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ABSTRACT

Earthquake and volcanic processes at mid-ocean ridges

Yen Joe Tan

In this thesis, I present results that broadly fall into two themes. The first in-

volves understanding active tectonic and magmatic processes at mid-ocean ridges.

The second involves using small stress changes due to the tides to probe earthquake

processes at mid-ocean ridges. The four main results of my thesis are as follow: (1)

The spatiotemporal evolution of an eruption at a fast-spreading mid-ocean ridge, the

East Pacific Rise, is now characterized and understood to be mainly controlled by the

buildup of tectonic stress to a critical level rather than magma overpressure. (2) Mi-

croearthquakes at the East Pacific Rise are found to be strongly modulated by tides

in the years before an eruption but not immediately after the eruption, suggesting the

potential utility of tidal triggering strength for eruption forecasting. (3) Earthquake

size-frequency distribution, often quantified using the b value, is shown to vary sys-

tematically with tidal stresses which lends support to the use of earthquake b value

as an in-situ stressmeter. (4) The 2015 Axial Seamount eruption is revealed to be

preceded by variable rates of melt influx into the shallow reservoir, highlighting the

short-timescale variability of magmatic systems as they are primed for an eruption.
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Introduction

Light does not penetrate beyond the first few hundred meters of the ocean and so most

of the seafloor is shrouded in complete darkness. Yet, this is where over two-thirds

of the Earth’s volcanic activity occur, mostly along the ∼70,000 km of mid-ocean

ridges. The difficulty in sustaining long-term continous monitoring in the marine en-

vironment means that these volcanic systems have remained relatively underexplored

compared to their subaerial counterparts. It is this sense of exploration that is the

primary driver behind the work in this thesis, as I was blessed with the opportunity

to work with two unique datasets that represent two of only a few in-situ geophysical

observations of mid-ocean ridge eruptions. Working on understanding these volcanic

systems subsequently led to the realization that the sensitivity of mid-ocean ridge

microearthquakes to tidal stress perturbation also provides a unique natural labora-

tory for us to further understand fundamental earthquake processes. Hence a thesis

on both earthquake and volcanic processes at mid-ocean ridges. The two study areas

of this thesis are the East Pacific Rise near 9°50’N and the Axial Seamount on the

Juan de Fuca ridge (Fig. 1).
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Figure 1: Regional map showing locations of Axial Seamount and 9°50’N East Pacific
Rise.

Axial Seamount

In early 2015, a real-time cabled seafloor observatory was completed on the sum-

mit of Axial Seamount, a volcano formed at the intersection of the Juan de Fuca

ridge and the Cobb hotspot off the coast of Oregon. This represents a state-of-the-

art monitoring network on a submarine volcano. Coupled with prior high-resolution

active-source imaging of the shallow magma reservoir [1, 2], the observatory pro-

vides a unique dataset to understand the structures and processes that control this

magmatic system. As luck would have it, the volcano erupted in April 2015. This

immediately became the best-characterized submarine eruption to-date. The diking-

eruptive sequence involved both northward and southward dike propagation [3–5],
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with lava being erupted only in the northern caldera floor and the north rift zone [6,

7] and being sourced from a steeply-dipping prolate-spheroid pressure source beneath

the southeastern part of the caldera that extends from 1.75 km to 6 km depth [4].

Earthquakes located were found to delineate outward-dipping faults that were reacti-

vated as the volcano inflates and deflates [3, 5, 8]. However, there had not been much

focus on the buildup to this eruption. We thus decided to analyze the data during

this time period in the hope of better understanding how the magmatic system built

up to an eruption. Through the integration of measurements of seismic velocity vari-

ations and the spatiotemporal evolution of earthquakes as well as deformation rate,

we show that a few weeks before the eruption, there was increased rate of melt influx

into a region of the shallow reservoir from which the erupted lavas were subsequently

sourced. The integration of multiple datasets is necessary to fully characterize the

shallow magma reservoir where melt influx can vary over short time and small spatial

scales, and is a step forward towards better eruption forecasting.

Earthquakes follow a power-law size–frequency distribution with the b value often

used to quantify the relative frequency of small and large magnitude earthquakes. In

rock fracture experiments, the b value of small fracture events was found to correlate

with stress [9]. This prompted the idea that earthquake b values can be used as

stressmeters to estimate spatiotemporal variations of the solid earth’s stress state.

However, the underlying assumption that earthquake b value is stress-dependent still

has to be verified. Several attempts have been made looking at the correlation of

earthquake b value with faulting style [10], depth [11], and subducting plate age [12].

However, these studies were restricted by small sample sizes and the need to combine

3



earthquakes over large spatial regions, as well as the inability to control for other vari-

ables that might also affect earthquake b values such as rock heterogeneity [13] and

fault roughness [14]. In the three months before the April 2015 Axial Seamount erup-

tion, ∼60,000 earthquakes which delineate a ring-fault system [3] were located in a 25

km3 block of crust that experiences periodic tidal loading. The microearthquakes at

Axial Seamount had been previously shown to be strongly modulated by tidal stress

[3, 15]. The large number of earthquakes within a small region, combined with the

earthquakes’ sensitivity to tidal stress perturbations [3, 15] on the order of ±20 kPa

in this region, gives us a unique natural laboratory to study the stress dependence of

the earthquake b value. We find that above a threshold stress amplitude, b value is

inversely correlated with tidal stress. This supports the potential use of b values to

estimate small stress variations in the Earth’s crust. It also supports the represen-

tation of the Earth’s crust as an inhomogeneous elastic medium where fracture will

occur if the local stress exceeds a critical value and that fractures stop growing when

they propagate into a region of lower stress [9].

9°50’N East Pacific Rise

The 2006 9°50’N East Pacific Rise eruption is one of the best studied mid-ocean

ridge eruptions to-date. The earthquake rate was shown to build up steadily in the

two years leading up to the eruption before decreasing sharply post-eruption [16].

Lava was found to have been erupted along 18 km of the ridge [17], mostly sourced

from a 5-km-long melt lens [18] and the sub-axial melt lens underneath it [19] but
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also from multiple other isolated melt lenses [20]. However, the exact timing of the

eruption remained unresolved due to disagreements between geochemical dating [21]

and earthquake timings [16, 22].

During the 2015 Axial eruption, William Wilcock at the University of Washington

identified thousands of impulsive seismic arrivals that do not look like earthquakes

or whale calls from the real-time seismic data and postulated that they might be

generated by fresh lava being erupted on the seafloor. This prompted us to reexamine

the seismic records from EPR and sure enough, we identified similar seismic signals.

Upon locating them, we find that their locations correlate very well with the lava flow

boundary that was previously mapped [17], giving us confidence that these signals

were generated by freshly erupted lavas. This also gave us the confidence to use the

locations of these impulsive seismic sources to guide the expedition three months after

the 2015 Axial eruption on where to look for freshly erupted lava. Freshly erupted

lavas were found throughout the north rift zone [6], even though the two previous

eruptions in 1998 and 2011 propagated down the south rift zone [7].

The impulsive seismic events at EPR allowed us to fully characterize the spa-

tiotemporal evolution of the erupted lava and show that the eruption occurred as

a single event over a two-week period instead of the previously-proposed multiple

pulses over 7-10 months [21]. Combined with the characterization of earthquakes

and long-period events over the eruption period, we further inferred that the eruption

was primarily controlled by the buildup of tectonic stress to a critical level instead

of magma overpressure. This suggests that mid-ocean ridges might fundamentally

behave differently from typical volcanic systems.
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The majority of the microearthquakes at 9°50’N East Pacific Rise was inferred

to be a result of hydrothermal cracking [23] and are very sensitive to tidal stress

perturbations [24, 25]. The tidal stress sensitivity had even been utilized to infer

the permeability structure of the system [26, 27]. The sensitivity of subduction-zone

earthquakes to small tidal stress perturbation has been suggested to increase leading

up to megathrust earthquakes [28–30]. However, these studies were limited by the

small sample size. We proceeded to test the idea that tidal triggering strength can

be a good proxy for the stress state of the mid-ocean ridge system. We used the

∼100,000 earthquakes located over a 4-year period to show that the tidal trigger-

ing signal was strong but relatively constant in the years before the eruption, but

disappeared/weakened after the eruption. Our findings suggest that tidal triggering

variation may not be useful for forecasting mid-ocean ridge eruptions over a 2+ year

timescale but might be useful over a longer timescale.
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Chapter 1

Dynamics of a seafloor-spreading episode at the East

Pacific Rise

This chapter has been published in the following paper:

Tan, Y. J., Tolstoy, M., Waldhauser, F. & Wilcock, W. S. D. Dynamics of a

seafloor spreading episode at the East Pacific Rise. Nature 540, 261-265 (2016).

1.1 Abstract

Seafloor spreading is largely unobserved because 98 per cent of the global mid-ocean-

ridge system is below the ocean surface. Our understanding of the dynamic processes

that control seafloor spreading is thus inferred largely from geophysical observations

of spreading events on land at Afar in East Africa and Iceland [31]. However, these

are slow-spreading centres [31] influenced by mantle plumes [32, 33]. The roles of

magma pressure and tectonic stress in the development of seafloor spreading are still

unclear. Here we use seismic observations to show that the most recent eruption

at the fast-spreading East Pacific Rise just North of the Equator initiated at a 5-

kilometres-long melt-rich segment [18]. The change in static stress then promoted

almost-concurrent rupturing along at least 35 kilometres of the ridge axis, where
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tectonic stress had built up to a critical level, triggering magma movement. The

location of impulsive seismic events indicative of lava reaching the seafloor [3] suggests

that lava subsequently erupted from multiple isolated [20, 34] magma lenses (reservoir

chambers) with variable magma ascent rates, mostly within 48 hours. Therefore, even

at magmatically-robust fast-spreading ridges, a substantial portion of the spreading

may be due to tectonic stress building up to a critical level rather than magma

overpressure in the underlying magma lenses.

1.2 Introduction

The global mid-ocean ridge (MOR) system is located mostly in the deep ocean.

Therefore, remote detections of seismic signals at submarine ridges are interpreted

by analogy to observations at subaerial ridges to infer dynamic spreading processes.

Only ten seafloor spreading events have been seismically characterized to date [3,

36], with hydroacoustic detections of migrating earthquake swarms at intermediate-

spreading ridges (about 4–9 cm yr−1 at the full spreading rate) interpreted as lateral

dike propagations [37], similar to observations at slow-spreading centres (< 4 cm

yr−1) in Afar and Iceland [38–41]. However, less is known about fast-spreading ridges

(> 9 cm yr−1), where the relatively thin lithosphere produces earthquakes that are

extremely difficult to locate with existing hydroacoustic monitoring networks [22].

The most recent eruption occurring near 9°50’N at the fast-spreading East Pacific

Rise is the first observed repeat eruption at a mid-ocean ridge [16, 42]. The event was

recorded by ocean-bottom seismometers (OBSs) deployed between 9°49’N and 9°51’N
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Figure 1: Location of various seismic events. a, Location of T-wave earthquakes
[22] (yellow dots) and lava flow map [17] (shaded region). Error bars represent 68%
confidence interval [22]. b, Location of seismometers (yellow triangles) and impulsive
lava events (red dots), showing close spatial correlation with the lava flow map [17].
The AST [17] is shown as a thin blue line with green arrow marking its end. The
bold black line marks the revised extent of the 2006 lava flow farther off-axis than
originally identified [35]. AML disruptions (purple arrows) were inferred from seismic
reflection studies post-eruption [20]. c, Location of impulsive lava events (red dots),
local earthquakes (blue dots), and long-period events (green stars). The black arrow
marks the break in AST and the northern extent of melt-depleted sub-AML [19] (red
line) associated with the end of the northward migration of long-period events. The
bold black line marks the revised extent of the 2006 lava flow farther off-axis than
originally identified [35].

from May 2005 to April 2006, although only three seismometers survived the lava

flow and unrelated instrument failure (Fig. 1c). A diking event on 22 January 2006

was inferred from an hour-long peak in seismic amplitude [16] and hydroacoustically

detected (T-wave) earthquakes [22]. However, the eruption is widely referred to as the

2005–2006 eruption and cited as having happened in multiple pulses over a period of

7–10 months [17, 20, 34, 35] on the basis of radiometric dating results [21], similar to
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the previous eruption at 9°50’N in 1991–1992 [21, 43]. This implies that the eruptions

were modulated by pulses of magma injection into the underlying axial magma lenses

(AMLs).

We analysed the OBS data collected from May 2005 to April 2006 and detected

three types of seismic events—impulsive lava events, local earthquakes, and long-

period events (Figs 1 and 2).

1.3 Methods

Impulsive lava event detection and location

We used a standard detection algorithm based on short-term average to long-term

average of the seismic energy recorded by the seismometer, covering May 2005 to

April 2006. We then manually went through the entire period to identify missed

events and to pick the arrivals. No events were identified before 22 January 2006.

During the first hour of the eruption, we could not locate all the events because

many of them were occurring simultaneously at short distances from the stations,

thus observed phases could not be uniquely assigned to individual events.

Events were located by assuming the signals were generated on the seafloor and

had bounced off the sea surface once before reaching the seismometers (Fig. S2b

inset). We used an iterative least-squares method assuming a constant sound velocity

of 1.5 km s−1 with water depth from a high-resolution bathymetry map acquired in

November 2005 [44]. The sound velocity profile with depth in this region varies from
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1.48 km s−1 to 1.52 km s−1 [45]. We quantify our location uncertainties due to a

simplified sound velocity model by locating the events with a sound velocity of 1.48

km s−1 and 1.52 km s−1. This shifts our original catalogue locations by an average of

107 m. We quantify our location uncertainties due to pick error by adding normally

distributed noise of standard deviation 0.1 s to the arrival times before locating the

events. This is performed on the whole catalogue 100 times. On average, the event

locations are shifted by < 1 m. This small uncertainty may be explained by the slow

sound velocity, as the locations are well constrained by the station relative arrival

times (on the order of seconds, which is much larger than the estimated pick error

of 0.1 s). Event magnitudes were calculated as the logarithm of the displacement (in

micrometres) multiplied by the signal travel distance (in kilometres). This assumes

no attenuation other than from geometric spreading.

