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10 Abstract 

11 Hyperspectral imaging in the visible and near infrared spectral range (450-1664 nm) coupled 

12 with chemometrics was investigated for classification of brined and non-brined pork loins 

13 and prediction of brining salt concentration employed. Hyperspectral images of control, water 

14 immersed and brined (5, 10 or 15% salt (w/v)) raw and cooked pork loins from 16 animals 

15 were acquired. Partial least squares (PLS) discriminative analysis models were developed to 

16 classify brined pork samples and PLS regression models were developed for prediction of 

17 brining salt concentration employed. The ensemble Monte Carlo variable selection method 

18 (EMCVS) was used to improve the performance of the models developed. Partial least 

19 squares (PLS) discriminative analysis models developed correctly classified brined and non-

20 brined samples, the best classification model for raw samples (Sen = 100%, Spec = 100%, G 

21 = 1.00) used the 957–1664 nm spectral range, and the best classification model for cooked 

22 samples (Sen = 100%, Spec = 100%, G = 1.00) used the 450-960 nm spectral range. The best 

23 brining salt concentration prediction models developed for raw (RMSEp 1.9%, R2
p 0.92) and 

24 cooked (RMSEp 2.6%, R2
p 0.83) samples used the 957-1664 nm spectral range. This study 

25 demonstrates the high potential of hyperspectral imaging as a process analytical tool to 

26 classify brined and non-brined pork loins and predict brining salt concentration employed.

27
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32 1. Introduction 

33 Process analytical technology (PAT) is defined as a system for designing, analysing and 

34 controlling manufacturing through timely measurement of critical quality and performance 

35 attributes of raw and in process materials and processes, with the goal of ensuring final 

36 product quality (FDA, 2004). The adoption of PAT in the food industry is driven by the 

37 requirements of regulators, consumers and companies, as well as environmental sustainability 

38 (O'Donnell, 2014).

39 Brining enhances the flavour, texture and shelf life of meat and is widely employed in meat 

40 processing. Salt acts as a water binding ingredient in meat products, and helps to solubilise 

41 meat proteins and to enhance water holding capacity (WHC) by altering the myofibril 

42 structure of proteins (Ruusunen and Puolanne, 2005). Salting also influences the juiciness of 

43 meat and product cooking yield (Inguglia et al., 2017; Xiong, 2005). However excess salting 

44 may dehydrate meat samples (Barat et al., 2009). Variability in salt uptake can lead to 

45 textural defects and can influence the shelf life of the brined pork (Alvarado and McKee, 

46 2007; Fulladosa et al., 2015). Furthermore, the ability to classify brined and non-brined pork, 

47 and to predict the brining salt concentration employed during processing are also important 

48 from an industry perspective. 

49 Titration techniques are commonly used for salt content determination in meat products 

50 (Sharedeh et al., 2015). However these techniques are time consuming, require sample 

51 preparation, use of chemicals as well as trained operators (De Prados et al., 2015). Non-

52 destructive technologies have been investigated to monitor the salting process including x-ray 

53 absorptiometry, microwave dielectric spectroscopy (Castro-Giráldez et al., 2010), computed 

54 tomography (Vestergaard et al., 2004), magnetic induction (Schivazappa et al., 2017), laser 

55 induced breakdown spectroscopy (Dixit et al., 2018) and NIR spectroscopy (Campos et al., 
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56 2017; Collell et al., 2011; Collell et al., 2012; Gaitán-Jurado et al., 2008).  Application of any 

57 of these techniques has not been reported to date to monitor pork brining processes, to 

58 classify brined and non-brined pork or to predict brining salt concentration employed.

59 Spectroscopic sensors provide mainly chemical information but not the spatial information 

60 required for analysis of heterogeneous samples such as meat samples (Millar et al., 1996; 

61 Prieto et al., 2006). Hyperspectral imaging (HSI) may be suitable for online assessment of 

62 brining processes as it provides both spatial and spectral information of samples by 

63 combining imaging and spectroscopic tools. HSI is also non-invasive and does not require 

64 sample preparation (Gowen et al., 2007). Hyperspectral images or hypercubes are three-

65 dimensional blocks of data, comprising one spectral (wavelength (λ)) and two spatial 

66 dimensions (pixels (X, Y)). Each pixel in a hyperspectral image contains the spectrum of that 

67 specific position, representing the light-absorbing and/or scattering properties of the spatial 

68 region represented, which can be used to characterise the composition of that particular pixel. 

