
Accepted Manuscript

The effect of entomopathogenic fungal culture filtrate on the immune response and
haemolymph proteome of the large pine weevil, Hylobius abietis

Louise Mc Namara, Christine T. Griffin, David Fitzpatrick, Kevin Kavanagh, James C.
Carolan

PII: S0965-1748(18)30022-5

DOI: 10.1016/j.ibmb.2018.07.001

Reference: IB 3071

To appear in: Insect Biochemistry and Molecular Biology

Received Date: 6 February 2018

Revised Date: 25 June 2018

Accepted Date: 14 July 2018

Please cite this article as: Namara, L.M., Griffin, C.T., Fitzpatrick, D., Kavanagh, K., Carolan, J.C., The
effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of
the large pine weevil, Hylobius abietis, Insect Biochemistry and Molecular Biology (2018), doi: 10.1016/
j.ibmb.2018.07.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by T-Stór

https://core.ac.uk/display/226760627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ibmb.2018.07.001


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1 

The effect of entomopathogenic fungal culture filtrate on the immune response and 1 

haemolymph proteome of the large pine weevil, Hylobius abietis.  2 

Louise Mc Namaraa,b, Christine T. Griffina, David Fitzpatricka, Kevin Kavanagha , James C. 3 

Carolana 4 

 5 

Affiliations 6 

aDepartment of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland 7 

bPresent address: Teagasc, Oak Park, Crop Research Centre, Co. Carlow, Ireland 8 

Correspondence to:  9 

Louise Mc Namara; Email: Louise.McNamara@teagasc.ie, Teagasc, Oak Park, Crop 10 

Research Centre, Co. Carlow, Ireland  11 

 12 

Abstract 13 

The large pine weevil Hylobius abietis L. is a major forestry pest in 15 European countries, 14 

where it is a threat to 3.4 million hectares of forest. A cellular and proteomic analysis of the 15 

effect of culture filtrate of three entomopathogenic fungi (EPF) species on the immune 16 

system of H. abietis was performed. Injection with Metarhizium brunneum or Beauvaria 17 

bassiana culture filtrate facilitated a significantly increased yeast cell proliferation in larvae. 18 

Larvae co-injected with either Beauvaria caledonica or B. bassiana culture filtrate and 19 

Candida albicans showed significantly increased mortality. Together these results suggest 20 

that EPF culture filtrate has the potential to modulate the insect immune system allowing a 21 

subsequent pathogen to proliferate. Injection with EPF culture filtrate was shown to alter the 22 

abundance of protease inhibitors, detoxifing enzymes, antimicrobial peptides and proteins 23 

involved in reception/detection and development in H. abietis larvae. Larvae injected with B. 24 

caledonica culture filtrate displayed significant alterations in abundance of proteins involved 25 

in cellulolytic and other metabolic processes in their haemolymph proteome. Screening EPF 26 

for their ability to modulate the insect immune response represents a means of assessing EPF 27 

for use as biocontrol agents, particularly if the goal is to use them in combination with other 28 

control agents. 29 
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Large pine weevil, entomopathogenic fungi, proteomic, transcriptome, immunomodulation, 31 
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Abbreviations 33 

PO, phenoloxidase; PPO, prophenoloxidase; EPF, entomopathogenic fungi; PCA, principal 34 

component analysis; AMP, antimicrobial peptide; LFQ, label free quantification; GH, 35 

glycoside/glycosyl hydrolase 36 

1. Introduction 37 

There is increasing interest in the exploitation of entomopathogenic fungi (EPF), particularly 38 

Beauveria spp and Metarhizium spp., for the biological control of insect pests. Biocontrol 39 

agents can be deployed where use of chemical pesticides is restricted or where resistance has 40 

developed. The large pine weevil Hylobius abietis L. is a major forestry pest in 15 European 41 

countries, where it is a threat to 3.4 million hectares of forest (Långström and Day 2004). 42 

Until recently, young trees were protected with cypermethrin or alpha cypermethrin as a 43 

control measure, but is no longer permitted in forests certified as sustainably managed. All 44 

stages of H. abietis are susceptible to strains of Metarhizium and Beauveria in laboratory 45 

assay (Ansari and Butt, 2012), but the performance of EPF in field trials has been 46 

disappointing (Williams et al., 2013). Failure of biocontrol agents to live up to expectations 47 

in the field is not uncommon. One approach to improving the success of biocontrol is to 48 

deploy a combination of agents against the pest. Synergistic interactions, where the success 49 

of the combination is greater than that of the individual agents, are frequently reported 50 

between EPF and other pathogens including nematodes (Ansari et al. 2006; 2008; Anbesse, 51 

2008) and bacteria (Wraight and Ramos, 2005; Sayed and Behle, 2017). Synergy may result 52 

from the  combined agents rendering the host more susceptible through modulating its 53 

immune system, prolonging developmental stages or by the two treatments acting on 54 

different components of the host population (Lacey et al. 2015).  55 

The ability to modulate the immune response of an insect rendering it more susceptible to 56 

other pathogens would have great significance for integrated pest management. Both insects 57 

and their pathogens must constantly improve their defence and virulence, respectively, to 58 

survive (Wojda 2016; Joop and Vilcinskas, 2016). The insect immune system is composed of 59 

the cellular and humoral defences (Hoffmann 1995). Humoral defences include antimicrobial 60 
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peptides (AMPs), production of reactive forms of oxygen and nitrogen, soluble effector 61 

molecules and cascades that regulate clotting and melanisation of insect haemolymph (Strand 62 

2008). Cellular defences encompass haemocyte mediated defences (Lavine and Strand 2002). 63 

There is an overlap between humoral and cellular defences in the recognition of pathogens; 64 

many humoral factors regulate the activity of haemocytes and haemocytes produce many 65 

humoral defence molecules such as defence peptides and stress proteins (Strand 2008, 66 

Grizanova et al. 2014, Wojda 2016).  67 

Host colonization by EPF requires the ability to cope with host immune defences and extract 68 

nutrients from the host (Gillespie et al., 2000) which is achieved through immune evasion by 69 

cryptic forms or immune system modulation through the action of secreted molecules 70 

(Schrank and Vainstein, 2010). Metarhizium spp. produce a diverse range of enzymes and 71 

secondary metabolites that are active against insects, fungi, bacteria, viruses and cancer cells 72 

(Roberts and St Leger, 2004; Gao et al., 2011); most notably the cyclic hexadepsipeptidic 73 

destruxins (Schrank and Vainstein, 2010) which display antiviral, antitumor, insecticidal, 74 

cytotoxic, immunosuppressive, phytotoxic and anti-proliferate effects (Kershaw et al., 1999; 75 

Sowjanya Sree et al., 2008; Liu and Tzeng, 2012). Beauvaria bassiana is known to produce 76 

cyclic peptides that are cytotoxic and immunosuppressive (Hung et al., 1993) and a diverse 77 

selection of secondary metabolites including nonpeptide pigments and polyketides (e.g. 78 

oosporein), non-ribosomally synthesized peptides (e.g. beauvericin) and secreted metabolites 79 

that have roles in pathogenesis and virulence (Xiao et al., 2012). These metabolites have 80 

insecticidal properties and can also inhibit growth of other microorganisms (van der Weerden 81 

et al., 2013).  82 

Here we report a cellular and proteomic analysis of the effect of culture filtrate of three EPF 83 

species on the immune system of H. abietis. The primary aim of this work was to investigate 84 

the immunomodulatory potential of EPF on the insect immune response. This was achieved 85 

in part using label free quantitative (LFQ) mass spectrometry to investigate proteomic 86 

expression of pine weevils exposed to EPF extracts, a strategy that has been successfully 87 

applied to the lepidopteran Galleria mellonella (McNamara et al., 2017). To facilitate the 88 

proteomic analysis and to compensate the lack of genomic information for H. abietis; a de 89 

novo transcriptome for H. abietis was produced. The three species of EPF chosen for this 90 

work were M. brunneum (Petch)(Met52), B. bassiana and B. caledonica. Beauveria bassiana 91 
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and Metarhizium spp. are two of the most commonly employed EPF in biocontrol. Both have 92 

a wide host range and global distribution, and are used to control plant pests and vectors of 93 

human disease (Shah and Pell, 2003; Glare et al., 2008; Gao et al., 2011; Xiao et al., 2012; 94 