Earthquake detection and location

We manually went through a 6.5-h period starting from approximately 3 h before

the first impulsive lava event was identified and handpicked the P- and S-wave ar-

rivals. This was the period of highest seismic root-mean-square amplitude during the

deployment [16]. These events were then used as templates for an array-based wave-

form correlation detection algorithm [46]. We then manually reviewed the detected

events. Events with both P- and S-wave arrivals at all three stations were located

using the NonLinLoc grid-search program [47]. A window of 0.5 s around each arrival

was extracted for cross-correlation to get differential arrival times. Only differential
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arrival times with cross-correlation coefficient above 0.7 were used in the relocation

using the hypoDD program [48]. Depth-dependent P- and S-wave one-dimensional

velocity models were used [49]. Local magnitudes (ML) were derived using the formu-

lation described in [50]. Synthetic test suggests that the eastward dipping structure

we observed is resolvable (Fig. S6). Least-squares errors for the relative locations

were computed [48] using a subset of better-constrained events (template events and

events located within the OBS array). The mean relative location errors are 120 m

for longitude, 40 m for latitude, and 220 m for depth (Fig. S7).

Long-period event detection and location

We manually picked the first arrivals and located the events using a grid search

method that minimizes the standard deviation of predicted source origin times based

on arrival times at each station [51], assuming a fixed source depth and constant

velocity of 2.5 km s−1. A 100-m grid spacing was used. The epicentres of the events

do not change very much between the assumed depths of 0 km to 1.5 km (Fig. S8a),

which is the approximate depth of the AML [20]. Velocities between 0.5 km s−1 and

6.5 km s−1 were tested, with the velocity of 2.5 km s−1 giving the overall minimum

standard deviation (Fig. S9). This velocity is consistent with a mean crustal S-wave

velocity above 1.5 km depth [49]. However, the epicentres of the events do not change

very much with change in velocity assumption (Fig. S8b), because the northward

migration of the event locations is constrained by the station relative arrival time

(Fig. S10).
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Magma ascent rates calculation

For the northernmost segment, the AML depth varies from 1.5 km to 1.65 km [20].

The time gap between the first T-wave earthquake and the first lava event in this

region is about 181 min. Therefore, the calculated magma ascent rate is between

0.14 m s−1 and 0.15 m s−1. For the central segment, the AML depth varies from

1.45 km to 1.6 km [20]. The time gap between the first T-wave earthquake and the

first cluster of lava events in this region is about 117 min (Fig. 2). Therefore, the

calculated magma ascent rate is between 0.21 m s−1 and 0.23 m s−1. However, there

is a single lava event that happened about 97 min after the first T-wave earthquake in

this region (Fig. 2). If this event time is used instead, the calculated magma ascent

rate for the central segment is between 0.25 m s−1 and 0.28 m s−1. This event time

represents a conservative estimate for the earliest lava event in the central segment

because, at the start of the eruption, many events were occurring simultaneously

at short distances from the stations, so that observed phases could not be uniquely

assigned to individual events. The time gap between the last long-period event and

the first lava event is around 36 min. If this aseismic period is the time of magma

ascent instead, it would give the fastest rate of between 0.67 m s−1 and 0.74 m s−1.

1.4 Results

The lava events have impulsive waveforms with a dominant frequency around 22

Hz (Fig. S1), similar to those previously suggested [52] and recently confirmed to

be associated with fresh lava reaching the seafloor [3]. This association is further
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Figure 2: Temporal and along-axis progression of various seismic events. (1) Build-
up of stress culminating in plate rupture. (2) This triggered magma movement from
the underlying melt-rich AML. (3) The static stress change then promoted rupturing
beyond the initiation region. (4) Lava first erupted in the central segment. (5)
Lava then erupted from a different AML [20] at the adjacent segment. (6) Finally,
the rupturing triggered magma from another isolated [34] AML to rise vertically at a
slower speed and erupt with a smaller volume. T-wave earthquake error bars represent
the 68% confidence interval [22]. Magma ascent rates were calculated assuming an
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reflection studies post-eruption [19, 20]. New lava flow extent (solid black line), shown
in map view for reference, was mapped post-eruption [17]. The root-mean-square
amplitude of the seismic vertical channel was calculated in the 3–45 Hz band in 5-min
windows (blue line). Note that flows from 9°48’N to 9°46’N did not overflow the AST
and are associated with very few impulsive lava events. The southernmost T-wave
earthquakes are consistent with the possible disruption of vent fluid temperatures at
9°42’N [17]. This suggests that spreading occurred along about 35 km of the ridge
axis. However, spreading could have extended beyond the distal ends of the observed
T-wave earthquakes.

supported by their locations (see Methods) which coincide extremely well with the

fresh lava flow boundaries (Fig. 1b) mapped using digital seafloor imagery collected

in 2006–2007 [17]. Their spatiotemporal evolution, where events at individual flow
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Figure 3: Lava flow velocities. a, Location of seismometers (yellow triangles labelled
with station numbers) and impulsive lava events (coloured dots) in the four flow lobes
[17] (thin black outline enclosing the lava flow). The AST [17] is shown as a thin blue
line. b, c, Impulsive lava events in the northernmost flow lobe propagated farther
off-axis at a faster rate than events in the southernmost flow lobe. At later times,
events were concentrated at the toe (on the right) of the flows. Migration of other
flow lobe events is shown in Fig. S5. No spatiotemporal trend was observed for the
flow to the west of the ridge axis, possibly because we missed many events in the first
hour of the eruption (see Methods). The first events we located in the western flow
lobe are already more than a kilometre off-axis (Fig. S2a).

lobes show initial migration away from the ridge axis before concentrating at the

toe of the flows (Fig. 3, Fig. S2a), is also consistent with lava freezing over as

it reaches the seafloor and forming subsurface lava channels that allow subsequent

flows to propagate off-axis [42]. These events could be generated by explosions from

magma degassing [53] or the interaction of lava with seawater [54] as lava reaches the

seafloor, and are consistent with evidence for explosive activity at 9° 50’ N during

the 1991–1992 eruption [42].

These lava events were detected starting 22 January 2006 and lasted for about

a week, with about 85% of the located events occurring during the first two days
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(Fig. S2b). This suggests that most of the lava erupted rapidly in the first 48 h and

unequivocally dates the eruption to January 2006 rather than 2005–2006. With an

estimated 22 × 106 m3 of lava erupted [17], this gives an average eruption rate of

around 100 m3 s−1. This is much lower than the eruption rate of 103 m3 s−1 to 106 m3

s−1 derived from numerical modelling [55] for the less voluminous 1991–1992 eruption

[17], despite the melt from both eruptions being derived from the same mantle source

[34]. Assuming that the lower eruption rate corresponds to a lower magma driving

pressure, this suggests that tectonic stress may be important in initiating the 2006

eruption.

In the two years leading up to the eruption, earthquake activity rate gradually

ramped up [16]. The limitations of the small surviving OBS array mean that our

earthquake locations are largely restricted to within a small area between 9°49.8’N

and 9°51.1’N and from the axial summit trough (AST) to approximately 2 km west

of the axis (Fig. 1c). In the hours preceding the eruption, earthquakes in this area

ruptured an eastward-dipping structure that goes down to approximately the depth of

the AML near 9°50.5’N (Fig. S3). The structure might represent a zone of developing

normal faults that were activated by the build-up of magma pressure [34] or tectonic

stress [56] since the last eruption. The build-up of stress is also indicated by the

increasing magnitude of these local earthquakes in the hour preceding the volcanic

crisis (Fig. S4), which culminated in a cluster of T-wave earthquakes of body-wave

magnitudes Mb � 2–3.5 near 9°50.5’N (Fig. 1a) that was detected by a regional

hydrophone array [22].

Fifteen minutes after the first T-wave earthquakes near 9°50.5’N, a series of long-
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period events were detected around the same region (Fig. 2). These signals have

a dominant frequency around 1.6 Hz. Long-period events are regularly observed

preceding volcanic eruptions and have been suggested to originate from a resonating

source in a fluid-filled conduit or crack [57]. These events are located (see Methods)

west of the ridge axis within our seismic array (Fig. 1c). We did not find any

long-period events that are not detected by all stations. This suggests that similar

signals are unlikely to occur just outside the array. These long-period events are the

largest-amplitude signals detected by the OBSs throughout their deployment. Seismic

reflection studies after the eruption have shown melt bodies up to a kilometre off-axis

in the region [58]. Therefore, these long-period events might reflect dike initiation

from the western edge of the AML, consistent with models that suggest that diking

might initiate at the edge of a magma lens [59]. The first T-wave earthquakes occurred

before the long-period events, which suggests that the faults could have breached

through to the AML and initiated magma movement [56].

The long-period events started near 9°49.5’N and migrated about 4 km northward

over the next 30 min, terminating at 9°51.3’N near a break in the AST [17] and the

AML [20] (Figs 1c and 2). These events may reflect flow instabilities as magma

rises vertically from the magma lens while the AML ruptures northward (Fig. 4), or

lateral dike propagation along the segment that terminated at a stress barrier [60].

The along-axis extent of long-period events matches that of the melt-depleted section

of a deeper magma lens (sub-AML) underlying the top AML (Figs 1c and 2) imaged

post-eruption [19]. This suggests that the rapid draining of this segment of the AML

might have induced recharge from the underlying sub-AML [19] (Fig. 4). Lava first
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reached the seafloor in this region around 2 h after the first T-wave earthquakes (Fig.

2). This implies that magma rose from the AML starting at a depth of around 1.5

km (ref. 6) at a rate of about 0.21 m s−1 (see Methods). The seismicity in this

central segment peaked and stopped before the start of the long-period events swarm

(Fig. 2). This suggests that the spreading episode started with faulting that triggered

magma movement, and not the reverse. This is different from the 1978 Krafla event,

where the main earthquake swarm started after a peak in continuous tremor [39],

and from the 2005 Afar event, where earthquake swarms continued after a peak in

sporadic tremors and ultralong-period events [40].

The T-wave earthquakes subsequently clustered to the south and north of 9°50.5’N

(Fig. 2), encompassing the entire eruption area and beyond [22]. This is unlikely to

represent lateral dike propagation because that would require an unrealistic propaga-

tion rate of approximately 14–32 m s−1 [22]. Therefore, we infer that the earthquake

clustering reflects almost-concurrent faulting that was probably promoted by the

static stress change from the diking event near 9°50.5’N. This suggests that the plate

boundary was close to failure owing to the build-up of tectonic stress over the 14

years or so since its last spreading episode [56]. Our observation differs from those

at spreading episodes at Afar and Iceland, where dikes propagated laterally for tens

of kilometres over multiple weeks [38–41]. Although these T-wave earthquakes were

the largest earthquakes in the region during this period, we were not able to identify

them on the OBSs, probably owing to the high seismic noise amplitude during this

period and their locations farther away and outside our OBS array (Fig. 2).

The rupturing of the ridge axis then triggered vertical magma movement from the
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underlying, segmented AMLs [20, 34] (Fig. 4). Immediately after lava first reached

the seafloor at the central segment between 9°49’N and 9°51’N, impulsive lava events

at the adjacent segment to the north show a northward migration of about 5 km at a

rate of 1.07 m s−1, terminating at the end of the AST [17] (Fig. 2). This reflects either

dike propagation triggered by rupturing of the ridge axis or lava flowing northward

within the AST. About 45 min later, lava started erupting in the northernmost region

(Fig. 2) from off-axis fissures approximately 600 m east of the AST [17], fed by a

different AML [34]. The northernmost region has a slower inferred magma ascent

rate of about 0.14 m s−1 (see Methods).
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Figure 4: Schematic representation of the dynamics of seafloor spreading at the East
Pacific Rise. Numbers 1–6 mark the inferred processes represented in Fig. 2. (1)
Build-up of stress culminated in plate rupture (T-wave earthquakes). (2) This trig-
gered magma movement (long-period events) from the underlying melt-rich AML
(red ellipse) which then induced recharge from a deeper sub-AML [19]. (3) The static
stress change then promoted rupturing (clustering of T-wave earthquakes) beyond
the initiation region (blue dashed arrows) owing to the build-up of tectonic stress to
a critical level at the plate boundary. (4) Lava first erupted (impulsive lava events) in
the central segment. (5) Lava then erupted from a different AML [20] (orange ellipse)
at the adjacent segment. (6) Finally, the rupturing triggered magma from another
isolated [34] AML (yellow ellipse) to rise vertically at a slower speed and erupt with
a smaller volume.
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1.5 Discussions and Conclusions

The location of the first T-wave earthquakes and long-period events suggests that the

eruption initiated near 9°50.5’N. This region has the highest density of active high

temperature hydrothermal venting [61], is near the location of the largest flow lobe

from this eruption [17], overlies a drained sub-AML imaged post-eruption [19], and

has generally been considered the focus of magmatic activity and upwelling. The

lavas from this region also have the highest MgO lava compositions of this eruption,

suggesting relatively hot melt in the underlying AML [34]. The impulsive lava events

from the flow lobe near this region propagated farthest off-axis at the fastest speed of

about 0.31 m s−1 (Fig. 3b) compared to the events in the smaller lobes to the south

that propagated at about 0.03 m s−1 (Fig. 3c, Fig. S5b and c). This shows that

this region had the highest lava effusion rate during the eruption, consistent with the

presence of high-flow-rate morphologies [35]. Post-eruption seismic imaging showed

that the AML underneath this 5-km-long segment is the most melt-depleted [18],

indicating that this is where most of the erupted lava was sourced from. Geochemical

modelling suggests that the spreading episode was not triggered by renewed injection

of magma into the underlying AML [34], unlike at Krafla in 1978 and at Dabbahu in

2005 [31]. However, the initiation at this segment may be due to long-term build-up

of magma pressure [34] or tectonic stress [56] since the last eruption.