69 Hyperspectral imaging has been investigated as a process analytical tool for food applications 

70 including on line process control. (Gowen et al., 2007). HSI was used to study salting kinetics 

71 of raw pork samples at a fixed brine concentration of 30% salt (Liu et al., 2013). The 

72 potential of Vis-NIR hyperspectral imaging to classify brined and non-brined meat samples 

73 or predict the brining salt concentration has not been reported to date.

74 The most common chemometric analysis tools used to evaluate and extract information from 

75 hyperspectral imaging data are: (i) principal component analysis (PCA), (ii) partial least 

76 squares (PLS) and (iii) variable selection. Spectral pre-treatments may be employed to correct 

77 for the effects of natural variability in the shape and size of samples, light scattering and 

78 differences in the effective path length on Vis-NIR spectra, which can cause difficulties in the 

79 application of HSI for quality assessment (Esquerre et al., 2012b). PCA is one of the most 

80 frequently employed techniques for reducing dimensionality of hyperspectral images and is 
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81 commonly used as an exploratory tool in analysis of hyperspectral imaging (Burger and 

82 Gowen, 2011). PCA can be applied to any data matrix (properly transformed and scaled) to 

83 extract the dominant patterns in the matrix in terms of complementary set of scores and 

84 loadings plots; with the goal of finding relationships between objects, to delineate classes, to 

85 detect outliers, or for data reduction (Geladi et al., 1989). Partial least squares discriminant 

86 analysis (PLS-DA) is one of the most frequent classification methods employed in 

87 hyperspectral imaging data for classification of objects belonging to one or more classes. 

88 Calibration techniques such as partial least squares regression (PLS-R) are routinely 

89 employed in hyperspectral imaging analysis for prediction of unknown concentrations and 

90 generation of prediction maps to estimate spatial distribution of components in a sample 

91 (Gowen et al., 2014). Variable selection methods have been demonstrated to improve the 

92 performance of hyperspectral imaging models and to reduce the processing times required by 

93 selecting the most informative wavelengths in reported studies including those for the early 

94 detection of bruise damage in mushrooms (Esquerre et al., 2011), viability and vigour in 

95 muskmelon seeds (Kandpal et al., 2016), fat and moisture content in ground beef (Zhao et al., 

96 2017), internal damage in cucumbers and whole pickles (Ariana and Lu, 2010) and mixing 

97 quality of food powders (Achata et al., 2018).

98 The objective of this study was to investigate the potential of Vis-NIR hyperspectral imaging 

99 combined with chemometrics as a process analytical tool to classify brined and non-brined 

100 pork loins and predict the brining salt concentration employed for both raw and cooked 

101 samples.

102

103 2. Materials and methods

104 2.1. Pork samples
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105 Fresh pork loins (PLs) (Longissimus dorsi) from 16 animals were obtained from local 

106 supermarkets and butchers’ shops. PLs were trimmed of external fat and connective tissue 

107 and divided into samples of 180 ± 20 g and 25 mm thickness (N = 144). Samples obtained 

108 from each PL was randomly assigned to treatments.

109

110 2.2. Sample preparation

111 2.2.1. Brined and non-brined pork samples

112 Three types of PL samples were prepared: 

113 i) ‘Brined’ - immersion in brining solutions at concentrations of 5%, 10% and 15% salt 

114 (w/v), prepared using vacuum dried NaCl (food grade) and distilled water at a meat to 

115 brine mass ratio of 1:8, 

116 ii) ‘Water immersed’ - immersion in distilled water without salt (water immersed 

117 samples (WI)) and 

118 iii) ‘Control’ - samples without immersion in water or brine.

119 2.2.2. Raw and cooked samples

120 The control samples and half of the brine and water immersed samples were analysed 

121 raw (5 (control + 4 treatments) × 16 PLs = 80 raw samples) and the remaining samples 

122 were cooked (4 treatments × 16 PLs = 64 cooked samples) in a boiling water bath to a 

123 final core temperature of 75 °C, measured by a VWR traceable total-range thermometer 

124 (Visalia, CA, USA) placed in the geometric centre of the meat sample (Boccard et al., 

125 1981) and stored at 4 °C prior to analysis.

