-entropy Hmin = 1.
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Fig. 7. The min-entropy results over different devices for a given unique-
ness. The black line shows the results from the hardware experiment
(Expr) over 184 devices. The other solid lines exhibit the results of the
software simulation (Simi). The lines with only markers demonstrate the
results of the proposed theoretical model (Theo).

Fig. 7 shows the min-entropy results calculated from the
theoretical model and software simulations over an increas-
ing number of devices m, with a specified uniqueness value
Ub; as well as the test-bed acquisitions. It can be seen that
the higher the uniqueness value the closer the min-entropy
is to the ideal value of 1. It also shows that the larger the
number of devices m the higher the min-entropy value (the
lower-bound of real entropy) for a given uniqueness. The
hardware-based experimental result presented as the black

line in Fig. 7 matches both the theoretical and simulated
results particularly for a large number of devices. Fig. 7
also shows the min-entropy results assuming Ub = 0.5
calculated over m different devices. Again, this shows the
benefit of a large test-bed in order to accurately estimate the
min-entropy for a given uniqueness.

5.3 Effect of RO Evaluation Times
When evaluating RO-based PUF designs, the length of time
over which the RO frequency is estimated has a significant
effect on the noise of the response. Generally, the longer the
evaluation time, the less noise the response will have [22].
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Fig. 8. The hardware experiment for investigating the min-entropy over
different RO evaluation times in a range of 16 to 524288. The maximum
and minimum min-entropy are 0.726 and 0.442.

To investigate the influence of evaluation time on both
uniqueness and min-entropy, the RO frequency estimated
across increasing evaluation times is calculated. Fig. 8 shows
the influence on the min-entropy, for evaluation times of
[16, 32, 64, 4096, 655536, 524288] clock cycles. Smaller eval-
uation times lead to a smaller switching count at the RO
output. This leads to a less accurate estimation of the RO
frequency, as well as less variation between the actual
count values of the different RO instances giving a lower
min-entropy estimation. For the 184 devices used in the
hardware experiment, the min-entropy estimation is 0.726
for the longest evaluation time of 524, 288 clock cycles, and
0.442 when the number is 16.

Fig. 9 shows the influence of different RO evaluation
times on the uniqueness result. The box plot is derived by
evaluating the uniqueness over all 184 devices, for each
of the evaluation times. It can be seen that the lower the
evaluation time, the lower the uniqueness obtained as it
is harder to distinguish between the PUF instances for
the same reasons as outlined in the min-entropy case. The
longer the RO evaluation time, the smaller the box in Fig. 9
and the less outliers.

Fig. 10 exhibits the relationship between uniqueness and
min-entropy over different RO evaluation times for both the
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Fig. 9. The hardware experiment for investigating the uniqueness over
different RO evaluation times of 2(x+3) clock cycles, where x ∈ (1, 16).
On each box, the central mark indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively.
The outliers are plotted individually using the ’+’ symbol.
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Fig. 10. The relationship between uniqueness and min-entropy over
different RO evaluation times. The solid line is derived from the proposed
theoretical model and the hardware experimental results are shown
using the ’+’ symbol.

hardware experiment and the proposed theoretical model.
The minimum RO evaluation time results in uniqueness
and min-entropy values of 0.362 and 0.431, respectively. The
maximum RO evaluation time leads to uniqueness and min-
entropy values of 0.457 and 0.674, respectively. The longer
the RO evaluation time, the higher the uniqueness and the
min-entropy. Moreover, it can be seen that the empirical
results closely follow that expected from the theoretical
model.

6 CONCLUSION AND FUTURE WORK

In this paper, a novel theoretical model is developed to
investigate the relationship between the uniqueness and
min-entropy of a PUF response. A software simulation
demonstrates that the proposed model can accurately esti-
mate either uniqueness or min-entropy given the other. We
have analysed the effect of the number of devices on both
uniqueness and min-entropy in practice. For the ideal case,
the larger the number of devices, the closer the min-entropy
can get to the ideal value of 1, and the closer the uniqueness
is to the ideal value of 0.5. In practice the larger number of

devices leads a more accurate estimation as for a given value
of uniqueness, the min-entropy value is bounded when
calculated over a small number of devices. A hardware
experiment based on a RO PUF design is presented to
evaluate the proposed model and it is implemented on a
large scale testbed of 184 Xilinx Artix-7 FPGA based Basys3
boards. The min-entropy and uniqueness experimental re-
sults are 0.73 and 0.48, respectively, which match both the
theoretical analysis and software simulation. Hence, the
proposed model can accurately estimate the trend and the
lower bound of the relationship between uniqueness and
min-entropy. Moreover, for the RO PUF, the longer the RO
evaluation time, the higher the uniqueness and min-entropy.

The RO PUF is utilised to verify the feasibility and
accuracy of the proposed model. In future work, an analysis
of using the proposed model with other PUF architectures
will be performed, as well as investigating the relationship
between the process variation and entropy.

ACKNOWLEDGMENTS

This work was partly supported by the Institute for In-
formation & communications Technology Promotion(IITP)
grant funded by the Korean government(MSIT) (No. 2016-
0-00399, Study on secure key hiding technology for IoT
devices [KeyHAS Project]), by the Engineering and Physical
Sciences Research Council (EPSRC) (EP/N508664/-CSIT2),
by the SPARKS project, funded by EU 7th Framework
Programme (FP7/2007-2013, grant agreement no. 608224;
www.project-sparks.eu), by National Natural Science Foun-
dation China (61771239) and by Nature Science Foundation
of Jiangsu Province (BK20151477).

REFERENCES

[1] KrebsonSecurity. DDoS on dyn impacts twitter, spotify, reddit. Ac-
cessed: 08-11-2016. [Online]. Available: https://krebsonsecurity.
com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/

[2] K. Zhao and L. Ge, “A survey on the internet of things security,”
in Proc. 9th Int. Conf. on Computational Intelligence and Security
(CIS’13), 2013, pp. 663–667.

[3] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-
way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[4] C. Gu, J. Murphy, and M. O’Neill, “A unique and robust single
slice FPGA identification generator,” in Proc. IEEE Int. Symp. on
Circuits and Syst. (ISCAS’14), Melbourne, Australia, Jun. 2014, pp.
1223–1226.

[5] C. Gu and M. O’Neill, “Ultra-compact and robust FPGA-based
PUF identification generator,” in Proc. IEEE Int. Symp. on Circuits
and Syst. (ISCAS’15), Lisbon, Portugal, May 2015.

[6] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method
to evaluate and compare the performance of physical unclonable
functions,” in Embedded syst. des. with FPGAs. Springer, 2013, pp.
245–267.

[7] R. Maes and I. Verbauwhede, Physically Unclonable Functions: A
Study on the State of the Art and Future Research Directions. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–37.

[8] S. Katzenbeisser, U. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Ver-
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