Static stress change associated with the diking then promoted almost-concurrent

rupturing along at least 35 km of ridge axis, triggering eruption of melt sourced from

multiple AMLs [20, 34]. The less voluminous flows north of 9°54’ N and south of 9°48’
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N (Fig. 1b), where lava did not even flow over the AST [17], might reflect a relatively

lower magma driving pressure from the underlying, isolated AMLs. Disruption in vent

temperatures as far south as 9°42’ N [17] suggests that faulting may have happened

even farther south without lava reaching the surface, consistent with the southernmost

T-wave earthquakes on 22 January 2006.

The variable along-axis magma ascent rates and erupted lava volumes support that

the multiple underlying AMLs are segmented [20] and thus unlikely to be concurrently

critically stressed from build-up of magma pressure. Instead, the build-up of tectonic

stress to a critical level probably allowed almost-concurrent faulting along at least 35

km of the ridge segment, which then triggered magma movement. This is consistent

with a model in which the AMLs are surrounded by hot asthenosphere and hence too

weak to maintain large magma overpressure or support large elastic stress differences

from the low strain rate of plate pull. The high strain rate of faulting is thus needed

to breach through to the AMLs to trigger magma movement [56]. Therefore, we can

conclude that spreading along at least 30 km of the 35-km-long ridge segment (>

85%) happened owing to build-up of tectonic stress. If plate pull dominates at this

magmatically robust fast-spreading ridge, it could also dominate at intermediate-

and slow-spreading ridges, which generally have relatively lower magma supplies.

Therefore, while MORs are often described as volcanoes that erupt owing to build-up

of magma pressure [21, 34], our study demonstrates that eruptions at MORs are a

fundamentally different process largely controlled by tectonic stress due to plate pull.

MORs could be viewed less as volcanoes and more as tears in the crust where magma

reaches the surface when plates are pulled apart.
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1.7 Supplementary Figures
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Figure S1: Impulsive lava event signals. a, b, Velocity seismograms of the same event
recorded at two different stations. The difference in station relative arrival time of >1
s for the first arrival suggests a waterborne arrival (that is, the seismic wave travelled
through the water column rather than through the crust), since these stations are
around 2 km apart, with water velocity being 1.5 km s−1 and P-wave crustal velocity
being around 4–5 km s−1 [49]. The event also has multiple arrivals: the first arrival
represents a signal that has bounced off the sea surface once (B1) and the second
arrival represents a signal that has bounced off the sea surface twice (B2) (Fig. S2b).
c, The signal shows a dominant frequency of about 22Hz.
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Figure S2: Impulsive lava events. a, Location of seismometers (yellow triangles) and
impulsive lava events in the first hour (red), first two days (pale red), and last five days
(dark red). The AST [17] is shown as a thin blue line with green arrow marking its
end. The bold black line marks revised 2006 lava flow farther off-axis than originally
identified [35]. AML disruptions (purple arrows) were inferred from seismic reflection
studies post-eruption [20]. b, Histogram of hourly impulsive lava event rate. The red
line shows hourly average impulsive lava event magnitude. Mid-ocean-ridge basalt on
the East Pacific Rise has been found to have low volatile content [62]. Therefore, the
larger-magnitude impulsive lava events during the first 5 h might be driven by excess
degassing of volatiles from a larger reservoir of unerupted magma [63], consistent
with the estimate that <15% of the available magma in the AML was erupted [17].
The lava has also been suggested to have degassed from supersaturated conditions
owing to a rapid magma ascent rate from depth [64]. The breaks in the red line
are due to hours when there are no events located, and hence no average magnitude
data point. Event magnitudes were calculated as the logarithm of the displacement
(in micrometres) multiplied by the signal travel distance (in kilometres), which is
different from earthquake magnitude. The inset shows the model of the signal travel
path used in locating the impulsive lava events (Vw is the velocity of the seismic wave
travelling through the water column). A direct waterborne arrival is not recorded,
probably because of the upward refraction of energy due to increasing velocity with
water depth. The lack of crustal arrival indicates a small absolute magnitude.
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Figure S4: Local magnitude of earthquakes. a, Earthquakes show increasing local
magnitude ML with time in a two-hour period leading up to the eruption. Blue dots
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Figure S6: Synthetic test of earthquake locations. a–c, Actual locations of syn-
thetic sources. d–f, Locations of synthetic sources with normally distributed noise
of standard deviation 200 m added. These are used as the initial locations for dou-
ble difference relocation. g–i, Relocated locations of synthetic sources. Events were
relocated using synthetic arrival time with normally distributed noise of standard
deviation 0.01 s added.

28



Longitudinal distance (km)

N
u

m
b

e
r 

o
f 
e

v
e

n
ts

0

20

40

60

80

100

120

140

160

Latitudinal distance (km)

0

20

40

60

80

100

120

140

160

180

Depth (km)

0

10

20

30

40

50

60

70

Mean: 0.12 km Mean: 0.04 km Mean: 0.22 km 

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.20 0.1 0.2 0.3 0.4 0.5 0.6

Figure S7: Earthquake relative location errors. Distribution of least-squares errors
for the relative locations in longitudinal distance, latitudinal distance and depth.

29



ba

204

209

205

204

209

205

L
a
ti
tu
d
e

9º51.5’N

9º49.5’N

9º50.5’N

-104º18’W -104º17’W
Longitude

-104º18’W -104º17’W
Longitude

Figure S8: Long-period event locations. a, Long-period event locations assuming 0
km depth (black dots) and 1.5 km depth (green stars), assuming a constant crustal
velocity of 2.5 km s−1. The red line marks the extent of melt-depleted sub-AML
[19]. Although location depth cannot be definitively determined, the 1.5-h time gap
between the initiation of long-period events and melt reaching the surface strongly
supports a deeper source. b, Long-period event locations assuming a constant crustal
velocity of 2.5 km s−1 (green stars) and 2.9 km s−1 (black dots) assuming 1.5 km
depth. Regardless of the depth and velocity used, events generally cluster near the
western edge of the melt lens and bound the area of sub-AML depletion. Faint blue
dots represent local earthquake locations (Fig. 1c) for reference.

30



0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.12

M
in

im
u

m
 o

f 
s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

s
)

0.10

Velocity (km/s)

Figure S9: Long-period event velocity assumption. Minimum of standard deviation
for different guess (modelled) velocities, assuming a depth of 1.5 km. The overall
minimum of the standard deviation occurs at a velocity of 2.5 km s−1.

31



S209

S204

S205

S209

S204

S205

0 2 4 6 8 10 12 14 16
Time (s)

N
o

rm
a

liz
e

d
 s

e
is

m
o

g
ra

m
s
 

Northern event

Southern event

Figure S10: Waveforms of long-period events. Waveforms of two separate events at
all three stations low-pass filtered at 5Hz. Red arrows mark the first arrivals. Both
event signals arrived at stations S204 and S205 at the same time. This constrains
the location of these events to the west of the ridge axis, between these two stations.
The event to the south arrived first at S204 and S205 before S209. The event to the
north arrived first at S209 followed by S204 and S205. This constrains the northward
migration of the long-period events.
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Chapter 2

Tidal triggering of microearthquakes over an eruption

cycle at 9°50’N East Pacific Rise

This chapter has been published in the following paper:

Tan, Y. J., Tolstoy, M., Waldhauser, F. & Bohnenstiehl, D. R. Tidal triggering

of microearthquakes over an eruption cycle at 9°50’N East Pacific Rise. Geophysical

Research Letters 45 (2018).

2.1 Abstract

Studies have found that earthquake timing often correlates with tides at mid-ocean

ridges and some terrestrial settings. Studies have also suggested that tidal triggering

may preferentially happen when a region is critically stressed, making it a potential

tool to forecast earthquakes and volcanic eruptions. We examine tidal triggering of

∼100,000 microearthquakes near 9°50’N East Pacific Rise recorded between October

2003 and January 2007, which encompasses an eruption in January 2006. This allows

us to look at how tidal triggering signal varies over an eruption cycle to examine its

utility as a forecasting tool. We find that tidal triggering signal is strong but does

not vary systematically in the 2+ years leading up to the eruption. However, tidal
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triggering signal disappears immediately post-eruption. Our findings suggest that

tidal triggering variation may not be useful for forecasting mid-ocean ridge eruptions

over a 2+ years timescale but might be useful over a longer timescale.

2.2 Introduction

Studies on whether the periodic stress change of ∼1 kPa produced by tidal forcing

modulates global earthquake timing have produced conflicting results [e.g., 65]. Nev-

ertheless, studies have found that earthquake timing correlates with tides for certain

environments such as mid-ocean ridges [3, 15, 24, 25, 66, 67], shallow thrust faults

[67–69], and volcanic regions [70, 71]. In subduction zones, studies have also sug-

gested that tidal triggering of earthquakes appears in the years preceding some large

earthquakes and disappears after[28–30, 72]. Therefore, tidal triggering may hap-

pen preferentially when a region is critically stressed [3, 24, 28–30, 72], making it a

potential tool to forecast earthquakes and volcanic eruptions.

The East Pacific Rise (EPR) is a fast-spreading mid-ocean ridge (> 9 cm yr−1

at the full spreading rate). Near 9°50’N EPR, a seafloor spreading event in January

2006 ruptured at least 35 km of the ridge axis [22, 73]. The eruption was preceded

by 2+ years of increasing seismicity rate [16] and was inferred to be largely con-

trolled by the buildup of tectonic stress to a critical level instead of magma overpres-

sure in the underlying magma reservoirs [73]. Looking at microearthquakes recorded

between October 2003 and April 2004, ∼2 years before the eruption, [24] showed

that microearthquake timing at this site correlates with semidiurnal tides, occurring
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preferentially near times of peak volumetric extensional stress. Subsequent detailed

analyses showed systematic spatial variations in earthquake tidal triggering (phase

lag relative to times of peak volumetric extensional stress) that is consistent with

pore-pressure perturbations generated by ocean tidal loading propagating through a

hydrothermal system with heterogeneous permeability structure [26, 27].

Looking at microearthquakes recorded between October 2003 and January 2007,

[25] subsequently showed that microearthquake timing also correlates with fortnightly

tides. While true fortnightly tides have amplitudes of only about 10% that of semidi-

urnal tides [74], fortnightly modulations of diurnal and semidiurnal tides have ampli-

tude ranges comparable to semidiurnal tides. [25] found that the microearthquakes

occurred preferentially during times of increasing volumetric extensional stress before

the eruption, and during times of decreasing volumetric extensional stress after the

eruption.

In this study, using ∼100,000 microearthquakes recorded from 2+ years before

to ∼1 year after the eruption, we look at how the microearthquakes’ response to

semidiurnal tides changes over an eruption cycle at 9°50’N EPR to examine its utility

as a forecasting tool.

35



2.3 Methods

Microearthquakes

From October 2003 to January 2007, up to 12 ocean bottom seismometers (OBSs)

were deployed and recovered approximately annually in a 4×4 km region near 9°50’N

EPR [16] (Fig. 1). The four deployments were from October 2003 to April 2004, April

2004 to May 2005, May 2005 to April 2006, and April 2006 to January 2007. For

deployment 3, because of multiple instrument losses and technical failures, there were

four stations operating from May to July 2005, two stations from July to October

2005, and three stations from October 2005 until the end of the deployment (Fig. 1).

When only two stations were operating, no earthquakes were located.

∼100,000 microearthquakes were located for all four deployments using a cross-

correlation-based double-difference method [48, 49]. Local magnitudes (ML) were

derived from peak displacement amplitude with attenuation and station correction

terms applied. The magnitude of completeness is ML −0.7 for deployment 1 and ML

−1.0 for deployment 2-4. ∼33,000 events are above the magnitude of completeness

(Mc), with the largest event of ML 2.2.

The microearthquakes are inferred to be a result of hydrothermal cracking as well

as fracturing from magmatic and tectonic stresses [23]. Although previous studies in

this region have found a range of focal mechanism solutions (normal, thrust, strike-

slip) [49, 75], we believe the extension-dominated environment means that the earth-

quakes likely consist of predominantly crack-opening and/or normal faulting events.

The seismicity delineates an along-axis oriented hydrothermal circulation cell and
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Figure 1: a–d, Locations of microearthquakes above Mc for deployments 1–4. Station
locations are shown as filled black squares. Open black square shows station that only
operated from May to July 2005 in deployment 3. Axial summit trough is shown as
a thin black line [17].

mostly concentrates above the axial magma chamber at 1.5 km depth [23, 49]. The

seismicity rate increased in the 2+ years leading up to an eruption in January 2006

and decreased substantially post-eruption [16, 73]. Deployment 3 has significantly

fewer instruments because many were lost to the lava flow and unrelated instrument

failure. Therefore, earthquakes located in deployment 3 are concentrated west of the

ridge axis, reflecting an OBS array that primarily covered the northwest flank of the

study area (Fig. 1).
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Figure 2: a, Definition of tidal phase. The phase is 0° at peak tidal stress and ranges
from −180° at the preceding minimum to 180° at the subsequent minimum. b–f,
Frequency distributions of earthquake tidal phases for deployment 1, deployment 2,
deployment 3 before the eruption, deployment 3 after the eruption, and deployment
4. Only earthquakes above Mc are included. Horizontal black lines mark the expected
frequency distribution if the earthquake times are randomly distributed.