126

127 2.3. Hyperspectral imaging systems 
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128 Hyperspectral images of raw and cooked PLs were obtained using two line scanning 

129 hyperspectral imaging systems (DV Optics, Padova, Italy), one in the visible-near infrared 

130 (Vis-NIR) range of 400-1000 nm with a spectral resolution of 5 nm and the other in the near 

131 infrared (NIR) range of 880-1720 nm with a spectral resolution of 7 nm. The Vis-NIR-HSI 

132 system consisted of a CCD camera (580×580 pixels; Balser, Ahrensburg, Germany), a 

133 spectrograph (Spectral Imaging Ltd., Oulu, Finland), cylindrical light diffuser and moving 

134 base. The NIR-HSI system consisted of an InGaAs camera (320×240 pixels; Sensors 

135 Unlimited, Inc., Princeton, NJ, USA), a spectrograph (Spectral Imaging Ltd., Oulu, Finland), 

136 five halogen lamps (3×50 W and 2×20 W), a cylindrical light diffuser, moving base and a 

137 computer (Hernández-Hierro et al., 2014).The speed of the moving base was set at 3 mm/s 

138 (spatial resolution 0.28×0.28 mm pixel size) and 20 mm/s (spatial resolution 0.3×0.3 mm 

139 pixel size) for the Vis-NIR and NIR systems respectively. Calibration of both systems was 

140 carried out as follows: 50 scan lines of black reference (Ib) were acquired and averaged by 

141 taking a measurement after covering the spectrograph lens with a cap; a white tile with a 

142 known reflectance (Rw) was placed on the moving base and used as a “white” reference (Iw) 

143 by averaging 50 scan lines and finally the signal from the sample (Is) was converted and 

144 stored as reflectance (R) according to Equation 1 (Achata et al., 2015).

145 R= Rw (1)
𝐼𝑠 ‒  𝐼𝑏
𝐼𝑤 ‒  𝐼𝑏 

146 Hyperspectral images of all samples were acquired at room temperature (∼20 ºC). Spectra 

147 were acquired from both sides of all raw and cooked samples. Acquired 3-D data hypercubes 

148 were saved in ENVI formatted files and imported into Matlab (The MathWorks Inc., Natick, 

149 MA, USA) for further spectral data pre-processing and data analysis (Fig. 1), using in-house 

150 developed functions and scripts.

151

152 2.4. Spectral data pre-processing
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153 Obtained hypercubes were treated as follows:

154  The spectra obtained from both HSI systems were trimmed to spectral ranges of 450-

155 960 nm and 957-1664 nm to remove the noise present at both ends of the spectra.

156  Hypercubes were unfolded by rearranging the three-dimensional hypercubes (X, Y, ) 

157 into a two-dimensional matrix (X * Y, ) to facilitate algorithm development.

158  The background was removed using a mask which was created by comparing the 

159 mean value of each pixel’s spectrum and removing pixels with mean spectrum value 

160 < 0.7.

161  Dead pixels and spikes were removed by replacing the affected values with the mean 

162 values of adjacent bands in the same spectrum. Regions of interest (ROI) were 

163 carefully selected from each sample to avoid edge effects detected following analysis 

164 of PCA scores maps.

165  The mean spectra of both sides of each sample was calculated and used for model 

166 development.

167

168 2.5. Data analysis

169 Principal component analysis (PCA), partial least squares discriminative analysis (PLS-DA), 

170 and partial least squares regression (PLS-R) chemometric methods were carried out in 

171 combination with spectral pre-treatments on both reflectance and logarithm transformed 

172 (log(1/R)) Vis-NIR and NIR-HSI spectral data. EMCVS was applied to improve the 

173 performance of the developed models.

174 For both PLS-DA and PLS-R model development, raw and cooked spectral data sets were 

175 randomly split into calibration sets (n = 53 raw; n = 43 cooked) to construct the models and 

176 validation sets (n = 27 raw; n = 21 cooked) to test the models. The following spectral pre-
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177 treatments were employed to remove scattering effects or baseline shifts and to improve the 

178 models’ performance: standard normal variate (SNV), median scaled (MS), Savitzky-Golay 7 

179 points, second order polynomial first derivative (FD), Savitzky-Golay 7 points, second order 

180 polynomial second derivative (SD), linear detrending, second-order polynomial (LD) and 

181 asymmetric least squares (AsLs), and all combinations of any two selected pre-treatments.