Lacey et al., 2015; Butt et al., 2016). Beauveria caledonica was found to be a naturally 95 

occurring pathogen of pine bark beetles in New Zealand (Glare et al., 2008; Reay et al., 2008) 96 

and H. abietis in Ireland (Glare et al., 2008; Williams et al., 2013).  Morphologically, B. 97 

caledonica is similar to B. brongniartii, with cylindrical conidia, but molecular studies (Glare 98 

& Inwood 1998; Rehner and Buckley 2005), including the current research, have shown the 99 

species to be distinct. In contrast, B. bassiana has globulose conidida.  100 

 101 

2. Materials and Methods 102 

2.1 Origin of EPF strains and preparation of culture filtrate 103 

A commercial strain of M. brunneum (Met52; previously M. anisopliae) produced by 104 

Novozymes (Denmark) was used and was purchased on rice grains from National 105 

Agrochemical Distributors, Lusk, Dublin.  B. bassiana experimental strain 1694 was supplied 106 

by Becker Underwood (Littlehampton, UK).  B. caledonica (2c7b) is a native strain isolated 107 

from a soil sample from soil close to a pine stump in a felled forest in Hortland, Co. Kildare 108 

(Ireland). The soil sample was baited with G. mellonella larvae and fungus from the infected 109 

cadaver was identified through DNA sequencing of an ITS PCR product (a region of the 110 

internal transcribed spacer unit of the ribosomal DNA, ITS4, was amplified by PCR). EPF 111 

were cultured in Sabouraud Dextrose liquid medium (Oxoid) for 48 h, 72 h and 96 h in a 112 

shaking incubator at 25°C and 250 rpm. After each time point the culture was filtered through 113 

0.45 µm syringe filters and then through 0.2 µm syringe filters (Sartstedt). The filtrate was 114 

collected and stored at -80 °C. 115 

 116 

2.2 Inoculation of Hylobius abietis larvae 117 

Late instar H. abietis larvae were collected from pine stumps and stored at 4 °C for a 118 

maximum of 3 weeks until used in experiments. For each of the laboratory bioassays larvae 119 

were injected with fungal culture filtrate through an abdominal spiracle using a Myjector 120 
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U100 insulin syringe (Terumo Europe, Leuven, Belgium). Larvae were placed in 24 well 121 

culture plates (Costar) with filter paper and stored at 20 °C.   122 

 123 

2.3 Enumeration of haemocyte and yeast cell densities, and infection susceptibility assays 124 

The density of circulating haemocytes in larvae was assessed as described by Bergin et al., 125 

(2003).  All experiments were performed with three biological replicates.  126 

To test the effect of EPF on the immune response to a subsequent infection, larvae were 127 

inoculated with EPF culture filtrate or Sabouraud dextrose (control) and incubated for 24 h at 128 

20 oC, after which they received a second inoculation through an abdominal spiracle with 129 

Candida albicans (104 cells in 20 µl). Candida albicans MEN (serotype B, wild-type 130 

originally isolated from an eye infection (a gift from Dr. D. Kerridge, Cambridge, UK) was 131 

cultured to the stationary phase overnight in yeast extract peptone dextrose (YEPD) at 30 °C 132 

and 200 rpm on an orbital shaker (Browne et al., 2015). In each of the three replications, five 133 

larvae were injected per treatment and time. Following the second inoculation, larvae were 134 

incubated for a further 24 h or 48 h at 20 °C and were homogenized in 3 ml of sterile 135 

phosphate buffered saline (PBS). After serial dilution in PBS, 100 µl of each sample was 136 

spread on YEPD plates containing erythromycin (1 mg/ml). The plates were incubated for 48 137 

h at 30 °C. Yeast cell density was calculated per larva.  138 

To test whether EPF would make larvae more susceptible to a second pathogen, larvae were 139 

inoculated through an abdominal spiracle with 20 µl of culture filtrate or Sabouraud dextrose 140 

and incubated at 20 °C. After 24 h, larvae were given a second injection with C. albicans 141 

(1x104/20 µl, culture as above), or PBS. In each of the three replications, ten larvae were 142 

injected per treatment and time. Larvae were incubated at 20 °C and mortality was recorded 143 

for up to 14 days.  144 

 145 

2.4 RNA extraction of H. abietis larvae  146 

One larva was crushed to a fine powder in liquid nitrogen using a sterilized pestle and mortar. 147 

Trizol was added and the sample was homogenized with a power pestle. The sample was 148 

spun at 13,000 x g for 10 minutes at 4 °C. Then, 200 µl of chloroform was added to the 149 
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sample, vortexed and left at room temperature for 10 min. The sample was spun at 12,000 x g 150 

for 10 min 4 °C and the top clear layer was removed to a fresh centrifuge tube. Isopropanol 151 

was added to the clear layer and inverted several times. The sample was left for 10 min at 152 

room temperature. The sample was spun again at 12,000 x g for 10 min, and the resulting 153 

pellet was washed in 70 % ethanol. The sample was spun to remove ethanol, the pellet was 154 

allowed to air-dry. The pellet was resuspended in 100 µl of elution buffer (Sigma GenElute 155 

Mammalian Total RNA Miniprep Kit). A Sigma GenElute Mammalian Total RNA Miniprep 156 

Kit and protocol was used to do complete extraction of the sample. This method was carried 157 

out twice: 1. Untreated H. abietis larva, and 2. H. abietis larva injected with M. brunneum 158 

culture filtrate.  159 

 160 

2.5 H. abietis transcriptome  161 

The H. abietis transcriptome de novo study was completed by Beijing Genomics Institute 162 

(BGI, Hong Kong) using Illumina HiSeq 4000. After extraction of total RNA and treatment 163 

with DNase I, Oligo (dT) adapters were used to isolate mRNA. The mRNA was fragmented 164 

by mixing with the fragmentation buffer and cDNA was synthesized using the mRNA 165 

fragments as templates. Short fragments were purified and resolved with elution buffer for 166 

end reparation and single nucleotide A (adenine) addition. The short fragments were 167 

connected to adapters and suitable fragments were selected for the PCR amplification. During 168 

the QC steps, Agilent 2100 Bioanaylzer and ABI StepOnePlus Real-Time PCR System were 169 

used in quantification and qualification of the sample library. Then the library was sequenced 170 

using an Illumina HiSeq 4000. After sequencing, the raw reads were filtered for low-quality, 171 

adaptor-polluted and high content of unknown base (N) reads to get clean reads. De novo 172 

assembly was performed using Trinity with clean reads to obtain the Unigene set. After that, 173 

simple sequence repeats (SSR) detection, Unigene expression analysis, heterozygous single 174 

nucleotide polymorphisms (SNP) detection, and Unigene functional annotation were 175 

performed. Unigenes were divided into two classes; clusters with the prefix “CL” 176 

(comprising several Unigenes with sequence similarity of 70% and above) and singletons 177 

with the prefix “Unigene”. The predicted protein sequences for the H. abietes transcriptome 178 

was analysed using InterProScan (version 5.18-57.0) to provide functional annotations based 179 

on protein family (Pfam) domains (Jones et al., 2014). To assess the completeness of H. 180 
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abietis assembled transcriptome a BUSCO (Benchmarking Universal Single-Copy Orthologs) 181 

(Simão et al. 2015) assessment was carried out on the predicted nuceotide and protein fasta 182 

files. Raw sequence reads were deposited in the Sequence Read Archive (SRA) hosted by the 183 

National Center for Biotechnology Information under BioProject PRJNA419715 184 

(https://www.ncbi.nlm.nih.gov/bioproject/419715)  and BioSample SAMN08095620 185 

https://www.ncbi.nlm.nih.gov/biosample/SAMN08095620/. 186 

 187 

2.6 Protein sample preparation and mass spectrometry 188 

Larvae were either injected with 20 µl of fungal culture filtrate or Sabouraud dextrose 189 

(procedural control) and incubated for 48 h at 20 °C. Five larvae per treatment were bled into 190 

a pre-chilled 1.5 ml centrifuge tube and spun at 1,500 x g for 5 min at 4 °C. Samples were 191 

diluted in PBS and a Bradford assay was carried out to determine protein quantity. Protein 192 

(100 µg) was removed to a pre-chilled 1.5 ml centrifuge tube and ice cold 100 % acetone was 193 

added at ratio of 1:3 (sample: acetone) and precipitated at -20 °C. The sample was 194 

centrifuged at 13,000 x g for 10 min and the protein pellet was resuspended in 100 µl of 195 

resuspension buffer (6 M urea, 2 M thiourea, 5 mM calcium chloride). Protein (75 µg) was 196 

reduced with dithiotreitol (200 mM) and alkylated with iodoacetamide (1 M). Samples were 197 

digested with sequence grade trypsin (Promega, Ireland) at a trypsin:protein ratio of 1:40, 198 

overnight at 37 °C. Three replicate samples were prepared for each treatment. 199 

Tryptic peptides were purified for mass spectrometry using C18 spin filters (Medical Supply 200 

Company, Ireland) and 1 µg of peptide mix was eluted onto a QExactive (ThermoFisher 201 

Scientific, U.S.A) high resolution mass spectrometer connected to a Dionex Ultimate 3000 202 

(RSLCnano) chromatography system. Peptides were separated by an increasing acetonitrile 203 

gradient (2-40 %) on a Biobasic C18 PicofritTM column (100 mm length, 75 mm ID), using 204 

a 120 min reverse phase gradient at a flow rate of 250 nL /min. All data were acquired with 205 

the mass spectrometer operating in automatic data dependent switching mode. A full MS scan 206 

at 140,000 resolution and a scan range of 300-1700 m/z was followed by an MS/MS scan, at 207 

resolution 17,500, to select the 15 most intense ions prior to MS/MS.  208 

 209 
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2.7 Quantitative mass spectrometry data analysis 210 

Protein identification from the MS/MS data was performed using the Andromeda search 211 

engine in MaxQuant (version 1.2.2.5; http://maxquant.org/) to correlate the data against a 212 

predicted protein set derived from the H. abietis de novo transcriptome generated in this 213 

study.  To insure that all identified proteins were derived from the insect and not the fungal 214 

supernatant an additional search of all MS data was performed against the predicted protein 215 

set for Beauveria bassiana (Joint Genome Institute, downloaded April 2018) derived from 216 

the B. bassiana genome initiative (Xiao et al., 2012). The following search parameters were 217 

used: first search peptide tolerance of 20 ppm, second search peptide tolerance 4.5 ppm with 218 

cysteine carbamidomethylation as a fixed modification and N-acetylation of protein and 219 

oxidation of methionine as variable modifications and a maximum of 2 missed cleavage sites 220 

allowed. The MS proteomics data and MaxQuant search output files have been deposited to 221 

the ProteomeXchange Consortium (Côté et al., 2012) via the PRIDE partner repository with 222 

the dataset identifier PXD008232. Results processing, statistical analyses and graphics 223 

generation were conducted using Perseus v. 1.5.0.31. Label free quantification (LFQ) 224 

intensities were log2-transformed and t-tests comparing EPF treated larvae with controls were 225 

performed using a p-value of 0.05. Proteins were kept in the analysis if they were found in all 226 

3 replicates in at least one group. Principal component analysis (PCA) was used to emphasize 227 

variation and visualize strong patterns in the data. Proteins found to be absent (below the 228 

level of detection) in one or more treatments and present (above the level of detection) in 229 

three or fewer treatments were termed ‘uniquely detected proteins’. These proteins were also 230 

used in statistical analysis of the total differentially expressed group following imputation of 231 

the zero values with values that simulate low abundant proteins. These values were chosen 232 

randomly from a distribution specified by a downshift of 1.7 times the mean standard 233 

deviation (SD) of all measured values and a width of 0.33 times this SD. Volcano plots were 234 

generated in Perseus to visualize differentially abundant proteins between control and 235 

treatment groups by plotting negative log p-values from pairwise Student’s t-tests on the y-236 

axis and log2 fold-change values on the x-axis for each pair-wise comparison. Proteins with a 237 

p-value <0.05 were considered statistically differentially abundant.  To reduce the numbers of 238 

proteins with minor fold changes proteins with a relative fold change < 1.5 were removed 239 

from the analysis. To obtain an overall proteomic profile of abundance for all significantly 240 
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expressed and exclusive proteins, hierarchical clustering (displayed as a heat map) on Z-score 241 

normalised intensity values was performed to resolve clusters of proteins with similar 242 

abundance and expression profiles. The Blast2Go suite (Conesa et al., 2005; 243 

www.blast2go.com) of software tools was utilized to BlastP search all identified proteins 244 

against the NCBI non redundant database with the following search settings: number of blast 245 

hits: 5, high-scoring segment pair length cutoff: 33, Blast expect value: 1.0e-5. Blast2Go was 246 

used to assign gene ontology (GO) terms for biological processes, molecular function and 247 

cellular components in addition to enzyme codes and InterPro identifiers for all proteins. 248 

Annotations derived from the InterProScan-based Pfam annotation of the H. abietis 249 

transcriptome were used to provide annotations in cases where Blast2Go failed to provide 250 

one. 251 

 252 

2.8 Statistical analysis 253 

Statistical analysis was carried out using Minitab version16 statistical software and GraphPad 254 

Prism version 5. All data were first tested for normality, where data were found not to be 255 

normal, the data were either transformed before further analysis was carried out or a suitable 256 

non-parametric test was used. For alterations to haemocyte densities and yeast densities, data 257 

were analysed using two-way ANOVA with EPF culture time and assessment time (24 or 48 258 

h post injection) as the factors.  Bonferroni post-hoc tests were used to compare EPF 259 

treatments to relevant controls. To determine whether EPF culture filtrate increases 260 

susceptibility of H. abietis to a subsequent infection, data for yeast-injected and PBS-injected 261 

larvae were compared using paired t-tests. 262 

 263 

3. Results 264 

3.1 Alterations in haemocyte densities following injection of larvae with EPF culture filtrate  265 

Larvae injected with all three EPF culture filtrates showed a significant alteration in 266 

haemocyte densities at both 24 h and 48 h (B. caledonica; F3,16=8.21, p<0.01, B. bassiana; 267 

F3,16=49.36, p<0.001 and M. brunneum; F3,16=8.89, p<0.001) (Figure 1A). All significant 268 

differences in haemocyte densities between treatments and their appropriate controls were in 269 
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the direction of reduction. All three EPF caused a decrease in the haemocyte densities of 270 

larvae following inoculation with 96 h fungal culture filtrate relative to their appropriate 271 

controls. 272 

 273 

3.2 Alterations in yeast cell density following injection of larvae with EPF culture filtrate  274 

Injection of larvae with B. caledonica culture filtrate did not have a significant effect on yeast 275 

cell density in larvae (Figure 1Bi). In larvae injected with M. brunneum and B. bassiana 276 

culture filtrate, both treatment (M. brunneum; F3,16=36.85, p<0.001, B. bassiana; F3,16=20.93, 277 

p<0.001) and time (M. brunneum; (F3,16=36.43, p<0.001), p<0.001, B. bassiana F3,16=77.85, 278 

p<0.001) had a significant effect, there was also a significant interaction between treatment 279 

and time (M. brunneum; (F3,16=12.96, p<0.001), p<0.001, B. bassiana F3,16=6.62, p<0.01). 280 

After a 24 h incubation, injection with M. brunneum 48 h, 72 h, and 96 h culture filtrate 281 

resulted in a significant alteration in yeast density, with a fold increase of 6.2, 2.1 and 16.8 282 

respectively, relative to controls. After 48 h incubation, injection with 72 h and 96 h M. 283 

brunneum culture filtrate resulted in a significant alteration in yeast density, with a fold 284 

increase of 12.8 and 20.8 respectively, relative to controls (Figure 1Biii). After a 48 h 285 

incubation, injection with B. bassiana 72 h culture filtrate resulted in a significant alteration 286 

in yeast density (p<0.001), with a fold increase of 44.4 (Figure 1Bii). 287 

 288 

3.3 Effect of EPF culture filtrate on susceptibility of larvae to subsequent infection 289 

Larvae injected with a combination of fungal culture filtrate and C. albicans showed higher 290 

mortality than those that received fungal culture filtrate only, and the difference was 291 

significant for both B. bassiana (T=-17, p<0.01) and B. caledonica (T=-4.91, p<0.05) (Figure 292 

1C).  Larvae that were injected with EPF culture filtrate before treatment with C. albicans 293 

also had higher mortality than larvae treated with C. albicans alone, where no death occurred.  294 

 295 

3.4 Transcriptome of H. abietis larvae 296 

Approximately 17.7 Gb bases in total were generated after Illumina Hiseq sequencing. After 297 

assembly 49,960 unigenes were generated, with a total length of 59,001,875 bp, an average 298 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