Tidal Stress and Earthquake Tidal Phase

For solid Earth tide, we estimate the horizontal strains using the SPOTL software [76].

We then calculate the vertical strain from the horizontal strains using a plane stress

condition assuming a Poisson’s ratio of 0.25. For ocean tide, we use the EOT11a ocean

tidal model to obtain predicted tidal height for the eight major short-period tidal

constituents (K1, K2, M2, N2, O1, P1, Q1, and S2) [77]. We calculate the vertical

stress variations from ocean-tidal loading directly from the tidal height, assuming a

constant water density of 1025 kg/m3. We then estimate the horizontal strains from

ocean-tidal loading using the SPOTL software, which uses a mass-loading Green’s

function for strain based on the Gutenberg-Bullen Earth model [76]. Finally, we
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convert strain to stress using P- and S-wave velocities as well as density of the top

layer of the Gutenberg-Bullen Earth model [78]. Since the tidal wavelengths are

very long compared to the microearthquake depths of mostly < 1.5 km, we assume

the stresses modeled at the seafloor are not significantly different from those in the

earthquake source region.

The mode of failure of shallow microearthquakes (< 1.5 km) in this region is

predicted to be tensile or mixed-mode [59]. Therefore, we focus on variations in

volumetric stress, which have estimated amplitudes of ±2.5 kPa, with positive being

extensional (Fig. S1). Since our study area is close to an ocean tidal node, tidal stress

variation is dominated by the solid Earth tide (Fig. S1 of the supporting information).

We then assign a tidal phase to each earthquake based on its origin time relative to

the semidiurnal tides. The phase is 0◦ at peak tidal stress and ranges from −180◦ at

the preceding minimum to 180◦ at the subsequent minimum (Fig. 2a).

2.4 Results

For deployment 1-3 before the eruption, frequency distribution of earthquake tidal

phases clearly shows that microearthquake timing is modulated by semidiurnal tides

(Fig. 2). Microearthquakes occur preferentially around times of peak tidal exten-

sional stress (0◦ phase). We perform the Schuster test to test the null hypothesis

that the earthquake times are randomly distributed [79]. We obtain ps of << 0.001

for deployment 1-3 before the eruption. We also perform the binomial test to esti-

mate the probability pb of observing different number of earthquakes during times of
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encouraging stress, −90 < θ < 90, compared to during times of discouraging stress,

θ > 90 and θ < −90, if the earthquake times are randomly distributed. We obtain

pb of << 0.001 for deployment 1-3 before the eruption. Therefore, both the Schuster

and binomial tests support our inference that microearthquake timing is modulated

by semidiurnal tides before the eruption. This is further supported by examining the

frequency of earthquakes as a function of tidal stress amplitude, which shows that for

deployment 1-3 before the eruption, earthquake frequency increases systematically

with increasing tidal stress (Fig. S2).

For deployment 3 after the eruption, we obtain ps of 0.116 and pb of 0.580 (Fig.

2e). Therefore, we cannot reject the null hypothesis that the earthquake times are

randomly distributed. However, this change in p-value might be a result of change in

sample size since we have significantly fewer number of earthquakes after the eruption.

We randomly draw 264 events (with replacement) from deployment 3 before the

eruption and calculate ps and pb. This is repeated 1,000 times. We obtain ps and pb

that are smaller than those obtained for deployment 3 after the eruption 96% and 99%

of the time. Therefore, this is consistent with the tidal triggering signal disappearing

immediately after the eruption. This is further supported by the earthquake frequency

not increasing systematically with increasing tidal stress (Fig. S2d).

For deployment 4, we obtain ps of 0.028 and pb of 0.007 (Fig. 2f). Frequency

distribution of earthquake tidal phases also shows that microearthquakes occur pref-

erentially around times of peak tidal extensional stress (Fig. 2f). The earthquake

frequency also increases weakly with increasing tidal stress (Fig. S2e). These are

consistent with tidal triggering signal reappearing within a year after the eruption.
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Deployment Nenc Ndis NT p-value
1 262 81 343 << 0.001
2 509 178 687 << 0.001
3 before eruption 213 107 320 << 0.001
3 after eruption 57 47 104 0.378
4 178 142 320 0.050

Table 1: Tidal cycle statistics for all deployments. Nenc is the number of tidal cycles
with more earthquakes during times of encouraging stress, −90 < θ < 90. Ndis is
the number of tidal cycles with more earthquakes during times of discouraging stress,
θ > 90 and θ < −90. NT is the sum of Nenc and Ndis. Only earthquakes above Mc

were included.

However, when we randomly draw 264 events (with replacement) from deployment 4,

calculate ps and pb, and repeat this 1,000 times, we obtain ps and pb that are smaller

than those obtained for deployment 3 after the eruption only 38% and 85% of the

time. Therefore, the reappearance of tidal triggering signal in deployment 4 is not a

robust feature.

Earthquakes at mid-ocean ridges are dominated by swarm activities. Therefore,

our dataset is not amenable to conventional mainshock-aftershock declustering meth-

ods. To address the potential effect of swarms on the overall statistics, we look at

each semidiurnal tidal cycle and compare the number of earthquakes occurring dur-

ing times of encouraging stress and discouraging stress. For the null hypothesis that

the earthquake times are randomly distributed relative to the semidiurnal tides, this

reduces each tidal cycle to the equivalent of one coin flip regardless of the number of

earthquakes during the tidal cycle.

For each deployment, we calculate Nenc, the number of tidal cycles with more

earthquakes during times of encouraging stress, and Ndis, the number of tidal cycles

with more earthquakes during times of discouraging stress. We exclude tidal cycles
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where there are equal number of earthquakes during times of encouraging stress and

discouraging stress (∼9% of cycles). We then perform the binomial test to estimate

the probability of observing the given Nenc/NT where NT = Nenc + Ndis, if the

earthquake times are randomly distributed. We obtain p-values of << 0.001 for

deployment 1-3 before the eruption. This is again consistent with our inference that

microearthquake timing is modulated by semidiurnal tides before the eruption.

For deployment 3 after the eruption, we obtain a p-value of 0.378 (Table 1). Since

the change in p-value might be a result of change in sample size, we perform a two-

sample z-test to evaluate the probability that Nenc/NT = 213/320 (deployment 3

before the eruption) and Nenc/NT = 57/104 (deployment 3 after the eruption) come

from the same population. This yields a z-score of 2.2 with a one-tailed probability

of 0.015. Therefore, this is consistent with tidal triggering signal disappearing im-

mediately after the eruption. For deployment 4, we obtain a p-value of 0.050 (Table

1). Therefore, we cannot reject the null hypothesis that the earthquake times are

randomly distributed.

Finally, we examine how the microearthquakes’ response to semidiurnal tides

varies with time. For each semidiurnal tidal cycle, we calculate the percentage of

excess events (Pex) [69]:

Pex =
nex − nT

2

nT

× 100, (2.1)

where nex is the number of earthquakes during times of encouraging stress, −90 <

θ < 90, and nT is the total number of earthquakes. We then compute the median
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Figure 3: Temporal variation of Nenc/NT (open circles) and Pex (filled squares). Mov-
ing windows of 150 semidiurnal tidal cycles, represented by horizontal bars, shifted by
75 tidal cycles. Vertical bars represent 1σ limits estimated based on 1,000 bootstrap
samples of the population. Vertical dashed lines mark deployment changes. Gray bar
marks the eruption period [73]. a, Full catalog. b, Only earthquakes above Mc

Pex as well as Nenc/NT for moving windows of 150 semidiurnal tidal cycles with 50%

overlap (Fig. 3). Nenc/NT should be ∼0.5 if the earthquake times are randomly

distributed. We use time windows of 150 semidiurnal tidal cycles to minimize the

effect of microearthquake timing being modulated by fortnightly tides [25]. However,

we get similar results when using a smaller time window of 100 semidiurnal tidal

cycles, but with larger fluctuations (Fig. S3). We examine both the full catalog and

the catalog of only earthquakes above Mc to evaluate the temporal variation of Pex

and Nenc/NT .

When using the full catalog, Nenc/NT is ∼0.8 for both deployment 1 and 2 (Fig.

3a and S3a). While Nenc/NT falls to ∼0.7 for deployment 3 before the eruption, we

think this is likely an effect of changes in earthquake spatial distribution between
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deployments due to changes in station coverage (Fig. 1). Compared to deployment

1 and 2, earthquakes located in deployment 3 are concentrated further west of the

ridge axis (Fig. 1). However, in deployment 3, Nenc/NT falls to ∼0.6 after the

eruption (Fig. 3a and S3a). Nenc/NT remains low initially at ∼0.6 in deployment

4 but increases toward the end of the deployment. Nenc/NT towards the end of

deployment 4 is comparable to that of deployment 3 before the eruption, but smaller

than that of deployment 1 and 2 (Fig. 3a and S3a). The temporal variation of

Nenc/NT is relatively similar when we only examine earthquakes above Mc, but with

larger short-term fluctuations (Fig. 3b and S3b).

When using the full catalog, Pex decreases with time in both deployment 1 and

2 (Fig. 3a and S3a). This could reflect weakening of tidal triggering leading up to

the eruption due to changes in the dominant forces driving the microearthquakes

(magmatic vs. tectonic) [25]. However, this is not a robust feature because we do

not observe the same trend when we only examine earthquakes above Mc (Fig. 3b

and S3b). Instead, Pex shows short-term fluctuations which could be due to smaller

sample size or temporal changes in earthquake spatial distribution. Regardless, in

deployment 3, Pex decreases immediately after the eruption (Fig. 3 and S3). Pex

remains low initially in deployment 4 but increases towards the end of the deployment.

Pex towards the end of deployment 4 is comparable to that of deployment 3 before

the eruption, but smaller than that of deployment 1 and 2. The error bars are also

larger due to the lower seismicity rate (Fig. 3 and S3). The Nenc/NT plot is generally

flatter than the Pex plot because while Nenc/NT is expected to correlate with Pex,

this relationship levels off at high Pex (Fig. S4).
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2.5 Discussion and Conclusions

When examining temporal variation in tidal triggering signal, it is important to con-

sider changes in earthquake spatial distribution. This is because, at least in our study

area, susceptibility to tidal triggering as quantified by Pex varies spatially (Fig. S5).

Pex is larger around 9.82°N, an inferred hydrothermal down-flow zone, and smaller

around 9.84°N, an inferred hydrothermal up-flow zone [23]. Therefore, especially for

deployment 1 and 2 where the differences in array configuration result in an earth-

quake distribution across areas with very different susceptibility to tidal triggering

(Fig. S5), temporal variation in Pex may be due to changes in earthquake spatial

distribution.

Our analysis suggests that before the eruption near 9°50’N EPR in January 2006

[16, 73], the microearthquake timing is strongly correlated with the semidiurnal tides.

This is consistent with previous studies that found tidal triggering of earthquakes at

mid-ocean ridges [3, 15, 24, 25, 66, 67]. The susceptibility of microearthquakes at mid-

ocean ridges to tidal triggering may be explained in a few ways. Firstly, the stressing

rate due to hydrothermal, magmatic, and tectonic processes may be relatively high,

which would lead to a shorter earthquake nucleation time [80]. A short nucleation

time relative to the period of tidal stress variation would result in a system that is

more susceptible to tidal triggering [81]. However, the occurence of peak seismic-

ity rate during peak semidiurnal tidal stress suggests that the earthquake nucleation

times exceed the semidiurnal tidal period and a nucleation-dominated response in-

stead of a simple threshold failure is expected. In the nucleation-dominated response
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mode, the response of faults to high-frequency stress change is damped [81]. Alter-

natively, structural heterogeneities at mid-ocean ridges may result in amplification of

tidal stresses, such as adjacent to melt lenses, that are significantly greater than the

tidal stresses in a homogeneous elastic medium [82]. Finally, the microearthquakes

might be occuring on very weak faults due to the presence of hydrothermal precipi-

tates.

We also observe that the tidal triggering signal disappears immediately post-

eruption. This is consistent with observations at Axial Seamount where the strong

tidal triggering signal in the four months leading up to its 2015 eruption weakened

after the eruption [3]. The disappearence of the tidal triggering signal immediately

post-eruption may be explained in a few ways. Firstly, the eruption would have re-

lieved a portion of the accumulated magmatic and tectonic stresses. Therefore, the

fault population on average would be further away from their failure threshold. Al-

ternatively, the relative compression adjacent to the dike might have closed cracks

in the surrounding regions, preventing water from flowing as quickly through the hy-

drothermal circulation cell. This would reduce the stressing rate, which would lead to

a longer earthquake nucleation time and weaker susceptibility to tidal triggering [81].

However, in the nucleation-dominated response mode, it is unclear from laboratory

experiments if the susceptibility to tidal triggering is sensitive to the relative period

of earthquake nucleation time and stress oscillation [81].

Finally, we do not observe systematic variation of the tidal triggering signal in the

2+ years leading up to the eruption. This suggests that temporal changes in tidal

triggering signal may not be a useful short-term tool to forecast mid-ocean ridge
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eruptions. This is supported by [15] observing strong tidal triggering of earthquakes

at Axial Seamount in the summer of 1994, four years before it erupted in 1998 [83].