182 PLS-DA models were developed to discriminate between brined (5, 10 or 15% (w/v), class = 

183 0) and non-brined (control & WI, class = 1) samples using a threshold of 0.5. PLS-R models 

184 were developed to predict brining salt concentration (BSC). The number of latent variables 

185 (LVs) was selected by analysis of the root mean square error of cross validation (RMSECV) 

186 and roughness of the regression vector (Gowen et al., 2011).

187 A variable selection approach was also investigated to improve the performance of the 

188 models developed. The ensemble Monte Carlo variable selection method (EMCVS) selects 

189 wavelengths with the largest mean normalised regression coefficients, which are estimated 

190 from an ensemble of Monte Carlo procedures (Esquerre et al., 2011). The EMCVS method 

191 was selected as it outperformed other variable selection methods in most cases in previous 

192 studies (Esquerre et al., 2011; Esquerre et al., 2017). This method compares the mean of the 

193 standardised regression coefficients ( ) for each variable in an ensemble of K (K = 200 in 𝐶j

194 this study) Monte Carlo procedures with a threshold in order to select the most informative 

195 wavelengths. Only wavelengths with  value greater than the threshold were retained. For 𝐶j

196 each Monte Carlo procedure regression coefficients () were calculated N times using M 

197 randomly selected samples to calculate the normalised regression coefficient (Cjk) as in Eq.2. 

198 (2)𝐶𝑗𝑘 =
𝛽𝑗𝑘

𝑆(𝛽𝑗𝑘)  

199 (3)𝛽𝑗𝑘 =  (∑𝑁
𝑖 = 1

𝛽𝑖𝑗𝑘
𝑁 )
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200 (4)𝑆 (𝛽𝑗𝑘) =  (∑𝑁
𝑖 = 1

𝛽𝑖𝑗𝑘 ‒ 𝛽𝑗𝑘
𝑁 ‒ 1 )

201 Where  and  are the mean and standard deviation of the regression coefficient of  𝛽𝑗𝑘 𝑆(𝛽𝑗𝑘)

202 the jth variable (  over N times (N = 200 for this study) of all PLS runs and  𝑗 = 1,2,3,..,𝑝) 𝛽𝑖𝑗𝑘

203 is the regression coefficient for the jth variable in the ith PLS model (i = 1…N) for the kth 

204 Monte Carlo procedure (k = 1 … K). EMCVS was applied iteratively until no more variables 

205 were removed from the data set (Esquerre et al., 2012a; Esquerre et al., 2017).

206

207 3. Results and discussion

208 3.1. Spectral data

209 Mean log (1/R) spectra of the ROIs for the 450-960 nm and 957-1664 nm spectral ranges are 

210 presented in Fig 2a and 2b. It can be observed that baseline shifts and wavelength-dependent 

211 variations obscure trends in the spectra associated with the experimental treatments applied. 

212 To reduce scattering effects and baseline shifts, Savitzky-Golay spectral pre-treatment (7 

213 points, second order polynomial SD) was applied as shown in Fig. 2a and 2b.

214 The main features observed in the 450-960 nm spectra of raw samples in the spectral region 

215 of 545-585 nm can be attributed to myoglobin and oxymyoglobin absorptions (Millar et al., 

216 1996; Rannou and Downey, 1997). Brined samples have higher absorption at 580 nm than 

217 non-brined samples, which may be related to the oxidation of myoglobin pigments to 

218 oxymyoglobin in the presence of salt (Eskin et al., 2013). This is in accordance with 

219 previously reported meat studies where the oxidation of myoglobin caused an increase in 

220 absorbance at 545 and 575 nm (Kerry et al., 2003; Rannou and Downey, 1997). Spectra of 

221 cooked PLs in this region (450-960 nm) exhibit large peaks at 545, 580 and 650 nm which 

222 correspond to myoglobin, oxymyoglobin and metmyoglobin respectively (Millar et al., 1996). 
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223 The main features that differentiate brined and non-brined samples observed in the 957-1664 

224 nm spectral range of raw samples are at 1153 and 1398 nm, which correspond to the second 

225 overtone of C–H bond stretching and C–H combination bands respectively (Osborne et al., 

226 1993). At these wavelengths brined samples have larger peaks than non-brined samples.

227 In cooked samples, large differences in second derivative spectra of brined and non-brined 

228 samples are observed at 1405 nm which correspond to O-H bonds in free water. When salt is 

229 added to water, rearrangement of intermolecular hydrogen bonds occurs, resulting in changes 

230 to the shape and position of the water peaks in NIR spectra (Gowen et al., 2015). 