11 

 

length of 1,180 bp, N50 of 2,241 bp, and GC content 39.27 %. The unigenes were annotated 299 

with 7 functional databases; NR (Non Redundant Protein), NT (Non Redundant Nucelotide), 300 

GO (Gene Ontology), COG (Clusters of Orthologous Groups of proteins), KEGG ((Kyoto 301 

Encyclopedia of Genes and Genomes), Swissprot and Interpro. With functional annotation, 302 

27,653 coding domains (CDS) were detected, and after ESTScan with the remaining 303 

unigenes, a further 2,936 CDS were found. 3,121 SSRs were detected on 2,788 unigenes. To 304 

determine the comprehensiveness of the assembly and annotation a BUSCO (Benchmarking 305 

Universal Single-Copy Orthologs) assessment was carried out on the nucleotide fasta file. 306 

The BUSCO analysis was conducted using the single-copy ortholog set of 1,658 conserved 307 

genes derived from the class Insecta. The H. abietis transcriptome used in this study 308 

contained  ~97% (1,607/1,658) of the queried BUSCO orthologs (1214 Complete and single-309 

copy, 340 Complete and duplicated, 53 Fragmented and 51 Missing).  These conserved genes 310 

are expected to be present in the genomes of all Insecta species and given that a transcriptome 311 

captures what is constitutively expressed at the time of RNA extraction, the high number of 312 

BUSCO orthologs identified here indicates that our pine weevil transcriptome is particularly 313 

comprehensive.  314 

 315 

3.5 LFQ analysis of H. abietis larval hemolymph following EPF culture filtrate treatment 316 

Label free quantification (LFQ) was used to compare the haemolymph proteome of H. abietis 317 

larvae treated with EPF filtrate relative to control larvae. The groups analyzed were larvae 318 

treated with M. brunneum, B. caledonica and B. bassiana culture filtrate grown for 96 h and 319 

control larvae (treated with sabouraud dextrose media). In total, 157 proteins were identified, 320 

155 proteins having two or more peptides (Table S1). Seventy seven of these proteins were 321 

either significantly changed in abundance (Table 1) or uniquely detected across the four 322 

treatments analyzed. Across the four sample groups, 43 proteins were deemed to display 323 

exclusive distribution either being present in at least one group but undetected in one or more 324 

groups. These proteins were termed ‘uniquely detected proteins’; notably, several of these 325 

were glycosyl hydrolase proteins uniquely detected in B. caledonica treated larvae only. 326 

These proteins were included in subsequent statistical analysis of the total differentially 327 

expressed group following imputation.  328 
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Proteomic analysis indicates that the larval response to the culture filtrate from B. caledonica 329 

was the most divergent relative to the control; this is evident in the PCA analysis (Figure 2 330 

A). Hierarchical clustering resolved proteins that had similar expression profiles in response 331 

to treatment with different fungal culture filtrates (Figure 2B) and a number of protein 332 

clusters were identified (Table S2).  Cluster A comprises proteins with higher levels of 333 

abundance in larvae treated with M. brunneum and B. caledonica relative to control larvae 334 

and includes several proteins involved in sensing and recognition such as odorant-binding 29, 335 

chemosensory 6 and β-1,3-glucan-binding. Cluster B comprises proteins with higher levels of 336 

abundance in larvae treated with B. caledonica relative to all other treatments and control 337 

larvae. It consists of a number of proteins involved in metabolic processes including 338 

numerous members of glycosyl hydrolase families 1, 2, 20, 28, 31 35, 45, 48 and 79 a 339 

member of the carboxylesterase family. Cluster C comprises proteins with lower levels of 340 

abundance in larvae treated with M. brunneum relative to all other treatments and control 341 

larvae. It includes proteins that may be involved in the proPO cascade such as serpin, serine 342 

protease easter and serine protease persephone isoform X2. Cluster D comprises proteins 343 

with higher levels of abundance in control larvae relative to all EPF treated larvae and 344 

includes the antimicrobial peptide (AMP) defensin. Two sample t-tests (p<0.05) identified 345 

23, 37 and 33 statistically significant differentially abundant (SSDA) proteins in pine weevils 346 

treated with B. bassiana, B. caledonica and M. brunneum culture filtrates in comparison to 347 

control treatments, respectively (Table S3).  348 

The Blast2GO annotation software was used to group proteins based on their conserved gene 349 

ontology (GO) terms in order to identify processes and pathways affected by the different 350 

EPF treatments (Figure 4; Table S4). In relation to cellular processes M. brunneum appears to 351 

affect the largest number of process in the insect haemolymph, with M. brunneum and B. 352 

caledonica affecting the most processes in common. In relation to molecular function M. 353 

brunneum appears to affect the largest number of functions in larval haemolymph including 354 

ion binding and hydrolase activity. M. brunneum and B. bassiana affect the most functions in 355 

common. While B. caledonica affects the least functions it has 25 proteins involved in 356 

hydrolase activity alone. In relation to biological processes M. brunneum appears to affect in 357 

the largest number of processes in the larval haemolymph. While B. caledonica affects the 358 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

13 

 

least number of processes, it affects 23 proteins involved in organic substance metabolic 359 

process and 22 proteins involved in primary metabolic process (Figure 4).  360 

A number of the identified haemolymph proteins are typically associated with the insect 361 

digestive system, highlighting the potential that the EPF filtrate damaged or altered midgut 362 

cells which resulted in their release into the heamolymph. However, seven glycosyl 363 

hydrolases were detected in the control samples (Table S5) which suggests that their presence 364 

is not directly associated with exposure to EPF filtrate. To account for the possibility that 365 

some of the identified proteins were components of the injected EPF filtrate MS data was 366 

searched against the predicted proteome for B. bassiana. Only seven proteins were identified 367 

with two or more peptides (Table S5) many of which are highly conserved eukaryotic 368 

proteins. In addition a number of serine proteases annotated as trypsin or chymotrypsin were 369 

identified in pine weevil haemolymph. These annotations were based on the presence of the 370 

pfam motifs that matched to the trypsin reference (PF00089) or the top hit BLAST result 371 

(Table S1). In total 17 proteins with the pfam code PF00089 were identified in pine weevil 372 

haemolymph across all treatments and where no additional annotation was available they 373 

were annotated as trypsin- or chymotrypsin-like.   374 

 375 

 376 

                                                      377 

                                   378 
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4. Discussion 379 

The principal objective of most insect biocontrol studies is to identify efficient means of 380 

utilising entomopathogenic organisms. In many cases this is achieved through a better 381 

understanding of the molecular strategies adopted by the control agent and its interaction with 382 

its target and the latter’s cellular and immunological systems. However the lack of available 383 

genomic resources for both target and biocontrol organism can dramatically inhibit our 384 

understanding of and insight into this interaction and therefore reduce the effectiveness of 385 

novel control strategies. This bottleneck can now be circumvented through advances in high 386 

throughput sequencing of genomes and transcriptomes which enable functional research on 387 

‘non-model’ organisms, including those of great ecological or evolutionary importance   388 

(Haas et al. 2013). For the purposes of this study we produced an assembled transcriptome 389 

that was used to facilitate proteomic analysis of H. abietis exposed to culture filtrates of three 390 

EPF. A number of cellular immune assays were also conducted which highlighted differences 391 

in effects of EPF filtrate on H. abietis. Transcriptome characteristics, immune assays and 392 

significant altered protein pathways and processes are discussed in detail below. 393 

4.1 H. abietis transcriptome  394 

The comprehensivness of the H. abietis transcriptome was evaluated through a comparative 395 

analysis of highly conserved single-copy orthologs using 1,658 BUSCO for the class Insecta. 396 

BUSCO assessment allows for informative comparisons of, for instance, newly sequenced 397 

draft genome and transcriptome assemblies through comparisons to high quality model 398 

genomes (Simão et al. 2015). This H. abietis transcriptome produced in this study comprised 399 

97% of the Insect BUSCO indicating a particularly high degree of comprehensiveness 400 

making it a suitable resource not only for the proteomic analysis conducted in this study but 401 

to the wider communities of plant-insect interactions, insect immunology, pest control and 402 

insect genetics and phylogenetics.   403 

4.2 EPF culture filtrates induce variant immune responses in H. abietis.  404 

Injection with filtrate led to reduction in circulating haemocyte number. One possibility for 405 

the reduction in haemocyte number is due to death and disintegration of haemocytes and/or 406 

reduced proliferation of haemocytes (Strand, 2008) or due to activated haemocytes becoming 407 

adhesive and attaching to inner organs such as the fat body (Browne et al., 2013). Injection of 408 
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larvae with M. brunneum or B. bassiana filtrate facilitated a significantly increased yeast cell 409 

density suggesting these filtrates are modulating the insect immune system allowing a 410 

subsequent pathogen to proliferate. Larvae co-injected with B. bassiana or B. caledonica 411 

filtrate and C. albicans showed significantly increased mortality. The proposed 412 

immunomodulation of larvae by the EPF that is rendering the host more susceptible to a 413 

subsequent pathogen is caused by spore-free culture filtrate which contains a diverse mixture 414 

of enzymes, proteases and secondary metabolites (Vey et al. 2001; Sánchez-Pérez et al. 415 

2014). Destruxin, the most abundantly produced secondary metabolite in Metarhizium spp., 416 

induced a similar response in D. melanogaster (Pal et al. 2007).   417 

Proteomic analysis indicated that the response to M. brunneum culture filtrate was the most 418 

divergent relative to the control (Figure 2). Injection with M. brunneum affects the largest 419 

number of processes within the haemolymph. Injection with B. caledonica affects 25 proteins 420 

involved in hydrolase activity alone and influences 23 proteins involved in organic substance 421 

metabolic process and 22 proteins involved in primary metabolic process (Figure 4).  422 

4.3 EPF culture filtrate alters abundance of serine proteases and their inhibitors  423 

Insect hemolymph contains numerous serine protease/proteinase inhibitors (serpins) that are 424 

involved in diverse processes including development and defence (Kanost 1999; Broehan et 425 

al. 2010; Vilcinskas 2010; Butt et al. 2016). Serine proteases are major components of the 426 

insect immune  proPO pathway, which is regulated numerous serpins (Butt et al. 2016). In 427 

addition serpins directly inhibit fungal and bacterial proteinases, regulate coagulation and 428 

activate cytokine signaling processes (Kanost 1999). A number of serine proteases and 429 

serpins were differentially abundant in H. abietis larvae injected EPF filtrate in a species 430 

specific manner. M. brunneum filtrate resulted in a significant alteration in abundance of the 431 

serine proteases easter, papilin-like protein and stubble in addition to a serpin (annotated as 432 

kunitz & bovine pancreatic trypsin inhibitor domain containing protein; Figure 3). Larvae 433 

injected with B. bassiana filtrate had an alteration in abundance of papilin-like protein and a 434 

melanin-inhibiting protein whereas larvae injected with B. caledonica filtrate had an 435 

alteration in the abundance of serine proteases and their inhibitors including trypsin- and 436 

chymotrypsin-like proteins (Figure 3). Although chymotrypsin and trypsin generally have 437 

digestive functions in insects, the specific function of these particular proteins in pine weevil 438 
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haemolymph has yet to be determined. It is most likely that these proteins are poorly 439 

annotated and are members of the immune associated serine protease/serpin cascade 440 

pathways found in insect haemolymph. The fact that the EPF of the different fungal species 441 

alters different members of these cascades may explain the different levels of 442 

immunomodulation observed in the cellular bioassays. Interestingly similar observations 443 

were made by Mc Namara et al. (2017) who showed that the filtrate of M. brunneum and B. 444 

caledonica also altered the abundance of serine proteases and serpins in the haemolymph of 445 

G. mellonella larvae highlight potentially conserved immunomodulatory effects of the 446 

excretory/secretory products of entomopathogenic fungi.  447 

 448 

4.4 EPF culture filtrate alters abundance of detoxification enzymes in haemolymph 449 

Insects have developed mechanisms to deal with EPF and their secretory products; insects 450 

exposed to fungal toxins generally have higher antioxidant enzyme activity (Butt et al. 2016). 451 

Larvae of the Colorado potato beetle, Leptinotarsa decemlineata, demonstrated elevated 452 

activity of esterases and glutathione-S-transferase (GST) when infected with M. brunneum 453 

(Dubovskiy et al. 2010). Hylobius abietis injected with B. caledonica filtrate had increased 454 

abundance of carboxylesterases. In G. mellonella larvae injected with B. bassiana culture 455 

filtrate there was a higher level of expression of alpha-esterase and carboxylesterase when 456 

compared to M. brunneum and B. caledonica treated larvae (McNamara et al. 2017). Insects 457 

have been shown to produce an array of humoral defences to resist fungal infection including 458 

lectins, protease inhibitors, PO, AMPs and reactive oxygen and nitrogen radicals (Butt et al. 459 

2016). However these reactive species can damage both the host and pathogen. Thus, both 460 

possess antioxidant systems and detoxifying enzymes, aimed at neutralizing these reactive 461 

species. In insects, these enzymes include superoxide dismutase (SOD), catalase, peroxidase 462 

and GST (Felton and Summers 1995, Butt et al. 2016). Hylobius abietis larvae treated with 463 

M. brunneum or B. bassiana filtrate demonstrated alterations in abundance of proteins 464 

involved in oxidative stress: copper and zinc SOD and peroxidase isoform X, respectively.  465 

4.5 EPF culture filtrate alters the abundance of proteins involved in reception and detection 466 

The ability to perceive, discriminate and respond to chemical cues by chemoreception 467 

strongly impacts on fitness and survival. This process is necessary for identification of food 468 
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resources, avoiding intoxication and to communicate with or detect other organisms including 469 

fungi (Boucias et al. 2012).  Hylobius abietis larvae injected with M. brunneum filtrate had 470 

altered abundance of proteins involved in reception and detection:  chemosensory 6, odorant-471 

binding 29 and β-1,3-glucan-binding protein (GBP) were increased in abundance, while 472 

peptidoglycan-recognition SC2 and an odorant binding protein from the pheromone binding 473 

protein & general odorant binding  protein family were decreased in abundance (Figure 3). In 474 

G. mellonella larvae injected with M. brunneum and B. caledonica there were alterations in 475 

abundance of peptidoglycan recognition-like (due to M. brunneum) and β-1,3-GBP and two 476 

peptidoglycan recognition proteins (due to B. caledonica) (Mc Namara et al. 2017). Insects 477 

can differentiate between major groups of microbes using pattern recognition receptor 478 

(PRRs) such as PGRPs, hemolin and β-1,3-GBP. PRRs function by binding to Pathogen-479 

associated molecular patterns (PAMPs) on microbial cells such as β-1,3-glucan from fungi 480 

that acts as a signal to activate the antifungal functions of Toll (Stokes et al. 2015). These 481 

receptors are crucial to recognition of pathogens and activation of an appropriate immune 482 

response (e.g. proPO pathway). Two major gene families are involved in the perireceptor 483 

events of the chemosensory system: the odorant binding and chemosensory protein families 484 

(Vieira and Rozas 2011). Chemosensory 6 was increased in abundance in H. abietis larvae 485 

injected with B. caledonica filtrate. Chemosensory and odorant-binding 29 were increased in 486 

abundance following injection with B. bassiana filtrate (Figure 3).  487 

4.6 EPF culture filtrate alters the abundance of AMP in the insect haemolymph  488 

Biologically active peptides exhibiting antibacterial, antifungal and antiviral activity are 489 

found abundantly in insects. Most insects have high anti-microbial peptide (AMP) activity 490 

against Gram-positive bacteria but less against Gram-negative bacteria, fungi and yeasts 491 

(Faruck et al. 2016). Anti-microbial peptides (AMP) are expressed in the fat body and 492 

secreted into the haemolymph in response to infection. Hylobius abietis larvae treated with 493 

M. brunneum filtrate had an altered abundance of attacin and pathogenesis-related 5 494 

(thaumatin). Thaumatin-like peptides were identified in T. castaneum, and were found to act 495 

as an AMP against filamentous fungi (Altincicek et al. 2008), potentially indicative of the 496 

insect mounting an immune response to EPF. Attacin is an antibacterial protein, originally 497 

isolated from haemolymph of Hyalophora cecropia, where it was produced in response to 498 

bacterial infection (Carlsson et al. 1998).  The production of immune effectors is costly for 499 
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the insect, so production of several in lower concentrations that work together would be very 500 

advantageous (Butt et al. 2016). One implication of an upregulation in AMP active against 501 

bacteria, following treatment with EPF filtrate, is that antibacterial activity can be beneficial 502 

to EPF as it might help exclude opportunistic infections that would be disadvantageous to the 503 

fungus (Butt et al. 2016). 504 

 Hylobius abietis larvae treated with B. caledonica filtrate had increased abundance of 505 

pathogenesis-related 5 and decreased abundance of a defensin. Larvae treated with B. 506 

bassiana filtrate had increased abundance of attacin C and decreased abundance of a 507 

defensin. Defensins are anti-bacterial peptides highly active against Gram-positive bacteria 508 

(Faruck et al. 2016), they form voltage-dependent channels, leading to rapid leakage of K+ 509 

and other ions (Hoffmann 1995). A coleoptericin was increased in abundance in M. 510 

brunneum and B. bassiana treated larvae relative to B. caledonica treated larvae (Figure 3). 511 

Antibacterial coleoptericins have been identified in the yellow mealworm beetle, Tenebrio 512 

molitor, and were upregulated following bacterial challenge and paratisation (Zhu et al. 513 

2014). Galleria mellonella larvae treated with EPF filtrate also displayed alterations in 514 

abundance of AMP (McNamara et al. 2017).  515 

4.7 EPF culture filtrate affects the abundance of proteins involved in insect development  516 

Susceptibility to infection can depend on insect developmental stage, recently moulted insects 517 

being particularly vulnerable as new cuticle is not fully sclerotized (Butt et al. 2016). 518 

Hylobius abietis larvae are more susceptible than adults to both EPF (Ansari and Butt 2012) 519 

and EPN (Williams et al. 2015), potentially in part due to differences in cuticle thickness. 520 

Hylobius abietis larvae injected with M. brunneum filtrate had an alteration in abundance of 521 

proteins involved in development, metamorphosis and structure: JHPB, endocuticle structural 522 

glyco ABD-4, tropomyosin 1 and actin 5C were increased in abundance, myosin regulatory 523 

light chain 2 and a chitin binding protein Peritrophic matrix 9 precursor were decreased 524 

(Figure 3). Although typically associated with muscle and the cytoskeleton many of these 525 

proteins are commonly reported as soluble components of insect haemolymph (Handke et al., 526 

2013; Li et al., 2012; McNamara et al., 2017). Larvae injected with B. bassiana filtrate had a 527 

decrease in abundance in proteins involved in development: diapause-associated transcript-2 528 

and myosin regulatory light chain 2 (Figure 3).  529 
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Insect growth, development and reproduction are regulated by juvenile hormone (JH). Its 530 

presence during larval moulting prevents metamorphosis, and it reappears in the adult to 531 

regulate female reproductive maturation (Jindra et al. 2013). Insecticides have been 532 

developed that mimic the action of insect growth and developmental hormones; the steroidal 533 

20-hydroxyecdysone and the sesquiterpenoid JH (Dhadialla et al. 1998). The cuticle is the 534 

first and most important barrier to EPF and chitin is a major component of the cuticle. EPF 535 

produce an extensive array of enzymes such as lipases, proteases and chitinases, with some of 536 

these cuticle-degrading enzymes being considered virulence determinants (Butt et al. 2016).  537 

Insect growth and morphogenesis are dependent on the capability to remodel chitin-538 

containing structures. Thus, insects repeatedly produce chitin synthases and chitin-lytic 539 

enzymes.  These alterations in abundance of developmental proteins following injection with 540 

EPF filtrate may be indicative of the insect trying to regenerate and protect itself from 541 

pathogens or it could be a reflection of EPF natural products (e.g. enzymes or secondary 542 

metabolites) within the culture filtrate having an impact on the insect.  543 

4.8 EPF filtrate has a significant effect on proteins involved in cellulolytic and other 544 

metabolic processes in H. abietis  545 

Larvae injected with B. caledonica filtrate had a higher abundance of proteins involved in 546 

metabolic processes (Figure 4) with GO term mapping indicating that a considerable portion 547 

were involved in cellulolytic processes. It was surprising to identify the large number of 548 

cellulases and carbohydrolases (annotated as glycoside or glycosyl hydrolases (GHs) in H. 549 

abieties haemolymph, although GHs have been identified previously in insect haemolymph 550 

(Zhang et al., 2014; Rocha et al., 2016). In total 24 GHs were identified across all treatments 551 

and a number of these were present in the haemolymph of non-exposed larvae indicating that 552 

they are endogenous to haemolymph and not artefacts of damage to the gut by the filtrate 553 

contents. We also explored the potential that these proteins were fungal in origin, with 554 

homology to insect GHs and were delivered into the insect via the filtrate. However no GH 555 

proteins were identified when the mass spectrometry data was searched against a reference 556 

proteome for Beauvaria.   557 

 558 

The largest effect on GH abundance was observed in larvae injected with B. caledonica 559 

filtrate, which had higher abundance of proteins from GH families 1, 2, 31, 35, 38, 48 and 79 560 
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with proteins annotated as members of GH families 28 and 45 having relative fold changes of 561 

over 100 in comparison to the non EPF exposed controls.  A smaller number of GHs were 562 

altered in abundance in B. bassiana (GH family 28 and 45) and M. brunneum (GH family 1) 563 

treated H. abietis larvae, but not to the same extent as in B. caledonica treated larvae (Figure 564 

3). Although typically associated with cellulytic activity many of these protein families 565 

display considerably diverse functions in insects. GH family 1 consists of β-glucosidase, 6-566 

phospho-β-glucosidase and β-galactosidase that are involved in carbohydrate transport and 567 

metabolism whereasGH family 2 contains β-galactosidase, β-mannosidase and β-568 

glucuronidase activities involved in chlorophyll, carbohydrate and starch metabolic 569 

processes. GH family 28 includes polygalacturonase and rhamnogalacturonase, enzymes that 570 

are important in cell wall metabolism.  GH family 31 is comprised of key enzymes of 571 

carbohydrate metabolism whereas members of GH family 45 are endoglucanases which 572 

function in the hydrolysis of soluble β-1, 4 glucans.  GH48 are in most cases components of 573 

complex proteins that include additional functional domains. APAP I, from family GH48 574 

from the leaf beetle Gastrophysa atrocyanea has chitinase  activity but is also involved in 575 

diapause termination by JH (Fujita et al., 2006).  576 

 577 

A number of these proteins belonging to GH families are potential cell wall degrading 578 

enzymes (PCWDEs). Xylophagous insects, such as H. abietis, are well adapted to feeding on 579 

wood and possess efficient systems to convert cellulosic biomass in their bodies (Watanabe 580 

and Tokuda 2010). PCWDEs degrade cellulose, hemicellulose, or pectin in plant cell walls, 581 

liberating sugars, minerals, and other nutrients from woody plant tissues. Although many of 582 

these GHs have been well characterized in other insects considerable analysis has now to be 583 

performed to determine the correct annotation, source and functional assignment of the GH 584 

proteins identified here.   Although initially thought to be absent in insects (through the 585 

analysis of the genomes of model insect organisms including D. melanogaster and B. mori), 586 

recent work has shown that PCWDEs are in fact both present and diverse in insects (Pauchet 587 

et al., 2010; Watanabe and Tokuda, 2010), particularly in the Coleoptera. The PCWDEs 588 

present in the H. abietis transcriptomes were found in other beetle species previously; 589 

mountain pine beetle (Keeling et al., 2013), asian longhorned beetle (McKenna et al., 2013), 590 

coffee berry borer (Vega et al., 2015), Colorado potato beetle (Schoville et al., 2018). A 591 
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pectinesterase was also increased in abundance following injection with B. caledonica culture 592 

filtrate. Given the presence of PCWDEs including pectinesterases are carbohydrate esterases 593 

that belong to family 8 (CE8) (Markovic and Janecek, 2004; Kirsch et al., 2016) and 594 

demethylate galacturonic acid residues of homogalacturonan to facilitate the action of 595 

polygalacturonases (GH28). These enzymes are commonly found in species of Curculionidae 596 

and have important biotechnological applications for the processing of pectin (Habrylo et al., 597 

2018). Thus the determination of a treatment of pine weevil larvae that results in the 598 

considerable over expression of potential PCWDEs and other enzymes of potential 599 

importance highlights the potential biotechnological significance of our work.  However 600 

considerable analysis of the GH proteins is warranted to determine the specific function and 601 

origin of these diverse and abundant group of proteins not typically associated with insect 602 

haemolymph.  603 

  604 

Conclusion 605 

Elucidating how EPF modulate the immune response leaving insects more susceptible to 606 

subsequent pathogens may have application in improving biocontrol in the field in a number 607 

of ways: selecting superior strains with immune modulating characteristics to overcome 608 

problems with EPF killing target pests inefficiently compared to their chemical counterparts, 609 

selecting strains that could be used in combination with other plant protection products to 610 

enhance control (achieve synergy). Additionally, EPF isolates could be screened for their 611 

ability to produce particular secreted products that induce immunomodulation in target 612 

insects. This aim of this work was to investigate the effect of culture filtrates from three EPF 613 

species on the insect immune response using larvae of the economically important forestry 614 

pest H. abietis larvae.  615 

The immune responses induced in H. abietis larvae were in response to injection with spore 616 

free culture filtrate, so it is a reflection of the immune response induced by EPF secreted 617 

products. A number of fungal secreted products are known to be important virulence 618 

determinants that can induce changes to immune response of insects affecting AMP and the 619 

proPO cascade as well as the cellular immune response. These findings aid in understanding 620 
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how the desired synergism between biocontrol agents could mechanistically occur e.g. 621 

interfering with the proPO cascade and the production of AMP. 622 

Bioassays allowed assessment of the immunomodulation of different treatments and 623 

proteomic analysis aided in understanding mechanistically how these variations may have 624 

occurred e.g. alterations to proteins/pathways that may render the insect more susceptible to 625 

subsequent pathogens. Injection with M. brunneum or B. bassiana culture filtrate facilitated a 626 

significantly increased yeast cell density in larvae. Larvae co-injected with either B. 627 

caledonica or B. bassiana culture filtrate and C. albicans showed significantly increased 628 

mortality. Injection with EPF culture filtrate was shown to alter the abundance of protease 629 

inhibitors, detoxifing enzymes, antimicrobial peptides and proteins involved in 630 

reception/detection and development in H. abietis larvae. Larvae injected with B. caledonica 631 

culture filtrate displayed significant alterations in abundance of proteins involved in 632 

cellulolytic and other metabolic processes in their haemolymph proteome. Together these 633 

results suggest that EPF culture filtrate has the potential to modulate the insect immune 634 

system which may allow subsequent pathogens to proliferate. 635 

  636 
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 855 

Fig. 1. Haemocyte and yeast cell densities and mortality in H. abietis larvae pre-treated with EPF 856 

culture filtrate. (A) Haemocyte density (mean + SE) in H. abietis larvae treated with EPF culture 857 

filtrate. Following inoculation with fungal culture filtrate, larvae were incubated for 24 h or 48 h at 20 858 

°C before bleeding and enumeration. Sab Dex: Control medium, (i) Bc: B. caledonica, (ii) Bb: B. 859 

bassiana and (iii) Met: M. brunneum. X-axis represents length of time EPF was cultured for: 48 h, 72 860 

h, 96 h. Asterisks indicate significant difference to relevant control * p<0.05, ** p<0.01, *** p<0.001. 861 

(B) Yeast cell density in H. abietis larvae pre-treated with EPF culture filtrate. Number (mean + SE) 862 

of C. albicans cells per larva after incubation for 24 h and 48 h at 20 °C. Larvae were treated with 863 

fungal culture filtrate 24h prior to inoculation with C. albicans. Sab Dex: Control medium, (i) Bc: B. 864 

caledonica, (ii) Bb: B. bassiana and (iii) Met: M. brunneum. X-axis represents length of time EPF 865 

was cultured for: 48 h, 72 h and 96 h. Asterisks indicate significant difference to relevant control * 866 

p<0.05, ** p<0.01, *** p<0.001. (C) Mortality of H. abietis larvae treated with EPF culture filtrate 867 

alone and in combination with C. albicans. + C. albicans indicates larvae that received a dose of C. 868 

albicans after 24 h, - C. albicans indicates larvae that did not. Sab Dex: Control media, Bc: B. 869 

caledonica, Bb: B. bassiana and Met: M. brunneum. All EPF were cultured for 96 h. Mortality one 870 

week after infection with C. albicans.  Data were tested for significance using paired T-tests. * 871 

p<0.05, ** p<0.01. 872 

 873 

 874 

Fig. 2. Principal component analysis (PCA) and hierarchical clustering of haemolymph proteomic 875 

profiles of larvae treated with EPF culture filtrate versus control. (A) PCA of three replicates of each 876 

treatment included in LFQ analysis. Dashed circles denote sample groups. The two axes account for 877 

74.1 % of total variation within the dataset. (B) Heat map based on hierarchical clustering of the 878 

median protein expression values of all statistically significant differentially abundant and uniquely 879 

detected proteins. Hierarchical clustering (columns) resolved four distinct clusters comprising the 880 

replicates from their original sample groups and four protein clusters (rows) based on expression 881 

profile similarities. 882 

 883 

Fig. 3. Volcano plots of  post imputed data highlighting proteins altered in abundance in haemolymph 884 

of H. abietis larvae following injection with EPF culture filtrate. Proteins above the dashed line are 885 

considered statistically significant (p-value < 0.05) and those to the right and left of the vertical lines 886 

indicate relative fold changes of ≥1.5. Volcano plots are annotated with the most differentially 887 
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abundant proteins identified in larvae inoculated with (A) B. caledonica, (B) B. bassiana and (C) M. 888 

brunneum culture filtrate versus control larvae (inoculated with sabouraud dextrose).  889 

 890 

 891 

Fig. 4. Alterations in biological processes at level 3 gene ontology following injection of H. abietis 892 

larvae with fungal culture filtrate in comparison to control larvae. Only processes identified in all 893 

three EPF treatments are given.  894 
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 895 

Table 1 Number of statistically significant differentially abundant (SSDA) proteins between EPF filtrate injected and control larvae. Annotations, mass 

spectrometry information and sequence characteristics for SSDA haemolymph proteins (two sample t-tests, p<0.05) between treated and control larvae. 

Relative fold changes are given for EPF injected SSDA proteins with ↑ and ↓ representing higher or lower abundance relative to the controls 

Protein ID  Protein Annotation Relative fold change Intensity MS/MS Peptides Mol. 

Weight 

Sequence 

length 

  BB BC MET      

Unigene8018 Chemosensory 6 10.71↑ 7.41↑ 130.5↑ 1.0x1010 98 13 14.9 129 

Unigene10957 Glycosyl hydrolase family 79 2.347↑ 17.19↑ 3.46↑ 4.8x108 35 9 52.46 468 

Unigene3665 FKBP-type peptidyl-prolyl cis-

trans isomerase 2.56↑ 2.28↑ 3.09↑ 1.7X109 81 12 24.13 220 

CL416.Contig1 Heat shock 70 kDa cognate 4 1.5↑ 2.1↑ 2.7↑ 2.8x108 53 11 71.8 655 

CL2534.Contig1 Lectin C-type domain 2.14↓ 2.74↓ 2.17↓ 2.7x108 33 6 16.02 143 

CL1928.Contig2 Odorant-binding 29 1.6↑ - 3.6↑ 1.1x1011 313 17 14.8 136 

CL943.Contig7 Papilin-like Protein 2.01↑ - 1.73↑ 4.8x108 89 19 278.9 2546 

Unigene7330 Attacin C 1.66↑ - 1.51↑ 4.1x1010 128 11 13.8 133 

Unigene5426 Myosin regulatory light chain 2 6.35↓ - 18.56↓ 7.0x108 30 6 22.1 206 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

35 

 

CL4537.Contig3 No annotation 9.4↑ 144.2↑ - 1.4x109 20 2 12.7 120 

Unigene3946 Glycosyl hydrolase family 28 2.52↑ 130.12↑ - 2.5X109 53 8 38 364 

Unigene9634 Glycosyl hydrolase family 45 3.88↑ 105.8↑ - 2.4x109 18 2 23.8 225 

CL2640.Contig1 Pathogenesis-related 5 1.52↑ 48.4↑ - 3.2x109 46 10 27.0 253 

Unigene2311 Alpha-L-fucosidase 2.45↑ 25.2↑ - 3.9x108 28 8 49.2 429 

Unigene3970 Glycosyl hydrolase family 28 1.76↑ 22.81↑ - 7.0x108 39 11 35.8 335 

Unigene5303 Defensin 1.54↓ 1.76↓ - 1.2x1010 72 3 9.1 85 

Unigene28106 Glycosyl hydrolase family 1 - 26.88↑ 2.6↑ 1.3X109 18 7 25.8 227 

Unigene11176 Peritrophic matrix 9 precursor - 1.67↓ 2.17↓ 1.2x109 60 7 29.7 268 

CL1224.Contig1 Lectin C-type domain - 4.16↓ 2.12↓ 1.9x109 73 6 13.588 123 

CL515.Contig1 Diapause-associated transcript-2 6.18↑ - - 3.2x108 22 5 18.8 162 

Unigene9585 No annotation 1.57↑ - - 3.3x1010 183 10 17.4 160 

Unigene2445 Regulatory CLIP domain of 

proteinases 1.55↑ - - 1.8x109 43 3 8.1 71 

CL2420.Contig2 Melanin-inhibiting protein 1.53↑ - - 1.1x1010 182 14 32.4 286 

CL2563.Contig1 Peroxidase isoform X1  1.51↑ - - 2.9x109 301 35 80.4 716 
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CL5881.Contig1 Actin 6.7↓ - - 1.4x109 27 12 39.8 360 

CL61.Contig2 Arylphorin 26.22↓ - - 1.0x1010 33 73 85.7 717 

Unigene11986 Glycoside hydrolase family 48 - 887.1↑ - 2.7x1010 230 26 70.52 633 

CL5500.Contig2 Glycoside hydrolase family 48 - 884.3↑ - 4.5x1010 264 29 70.9 638 

Unigene3825 Glycosyl hydrolase family 45 - 624.9↑ - 1.5X1010 52 3 23.9 227 

Unigene7925 Neutral alpha-glucosidase C - 266.3↑ - 5.5x109 175 31 96.6 844 

Unigene9562 No annotation - 162.2↑ - 5.6x109 98 15 40.6 366 

Unigene12087 Glycosyl hydrolase family 2 - 143.1↑ - 3.5x109 133 32 101.79 894 

Unigene13818 Glycosyl hydrolase family 28 - 96.9↑ - 4.7x109 67 10 36.4 350 

Unigene19514 Pectinesterase - 74.1↑ - 1.9x109 63 12 39.8 380 

Unigene6962 Glycosyl hydrolase family 1 - 73.9↑ - 2.6x109 40 11 56.1 498 

CL921.Contig2 Glycoside hydrolase family 31 - 41.65↑ - 1.4x109 69 16 70.7 626 

Unigene12565 Glycosyl hydrolase family 35 - 35.95↑ - 1.7x109 70 17 71.9 640 

Unigene8511 Glycosyl hydrolase family 38 - 30.85↑ - 6.8x108 55 18 11.9 988 

Unigene13343 Carboxylesterase family - 29.3↑ - 1.5x109 32 10 60.4 545 

Unigene3841 Glycosyl hydrolase family 45 - 28.67↑ - 4.4X108 12 3 25.8 236 
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CL2700.Contig4 Carboxylesterase family - 14.1↑ - 5.6x108 32 12 58.5 527 

Unigene3953 Prostatic acid phosphatase - 9.89↑ - 3.0X108 25 7 28.9 381 

CL1864.Contig4 Glycosyl hydrolase family 2 - 7.81↑ - 4.2x108 31 8 71.7 631 

Unigene3489 Serpin - 2↑ - 1.6X109 52 3 6.99 62 

Unigene1589 Trypsin-like protein - 1.74↑ - 9.4x108 64 11 42.1 379 

CL797.Contig4 Chymotrypsin--like protein - 1.67↑ - 2.6x108 45 8 49.7 448 

CL5549.Contig2 Sodium channel 60E - 1.54↓ - 6.7x108 50 9 43.8 380 

Unigene13338 Trypsin-like protein - 2.1↓ - 4.6x109 200 22 55.7 488 

Unigene12317 JHBP - - 23.78↑ 8.5x108 36 7 36.7 248 

Unigene17410 JHBP  - 22.17↑ 1.3x109 48 15 26.9 242 

Unigene8077 Endocuticle structural 

glycoprotein ABD-4 - - 11.51↑ 2.1x108 15 3 11.04 102 

Unigene10626 No annotation - - 6.67↑ 5.7x108 33 9 41.4 384 

CL3921.Contig1 Tropomyosin 1 - - 5.2↑ 6.9x108 38 17 32.7 283 

CL466.Contig4 Aerine protease easter  - - 3.24↑ 6.1x108 57 20 41.2 374 

Unigene2302 Major royal jelly protein - - 2.35↑ 1.4x1010 323 26 46.1 411 
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Unigene27113 28 kDa desiccation stress - - 2.22↑ 9.8X109 265 14 26.2 229 

CL1928.Contig3 Odorant-binding 29 - - 1.88↑ 2.0x1011 387 15 14.96 136 

CL3504.Contig2 Beta-1,3-glucan-binding protein - - 1.69↑ 1.7x109 132 15 53.6 479 

CL492.Contig1 Attacin - - 1.69↑ 2.4x1010 169 10 15.1 140 

CL5881.Contig6 Actin-5C - - 1.58↑ 9.3x108 43 21 41.8 376 

Unigene8093 Cu2+,Zn2+ superoxide dismutase - - 1.67↓ 6.6x109 52 2 16.8 168 

CL3832.Contig2 Peptidoglycan-recognition SC2 - - 1.7↓ 3.9x109 75 7 20.3 186 

Unigene3995 Serine protease easter-like - - 1.96↓ 8.9x109 208 16 40.3 365 

CL1617.Contig2 Serine proteinase stubble-like - - 2.13↓ 5.7x109 47 21 48.52 447 

CL2247.Contig3 PBP&GOBP family - - 2.19↓ 9.8x1011 1217 13 13.56 124 

CL3607.Contig1 Kunitz trypsin inhibitor    2.32↓ 1.8x1011 261 6 11.5 102 

Unigene4030 Thaumatin - - 2.63↓ 5.6x1010 421 14 26 236 

Unigene6368 No annotation - - 2.86↓ 2.9x108 55 17 71.8 615 

Unigene417 Aspartyl protease - - 6.84↓ 2.3x108 25 5 47.7 417 

 896 

 897 
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Fig. 1899 
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Fig. 2 900 
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 902 

Fig. 3 903 
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 904 

Fig. 4. Bar chart showing number of proteins changed in biological processes at level 3 ontology 905 

following injection of H. abietis larvae with fungal culture filtrate. Number of proteins changed in 906 

biological processes common to larvae treated with all three EPF.  907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

SUPPORTING INFORMATION 915 

Table S1 MS identified proteins from the haemolymph of the large pine weevil, Hylobius 916 

abietis after treatment with the culture filtrate of B. bassiana, B. caledonica and M. brunneum 917 

and Sabouraud Dextrose liquid medium. (XSLX) 918 

Table S2 Proteins groups identified after hierchical clustering of SSDA and exclusive 919 

proteins. Four clusters of proteins with similar expression and abundance profiles were 920 

identified. 921 
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Table S3 Statistically significantly differentially abundant Hylobius abietis haemolymph 922 

proteins (2 sample t-tests ; p<0.05) and relative fold change differences for comparisons of B. 923 

bassiana culture filtrate to control; B. caledonica culture filtrate to control and M. brunneum 924 

to control. (XSLX) 925 

Table S4 Blast2Go results for all identified proteins with assigned InterPro ids, enzyme code 926 

and gene ontology (GO) terms for biological processes, molecular function and cellular 927 

components.  928 

Table S5 The glucosyl hydrolases identified from pine weevil haemolymph. Seven of the 20 929 

proteins annotated as glycosyl hydrolases were present in control (not exposed to fungal 930 

supernatant filtrate). The results for all MS/MS data searched against the predicted protein set 931 

for Beauveria bassiana are provided. Of the 15 proteins seven were supported by more than 932 

one peptide and only a single protein was annotated as a glucosidase, highlighting that the 20 933 

glycosyl hydrolases identified here are more likely insect in origin. (XSLX) 934 

 935 
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Highlights 

• Injection with EPF filtrate facilitated an increased yeast cell density in larvae  

• Co-injection with EPF and Candida albicans caused significantly increased mortality 

• EPF can modulate insect immune system allowing proliferation of subsequent pathogens 

• Injection with EPF culture filtrate significantly altered the haemolymph proteome 

• Beauveria caledonica altered abundance of proteins involved in cellulolytic/metabolic 

processes  

 

 