We also observe that the tidal triggering signal might have reappeared within a year

after the eruption. However, due to changes in station coverage between deployments,

low seismicity rate after the eruption, and the end of our experiment within a year

after the eruption, the duration of recovery to full strength tidal triggering after

the eruption is not well constrained by our data. Therefore, it is possible that this

recovery takes some years and may thus provide some indication of how far along the

eruption cycle the site is. This should hopefully be answered in the near future with

data from the Axial Seamount cabled observatory where there is long-term seismic

monitoring of an active volcano on a mid-ocean ridge.
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2.7 Supplementary Figures

Figure S1: Volumetric stress from solid Earth tide (red), ocean tidal loading (blue),
and the combined effect of solid Earth and ocean tide (black)
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Figure S2: a-e, The normalized frequency of earthquakes (number per hour divided
by the maximum number per hour) as a function of tidal volumetric stress in 0.5 kPa
bins for deployment 1, deployment 2, deployment 3 before the eruption, deployment
3 after the eruption, and deployment 4 respectively. Dashed lines show the mean
normalized frequency of earthquakes. Only earthquakes above Mc are included.
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Figure S3: Temporal variation of Nenc/NT (open circles) and Pex (filled squares).
Moving windows of 100 semidiurnal tidal cycles, represented by horizontal bars,
shifted by 50 tidal cycles. Vertical bars represent 1� limits estimated based on 1,000
bootstrap samples of the population. Vertical dashed lines mark deployment changes.
Gray bar marks the eruption period [73]. a, Full catalog. b, Only earthquakes above
Mc.

50



Figure S4: Relationship between Nenc/NT and Pex when events are independent and
randomly distributed in time. For each synthetic run, we generate a catalog of 1,000
events randomly distributed over 100 tidal cycles, with a prescribed Pex over the
whole time period. We then calculate the Nenc/NT . We do this for a range of
prescribed Pex. The plots shows that Nenc/NT and Pex are generally correlated, but
Nenc/NT levels off at high Pex. Grey bar marks the range of Pex observed in our
study (Fig. 3 and S3).
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Figure S5: Along-axis 2D spatial variation of a-d, earthquake distribution for deploy-
ment 1 to 4 and e-h, Pex for deployment 1 to 4. Only earthquakes above Mc were
included. For Pex, only grids with at least 10 events are included
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Chapter 3

Axial Seamount: Periodic tidal loading reveals stress

dependence of the earthquake size distribution (b value)

This chapter has been published in the following paper:

Tan, Y. J., Waldhauser, F., Tolstoy, M. & Wilcock, W. S. D. Axial Seamount:

Periodic tidal loading reveals stress dependence of the earthquake size distribution

(b value). Earth andd Planetary Science Letters 512, 39–45 (2019).

3.1 Abstract

Earthquake size-frequency distributions commonly follow a power law, with the b

value often used to quantify the relative proportion of small and large events. Labo-

ratory experiments have found that the b value of microfractures decreases with in-

creasing stress. Studies have inferred that this relationship also holds for earthquakes

based on observations of earthquake b values varying systematically with faulting

style, depth, and for subduction zone earthquakes, plate age. However, these studies

are limited by small sample sizes despite aggregating events over large regions, which

precludes the ability to control for other variables that might also affect earthquake

b values such as rock heterogeneity and fault roughness. Our natural experiment in a
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unique seafloor laboratory on Axial Seamount involves analyzing the size-frequency

distribution of ∼60,000 microearthquakes which delineate a ring-fault system in a 25

km3 block of crust that experiences periodic tidal loading of ±18 kPa. We find that

above a threshold stress amplitude, b value is inversely correlated with tidal stress.

The earthquake b value varies by ∼0.09 per kPa change in Coulomb stress. Our

results support the potential use of b values to estimate small stress variations in the

Earth’s crust.

3.2 Introduction

Earthquake occurrence is primarily controlled by the stress state on fault interfaces.

Because in situ stress measurements are difficult to obtain, a proxy for estimating the

stress state of fault zones through their seismic cycles is valuable for understanding

earthquake occurrence and forecasting earthquakes. Earthquakes follow a power-law

size-frequency distribution given as log10(N) = a − bM , where N is the number of

earthquakes greater than or equal to magnitude M, and a and b are constants [84].

The value a describes the total number of earthquakes while the b value describes

the relative frequency of small and large magnitude earthquakes. In rock fracture

experiments, acoustic emissions from small cracking events follow the same power-

law size distribution [9]. Furthermore, their b values have been found to decrease

(larger proportion of large events) with increasing differential stress [9, 85, 86].

The same stress dependence of b value has been inferred to apply to earthquakes.

The b value of earthquakes has been found to vary systematically with faulting style
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[10], depth [11], and for subduction zone earthquakes, plate age [12]. These observa-

tions are consistent with the earthquake b value decreasing with increasing differential

stress [87]. However, these studies were restricted to using minimum bins of as few as

50 to 200 earthquakes to calculate the b values, which is barely a large enough sample

size to even establish the existence of a power-law distribution [88]. In addition, these

studies had to aggregate events over large regions and thus were unable to control for

other variables that might also affect earthquake b values such as rock heterogeneity

[13] and fault roughness [14]. Establishing whether earthquake b value varies system-

atically with stress is critical for demonstrating its potential use as a stress meter in

the Earth’s crust which could help improve forecasting of large earthquakes [89–91]

and volcanic eruptions [92].

Tidal forcing on the Earth produces periodic stress changes on the order of several

kPa. Studies to establish a correlation between global earthquake rate and tidal stress

changes have produced equivocal results [e.g. 65, and references therein] with mainly

negative results in continental regions [93, 94]. However, [69] found statistically-

significant tidal triggering for shallow, subduction-zone thrust earthquakes where

stress changes due to ocean tidal loading can be an order of magnitude larger than

the solid earth tides. Even stronger tidal triggering of earthquakes [15, 24, 66] that

weakens post-eruption [3, 95] has been documented at mid-ocean ridges. For instance,

at Axial Seamount which is located at the intersection of the Juan de Fuca Ridge

and the Cobb-Eickelberg hotspot, earthquakes occur preferentially during low ocean

height [3, 15]. [96] recently demonstrated that the exponential increase in seismicity

rate with tidal stress at Axial Seamount agrees with predictions of both rate-state
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and stress corrosion theories [96, Fig. 5], and the long-documented high sensitivity

can be explained by the shallow depths of the earthquakes.

As part of the Ocean Observatory Initiative (OOI), a cabled seismic network was

installed on the summit of Axial Seamount (Fig. 1a) with time-corrected seismic

data streaming from late January 2015 [3]. In the three months before the volcano

erupted in April 2015, ∼60,000 earthquakes were located using the double-difference

method [48]. The earthquakes delineate an outward-dipping ring-fault system that

extends to ∼2-km depth [3] (Fig. 1). The large number of events located within a

small region, combined with the earthquakes’ sensitivity to tidal stress perturbations

[3, 96], make this an excellent natural laboratory to study how the earthquake b value

relates to stress changes.

Figure 1: Locations of ∼35,000 earthquakes above Mc = 0.1 between January 22nd
and April 23rd 2015. a, Bathymetric map with earthquake epicenters (grey dots),
seismometers (black filled squares), caldera rim (black line), and the cross section
shown in (b) (black dashed line). Inset shows regional location of Axial Seamount.
b, Depth cross-section across the caldera showing the projected earthquake locations
within 0.5 km of the profile.
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3.3 Methods

Earthquake Catalog

In the first year of operation, ∼70,000 earthquakes were located by the OOI Axial

seismic network [3]. In the three months before the volcano erupted, the majority of

the composite focal mechanisms determined showed normal or oblique-normal sense of

motion. During the one-month-long eruption period, the slip direction was reversed as

the volcano deflated [8]. After the eruption, the seismicity rate decreased substantially

[3, 5] with the focal mechanisms suggesting heterogeneous fault slip directions [8].

Therefore, in this paper, we only examine the ∼60,000 earthquakes that occurred in

the three months before the volcano erupted. The earthquake catalog, including the

moment magnitudes (MW ) estimated following [97], has been previously published

[3].

b Value

We estimate the b values using the maximum likelihood method [98], accounting for

the use of binned magnitudes [99]:

b =
log10e

M̄ −
(
Mc − ∆M

2

) , (3.1)

where Mc is the magnitude of completeness of the data set, M̄ is the mean magni-

tude of earthquakes with magnitude ≥ Mc, and ∆M is the binning interval of the

magnitude, which is 0.1 in this study. We estimate the standard deviation of the b

57



value estimate following [100]:

δb = 2.3b2

√√√√√√
n∑
i
(Mi − M̄)2

n(n− 1)
, (3.2)

where n is the sample size. We quantify the significance of the b value difference

between two groups of earthquakes using Utsu’s test [101]:

p ≈ exp
(
−∆AIC

2
− 2

)
, (3.3)

∆AIC = −2(N1+N2) ln(N1+N2)+ 2N1 ln
(
N1+

N2b1
b2

)
+2N2 ln

(
N2+

N1b2
b1

)
− 2,

(3.4)

where p is the probability that the two groups of earthquakes are drawn from the

same population, AIC is the Akaike’s information criterion, N1 and N2 are the num-

ber of earthquakes, and b1 and b2 are the estimated b values of the two groups of

earthquakes. We also compare the b value difference between two groups with their

standard deviations [102]:

z =
b1 − b2√
σ2
1 + σ2

2

, (3.5)

The null hypothesis that two b values come from the same population can be rejected

at the 95% confidence level if z exceeds 1.96 and at the 99% confidence level if z

exceeds 2.58.
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Magnitude of Completeness

We first estimate the magnitude of completeness (Mc) of the catalog using the point

of maximum curvature of the frequency-magnitude distribution (FMD) [103], which

is equivalent to finding the magnitude bin with the highest number of earthquakes

in the non-cumulative FMD [104]. We find Mc = 0.0 (Fig. S1). We then estimate

Mc using the goodness-of-fit (GFT) method by comparing observed and synthetic

cumulative FMDs [105]. We calculate synthetic cumulative FMDs using estimated a

and b values of the observed earthquake catalog assuming a range of increasing cutoff

magnitudes Mco. The goodness-of-fit is quantified using the parameter R:

RMco = 100−
(
100

∑Mmax
Mco

|Oi − Si|∑Mmax
Mco

Oi

)
, (3.6)

where Oi and Si are the observed and predicted number of earthquakes in each

magnitude bin. Mc is then the first Mco where R exceeds a fixed threshold, typically

defined at 90% level of fit [105] because real catalogs rarely achieve 95% level of fit

[106]. We obtain Mc = −0.1 when using a 90% fit threshold and Mc = 0.1 when using

a 95% fit threshold (Fig. S1). Finally, we estimate Mc base on the b value stability

as a function of assumed cutoff magnitude Mco [107]. Mc is the first Mco at which

|bave − b| ≤ δb [106], with bave being the mean of the b values estimated for three

successive Mco (magnitude range of 0.3 since the bin interval is 0.1) and δb being the

standard deviation of the b value estimate [100]. We obtain Mc = 0.3 (Fig. S1).

The maximum curvature (MAXC) and the GFT-90% methods can underestimate

Mc [106] while the method based on b value stability (MBS) may overestimate Mc
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[104]. Therefore, in this study, we adopt Mc = 0.1 from the GFT-95% method which

leaves us with ∼35,000 earthquakes above Mc and an estimated b value of 1.31 ± 0.01.

We also consider the more conservative estimate of Mc = 0.3 from the MBS method,

which leaves us with ∼20,000 earthquakes above Mc and an estimated b value of 1.39

± 0.01. The estimated b values are consistent with previous observations of b > 1 for

normal fault events [10] and in marine volcanic environments [50].

Tidal Stress

We estimate the horizontal strains due to body tides using the SPOTL software which

assumes an elastic and spherical Earth (degree-two Love numbers h = 0.6114, k =

0.3040, and l = 0.0832) and computes the tidal strains directly from the positions of

the Moon and the Sun [76]. We then calculate the vertical strain from the horizontal

strains assuming a plane stress condition:

∆ϵzz =
−ν

1− ν
(∆ϵxx +∆ϵyy), (3.7)

using Poisson’s ratio ν of 0.23 which is consistent with VP = 5.4 km/s, VS = 3.2

km/s, and a density of 2800 kg/m3. The Poisson’s ratio quantifies the effect where a

material tends to contract along the axes perpendicular to the axis of tensile strain.

For the effects of ocean tidal loading, we first obtain the predicted tidal height for

the eight major short-period tidal constituents (K1, K2, M2, N2, O1, P1, Q1, and

S2) using the EOT11a global ocean tidal model [77] combined with the Oregon State

University regional ocean tidal model for the west coast of the United States [108] as
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provided with the SPOTL software. We then calculate the ocean tidal loading effect

in two parts. First, we estimate the horizontal strains due to variable regional ocean

tidal loading using the SPOTL software, which uses a mass-loading Green’s function

for strain based on the Gutenberg-Bullen Earth model [76]. We then calculate the

vertical strain from the horizontal strains assuming a plane stress condition before

converting strains to stresses using elastic constants consistent with a Poisson’s ratio

of 0.23. Secondly, we estimate the vertical stress perturbation due to direct ocean

tidal loading as

∆σzz = −ρgh, (3.8)

where ρ is the density of seawater (1030 kg/m3), g is the gravitational acceleration

(9.8 m/s2), and h is the tidal height relative to its mean value. We then estimate the

horizontal stresses from the vertical stress assuming uniaxial strain:

∆σxx = ∆σyy =
ν

1− ν
∆σzz, (3.9)

Finally, we combine the various tidal stress components to form the stress tensor. We

find that at Axial Seamount, ocean tides are much larger than body tides and hence

the vertical tidal stress dominates (Fig. S2). We calculate the tidal-stress time series

in 5-minute intervals. We assume the stresses estimated at the seafloor applies to the

earthquake source region because the tidal wavelengths are very long compared to

the earthquake depths of mostly less than 2 km (Fig. 1b). We do not account for the

effect of bathymetry in our tidal stress calculations. The bathymetry only varies by
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less than 200 m around our earthquake epicenter region (Fig. 1a) and while it might

affect the absolute value of our tidal stress estimates, the relative difference in tidal

stress at different times is expected to still be valid.