231

232 3.2. Principal component analysis 

233 PCA was carried out as an exploratory analysis to detect clustering and outliers using the 

234 mean spectra of the hyperspectral images acquired from all raw and cooked samples. Score 

235 maps of all samples in the 450-960 nm and 957-1664 nm spectral ranges were visually 

236 assessed. The first principal component of both raw and cooked samples explained > 89% of 

237 the variance in the spectra, which may be related to experimental treatments applied (Fig. 3). 

238 PC1 score maps show a general trend with respect to experimental treatments applied to raw 

239 samples. WI and control samples have similar scores and a clear trend was observed with 

240 respect to the brining salt concentration. PC1 score maps of cooked samples also show a 

241 trend with respect to experimental treatments applied. No clear trends were observed for PC2 

242 score maps of either raw or cooked samples.

243 Scores and loadings plots for PCA models developed using mean spectra of raw and cooked 

244 samples are presented in Fig. 4. Plots of PC1, PC2 and PC3 scores show a general trend with 

245 respect to experimental treatments applied to both raw and cooked samples. PC1 and PC2 

246 explained > 97% of the variance in the mean spectra. The PC1 loadings plot for raw samples 
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247 in the 450-960 nm spectral range show peaks at around 475, 540, 580, 640 and 725 nm which 

248 may be related to oxidised/denatured derivatives of myoglobin, myoglobin, oxymyoglobin, 

249 metmyoglobin and the 3rd overtone of O-H bond stretching in H2O respectively (Liu et al., 

250 2000; Millar et al., 1996). The corresponding PC2 loadings plot shows peaks at 555, 585, 640 

251 and 725 nm. 

252 PC1 loadings plot in the  957-1664 nm spectral range for raw samples shows peaks at around 

253 978 nm which correspond to 2nd overtone of O-H bond stretching and may also have 

254 contribution from the pigment heme groups in deoxymyoglobin and oxymyoglobin (Liu et 

255 al., 2000), at 1181 and 1230 nm due to 2nd overtone of C-H bond stretching in -CH-, -CH2- 

256 and -CH3 groups (Shenk et al., 2001; Siesler et al., 2002), and at 1314 nm by combinations of 

257 C-H bond stretching in -CH3 groups (Shenk et al., 2001).

258 PC1 and PC2 loadings plots in the 450-960 nm spectral range for cooked samples show peaks 

259 at around 540 and 640 nm, related to the effect of salt on the myoglobin and metmyoglobin 

260 pigments of the brined samples (Eskin et al., 2013). PC1 loadings plot in the 957-1664 nm 

261 spectral range for cooked samples show peaks at around 985, 1188 and 1391 nm 

262 (combinations of C-H bonds) related to water protein interaction (Prieto et al., 2006). PC2 

263 loadings plot shows peaks at 992, 1146, 1279 and 1461nm (first overtone symmetric N-H 

264 bond stretching (Shenk et al., 2001).

265 PCA scores show trends with respect to the BSC employed, which are influenced mainly by 

266 heme pigments and water absorption. These results are in general agreement with those 

267 reported by Perisic et al. (2013) with a Vis-NIR system in the spectral region of 400-2500 

268 nm. These authors found differences in the PCA scores of bovine meat samples due to 

269 different salt concentrations.

270
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271 3.3. Discrimination of brined and non-brined samples 

272 To discriminate brined (5, 10 and 15% (w/v)) and non-brined (control, WI) samples, a 

273 classification approach using PLS-DA was evaluated by assigning arbitrary values to each 

274 class (0 for brined and 1 for non-brined samples). The performance of the best PLS-DA 

275 models developed to discriminate between brined and non-brined samples are presented in 

276 Table 1. Sensitivity (Sen) is the proportion of true positives (class 1 samples) that are 

277 correctly identified, while specificity (Spec) is the proportion of true negatives (class 0 

278 samples) that are correctly identified by the model. The geometric mean of sensitivity and 

279 specificity (G = (Sen2×Spec2)0.5/100) provides information of the performance of the model 

280 in all classes while not being affected by the prevalence of each class in the dataset (Esquerre 

281 et al., 2012b; Kubat et al., 1998). 