We assume the earthquakes are predominantly normal faulting events since the

ring-fault system appears to have accommodated pre-eruptive inflation [3], 79% (31

of 39) of the composite focal mechanisms determined before the eruption based on

first-motion polarity showed normal or oblique-normal sense of motion [8], and this is

a region of tectonic extension. This initially seems to contradict the well-documented

preferential occurrence of earthquakes during low ocean height at Axial Seamount

[3, 15] because a decrease in ocean height (increase in tensile vertical stress) should

produce a Coulomb stress change that inhibits slip on normal faults. However, [96]

resolved this apparent paradox by accounting for the effect of the underlying magma

chamber on the stress distribution. The higher compressibility of the magma chamber

means that it will inflate or deflate relative to the surrounding crust in response to

tidal stresses and produce Coulomb stress changes on the fault that is opposite in

sign as those produced directly by the tidal stresses [96, Fig. 3]. When the magma

chamber bulk modulus is below a critical value, the magma chamber effect will exceed

that of the direct tidal stress effect and the phase of the tidal triggering gets inverted

[96, Fig. 4], as observed at Axial Seamount. Since the vertical tidal stress dominates

at Axial Seamount (Fig. S2) and the average Coulomb stress change on the fault can

be approximated as ∆CFS = χσzz with χ dependent on the magma chamber bulk

modulus [96], we will focus on variations in vertical stress due to the combined effects

of ocean tidal loading and body tide. We adopt tension as positive and an increase
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in vertical stress represents an increase in encouraging stress (Coulomb stress change

that favors slip on normal fault). The vertical tidal stress has estimated amplitudes

of ±18 kPa (Fig. S2).

3.4 Results

Figure 2: The earthquake b value as a function of tidal stress. The vertical error bars
represent two standard deviations of the estimated b values [100]. The horizontal
bars represent the range of earthquake tidal stress values included in each bin, with
the markers centered at the mean earthquake tidal stress for each bin. a, Using Mc

= 0.1. Non-overlapping bins of 2,000 events (gray) as well as moving bins of 10,000
events shifted by 5,000 events (black). b, Using Mc = 0.3. Non-overlapping bins of
2,000 events (gray) as well as moving bins of 5,000 events shifted by 2,500 events
(black).

We assign each earthquake a tidal stress value based on its origin time. After

sorting the earthquakes based on their associated tidal stress values, we calculate

the b values for non-overlapping bins of 2,000 events. When using Mc = 0.1, we also

calculate the b values for moving bins of 10,000 events, shifted by 5,000 events. When

using Mc = 0.3, we calculate the b values for moving bins of 5,000 events, shifted by
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2,500 events. For each bin, we re-estimate Mc using the GFT-95% method and only

keep the data point if the re-estimated Mc equals the Mc of the bulk data. Only 4 out

of 40 data points did not fulfill the criteria. We find that the earthquake b value only

decreases systematically with increasing tidal stress when stress amplitudes exceed a

certain threshold (Fig. 2).

We further investigate the relationship between b value and tidal stress by looking

at how the b value varies between fixed stress bins. We calculate the b values for non-

overlapping bins of 2 kPa for stress values between -8 and 14 kPa. We pick this range

because it incorporates ∼91% of the earthquakes (Fig. S3) and allows us to use a

reasonably large number of events per stress bin. The number of events vary between

stress bins (Fig. S3) so we adopt the following strategy to maintain consistency:

For each stress bin, we estimate 1,000 b values using events randomly drawn with

replacement from the earthquake population. When using Mc = 0.1, we draw 1,600

events for each b value calculation because the stress bin with the smallest number

of events contain ∼1,600 earthquakes (Fig. S3). When using Mc = 0.3, we draw 900

events for each b value calculation. The reported b value is then the average b value

from the bootstrapping. We find that at low stress values, the b values are high but

remain relatively constant. However, at stress amplitudes greater than 5 kPa, the

earthquake b value decreases linearly with increasing tidal stress at ∼0.03 per kPa

(Fig. 3).

We test the statistical significance of the b value variations as follow: Using Mc

= 0.3, we sort the earthquakes based on their associated tidal stress values before

splitting them into two equal-size groups. The lower tidal stress group has a mean
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Figure 3: The earthquake b values for non-overlapping stress bins of 2 kPa. The
vertical error bars represent two standard deviations of the estimated b values from
bootstrapping. The horizontal bars represent the tidal stress range for each bin.
Dashed lines represent linear least-squares fits, both giving b value varying by ∼ 0.03
per kPa. a, Using Mc = 0.1. b, Using Mc = 0.3.

stress of −1 kPa while the higher tidal stress group has a mean stress of 10 kPa. We

further verified that the lower and higher tidal stress groups both have Mc = 0.3. We

then plot the cumulative and non-cumulative FMDs. The cumulative FMD curves

show increasing separation at larger magnitudes. The non-cumulative FMD curves

intersect at around Mw = 0.5 (Fig. 4). These results show that the slopes of the

FMD curves for the lower tidal stress group is steeper (larger b value) than that of

the higher tidal stress group. The lower tidal stress group has a b value of 1.46 ± 0.01

while the higher tidal stress group has a b value of 1.33 ± 0.01. We obtain similar b

values and standard deviations from bootstrapping. The b value difference between

the two groups are statistically significant at a <1% level based on both the Utsu’s

test [101] and the z-test (see Methods).

The FMD curves deviate from linearity at large magnitudes. This could reflect a
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real departure from the power law distribution at large magnitudes or simply statis-

tical fluctuations due to under-sampling. To quantify how this affects our results, we

repeat the b value calculations after excluding earthquakes of Mw greater than 1.5

where the FMD curves become nonlinear [102] (Fig. 4). The lower tidal stress group

now has an estimated b value of 1.53 ± 0.01 while the higher tidal stress group has

an estimated b value of 1.40 ± 0.01. The b value difference between the two groups

remains statistically significant at a <1% level based on both the Utsu’s test [101]

and the z-test. We also repeat the analysis shown in Fig. 3 and while the absolute b

values become larger, we obtain similar trends with the earthquake b value decreasing

linearly with increasing tidal stress at ∼0.03 per kPa when stress amplitude exceeds 5

kPa (Fig. S4). This is unsurprising because the maximum-likelihood estimate of the

b value uses the average earthquake magnitude (Eq. 1) and is therefore only slightly

affected by the small number of large magnitude events.

We further verified that the minimum bin sizes often used to document b value

variations [10–12] are insufficient to robustly constrain our observed effect. We de-

termine the minimum bin size needed to resolve the b value variations we observe

as follow: Using Mc = 0.3, we sort the earthquakes based on their associated tidal

stress values and split them into two equal-size groups (see Fig. 4). For a range

of bin sizes, we then calculate 1,000 b values using events randomly drawn without

replacement from the original population. The reported b value is then the average

b value from the bootstrapping with the associated uncertainties (Fig. 5). For the b

value difference between the lower and higher tidal stress groups to be statistically

significant at a <5% and <1% level based on the Utsu’s test [101], we need minimum
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Figure 4: Cumulative (circle) and non-cumulative (triangle) FMDs of two groups of
earthquakes. Dashed lines indicate maximum-likelihood fits to the data. a, Using
Mc = 0.3, the ∼20,000 earthquakes are split into two equal-size groups after being
sorted based on their tidal stress values. The lower tidal stress group (blue) has a
mean stress of −1 kPa while the higher tidal stress group (red) has a mean stress of
11 kPa. b, Zoom-in of a.

bin sizes of 900 and 1,600 respectively. For the b value difference between the two

groups to be statistically significant at a <5% and <1% level based on the z-test, we

need minimum bin sizes of 800 and 1,300 respectively.

In multiple continental regions, earthquake b values have been found to decrease

with increasing depth which has been interpreted as the result of increasing crustal

strength [11] and material homogeneity [13] with depth. We similarly find that at

Axial Seamount, the earthquake b value decreases with increasing depth (Fig. S5).

Therefore, our observation of b value decreasing with increasing tidal stress could

simply reflect the average earthquake depth increasing with tidal stress. While the

Chi-squared test suggests the earthquake depth distributions of the lower and higher

tidal stress groups come from two different populations, the depth difference is such
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Figure 5: The estimated earthquake b values for the lower (blue) and higher (red) tidal
stress groups as a function of bin sizes. For each bin size, we calculate 1,000 b values
using events randomly drawn without replacement from the original population. The
reported b value is then the average b value from the bootstrapping. The vertical
error bars represent two standard deviations.

that the mean and median depths of the higher tidal stress group is shallower by ∼18

m and ∼16 m respectively. We also find that the mean and median earthquake depth

decrease with increasing tidal stress (Fig. S6). Since b value decreases with increasing

depth, this change in depth distribution would have resulted in b value increasing

with tidal stress. Therefore, our observation of earthquake b value decreasing with

increasing tidal stress is unlikely to be a secondary effect of change in earthquake

depth distribution with tides.

The earthquake spatial distribution of the lower and higher tidal stress groups also

differs slightly, with relatively more events on the western and northeastern walls of
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the caldera for the lower tidal stress group (Fig. S7). We verify that the b value

variation with tidal stress that we observe is still valid at smaller spatial scale as

follow: We first bin the earthquakes into 1 km2 spatial grids and find that there are

five bins with more than 1,000 events (Fig. S7c) . For each of these five bins, we

sort the earthquakes base on their tidal stress values and split the events into two

equal-size groups. We find that for three out of the five bins, the b value of the lower

tidal stress group is larger than the higher tidal stress group. However, the statistical

significance of the b value differences is not guaranteed by the Utsu’s [101] and z-test

due to the small number of events in each bin.

3.5 Discussions

[87] calibrated the stress dependence of earthquake b values assuming a simple fric-

tional strength model combined with measurements of b value variation with depth at

different tectonic environments [11] and found that b value varies by ∼0.001 MPa−1.

Our analysis suggests that earthquake b value at Axial Seamount varies by ∼0.03

kPa−1 (Fig. 3). In a recent tidal triggering study at Axial Seamount, [96] modeled

the average Coulomb stress change on the 67◦ outward-dipping normal faults [8] (Fig.

1) due to vertical tidal stress changes as ∆CFS = χσzz, with χ = 0.32 for a realistic

magma chamber bulk modulus of 1 GPa. Adopting χ = 0.32 would give us a b value

change of ∼0.09 kPa−1 of Coulomb stress change. Our observation of b value varia-

tion that is sensitive to small stress perturbations (∼105 more sensitive compared to

[87]) is consistent with the long-documented observations of strong tidal triggering
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of earthquakes at Axial Seamount [3, 15] and other mid-ocean ridges [24, 66]. [96]

demonstrated that the seismicity rate change with tidal stress at Axial Seamount

agrees with predictions of both rate-state and stress corrosion theories, and that the

higher sensitivity can be explained by the shallow depths of the earthquakes (and

hence the corresponding lower normal stress and stress drop values). The same ex-

planation could apply to our observations since laboratory experiments previously

showed that b value variations depend on stress normalized to the maximum failure

strength [9]. Our observed greater sensitivity is also consistent with observation of

the b value of acoustic emissions in the laboratory varying with tidal stress [109].

While our calibrated b value change with stress cannot be directly applied to

other tectonic environments as most catalogued earthquakes occur at deeper depths,

a sensitivity that is greater than 0.001 MPa−1 [87] could explain observations of b value

decreasing preceding large earthquakes [90] and volcanic eruption [92]. Otherwise,

these observations would represent stress changes on the order of 100 MPa in the

decades before the Tohoku and Sumatra earthquakes [90] and weeks before the Mount

Ontake eruption [92]. Alternatively, these documented b value decreases might not

have resulted from stress increases. Based on epidemic-type aftershock sequence

(ETAS) modeling, [110] suggested that such b value decreases can emerge simply

from conditioning of the seismicity having to culminate in a mainshock, which results

in there being a growing contribution of a deviatoric power law distribution with a

smaller b value to the background unconditional distribution. At Axial Seamount,

[111] did not observe a systematic decrease in b value leading up to the April 2015

eruption. [3] similarly did not observe the tidal triggering signal or the seismicity rate
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increasing leading up to the eruption. Therefore, the presumed stress accumulation

in the three months before the volcano erupted might be too small to be detected

with the current dataset.

Our observed stress dependence of earthquake b values can be understood within

the same statistical model first proposed to explain why the b values of microfractures

in laboratory experiments vary with stress [9]. If we treat the Earth’s crust as an

inhomogeneous elastic medium experiencing a uniform applied stress, the presence

of inhomogeneities means that the stress at each point within the crust is a random

variable that follows a probability distribution function that depends on the uniform

applied stress. If we further assume that at each point, fracture will occur if the local

stress exceeds a critical value and that fractures stop growing when they propagate

into a region of lower stress, it follows that a fracture has a higher probability of

growing larger when the applied stress is greater [9]. This translates to a decrease

in b value with increasing stress. However, the threshold effect that we observe is

not well-explained by this model. Nevertheless, a similar threshold effect is often

discussed for earthquake triggering from stress changes [112, 113] with the stress

threshold being dependent on the fault stiffness [112].

A recent study using global data hinted at a b value-tidal stress correlation, as

earthquake b values were found to decrease with increasing tidal shear stress ranking,

where an earthquake’s ranking is based on the maximum tidal shear stress during

the day before the earthquake relative to the daily maxima in the 15 days before the

earthquake [114]. However, the relationship was not clear for earthquakes smaller

than Mw 6.5 when looking at the Global Centroid Moment Tensor catalogue, poten-
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tially due to aggregating events of various faulting styles in diverse tectonic regimes

[114]. Due to the lack of a strong correlation between global seismicity rate and tidal

stress changes [e.g. 65, and references therein], the authors instead invoke enhanced

slow slip during increased tidal stresses that subsequently triggers earthquakes and

increases the probability of rupture growth [114]. However, at Axial Seamount, the

sensitivity of the earthquakes to small tidal stress changes [3, 15] can be simply ex-

plained by the shallow depths of the earthquakes [96] without invoking the existence

of slow slip.