282 All the developed models for raw samples presented in Table 1 have high discriminant ability 

283 as evidenced by G values ≥ 0.91 in calibration, G ≥ 0.89 in cross validation and G ≥ 0.95 in 

284 prediction. The best overall model developed for classification of raw samples demonstrated 

285 high classification performance (Sen = 100%, Spec = 90%, G = 0.95) for cross-validation and 

286 perfect classification for prediction (Sen = 100%, Spec = 100%, G = 1.00) datasets, and was 

287 developed using the EMCVS method which selected 18 wavelengths (5 LVs) using SD pre-

288 treated reflectance data in the 957-1664 nm spectral range (Fig. 5). The 18 selected 

289 wavelengths used to develop the discriminant model for raw samples are distributed over the 

290 957-1664 nm spectral range and are shown in Fig. 5.

291 All developed models selected for classification of cooked samples in the 450-960 nm 

292 spectral range achieved perfect classification (Sen = 100%, Spec = 100%, G = 1.00). G 

293 values ≥ 0.97 for calibration, cross-validation and prediction datasets were achieved for 

294 cooked samples using the 957-1664 nm spectral range. The best overall model (lowest 

295 number of variables and LVs) was developed using the EMCVS method which selected 5 
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296 wavelengths (3 LVs) on the mean log (1/R) data without pre-treatments. The application of 

297 the EMCVS method reduced the number of wavelengths employed and the number of latent 

298 variables (LVs) in the models developed. Fig. 5 presents the classification of brined and non-

299 brined samples achieved using the best PLS-DA models for cooked samples and the selected 

300 bands in the pre-treated mean spectra which achieved the best classification model 

301 performance.

302 PLS-DA results for raw samples using the full 450-960 nm spectral range, show better 

303 discrimination between brined and not brined samples when no spectral pre-treatments are 

304 applied. Previous studies also found better classification results with raw spectra compared to  

305 pre-treated spectra in this wavelength range (Folch-Fortuny et al., 2016). Engel et al. (2013) 

306 reported a classification case study where less than 5.5 % of pre-processing strategies 

307 produced a more accurate and less complex model compared to a model based on raw 

308 spectral data. In the full 957-1664 nm spectral range, better discrimination results were 

309 obtained when SNV+SD spectral pre-treatments were applied to reflectance and logarithmic 

310 transformed spectra. This indicates that the spectra in this range may be affected by 

311 multiplicative effects and curved baselines. Previous studies reported that classification 

312 models in this region performed better using pre-treated spectra (Kandpal et al., 2016). 

313 Discrimination results for cooked samples at both spectral ranges 450-960 nm and 957-1664 

314 nm show good discriminant ability when no spectral pre-treatments were applied.

315 PCA and PLS-DA results obtained in this study indicate that discrimination between brined 

316 and non-brined of both raw and cooked PLs, is due to the effect of salt on the absorption of 

317 Vis NIR electromagnetic energy by myoglobin, O–H and C–H bonds. These results are in 

318 accordance with the results reported by Prieto et al. (2015) who obtained the largest 

319 regression coefficients in the discrimination of moisture enhanced from non-moisture 

320 enhanced pork at the same absorption bands in a spectral range of 350–2500 nm.
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321

322 3.4. Prediction of brine salt concentration 

323 The performance of the PLS-R models was assessed using the root mean square error 

324 (RMSE), the coefficient of determination (R2) and the ratio of standard error of prediction to 

325 standard deviation (RPD) for calibration, full cross validation, and prediction sets. The 

326 performance of the best PLS-R models developed to predict BSC employed using different 

327 spectral pre-treatments is presented in Table 2. The models developed for raw samples had 

328 RMSEP ≤ 3.5%; RPDP values ranging from 1.7 to 3.2 and R2
P values between 0.75 and 0.92 

329 in all cases; while models developed for cooked samples had RMSEP values ≤ 3.1%; RPDP 

330 values ranging from 1.8 to 2.4 and R2
P values between 0.75 and 0.83 in all cases. The best 

331 PLS-R model for raw samples was developed using 34 selected wavelengths of SNV+LD 

332 pre-treated log(1/R) spectra (LV 7, RMSEP 1.9%, RPDP 3.2, R2
P 0.92) in the 957-1664 nm 

333 spectral range. Most of the selected wavelengths are in the spectral range from 1293 to 1391 

334 nm, where the 2nd overtone of C-H stretching and the 1st overtone of combination of C-H 

335 vibration modes are located (Fig. 6). The best PLS-R model for cooked samples was 

336 developed using 9 selected wavelengths of SD+SNV pre-treated R spectra (LV 4, RMSEP 

337 2.6%, RPDP 2.4, R2
P 0.83) in the 957-1664 nm spectral range. The selected wavelengths (Fig. 

338 6) are related to the 2nd overtone of C-H stretching (1160, 1202, 1286 nm), the 1st overtone 

339 of combination of C-H (1328, 1370 nm), the O-H 2nd overtone (957 nm) and the O-H 1st 

340 overtone (1461 and 1559 nm). There is potential to develop a process analytical technology 

341 tool using these selected wavelengths for continuous monitoring of meat brining processes. 

342 Prediction results based on full wavelength and with EMCVS selected bands achieved better 

343 results with raw samples compared to cooked samples. Better prediction results were 

344 achieved using the 957-1664 nm spectral range for both raw and cooked samples on the 
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345 logarithmic transformed spectra. De Prados et al. (2015) developed a prediction model for 

346 salt content (R2 > 0.771) in pork meat using ultrasound velocity, however no previous studies 

347 have been reported on the use of HSI to predict brining salt concentration in meat.

348

349 4. Conclusions

350 The results presented in this study demonstrated the potential of Vis-NIR and NIR 

351 hyperspectral imaging combined with chemometrics to (i) discriminate between brined and 

352 non-brined pork loins using PCA (unsupervised) and PLS-DA (supervised) and (ii) to predict 

353 BSC employed using PLS regression for both raw and cooked samples.

354 PLS-DA models developed perfectly classified raw and cooked pork samples as brined (5, 10 

355 and 15% BSC) or non-brined (control and WI), while PLS-R models with good prediction 

356 performance were developed to predict BSC employed (RPD >2.4). The EMCVS variable 

357 selection method applied further improved the performance of the PLS-DA and PLS-R 

358 models developed.

359 This study demonstrates the potentiality of employing Vis-NIR hyperspectral imaging 

360 coupled with chemometrics as a rapid and non-destructive process analytical technology to 

361 monitor and control pork loins brining processes. Adoption of this PAT tool by meat 

362 processors would enhance quality assurance, process control and validation in meat brining 

363 processes.

364
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508 Table 1: Performance of the PLS-DA models developed for discrimination of brined and non-brined samples 

 Pre-  # # Calibration  Cross validation  Prediction
treatment EMCVS Bands LVs SenC SpecC GC SenCV SpecCV GCV SenP SpecP Gp

     (%) (%)   (%) (%)    (%) (%)  
Raw 450-960 nm       

R None No 103 6 96 97 0.96 92 93 0.92 100 95 0.97
AsLs+LD Yes 19 5 100 97 0.98 100 97 0.98 100 89 0.95

log(1/R) None No 103 9 96 97 0.96 96 93 0.94 100 89 0.95
LD Yes 10 6 100 97 0.98 100 97 0.98 100 89 0.95

Raw 957-1664 nm
R SNV+SD No 96 4 100 83 0.91 100 79 0.89 100 95 0.97

SD Yes 18 5 100 93 0.96 100 90 0.95 100 100 1.00
log(1/R) SNV+SD No 96 5 100 97 0.98 96 90 0.93 100 95 0.97

AsLs+MS Yes 13 6 88 97 0.92 88 97 0.92 100 100 1.00

Cooked 450-960 nm
R None No 103 4 100 100 1.00 100 100 1.00 100 100 1.00

None Yes 8 4 100 100 1.00 100 100 1.00 100 100 1.00
log(1/R) None No 103 3 100 100 1.00 100 100 1.00 100 100 1.00

None Yes 5 3 100 100 1.00 100 100 1.00 100 100 1.00
Cooked 957-1664 nm

R None No 102 2 100 100 1.00 100 100 1.00 100 93 0.97
None Yes 4 1 100 100 1.00 100 100 1.00 100 93 0.97

log(1/R) None No 102 1 100 100 1.00 100 100 1.00 100 93 0.97
 None Yes 1 1 100 100 1.00  100 100 1.00  100 93 0.97

509 EMCVS, ensemble Monte Carlo variable selection; LD, linear detrending; FD, first derivative; MS, median scaled; SD, second derivative; SNV, 
510 standard normal variate; AsLs, asymmetric least squares; Bands, wavelengths used for model development; LVs, latent variables; SenCV, 
511 sensitivity for cross-validation; SpecCV specificity for cross-validation; SenP, sensitivity for prediction; SpecP specificity for prediction.
512 The overall best models for raw and cooked samples are highlighted in bold.
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514 Table 2: Performance of the PLS-R models developed for the prediction of brine salt concentration (BSC) in brined pork.