3.6 Conclusions

Our natural experiment in a unique seafloor laboratory, looking at the size distribu-

tion of earthquakes in a 25 km3 block of crust that experiences periodic tidal loading,

provides a robust validation of the stress dependence of the earthquake b value. We

find that above a certain threshold stress amplitude, the earthquake b value decreases

linearly with increasing tidal stress. The b value varies by ∼0.09 per kPa change in

Coulomb stress. This suggests that b value changes can be used to estimate stress

variations in the Earth’s crust.
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3.8 Supplementary Figures

Figure S1: Selection of the minimum magnitude of completeness (Mc). top, Cu-
mulative (triangle) and non-cumulative (circle) frequency-magnitude distributions
(FMDs). Dashed lines depict the Mc estimates based on the MAXC (green), GFT-
90% (blue), GFT-95% (red), and MBS (magenta) methods. middle, Variation of
parameter R used to quantify the goodness-of-fit between observed and synthetic cu-
mulative FMDs for a range of cutoff magnitudes. Dashed lines depict the 90% (blue)
and 95% (red) thresholds. bottom, Variation of the b value for a range of cutoff
magnitudes. Dashed line depicts where the b value first stabilizes (see Methods).
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Figure S2: Time series of predicted tides at the surface at 45.95◦N, 130.00◦W. top,
Estimate of σxx (black), σyy (blue), and σzz (red) from ocean tidal loading, with
tension being positive (i.e. σzz is positive upwards). bottom, Body tides. The stress
amplitude is about an order of magnitude smaller than that of ocean tides.
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Figure S3: The earthquake tidal stress distribution in bins of 2 kPa for Mc = 0.1 (blue)
and Mc = 0.3 (grey). The distribution reflects the combined effect of seismicity rate
increasing with tidal stress [96] and the uneven distribution of tidal stress amplitudes.
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Figure S4: The earthquake b values for non-overlapping stress bins of 2 kPa. Earth-
quakes of Mw greater than 1.5 are excluded. The vertical error bars represent two
standard deviations of the estimated b values from bootstrapping. The horizontal
bars represent the tidal stress range for each bin. Dashed lines represent linear least-
squares fits, both giving b value varying by ∼0.03 per kPa. a, Using Mc = 0.1. b,
Using Mc = 0.3.
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Figure S5: The earthquake b value as a function of depth in non-overlapping bins of
2,500 earthquakes. The vertical error bars represent two standard deviations [100] of
the estimated b values. The horizontal bars represent the range of earthquake depth
values included in each bin. Since Mc is expected to vary with depth, we estimate
Mc for different depth ranges using the GFT-95% method before choosing a fixed Mc

= 0.3 to estimate the b values.
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Figure S6: a, Cumulative number of events with depth for the lower tidal stress group
(blue) and higher tidal stress group (red) (see Fig. 4). b, Mean (circle) and median
(triangle) earthquake depth for non-overlapping stress bins of 4 kPa.
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Figure S7: The normalized earthquake spatial distribution in 1 km2 grids for a, lower
tidal stress group and b, higher tidal stress group (see Fig. 4). c, The earthquake
spatial distribution in 1 km2 grids for all events above Mc = 0.3. Only grids containing
more than 1,000 events are shown.
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Chapter 4

Variable rate of melt influx into the shallow reservoir in

the months before Axial Seamount’s 2015 eruption

4.1 Abstract

How mid-ocean ridge volcanic systems evolve leading up to an eruption remains an

open question due to the lack of long-term, continuous monitoring in these environ-

ments. A real-time seafloor cabled observatory was established atop Axial Seamount

a few months before its most recent eruption in April 2015, providing a unique oppor-

tunity to address this question. Here we integrate measurements of seismic velocity

variations and the spatiotemporal evolution of earthquakes as well as deformation

rate to show that a few weeks before the eruption, there was increased rate of melt

influx into a region of the shallow reservoir from which the erupted lavas were subse-

quently sourced. Our observations also support the interpretation of seismic imaging

results of the potential existence of more than one melt pocket in the primarily-mush

reservoir. Our results highlight the complexity of the shallow magma reservoir and

how melt influx can vary over short time and small spatial scales. Our observation

of geophysical precursors weeks before the eruption also suggests that analysis of

real-time geophysical data might aid eruption forecasting and facilitate installation
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of additional in situ instrumentation before future eruptions. This may lead to a

better understanding of mid-ocean ridge volcanism.

4.2 Introduction

Earth’s volcanism is dominated by eruptions along the ∼70,000-km-long mid-ocean

ridge system that is mostly below the sea surface. However, the difficulty in sustain-

ing long-term geodetic and seismic monitoring of submarine ridges means that our

limited understanding of the active processes at ridges has mostly been inferred from

geophysical observations of the few rifting episodes at slow-spreading ridges on land

in Afar (Asal-Ghoubbet 1978; Dabbahu, 2005-2010) and Iceland (Krafla, 1975-1984).

However even for these episodes, continuous near-field monitoring of their precursory

activity was limited and the geometries of the shallow crustal reservoirs are not well-

imaged [31]. Therefore, how the magmatic systems evolved leading up to an eruption

remains an open question.

Axial Seamount rises ∼1 km above the surrounding seafloor at the intersection

of the intermediate-spreading Juan de Fuca ridge and the Cobb-Eickelberg seamount

chain. Its 8.5 km by 3 km summit caldera is underlain by a well-imaged, shallow (∼1.5

km), 14 km by 3 km wide magma reservoir that is up to 1 km thick with variable

melt content [1, 2] (Fig. 1a). A new seafloor cabled observatory, which include

seismometers and geodetic instruments that span the southern half of the caldera

(Fig. 1a), came online a few months before the volcano’s most recent eruption in April

2015. The 2015 diking-eruptive sequence involved both northward and southward
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dike propagation[3–5]. However, lava only erupted in the northern caldera floor and

the north rift zone [6, 7] (Fig. 1a). Earthquakes located delineate outward-dipping

faults that are reactivated as the volcano inflates and deflates [3, 5, 8]. Modeling

of vertical displacements suggests the presence of a steeply-dipping prolate-spheroid

pressure source beneath the southeastern part of the caldera that extends from 1.75

to 6 km depth [4] (Fig. 1b). While the 2015 eruption sequence is well-studied [3–8,

115], it remains unclear whether there were geophysical precursors leading up to the

eruption [3].

In this study, we use seismic noise interferometry to measure seismic velocity

changes in the caldera edifice with time. We then integrate these results with the

spatiotemporal evolution of the seismicity as well as the deformation rate as measured

by tiltmeters and bottom pressure recorders (BPRs) to infer how the magmatic system

evolved in the months before the eruption.

4.3 Methods

Seismic Interferometry

The cross-correlation function (CCF) of ambient seismic noise recorded at two sta-

tions converges to the Green’s function which can be used to image the seismic velocity

structure of the Earth’s subsurface [116]. Since ambient seismic noise is continuously

being recorded, studies have further extended the method to detect temporal varia-

tion of seismic velocity [117, 118]. The seismic network on Axial Seamount, which
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Figure 1: Map of Axial Seamount. a, Short-period (black squares and circle) and
broadband (black triangles) seismometers, co-located bottom pressure recorder and
tiltmeter stations (black triangles and circle), lava flows for the 2015 eruption [6, 7]
(gray-shaded regions), earthquake epicenters [3] (brown dots), caldera rim (thick black
line), eruptive fissures [6, 7] (thin black lines/dashes), CASM vent field (magenta
star), magma chamber footprint [1] (blue line), and depth contours for the magma
chamber at 1.25 km (dotted blue line) and 1.5 km (dashed blue line) depths [1].
b, Zoom in of (a). Tilt magnitudes and directions (black arrows), centroid of the
modelled prolate-spheroid deformation source [4] (black cross), and the cross-section
shown in (c) (black dashed line). Colorscale shows the difference in daily earthquake
rate between the time period before March 9th 2015 and the time period after March
9th 2015 but before April 24th 2015 (see Fig. S1). CC, EC, and ID represent the
Central Caldera, Eastern Caldera, and International District stations with co-located
tiltmeters, BPRs, and seismometers referred to throughout the text. c, Depth cross-
section across the caldera showing the projected earthquake rate change within 0.5
km of the profile. Blue line shows the roof of the shallow magma reservoir [1].
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includes two broadband and five short-period seismometers, started streaming time-

corrected data in January 2015. We use continuous seismic data recorded by the

five short-period seismometers (Fig. 1b) to compute daily CCFs corresponding to

all possible station pairs over a two-year period starting in January 2015. We ex-

cluded the two broadband seismometers from our analysis to avoid having to correct

for instrument response due to uncertainties regarding the appropriate instrument

responses.

We use the open-source MSNoise software to measure the relative velocity vari-

ation [119]. Using the 8 Hz vertical-component continuous waveforms, we perform

one-bit normalization and spectral whitening in 30-minute windows before calculat-

ing CCFs for every station pair for time lags of ±120 s. The CCFs were stacked

for each day and then the daily CCFs were stacked over 15-day moving windows. A

15-day stack for February 1st contains 15 days of CCFs up to and including February

1st. The reference CCF involves stacking the daily CCFs between 1 June 2015 and

1 January 2017. We measure the delay time (dt) at different lag times (t) between

the CCFs and reference CCFs using the moving-window cross-spectrum (MWCS)

method[120]. We only keep measurements with an error of less than 0.1s, a coherence

of more than 0.65 and a delay time of less than 0.5s. A weighted linear regression

was calculated in a 20-s window in the CCF to calculate dt/t [121]. The minimum

lag time of this window was chosen by dividing the interstation distance by a velocity

of 1.0 km/s. This allows measurement of the coda waves and excludes the direct

arrivals in the CCFs. Finally, we calculate the relative velocity change using dv/v =

−dt/t assuming a homogeneous relative velocity change [120]. The presented dv/v
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represents an average of all the stations pairs. Measurement errors for the relative

velocity variation were estimated from the linear regression of dt against t [121]. We

use the frequency band between 0.1 and 0.9 Hz, which means the CCFs consist pri-

marily of Rayleigh waves that are sensitive to structures down to ∼2 km below the

seafloor [117].

Earthquakes.

∼60,000 earthquakes were located in the three months before the eruption [3]. The

earthquakes delineate outward-dipping ring faults (Fig. 1c) that were reactivated

during the pre-eruption uplift and syn-eruptive subsidence of the caldera [3, 8]. The

epicenters depict a figure eight (Fig. 1a), with the northern ring less well-defined

presumably due to the limited footprint of the seismic network [3].

Tilt and Bottom Pressure Records.

We download the tilt and bottom pressure data for stations MJ03D, MJ03E, and

MJ03F from the Ocean Observatory Initiative data portal, which correspond to the

International District (ID), Eastern Caldera (EC), and Central Caldera (CC) stations

respectively (Fig. 1). We use data from the high resolution LILY tiltmeters. We

calculate the tilt magnitude and direction from the raw X-tilt and Y-tilt data using

the orientations of the tilt axes provided by the internal compasses starting from

September 18th 2014. The tilt direction represents the direction of downward tilt.

The bottom pressure recorders (BPRs) record pressure changes exerted by the
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overlying water column on the seafloor. If the seafloor rises, this will be recorded as

a pressure decrease and vice versa. We then convert pressure to seafloor height using

a water density of 1025 kg m−3. Since seafloor pressure changes from oceanographic

signals are quite large but can be relatively coherent across the spatial scale of the

network [122], we also analyzed the pressure difference between BPR pairs. This then

reflects the relative seafloor height between the two sites. The pressure difference

analysis only managed to decrease the noise level for the EC and CC station pair.

For the three-segment piecewise linear fits to the time-series data (Figs S2-4),

we obtain the slopes and break-points by minimizing the sum of squared residuals.

We verified that a three-segment piecewise linear fit is justifiably better than one-

segment and two-segment piecewise linear fits based on both the Akaike and Bayesian

information criterion.

4.4 Results

The measured relative velocity change (dv/v) from 2015 to 2017 shows an annual sig-

nal, with peaks and troughs in the summer and winter, respectively (Fig. S5). Similar

observations have been reported on land and are attributed to seasonal changes in

ground-water aquifer or atmospheric temperature [123, 124]. Alternatively, such an-

nual signal could be an artifact due to seasonal variation in the ambient seismic

noise source [125]. In this paper, we instead focus on the short-term relative velocity

changes before the eruption.

We observe an initial increase in dv/v three months before the eruption (Fig. 2a).
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Figure 2: Variation in seismic velocity, seismicity rate, and inflationary tilt rate. a,
Relative velocity variations dv/v before the eruption and the associated measurement
errors. Grey bar marks the eruption period [3]. b, Cumulative number of earthquakes
with time (black line) and tilt magnitude (blue line) recorded by the Eastern Caldera
tiltmeter (see Fig. 1).

However, it is uncertain when this trend started because time-corrected seismic data

only began streaming from late January 2015. dv/v then began to decrease starting

early March 2015 (Fig. 2a). Precursory seismic velocity decreases have been ob-

served before eruptions at Piton de la Fournaise volcano [117]. Since no concurrent

surface uplifts were observed, the velocity decreases were attributed to crack opening

from increases in magma pressurization at a depth that precluded measurable sur-

face deformation [117]. However, at Kilauea volcano, velocity increases were found

to correlate with inflation episodes as measured by a tiltmeter and were attributed

to crack closing from compression [126]. These observations can be reconciled by

considering the volumetric strain due to inflation of a point source: an area directly

above the pressure source experiences extension, whereas the surrounding area ex-

periences compression; a deeper pressure source results in a larger area of extension

[126]. Therefore, whether a velocity increase or decrease is observed from inflation

88



of a point source depends on the region of the edifice that is being sampled by the

seismic waves relative to the location of the pressure source.

Looking at the cumulative number of earthquakes with time, we find that there

was a sharp increase in the earthquake rate from ∼180 day−1 to ∼440 day−1 in

early March 2015 (Figs 2b and S2). The increase in earthquake rate implies an

increase in stressing rate on the faults based on the rate/state model [80]. The

earthquake rate increase was mostly concentrated in the southeastern part of the

caldera between 1 to 1.75 km below the seafloor (Fig. 1b-c). This is above a region

of the shallow magma reservoir previously inferred to have the highest melt content

based on multichannel seismic surveys [1, 2] as well as the best-fitting pressure source

based on modelling net vertical displacements between September 2013 and August

2015, which includes some pre-eruption inflation, the syn-eruptive deflation, and some

post-eruption reinflation [4] (Fig. 1b). The earthquake rate then decreased to ∼250

day−1 in early April 2015 (Figs 2b and S2), about two weeks before the eruption.

Three of the seismic stations are co-located with tiltmeters (Fig. 1b). The EC

station, the station closest to the region where the earthquake rate increase is concen-

trated, showed changes in inflationary tilt rate that most closely track the variations

in seismicity rate (Fig. 2b). Nevertheless, all three tiltmeters recorded an increase in

inflationary tilt rate around early March that subsequently decreased approximately

three weeks before the eruption (Fig. S3). The inflationary tilt rate of the CC sta-

tion increased from 0.8 microradians day−1 to 1.6 microradians day−1 around March

8th before decreasing back to 0.9 microradians day−1 around March 25th. The in-

flationary tilt rate of the EC station increased from 0.3 microradians day−1 to 0.8
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microradians day−1 around March 2nd before decreasing back to 0.3 microradians

day−1 around March 29th. The inflationary tilt rate of the ID station increased from

1.3 microradians day−1 to 1.7 microradians day−1 around February 28th before de-

creasing back to 1.1 microradians day−1 around April 4th. While the inflationary

tilt rate of all three tiltmeters seems to vary coherently in the three months before

the eruption, their tilt directions did not simply point outward radially from a single

point source. The tilt directions of the EC and ID stations suggest the tiltmeters are

responding to a pressure source located in the southeastern part of the caldera (Fig.

1b). However, the tilt direction of the CC tiltmeter seems to suggest the presence

of a pressure source located in the northwestern part of the caldera (Fig. 1b). The

tilt directions for both the CC and ID stations were relatively constant in the three

months before the eruption (Fig. S3). The tilt direction for the EC station however

reflected an ∼25°change during the period of increased inflationary tilt rate between

early March and April 2015 (Fig. S3c).

All the BPR data seem to reflect relatively constant vertical uplift rates in the

months before the eruption (Fig. S6). When we look at the relative seafloor height

between the CC and EC stations, we find that it increased with time (Fig. S4),

consistent with the vertical uplift rate in the Central Caldera being larger than that

in the Eastern Caldera [4, 8] (Fig. S6). However, the rate of increase of the relative

seafloor height increased from 35 cm year−1 to 59 cm year−1 around early March

before subsequently decreasing to 35 cm year−1 approximately two weeks before the

eruption (Fig. S4). This could represent an increase in the vertical uplift rate in

the Central Caldera or a decrease in the vertical uplift rate in the Eastern Caldera
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between early March and April 2015. However, since the tilt data of both the CC

and EC stations suggest an increase in inflationary tilt rate between early March and

April 2015, we instead infer that the vertical uplift rates of both the CC and EC

stations increased during that time period but with the absolute magnitude of rate

increase being larger at the CC station.

Even though the earthquake catalog and the dv/v measurements only go back

to late January 2015, the tilt and BPR data go back to mid-September 2014. We

find that in the seven months before the eruption, the inflationary tilt rate at the

EC station is the largest between early March and April 2015 (Fig. S7). This also

applies to the relative vertical uplift rate between BPR stations CC and EC (Fig.

S7). The relatively vertical uplift rate between stations CC and EC closely tracks the

inflationary tilt rate at the EC station (Fig. S7). We infer this to reflect that when

there is an increase/decrease in vertical uplift rate at the EC station, station CC also

experiences the same change but one of larger absolute magnitude.

4.5 Discussions and Conclusions

Our observations suggest that between early March and April 2015, there was a pulse

of increased melt influx into a region of the shallow reservoir below the southeastern

part of the caldera. The increased inflation rate resulted in a higher stressing rate on

the outward-dipping fault above this segment of the reservoir and hence the increased

earthquake rate (Figs 1b, 2, and 3). The region above the inflation source undergoes

extension and the increased crack opening is manifested as a concurrent decrease
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Figure 3: Cartoon illustrating the inferred volcanic processes leading up to the erup-
tion. a, Northwest-Southeast cross-section. Increased rate of melt influx into the
southern segment of the shallow reservoir weeks before the eruption resulted in the
southern part of the edifice being dominated by extension and hence the decreas-
ing seismic velocity in the edifice. There are possibly multiple melt pockets within
the shallow reservoir, either due to the presence of multiple locations of melt influx
from depth, or locations where melt ponds after being redistributed from the initial
injection point in the southeastern part of the caldera. North rift lava flows might
have incorporated magma from these other melt pockets. b, East-West cross-section.
Variable rate of melt influx into the eastern region of the shallow reservoir affects the
stressing rate on the fault and hence the seismicity rate.

in seismic velocity during this time period (Fig. 2a). The increased rate of melt

influx into the southeastern part of the shallow reservoir weeks before the eruption

could explain why the 2015 caldera lava flows were the hottest to erupt (highest MgO

content) in the last 350 years [115]. It is also consistent with where the dikes initiated

during the 2015 eruption sequence [3–5]. This increased rate of melt influx into the

shallow reservoir weeks before the eruption is in line with previous suggestions that

rifting episodes in Afar and Iceland were triggered by renewed magma influx into

the shallow reservoir [31, 40, 127, 128]. However, this is counter to the East Pacific

Rise, a non-hotspot-influenced mid-ocean ridge, where the eruption is inferred to be
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primarily controlled by the buildup of tectonic stress instead of magma overpressure

[73]. Thus Axial Seamount, which sits atop the Cobb hotspot, appears to behave

more like a volcano than a typical mid-ocean ridge system [129].

The initial seismic velocity increase three months before the eruption is harder to

explain. One potential explanation is that the southern part of the edifice was initially

dominated by compression due to an inflating pressure source below the northern part

of the caldera (Fig. 3). The presence of a pressure source below the northern part

of the caldera is supported by the tilt direction of the CC tiltmeter (Fig. 1b). This

is also consistent with the presence of the Canadian American Seamount (CASM)

vent field on the northern caldera floor, as high-temperature hydrothermal systems

have been suggested to require the presence of an underlying crustal reservoir with

ongoing magma recharge to maintain the high heat fluxes [130]. The mapped eruptive

fissures north of the caldera also align with the location of the CASM vent field and

the northern part of the shallow reservoir and have different strikes compared to the

eruptive fissures along the eastern wall of the caldera (Fig. 1a). However, the tilt

magnitude and vertical uplift rate of CC and EC seem to co-vary throughout the

seven months before the eruption (Fig. S7). It is therefore difficult to understand

why the CC tilt direction would primarily reflect the inflation of another pressure

source instead of the inflating pressure source below the southeastern part of the

caldera. The CC tilt direction also remained relatively constant in the three months

before the eruption. If station CC was responding to two pressure sources, one

would expect its tilt direction to change if the deformation field changed from being

initially dominated by an inflating pressure source below the northern part of the
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caldera before early March to being dominated by the inflating pressure source below

the southeastern part of the caldera after early March 2015. The lack of seismic and

geodetic instrumentation in the northern part of the caldera means that we remain

relatively blind to possible active processes beneath this part of the caldera.

Another potential explanation for the initial seismic velocity increase and the CC

tilt direction is the complexity of the shallow magma reservoir topography. Active

seismic reflection imaging shows that the top of the shallow magma reservoir varies

significantly with four different shallow points (Fig. 1) [1, 2]. Therefore, while there is

strong evidence for a pressure source in the southeastern part of the caldera, the melt

is unlikely to accumulate in a simple point source. Instead, the different shallow points

of the magma reservoir might reflect different locations of melt influx from depth, or

locations where melt ponds after being redistributed from the initial injection point

in the southeastern part of the caldera (Fig. 3). The presence of different melt

pockets is consistent with the caldera lava flows having a more primitive composition

(higher MgO) than the north rift flows [6, 115] which suggests an eruption that was

fed by different regions of a zoned shallow magma reservoir. Such complexities would

explain our difficulty in reconciling all the observations with simplified pressure source

geometries that are stationary in time. Finally, we cannot rule out the anomalous

CC tilt direction being a topographic effect, as the existence of sharp bathymetry

such as the caldera rim can cause tilt to rotate up to 180°relative to what would be

expected without bathymetry [131].

Our results suggest that the shallow magma reservoir can be relatively complex

with variable melt influx rate in time. Such complexities can only be resolved with
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the integration of multiple datasets. Future improvements include measurements that

cover the entire footprint of the magma reservoir, in particular the northern caldera

region, coupled with modeling that goes beyond simple reservoir geometries and takes

into account the effect of bathymetry on surface deformation. Finally, our observation

of increased magma influx rate into the shallow reservoir weeks before the eruption

suggests that analysis of real-time geophysical data might aid eruption forecasting and

facilitate installation of additional in situ instrumentation before future eruptisons,

an important step in furthering our understanding of this fundamental process of

crustal formation.
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4.7 Supplementary Figures

Figure S1: Daily earthquake rate. a-b, Between Jan 22nd and March 9th 2015. c-d,
Between March 9th 2015 and April 23rd 2015. a,c, Map view with black dashed
line depicting cross-sections shown in (b) and (d). Gray-shaded regions are the lava
flows for the 2015 eruption [6, 7], black line delineates the caldera rim, thick black
ticks delineate the eruption fissures [6, 7]. b,d, Depth cross-section across the caldera
showing the projected daily earthquake rate within 0.5 km of the profile. Blue line
depicts the roof of the shallow magma reservoir [1].
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Figure S2: Cumulative number of earthquakes with time (black line). Green, red,
and magenta lines show linear fits to the three time periods with different seismicity
rates. The start times and seismicity rates of the three segments are Jan 22nd, March
9th, April 11th and ∼180 day−1, ∼440 day−1, and ∼250 day−1.
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Figure S3: Tilt magnitude (black) and direction (blue) from Jan 22nd to April 23rd
2015. Green, red, and magenta lines show linear fits to the three time periods with
different tilt increase rates. a, Central caldera. The start times and tilt increase
rates of the three segments are Feb 7th, March 8th, March 25th and 0.8 microradi-
ans/day, 1.6 microradians/day, 0.9 microradians/day. b, Eastern caldera. The start
times and tilt increase rates of the three segments are Feb 7th, March 2nd, March
29th and 0.3 microradians/day, 0.8 microradians/day, 0.3 microradians/day. c, In-
ternational district. The start times and tilt increase rates of the three segments are
Feb 7th, Feb 28th, April 4th and 1.3 microradians/day, 1.7 microradians/day, 1.1
microradians/day. See station locations in Fig. 1.
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Figure S4: Relative change in seafloor elevation with time recorded between the
Central Caldera and Eastern Caldera bottom pressure recorders from Jan 22nd 2015
to April 23rd 2015. The upward trend shows that CC is uplifting at a higher rate
than EC. Green, red, and magenta lines show linear fits to the three time periods with
different relative uplift rates. The start times and relative uplift rates of the three
segments are Jan 22nd, March 7th, April 5th and 35 cm/yr, 59 cm/yr, 35 cm/yr.
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Figure S5: Relative velocity variations dv/v (blue line) from 2015 to 2017 and the
associated measurement errors (blue shading). Grey bar marks the eruption period
[3]. Black line shows a sinusoid with a one-year period.
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Figure S6: Change in seafloor elevation with time as recorded by the bottom pressure
recorders with a 5-hour low-pass filter.
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Figure S7: EC tilt magnitude (blue line) and relative change in seafloor elevation
between CC and EC (black line) from September 18th 2014 to April 23rd 2015.
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Conclusion

The thesis can be summarized as having addressed the following questions:

• What volcanic and tectonic processes controlled the evolution of the 2006 East

Pacific Rise eruption?

• How did tidal triggering of microearthquakes at the East Pacific Rise change

through an eruption cycle?

• Is earthquake size-frequency distribution stress-dependent?

• How did the magmatic system evolve in the months leading up to the 2015

Axial Seamount eruption?

The main results of the thesis are as follow:

• The 2006 East Pacific Rise eruption lasted two weeks and involved melt being

erupted from multiple melt lenses at variable erupted volumes and magma

ascent rates, suggesting that the eruption was mainly controlled by the buildup

of tectonic stress to a critical level rather than magma overpressure.

• Tidal triggering of earthquakes was strong and relatively constant in the two

years before the eruption but disappeared/weakened immediately after the

eruption, suggesting that tidal triggering variation may not be useful for fore-
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casting mid-ocean ridge eruptions over a 2+ years timescale but might be useful

over a longer timescale.

• Above a threshold stress amplitude, earthquake b value is inversely correlated

with stress.

• The 2015 Axial Seamount eruption was preceded by variable rates of melt in-

flux into the shallow reservoir as inferred from the variations in seismicity and

deformation rates as well as changes in seismic velocity in the caldera edifice.
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