 Pre- # # Calibration  Cross validation  Prediction
treatment EMCVS Bands LVs RMSEC RPDC Rc

2 RMSECV RPDCV Rcv2 RMSEp RPDp RP
2

                 
Raw 450-960 nm 

R FD+SNV No 97 7 2.7 2.2 0.79 3.7 1.6 0.60 2.6 2.2 0.84
SD Yes 18 8 2.2 2.6 0.86 2.3 2.5 0.84 3.5 1.7 0.76

log(1/R) LD+FD No 97 6 2.7 2.2 0.79 3.6 1.6 0.61 2.6 2.1 0.82
FD Yes 7 4 2.5 2.3 0.82 3.0 1.9 0.72 2.6 2.3 0.82

Raw 957-1664 nm
R AsLs+SNV No 102 7 1.7 3.3 0.91 2.3 2.5 0.84 2.1 2.7 0.90

SNV+FD Yes 9 3 2.4 2.4 0.83 2.3 2.5 0.84 2.2 2.8 0.88
log(1/R) MS+SNV No 102 8 1.5 3.7 0.93 2.5 2.3 0.81 1.9 3.0 0.94

SNV+LD Yes 34 7 1.5 3.7 0.93 2.1 2.8 0.87 1.9 3.2 0.92

Cooked 450-960 nm
R SNV+LD No 103 9 2.2 2.5 0.84 2.1 2.6 0.85 2.9 1.8 0.75

LD Yes 14 6 2.2 2.5 0.84 1.9 2.9 0.88 3.0 2.0 0.75
log(1/R) AsLs+SNV No 103 10 2.3 2.4 0.83 2.3 2.4 0.83 3.1 1.8 0.75

SNV+SD Yes 21 6 2.3 2.4 0.83 2.0 2.8 0.87 3.0 2.0 0.74
Cooked 957-1664 nm

R SD+AsLs No 96 6 1.9 2.9 0.88 2.5 2.2 0.79 2.8 2.1 0.79
SD+SNV Yes 9 4 2.0 2.8 0.87 2.0 2.7 0.86 2.6 2.4 0.83

log(1/R) MS+FD No 96 7 1.8 3.0 0.89 1.9 2.9 0.88 2.7 2.0 0.79
 MS+FD Yes 17 6 1.8 3.1 0.89  1.6 3.4 0.91  2.6 2.3 0.81

515 EMCVS, ensemble Monte Carlo variable selection; FD, first derivative; LD, linear detrending; SD, second derivative; SNV, Standard normal 
516 variate; AsLs, asymmetric least squares; MS, median scaled; Bands, wavelengths used for model development; LVs, latent variables.
517 The overall best models for raw and cooked samples are highlighted in bold.
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Figure captions

Fig. 1. Hyperspectral imaging and data analysis.

Fig. 2. Mean log(1/R) and second derivative of mean log(1/R) spectra of (a) raw and (b) 
cooked samples.

Fig. 3. PCA score maps of log(1/R) spectra of (a) raw and (b) cooked samples.

Fig. 4. PCA score plots and loadings of mean log(1/R) spectra of (a) raw and (b) cooked 
samples.

Fig. 5. Classification of brined and non-brined samples using the best PLS-DA models 
developed for (a) raw (SD on the reflectance spectra 957–1664 nm), and (b) cooked samples 
(log (1/R) spectra without spectral pre-treatment 450–960 nm).

Fig. 6. Brining salt concentration predicted using the best PLS-R models developed for (a) 
raw (SNV+LD spectral pre-treatments on the log (1/R) spectra 957–1664 nm), and (b) 
cooked samples (SD+SNV spectral pre-treatments on the reflectance spectra 957–1664 nm).
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Highlights

 Vis-NIR hyperspectral imaging is suitable for the assessment of brining of raw and 

cooked pork loins.

 Chemometric models were developed to classify brined and non-brined pork samples 

and to predict brining salt concentration employed.

 Spectral pre-treatments and variable selection improved performance of models 

developed.



ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT


