Accepted Manuscript

Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions

F. Ren, C.A. Perussello, Z. Zhang, J.P. Kerry, B.K. Tiwari

PII: S0023-6438(17)30623-0

DOI: 10.1016/j.lwt.2017.08.053

Reference: YFSTL 6475

To appear in: LWT - Food Science and Technology

Received Date: 8 June 2017

Revised Date: 14 August 2017

Accepted Date: 19 August 2017

Please cite this article as: Ren, F., Perussello, C.A., Zhang, Z., Kerry, J.P., Tiwari, B.K., Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions, *LWT - Food Science and Technology* (2017), doi: 10.1016/j.lwt.2017.08.053.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions

Ren, F.^{1,2}, Perussello, C. A.^{1*,} Zhang, Z.¹, Kerry, J. P.², Tiwari, B. K.¹

¹Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown,

Dublin 15, Ireland.

²University College Cork, Western Road, Cork, Ireland.

*Corresponding author: <u>camila.perussello@teagasc.ie</u>, +353 761111754.

CER MAR

Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions

3

ABSTRACT: The aim of this study was to investigate the effect of ultrasonic 4 treatment and blanching prior to hot-air drying and freeze drying of onions on the 5 retention of bioactive compounds (total phenolics, total flavonoids, and quercetin). 6 Onion slices were treated either with ultrasound at 20 kHz and different amplitude 7 levels (24.4-61 μ m) for 1, 3 and 5 min or with blanching using hot water at 70°C for 8 9 1, 3 and 5 min. The ultrasound treatment improved the retention of bioactive compounds (especially quercetin) and accordingly the antioxidant activity in onion 10 slices dried either by freeze drying or hot-air drying. This is ascribed to the 11 destruction of the original tissue structure by ultrasound and thus higher extraction 12 ability of the studied phytochemicals. Comparing ultrasound treated samples, freeze 13 dried onions had a higher retention of bioactive compounds than hot-air dried ones. 14 Blanched and ultrasound treated dried onions exhibited similar colour change. 15 Therefore, ultrasound treatment is a potential alternative to conventional blanching 16 before drying of onion slices. 17

- 18 Keywords: Ultrasound treatment; Thermal blanching; Antioxidant activity; Drying;19 Colour.
- 20

21 **1. INTRODUCTION**

22

Dried onions are found in different forms – flaked, minced, chopped and
powdered – of extensive demand in several parts of the world (Sarsavadia, Sawhney,
Pangavhane, & Singh, 1999).

Sonication is a promising non-thermal technology in the food industry (Tiwari et 26 al., 2010). Ultrasound treatments (US treatments) are used to induce desirable 27 chemical and physical changes in foods and can support several processes, such as 28 drying, osmotic dehydration, extraction, mixing, emulsification, 29 filtration, crystallization, thawing and freezing (Marcuzzo, Peressini, Debeaufort, & Sensidoni, 30 2010). Ultrasonic waves cause rapid compressions and expansions to plant cells, 31 which leads to the formation of bubbles in the sonicated sample and its surroundings. 32 The resulting rapid and short pressure and temperature shifts in the product leads to 33 34 changes of viscosity and surface tension, destroying cell walls, forming microscopic channels and free radicals, and producing sonochemicals. Scientific evidence exists to 35 support both the positive and the negative impacts of ultrasound treatment on the 36 retention of bioactive compounds in various fruit and vegetables, although the 37 particular effect depends on the process conditions and specificity of the material 38 involved (Mieszczakowska-Frac, Dyki, & Konopacka, 2016). Advantages of power 39 ultrasound include reduction in processing time, the effective removal of occluded 40 oxygen in juices, and lower energy consumption (Knorr, Zenker, Heinz, & Lee, 41 2004). 42

The responses of plants to abiotic stresses, such as US, associated with the
production of stress signalling molecules (i.e. reactive oxygen species – ROS) activate

the expression of genes involved on the primary and secondary metabolism of the 45 plant (Jacobo-Velázquez, González-Agüero, & Cisneros-Zevallos, 2015). These genes 46 47 are associated with an increase in the activity of enzymes related with the biosynthesis of secondary metabolites and with the accumulation of secondary metabolites 48 (Jacobo-Velázquez et al., 2015). For this reason, US can be used as an approach to 49 increase the extractability of bioactive compounds (Nowacka & Wedzik, 2016), for 50 instance, found a 12.5% higher extractability of carotenoid from carrots after the 51 application of US at 21 kHz. Ultrasound has also shown higher extraction rates of 52 phenolic compounds from carrot pomace and strawberries (Jabbar et al., 2015). Power 53 ultrasound has also potential as a means of preservation due to the microbial 54 inactivation ascribed to cavitation, as the resulting pressure shifts contributes to cell 55 56 disruption. Ancillary chemical effects, such as the formation of free radicals as a consequence of the sonochemical reaction, also contribute to the microbial cell 57 disruption (Kadkhodaee & Povey, 2008). 58

The most popular drying methods for onions are hot-air drying and freeze drying. 59 Hot-air drying involves exposure of the product to a continuously flowing hot air 60 61 stream. It produces dehydrated products with a shelf life of up to one year, but their quality is usually lower than that of the original foodstuff (Ratti, 2001). Freeze-drying 62 is based on dehydration by sublimation of water from a frozen product. Due to the 63 absence of liquid water and the low temperatures required for freeze drying, most of 64 the deterioration and microbiological reactions are retarded resulting in a final product 65 of high quality (Rawson et al., 2011). However, the quality of a dehydrated product 66

67	depends also on the pre-treatments employed before drying (Negi & Roy, 2000).
68	Hot-water blanching (heating of a product with hot water for a short period) has also
69	been reported to reduce drying time up to a certain operation temperature. Similarly to
70	other thermal processes, blanching affects the concentration of some bioactive
71	compounds in vegetables (Rawson et al., 2011).
72	Given the possible detrimental effects of blanching on the quality of onions, it is
73	necessary to develop alternative pre-treatments to replace blanching. Despite power
74	ultrasound has been extensively reviewed in fruits, its effects on quality parameters
75	have not been studied in thin sliced onions.
76	The present study investigated the effect of ultrasonic and blanching
77	pre-treatments prior to hot-air drying and freeze drying on the retention of bioactive
78	compounds (total phenolics, total flavonoids, and individual flavonoids), colour and
79	antioxidant activity of onions.
80	
81	2. MATERIALS AND METHODS
81 82	2. MATERIALS AND METHODS2.1 Chemicals
82	
82 83	2.1 Chemicals
82 83 84	2.1 Chemicals Gallic acid, methanol, acetonitrile, ethanol, potassium acetate, aluminium chloride
82 83 84 85	2.1 Chemicals Gallic acid, methanol, acetonitrile, ethanol, potassium acetate, aluminium chloride (AlCl ₃), ferric chloride, 2,2-Diphenyl-1-picrylhydrazyl (DPPH),

89	4'glucoside (Q 4' G), quercetin 3,4' diglucoside (Q 3,4' D) and quercetin (Q)
90	standards were purchased from Extrasynthese (Geney Cedex, France).
91	
92	2.2 Sample preparation
93	
94	Fresh organic onions were obtained from the Kinsealy Systems field trial carried
95	out at Teagasc, Kinsealy (53° 25N, 6° 10W), Dublin, Ireland and stored at 4°C for a
96	maximum of 24 h prior to analysis. After hand-peeling, onions were vertically sliced
97	(5 mm thickness) using a Berkel 800 meat slicer (Berkel company, Indiana, USA).
98	
99	2.3 Ultrasound and blanching pre-treatments
100	
100 101	One kg of fresh organic onion slices (thickness of approximately 1 cm) were
	One kg of fresh organic onion slices (thickness of approximately 1 cm) were obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of
101	
101 102	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of
101 102 103	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70°C in a 200 mL beaker.
101 102 103 104	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70°C in a 200 mL beaker. Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of
101 102 103 104 105	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70°C in a 200 mL beaker. Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of water at 70°C with an ultrasonic probe (Ø19 mm) connected to an ultrasonic generator
101 102 103 104 105 106	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70°C in a 200 mL beaker. Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of water at 70°C with an ultrasonic probe (Ø19 mm) connected to an ultrasonic generator (VC 1500, Sonics and Materials Inc., USA). The energy input was controlled by
101 102 103 104 105 106 107	obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70°C in a 200 mL beaker. Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of water at 70°C with an ultrasonic probe (Ø19 mm) connected to an ultrasonic generator (VC 1500, Sonics and Materials Inc., USA). The energy input was controlled by setting the amplitude of the sonicator probe. Extrinsic parameters of amplitude (power

111	were carried out in triplicate. The ultrasound densities ranged between 0.06 and 0.59
112	W/mL.
113	For the blanching pre-treatment, carried out alternatively to the-US treatment, 50
114	g of onion slices were mixed with 100 mL of distilled water at 70° C for 1, 3 and 5
115	min. All treatments were carried out in triplicate.
116	
117	2.4 Preparation of extracts from dried onions
118	
119	Control (fresh), sonicated and blanched slices were either freeze-dried or hot-air
120	dried. Hot-air drying of sonicated, blanched and untreated (control) samples was
121	carried out in a laboratory scale hot-air drier (SG96/06/333, Gallenkamp, UK) at 60°C
122	and 0.3 m/s for 8 h. Pre-treated and control samples of 50 g were placed in a
123	perforated basket (300 x 400 mm; perforation size of 5 x 5 mm), which was inserted
124	in the drying chamber. Each sample was dried separately. Freeze-drying was carried
125	out in a Cuddon freeze-drier (FD80, Cuddon Freeze Dry, Blenhein, New Zealand) at
126	0.064 mbar for 72 h. After freeze dried or hot-air dried, the samples were
127	vacuum-packed in polypropylene bags and stored at -20°C until analysis.
128	The leaching water resulting from the ultrasound and blanching pre-treatments
129	were also freeze-dried or hot-air dried, according to the drying method selected for the
130	onion slices. The dry weights were used to calculate the transfer of material from the
131	onions into the cooking water. For this, the dried onions were blended by a kitchen
132	blender (Kenwood Ltd, Havant, UK). Then, 1 g of the blended sample was mixed

133	with 10 mL of methanol (80%) and homogenised at 24,000 rpm using an Omni-prep
134	multi-sample homogeniser (Omni International, USA). The homogenized sample
135	suspension was shaken overnight with a V400 Multitude Vortexer (Alpha
136	laboratories, North York, Canada) at 1500 rpm at room temperature. The sample
137	suspension was centrifuged (MSE Mistral 3000i, Sanyo Gallenkamp, Leicestershire,
138	UK) at 3000 g for 15 min and immediately filtered through 0.22 μm
139	polytetrafluoethylene filters. The extracts were kept at -20°C until further analysis.
140	
141	2.5 Analysis of total phenolics (TPC)
142	
143	The total phenolic content was determined using the Folin-Ciocalteau method
144	with slight modifications (Singleton, Orthofer, & Lamuela-Raventós, 1999) using a
145	spectrophotometer (Shimadzu UV-1700, Shimadzu Corporation, Kyoto, Japan) at 735
146	nm. Aqueous gallic acid (10-400 mg/L) was used as standard. The results were
147	expressed as gallic acid equivalents per dry weight of sample (mg GAE/g DW).
148	
149	2.6 Analysis of total flavonoid content (TFC)
150	
151	The total flavonoid content was determined by the method described by Lin and
152	Tang (2007) using a spectrophotometer at 415 nm. Quercetin (Q) was used to build

the standard calibration curve. The total flavonoid content was expressed as 153

152

154	milligrams of quercetin equivalents per gram of dry weight (DW) (mg quercetin/g
155	DW).
156	
157	2.7. Analysis of antioxidant activity
158	
159	2.7.1 Ferric Reducing Antioxidant Power (FRAP) assay
160	
161	The FRAP assay was carried out based on the method by Stratil et al. (2006) with
162	slight modifications. The FRAP solution was freshly prepared on the day of use by
163	mixing acetate buffer (pH 3.6), ferric chloride solution (20 mM) and TPTZ solution
164	(10 mM TPTZ in 40 mM HCl) in a proportion of 10:1:1, respectively. Subsequently,
165	the FRAP solution was heated, while protected from light, until a temperature of 37°C.
166	Appropriate dilutions of onion extracts were prepared using methanol. The sample
167	extract (100 μL), or blank (100 μL methanol) and Trolox standard dilutions (100 μL
168	Trolox of appropriate concentration) were mixed with 900 μ L of FRAP solution in a
169	micro-centrifuge tube. The tubes were stirred and left to rest at 37°C for 40 min, and
170	the absorbance was measured at 593 nm using a spectrophotometer. The antioxidant
171	activity of the samples was expressed in mg of Trolox equivalent per gram of dry
172	weight sample (mg Trolox/g DW).
173	
174	2.7.2 DPPH Antioxidant Power Assay

175

The DPPH (2, 2-diphenylpicrylhydrazyl) scavenging activity assay was 176 performed following the method described by Goupy et al. (1999). DPPH was 177 dissolved in methanol to a concentration of 0.238 mg/mL in a conical flask. The 178 reagent was prepared 2 hours prior to use, to ensure that the DPPH was fully 179 dissolved and stabilised. The flask containing the DPPH solution was covered with 180 aluminium foil to protect it from the light and stored in a refrigerator. For the actual 181 measurements, a 1:5 dilution of the DPPH stock was prepared using 10 mL of the 182 stock and making up to the 50 mL with methanol. Trolox (1-10 µg/mL) dissolved in 183 methanol in appropriate dilutions were used to build the standard curve. This 184 experiment was carried out in three replicates for both samples and standard. In each 185 replicate, 500 µL from the appropriately diluted sample extract was added to 500 µL 186 of DPPH solution. Experiments were carried out to determine the exact dilutions 187 required. In the control, 500 µL of methanol was added in place of the sample extract 188 with an equal volume of DPPH solution. As for the blank, 500 μ L of sample extract 189 was mixed with 500 µL of methanol. The absorbance was measured at 515 nm in a 190 spectrophotometer. The radical scavenging activity was expressed in terms of mg of 191 Trolox equivalent per gram of dry weight (mg Trolox/g DW). 192

193

194 **2.8 HPLC analysis of the extracts**

195

Reversed phase high performance liquid chromatography (RP-HPLC) of thefiltered sample extracts was carried out according to the method of Tsao and Yang

198	(2003). Flavonols were separated on a ZORBAX SB-C18 column (4.6 mm x 150 mm,
199	5 μ m particle size, Part no. 883975-902). The mobile phase consisted of HPLC grade
200	water with 0.05 % trifluoroacetic acids (TFA) (A) and acetonitrile with 0.05 % TFA
201	(B). The gradient involved a linear increase/decrease in the amount of solvent B in A,
202	which was set as follows (% B): 0-15 min, 12-21 %; 15-25 min, 21-100 %; 25-35 min,
203	100-12 %. The flow rate was 1 mL/min. Samples of 10 μ L were injected into the
204	column and the separation took place at 30°C. The data was presented in the
205	SHIMADZU EZ START Version 7.3 software. The identification of compounds was
206	achieved by comparing their retention times and UV-Vis spectra with those of
207	authenticated quercetin standard, and the UV absorbance was measured at 360 nm.
208	Quercetin and quercetin glucoside concentrations were calculated against authentic
209	calibration standards (quercetin 4' glucoside, quercetin 3,4' diglucoside and
210	quercetin).

211

212 **2.9 Colour**

213

Three onion slices were randomly selected from fresh and dried samples to determine colour at both sides (internal and external) of each slice using a colorimeter (D25A DP-9000, Hunter Lab, Reston, VA, USA). The samples were evaluated for colour (L*, a* and b*) at room temperature. L* represents luminosity and ranges from black at 0 to white at 100. The chromaticity coordinate a* indicates red when positive and green when negative, and b* indicates yellow when positive and blue when

220	negative (Doymaz, Tugrul, & Pala, 2006). The colour change, ΔE was calculated by
221	Eq. 1 (Vega-Gálvez et al., 2012):
222	
223	$\Delta E = \sqrt[2]{(L^* - L_0^*)^2 + (a^* - a_0^*)^2 + (b^* - b_0^*)^2} $ (1)
224	
225	where L_0^* , a_0^* , and b_0^* are the values for fresh onion samples.
226	
227	2.10 Statistical analysis
228	
229	All experiments were carried out in triplicate and average values were reported as
230	means \pm standard deviation. The experimental data were statistically analysed using
231	the software SAS V.9.1 (SAS Institute, NC, USA). The Tukey-Kramer test was
232	applied for multiple comparisons among means at a 95% significance level ($p < 0.05$).
233	
234	3. RESULTS AND DISCUSSION
235	3.1 Change of total phenolic content
236	
237	The ultrasound and blanching treatments influenced the total phenolic content
238	(TPC) of onion slices (Table 1). Blanching applied for 1 min and ultrasound applied
239	for 1-3 min in general increased the TPC of dried onions. After 3 min of ultrasound
240	treatment at 42.7 μm and 61.0 $\mu m,$ for example, there was a 17%-21% TPC increase
241	in freeze dried onions (p <0.05). Samples treated by ultrasound at 61.0 μ m for 1 min

followed of hot-air drying had a 10% increase (p<0.05) compared to the untreated dried samples. The application of sonication techniques to assist in the extraction of bioactive compounds is in fact widely reported (Keenan et al., 2012). On the contrary, blanched freeze dried (BFD) and blanched hot-air dried (BHD) (3 and 5 min) samples

242

243

244

245

had lower retention of phenolics compared to the control (p<0.05). Turkmen, Sari,
and Velioglu (2005) also reported that blanching decreased the total phenolics in
squash, peas and leek.

Samples subjected to UFD (ultrasound + freeze drying) at 24.4 µm for 3 min and 249 UHD (ultrasound + hot-air drying) at 61.0 µm for 1 min resulted in greater retention 250 of phenolics than samples blanched for the same time. Also, blanching caused 251 phenolics to leach into the cooking water nearly 1-3 times more than during the 252 ultrasound treatment (Table 1). In agreement with this finding, Rawson et al. (2011) 253 reported higher retention of carotenoids and polyacetylenes in dried carrots subjected 254 to a 10 min-pre-treatment with a US-probe under pulsed mode than in dried carrots 255 blanched at 80°C for 3 min. 256

However, the relatively high temperature and longer holding time related to the 5 min-ultrasound treatment led to more severe oxidative and thermal degradation than the other ultrasound treatments. The main mechanism involved in the loss of phenolics during US treatment might be the formation of microchanels during cavitation, which facilitate the transport of food constituents, especially soluble nutrients (Mothibe, Zhang, Nsor-atindana, & Wang, 2011). In fact, Opalić et al. (2009) reported that prolonged US pre-treatment in samples with the same geometry led to a

264	decrease in total phenolics and flavonoids and accordingly in the antioxidant capacity
265	of dried apples. The degradation trend during ultrasonic processing may be also
266	related to the formation of free radicals, resulting in a potential increase in the
267	oxidation pathways (Pétrier, Combet, & Mason, 2007). The degradation related to the
268	some of the US treatments may point to additional contributory factors. The
269	ultrasound probe had direct contact with the sample, with the vessel opened to the
270	atmosphere (i.e. it was not a closed system). Therefore, oxidation could freely occur
271	at the liquid/atmosphere interface during processing. This effect would be increased in
272	samples processed for longer periods (i.e. 5 min).
273	
274	3.2 Change of total flavonoids content
275	
276	There was a significant difference of TFC (p <0.05) between ultrasound-treated
277	and blanched onions after drying compared to dried samples without pre-treatment,
278	considering either freeze-dried or hot-air dried (Table 1).
279	TFC in dried (freeze drying and hot-air drying) onion slices treated with
280	ultrasound for 1-3 min in general increased compared to the control dried samples.
281	Lower ultrasound amplitudes (24.4 μ m) combined with freeze drying and higher
282	amplitudes (61 μ m) combined with hot-air drying resulted in better retention of TFC
283	compared to other ultrasound treatment conditions or dried samples not submitted to
284	
	pre-treatment (Table 1). Such increase in the retention of TFC may arise from an

286	sonication has been attributed to the propagation of ultrasound pressure waves,
287	induced cavitation and high shear forces resulting in increased mas transfer (Rawson
288	et al., 2011). There was also a significantly ($p < 0.05$) higher retention of flavonoids in
289	UFD (24.4 μ m for 3 min) and UHD (61.0 μ m for 1 min) than BHD (1, 3 and 5 min)
290	samples. Regarding blanching, as higher the process time, lower was the retention of
291	flavonoids.

292

3.3 Change of antioxidant activity during pre-treatment

294

The antioxidant activity of pre-treated and untreated (control) dried onion slices are presented in Table 1. Sonicated samples processed at the highest amplitude (61μ m) for the longest time (5 min) and then freeze-dried as well as sonicated samples processed at the lowest amplitude (24.4 µm) for 5 min and then hot-air dried had the lowest (*p*<0.05) antioxidant activity. Generally, onions sonicated at lower amplitudes followed of freeze drying had the highest antioxidant activity (FRAP and DPPH), while longer US-times reduced the antioxidant activity (Table 1).

The DPPH and FRAP values were similar and indicate that blanching generally resulted in lesser preservation of antioxidant compounds compared to fresh and sonicated samples. The exception was the 1 min-blanching, which resulted in enhanced antioxidant activity. Some studies have suggested that blanching is generally regarded as being destructive to antioxidant components (Krishnaswamy & Raghuramulu, 1998). On the contrary, Halvorsen et al. (2006) reported increased

308	antioxidant activity for several vegetables such as carrots, spinach, mushroom,
309	asparagus, broccoli and cabbage after thermal treatment. Dewanto, Xu and Liu (2002)
310	found similar results in thermally processed tomatoes compared with fresh controls.
311	These authors hypothesised that higher antioxidant activities may be related to an
312	increase in extractability of antioxidant components following thermal processing.
313	
314	3.4 Changes of quercetin and quercetin glucosides
315	
316	The levels of the 3 major quercetins – quercetin 3,4'diglucoside (Q 3,4' D),
317	quercetin 4'glucoside (Q 4' G), and quercetin (Q) - in dried onions are presented in
318	Fig.1-3.
319	In general, the retention levels of Q 3,4' D and Q for US-freeze dried and US-hot
320	air dried samples were higher compared to the samples dried without any
321	pre-treatment. This can be ascribed to the increased extractability induced by
322	cavitation of US-treated samples (Rawson et al., 2011).
323	In BFD and BHD onions slices (1 min), the retention levels of Q were higher
324	compared to the control ($p < 0.05$). Blanching in fact does not always result in the
325	destruction of bioactive compounds. In some cases, thermal treatments can induce the
326	formation of novel compounds and improve the antioxidant capacity (Xu & Chang,
327	2008). Bunea et al. (2008) suggested that the increase in the concentrations of certain
328	bioactive compounds after thermal treatment may be explained either by their better
329	release from the food matrix as a result of breakdown of supramolecular structures

330	containing functional groups or their thermal stability. However, in BFD and BHD
331	samples (3 and 5 min), the retention levels of Q were lower compared to the control
332	(p <0.05). This is most likely due to the relatively high temperatures required for
333	blanching (70°C sustained for 3-5 min), which could lead to oxidative and thermal
334	degradation (Rawson et al., 2010).
335	Regarding the freeze drying, the ultrasound treatment at 24.4 μm for 3 min
336	resulted in significantly higher retention levels of Q 3,4' D and Q compared to BHD
337	(1-5 min) samples. With regard to the hot air drying, there were significantly higher
338	retention levels of Q 4' G and Q after US treatment at 61.0 μ m for 1 min compared to
339	BHD (1-5 min) samples.

340

341 **3.5** Phenolic compounds and antioxidant activity in water

342

Blanching retained greater amounts of phenolic compounds than ultrasound (p<0.05). The losses could be attributed to water soluble phenolics leaching into the cooking water as well as breakdown of phenolics during thermal processing. These significant losses could be attributed to water soluble phenolics leaching and transferred into the cooking water as well as breakdown of phenolics during thermal processing, which rendered water a good source of dietary phenolics (Table 2).

However, degradation of phenolics in onion slices may be a bigger problem than leaching. The percentage loss of phenolics undergoing degradation during the US-treatment was higher than the percentage loss to the cooking water. These results

352	suggest that the degradation of phenolics after sonication was greater than the losses
353	due to leaching. Some authors have indicated that pressure-cooking enhanced the
354	antioxidant composition and palatability of vegetables (Xu & Chang, 2009). However,
355	higher power could result in greater degradation (Hiemori, Koh, & Mitchell, 2009).
356	
357	3.6 Flavonoids in water
358	
359	The total flavonoid content in the cooking water revealed a trend similar to that
360	described for the TPC (Table 2). The flavonoid losses could be a result of degradation
361	or decomposition of flavonoids (Ioannou, Hafsa, Hamdi, Charbonnel, & Ghoul, 2012).
362	The ultrasound treatment resulted in a higher percentage of flavonoids being degraded
363	than retained in the cooking water (p <0.05). There was a transfer of especially Q 3,4'
364	D and Q 4' G from onions to water. This suggests that the decrease of flavonoid
365	during ultrasound was predominantly caused by breakdown of flavonoids rather than
366	their leaching. Higher ultrasound amplitudes and longer time resulted in greater
367	leaching of flavonoids.
368	
369	3.7 Quercetin and its glucosides in water
370	
371	The amounts of quercetin 3,4'diglucoside and quercetin 4' glucoside were also
372	measured in water after ultrasound and blanching treatments (Table 2). In the
373	US-treatment water, the quercetin 4'glucoside fraction was greater than the quercetin

3,4'diglucoside one. Hirota, Shimoda, and Takahama (1998) observed that the 374 monoglucoside derivative was oxidized more rapidly than its diglucoside form during 375 cooking, and that the difference in the stability between mono and diglucoside was 376 due to the presence or absence of a hydroxyl group at the C-3 position in the 377 glucosides. As the antioxidant power of flavonols substantially depends on the 378 catechol group in the B-ring and on the 3-hydroxyl group (Rodrigues, Pérez-Gregorio, 379 García-Falcón, & Simal-Gándara, 2009), the monoglucoside is likely to have a higher 380 antioxidant capacity than the diglucoside, since in the latter these two basic functions 381 are blocked. In this work, there was a lower content of flavonols in water, which was 382 however enriched with antioxidant monoglucoside forms. 383

Free quercetin was found in the onion slices (Table 2) but only in very small amounts in the cooking water (Table 2), which may correspond to its poor solubility in water and/or stronger binding to plant structures than its glycoside forms. Quercetin was not detected in water after the 5 min-ultrasound treatment, indicating that this compound is not prone to leaching.

389

390 **3.8** Antioxidant activity in water

391

The blanching water had high antioxidant (Table 2), especially for the 1 min-treatment, followed by 3 min. The cooking water from US-treated onions had low values of antioxidant activity according to both assays. The sum of antioxidant activity of the cooked onion and cooking water is different from the antioxidant activity of fresh samples, which may suggest losses in the antioxidant activity due tobreakdown or degradation of antioxidant compounds.

398

399 **3.9 Effect of ultrasound and blanching on colour**

400

Colour has a major impact on the acceptance of a product by the consumer (Kalt, 2005). Fresh onions were characterized by high luminosity ($L^* = 74.24 \pm 2.15$), with a tendency to green and yellow ($a^* = -6.23\pm0.53$ and $b^* = 22.79\pm2.8$, respectively) (Table 3). The L* of dried samples ranged from 58.3 to 93.74, b* varied from 23.7 to 33.98, and a* varied from -9.73 to -4.36, indicating the dried onions had more intense green and yellow tones than the fresh ones. All dried samples were characterized by high ΔE values, regardless of the ultrasound and blanching conditions (Table 3).

Although luminosity was similar for fresh, blanched-dried and US-dried onions, 408 sonicated samples had higher colour difference (ΔE) than blanched ones (p < 0.05). 409 The longer the sonication time (and blanching time as well), the higher was the colour 410 difference, regardless of the ultrasound amplitude. The use of ultrasound as a 411 pre-treatment to onions contributed to a significant colour change. UFD and UHD 412 (highest amplitude applied for 5 min) samples showed significantly (p < 0.05) higher 413 ΔE compared to other amplitudes and to BFD and BHD samples. These changes can 414 be explained by the formation of free radicals and sonochemicals as a result of 415 cavitation (Bermúdez-Aguirre, Mobbs, & Barbosa-Cánovas, 2011), which may 416 influence the food properties. The change of coordinate a*, in specific, can be linked 417

to the formation of colour compounds (Vadivambal & Jayas, 2007) related to
non-enzymatic browning during treatment. The greatest colour change for the samples
treated by ultrasound is also ascribed to the presence of air during processing, leading
to enzymatic browning. In the case of blanching, the colour was better preserved as
the contact between samples and air was limited.

The colour of vegetables is determined by natural colour compounds that can be 423 oxidized during the pre-treatment, and the most important factor accelerating 424 degradation is high temperature and presence of oxygen. Enzymatic browning also 425 plays an important role in colour change due to the brown pigments formed from 426 colourless polyphenols (Maskan, 2001). Table 4 shows that the b* chroma was 427 correlated to TPC and Q 4' G at 5% significance (Table 4) in the hot-air drying, but 428 429 the colour coordinates had no correlation with the bioactive compounds in freeze drying. 430

431

432 **4.** Conclusions

433

Blanching and ultrasound treatments significantly affected the colour, TPC, TFC, individual phenolic compounds and antioxidant activity of onion slices dried either by freeze drying or hot-air drying. In this work, ultrasound has been identified as an alternative pre-treatment to blanching regarding the enhancement of functional properties in onions. The ultrasound-treatment applied for 1-3 min at any amplitude (24.4-61 µm) increased (1%-20%) the content of phytochemicals regarding phenolic

440	compounds, flavonoids and quercetin. As a consequence, sonicated onion slices (1-3
441	min) featured higher antioxidant activity than blanched ones. However, the 5
442	min-sonication had a deleterious effect (more than 10% degradation) on the bioactive
443	compounds and antioxidant activity. At last, as the leaching water from onions treated
444	with ultrasound and blanching contained high amounts of antioxidants, it may be
445	considered a valuable co-product for the food and nutraceutical industries.
446	Further research is required to optimize the retention of bioactives by varying
447	ultrasonic processing parameters such as power level, treatment time and temperature,
448	allowing a successful implementation in the food industry.
449	
450	Acknowledgements
451	
452	The authors wish to acknowledge the financial support of the Food Institutional
453	Research Measure, funded by the Irish Department of Agriculture, Fisheries and
454	Food.
455	
456	Conflicts of interest
457	
458	The authors declare that there are no conflicts of interest related to this paper.
459	
460	References
461	

462 463	Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G. V. (2011). Ultrasound applications in food processing <i>Ultrasound Technologies for Food and</i>
464	Bioprocessing (pp. 65-105): Springer.
465	Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Van
466	Camp, J. (2008). Total and individual carotenoids and phenolic acids content
467	in fresh, refrigerated and processed spinach (<i>Spinacia oleracea</i> L.). Food
468	Chemistry, 108(2), 649-656.
469	Dewanto, V., Wu, X., & Liu, R. H. (2002). Processed sweet corn has higher
470	antioxidant activity. Journal of Agricultural and food Chemistry, 50(17),
471	4959-4964.
472	Doymaz, İ., Tugrul, N., & Pala, M. (2006). Drying characteristics of dill and parsley
473	leaves. Journal of Food Engineering, 77(3), 559-565.
474	Goupy, P., Hugues, M., Boivin, P., & Amiot, M. J. (1999). Antioxidant composition
475	and activity of barley (Hordeum vulgare) and malt extracts and of isolated
476	phenolic compounds. Journal of the Science of Food and Agriculture, 79(12),
477	1625-1634.
478	Hiemori, M., Koh, E., & Mitchell, A. E. (2009). Influence of cooking on anthocyanins
479	in black rice (<i>Oryza sativa</i> L. japonica var. SBR). Journal of Agricultural and
480	<i>Food Chemistry</i> , <i>57</i> (5), 1908-1914.
481	Hirota, S., Shimoda, T., & Takahama, U. (1998). Tissue and spatial distribution of
482	flavonol and peroxidase in onion bulbs and stability of flavonol glucosides
483	during boiling of the scales. Journal of Agricultural and Food Chemistry,
484	46(9), 3497-3502.
485	Ioannou, I., Hafsa, I., Hamdi, S., Charbonnel, C., & Ghoul, M. (2012). Review of the
486	effects of food processing and formulation on flavonol and anthocyanin
487	behaviour. Journal of Food Engineering, 111(2), 208-217.
488	Jabbar, S., Abid, M., Wu, T., Hashim, M. M., Saeeduddin, M., Hu, B., Zeng, X.
489	(2015). Ultrasound-Assisted Extraction of Bioactive Compounds and
490	Antioxidants from Carrot Pomace: A Response Surface Approach. Journal of
491	Food Processing and Preservation, 39(6), 1878-1888.
492	Jacobo-Velázquez, D. A., González-Agüero, M., & Cisneros-Zevallos, L. (2015).
493	Cross-talk between signaling pathways: the link between plant secondary
494	metabolite production and wounding stress response. Scientific Reports, 5,
495	8608.
496	Kadkhodaee, R., & Povey, M. J. (2008). Ultrasonic inactivation of Bacillus α-amylase.
497	I. Effect of gas content and emitting face of probe. Ultrasonics Sonochemistry,
498	15(2), 133-142.
499	Kalt, W. (2005). Effects of production and processing factors on major fruit and
500	vegetable antioxidants. Journal of Food Science, 70(1).
501	Keenan, D. F., Tiwari, B. K., Patras, A., Gormley, R., Butler, F., & Brunton, N. P.
502	(2012). Effect of sonication on the bioactive, quality and rheological
503	characteristics of fruit smoothies. International Journal of Food Science &
504	Technology, 47(4), 827-836.
505	Knorr, D., Zenker, M., Heinz, V., & Lee, DU. (2004). Applications and potential of

506	ultrasonics in food processing. Trends in Food Science & Technology, 15(5),
507	261-266.
508	Krishnaswamy, K., & Raghuramulu, N. (1998). Bioactive phytochemicals with
509	emphasis on dietary practices. Indian Journal of Medical Research, 108, 167.
510	Lin, JY., & Tang, CY. (2007). Determination of total phenolic and flavonoid
511	contents in selected fruits and vegetables, as well as their stimulatory effects
512	on mouse splenocyte proliferation. <i>Food Chemistry</i> , 101(1), 140-147.
513	Marcuzzo, E., Peressini, D., Debeaufort, F., & Sensidoni, A. (2010). Effect of
514	ultrasound treatment on properties of gluten-based film. Innovative Food
515	Science & Emerging Technologies, 11(3), 451-457.
516	Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and
517	microwave drying. Journal of Food Engineering, 48(2), 169-175.
518	Mieszczakowska-Frąc, M., Dyki, B., & Konopacka, D. (2016). Effects of ultrasound
519	on polyphenol retention in apples after the application of predrying treatments
520	in liquid medium. Food and Bioprocess Technology, 9(3), 543-552.
521	Mothibe, K. J., Zhang, M., Nsor-atindana, J., & Wang, YC. (2011). Use of ultrasound
522	pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life
523	extension. Drying Technology, 29(14), 1611-1621.
524	Negi, P., & Roy, S. (2000). Effect of blanching and drying methods on β-carotene,
525	ascorbic acid and chlorophyll retention of leafy vegetables. LWT-Food Science
526	and Technology, 33(4), 295-298.
527	Nowacka, M., & Wedzik, M. (2016). Effect of ultrasound treatment on microstructure,
528	colour and carotenoid content in fresh and dried carrot tissue. Applied
529	Acoustics, 103, 163-171.
530	Opalić, M., Domitran, Z., Komes, D., Belščak, A., Horžić, D., & Karlović, D. (2009).
531	The effect of ultrasound pre-treatment and air-drying on the quality of dried
532	apples. Czech Journal of Food Sciences, 27(4), 297-300.
533	Pétrier, C., Combet, E., & Mason, T. (2007). Oxygen-induced concurrent ultrasonic
534	degradation of volatile and non-volatile aromatic compounds. Ultrasonics
535	Sonochemistry, 14(2), 117-121.
536	Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of
537	<i>Food Engineering, 49</i> (4), 311-319.
538	Rawson, A., Koidis, A., Rai, D. K., Tuohy, M., & Brunton, N. (2010). Influence of
539	sous vide and water immersion processing on polyacetylene content and
540	instrumental color of parsnip (Pastinaca sativa) disks. Journal of Agricultural
541	and Food Chemistry, 58(13), 7740-7747.
542	Rawson, A., Tiwari, B., Tuohy, M., O'Donnell, C., & Brunton, N. (2011). Effect of
543	ultrasound and blanching pretreatments on polyacetylene and carotenoid
544	content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry,
545	18(5), 1172-1179.
546	Rodrigues, A., Pérez-Gregorio, M., García-Falcón, M., & Simal-Gándara, J. (2009).
547	Effect of curing and cooking on flavonols and anthocyanins in traditional
548	varieties of onion bulbs. Food Research International, 42(9), 1331-1336.
549	Sarsavadia, P., Sawhney, R., Pangavhane, D., & Singh, S. (1999). Drying behaviour of

brined onion slices. Journal of Food Engineering, 40(3), 219-226.

- Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of
 total phenols and other oxidation substrates and antioxidants by means of
 folin-ciocalteu reagent. *Methods in Enzymology*, 299, 152-178.
- Stratil, P., Klejdus, B., & Kuban, V. (2006). Determination of total content of phenolic
 compounds and their antioxidant activity in vegetables evaluation of
 spectrophotometric methods. Journal of agricultural and food chemistry, 54(3),
 607-616.
- Tiwari, B., Patras, A., Brunton, N., Cullen, P., & O'Donnell, C. (2010). Effect of
 ultrasound processing on anthocyanins and color of red grape juice. *Ultrasonics Sonochemistry*, 17(3), 598-604.
- Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the
 complex and real polyphenolic composition: towards a total phenolic index
 using high-performance liquid chromatography. *Journal of Chromatography A*, *1018*(1), 29-40.
- Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on
 total phenolics and antioxidant activity of selected green vegetables. *Food Chemistry*, 93(4), 713-718.
- Vadivambal, R., & Jayas, D. (2007). Changes in quality of microwave-treated
 agricultural products—a review. *Biosystems Engineering*, 98(1), 1-16.
- Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J.,
 García-Segovia, P., Di Scala, K. (2012). Effect of temperature and air velocity
 on drying kinetics, antioxidant capacity, total phenolic content, colour, texture
 and microstructure of apple (*var. Granny Smith*) slices. *Food Chemistry*, *132*(1), 51-59.
- Xu, B., & Chang, S. K. (2008). Total phenolics, phenolic acids, isoflavones, and
 anthocyanins and antioxidant properties of yellow and black soybeans as
 affected by thermal processing. *Journal of Agricultural and Food Chemistry*,
 56(16), 7165-7175.
- Xu, B., & Chang, S. K. (2009). Total phenolic, phenolic acid, anthocyanin,
 flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black
 beans (*Phaseolus vulgaris* L.) as affected by thermal processing. *Journal of Agricultural and Food Chemistry*, 57(11), 4754-4764.
- 583

550

FREEZE DRYING	TPC	Retention (%)	TFC	Retention (%)	FRAP	Retention (%)	DPPH	Retention (%)
Control	9.21±0.82 ^{cdef}		4.10±0.08 ^{bcd}		11.05±0.99°		4.42 ± 0.82^{bc}	
UFD 24.4 µm 1 min	9.65 ± 0.24^{bcd}	104.87%	4.19 ± 0.18^{abc}	102.08%	11.58±0.29 ^{bc}	104.87%	5.21 ± 0.84^{abc}	117.98%
UFD 42.7 µm 1 min	9.48 ± 0.40^{bcde}	102.99%	4.13±0.07 ^{abcd}	100.59%	11.38±0.48 ^{bc}	102.99%	5.12±0.83 ^{abc}	115.87%
UFD 61.0 µm 1 min	9.31±0.37 ^{cdef}	101.13%	4.15±0.03 ^{abcd}	101.15%	11.17±0.44 ^{bc}	101.13%	5.03 ± 0.8^{abc}	113.78%
BFD 1 min	9.22±0.10 ^{cdef}	100.18%	4.16 ± 0.10^{abcd}	101.27%	$11.07 \pm 0.12^{\circ}$	100.18%	$4.98{\pm}0.84^{b}$	112.71%
UFD 24.4 µm 3 min	$11.18{\pm}1.27^{a}$	121.41%	4.47 ± 0.15^{a}	108.93%	13.41±1.52 ^a	121.41%	$6.04{\pm}0.89^{a}$	136.59%
UFD 42.7 µm 3 min	10.81 ± 0.43^{ab}	117.48%	4.42 ± 0.24^{ab}	107.65%	12.98 ± 0.52^{a}	117.48%	$5.84{\pm}0.88^{ab}$	132.16%
UFD 61.0 µm 3 min	9.76 ± 0.56^{abc}	106.06%	4.27 ± 0.56^{abc}	104.06%	11.72 ± 0.68^{bc}	106.06%	$5.27{\pm}0.85^{abc}$	119.32%
BFD 3 min	8.19 ± 0.11^{defg}	88.96%	3.81 ± 0.11^{bcde}	92.83%	9.83±0.14 ^d	88.96%	4.40 ± 0.76^{bc}	100.08%
UFD 24.4 µm 5 min	8.09 ± 0.07^{efg}	87.91%	3.76 ± 0.06^{cdef}	91.71%	9.71 ± 0.09^{d}	87.91%	4.37 ± 0.75^{abc}	98.90%
UFD 42.7 µm 5 min	7.68 ± 0.06^{g}	83.45%	3.49 ± 0.10^{ef}	84.96%	$9.22{\pm}0.07^{de}$	83.45%	$4.15 \pm 0.70^{\circ}$	93.88%
UFD 61.0 µm 5 min	7.33 ± 0.14^{g}	79.61%	$3.15{\pm}0.06^{\rm f}$	76.75%	8.79 ± 0.17^{e}	79.61%	3.96±0.63°	89.56%
BFD 5 min	$7.86{\pm}0.15^{fg}$	85.41%	3.57 ± 0.30^{def}	86.98%	$9.43{\pm}0.18^{\text{de}}$	85.41%	$4.25 \pm 0.71^{\circ}$	96.08%
HOT-AIR DRYING	TPC	Retention (%)	TFC	Retention (%)	FRAP	Retention (%)	DPPH	Retention (%)
Control	7.76±0.39 ^{abc}		3.34 ± 0.36^{bcde}		9.31±0.47 ^b		3.82 ± 0.67^{bc}	
UHD 24.4 µm 1 min	6.50 ± 0.37^{def}	83.84%	3.35 ± 0.20^{bcde}	100.12%	7.80 ± 0.45^{ef}	83.84%	3.36 ± 0.70^{de}	87.93%
UHD 42.7µm 1 min	7.67 ± 0.47^{abc}	98.88%	3.66 ± 0.18^{bc}	109.43%	9.20 ± 0.56^{bc}	98.88%	3.96 ± 0.73^{b}	103.70%
UHD 61.0 µm 1 min	8.58±0.44a	110.65%	4.34 ± 0.27^{a}	130.04%	10.30±0.53 ^a	110.65%	4.43 ± 0.87^{a}	116.05%
BHD 1 min	7.93 ± 0.14^{ab}	102.24%	3.90 ± 0.31^{b}	116.71%	9.52 ± 0.17^{b}	102.24%	4.09 ± 0.78^{ab}	107.23%
UHD 24.4 µm 3 min	6.69 ± 0.65^{cde}	86.26%	3.45 ± 0.34^{bcd}	103.15%	8.03 ± 0.78^{e}	86.26%	3.45 ± 0.69^{cd}	90.47%
UHD 42.7 µm 3 min	7.34 ± 0.26^{bcd}	94.58%	3.79 ± 0.35^{bc}	113.57%	8.80 ± 0.31^{cd}	94.58%	3.79 ± 0.76^{bc}	99.19%
UHD 61.0 µm 3 min	7.74 ± 0.27^{abc}	99.83%	3.83±0.14ab	114.63%	9.29±0.33 ^b	99.83%	4.00 ± 0.79^{b}	104.70%
BHD 3 min	$6.23 \pm 0.17^{\text{def}}$	80.27%	3.10 ± 0.33^{cdef}	92.67%	7.47 ± 0.21^{fg}	80.27%	3.21 ± 0.62^{de}	84.19%
UHD 24.4 µm 5 min	5.50 ± 0.37^{f}	70.94%	$2.70{\pm}0.17^{f}$	80.85%	6.60 ± 0.45^{h}	70.94%	$2.84{\pm}0.54^{\rm f}$	74.40%
UHD 42.7 µm 5 min	6.34 ± 0.26^{def}	81.69%	$2.88{\pm}0.08^{\text{def}}$	86.35%	7.60 ± 0.3^{ef}	81.69%	3.27 ± 0.58^{de}	85.67%
UHD 61.0 µm 5 min	7.25 ± 0.23^{bcd}	93.46%	3.34 ± 0.27^{bcde}	100.11%	8.70 ± 0.27^{d}	93.46%	3.74 ± 0.68^{bc}	98.02%
BHD 5 min	5.93 ± 0.14^{ef}	76.46%	$2.77 \pm 0.32^{\text{ef}}$	82.84%	7.12 ± 0.17^{g}	76.46%	$3.06 \pm 0.55^{\text{ef}}$	80.19%

 Table 1 – Influence of ultrasound and blanching treatments followed of drying on the total phenolics content (TPC), total flavonoid content (TFC) and antioxidant activity of onion slices.

For each row, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean \pm standard deviation in dry weight (%) for n=3. TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight). FRAP and DPPH = Antioxidant activity (mg Trolox/g DW). UFD = ultrasound pre-treatment followed of freeze drying; UHD = ultrasound pre-treatment followed of hot-air drying; BFD = blanching followed of hot-air drying.

*Blanching was carried out at 70°C, Hot-air drying at 60°C and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.

Treatment	TPC	TFC	Q 3,4' D	Q 4' G	Q	FRAP	DPPH
UFD 24.4 µm 1 min	0.66 ± 0.03^{e}	0.22 ± 0.01^{b}	$10.43 \pm 0.31^{\text{def}}$	55.56±5.42 ^{de}	4.42 ± 0.71^{cd}	0.81 ± 0.04^{d}	0.47 ± 0.03^{abcd}
UFD 42.7 µm 1 min	0.96 ± 0.01^{d}	$0.24{\pm}0.01^{b}$	$11.83 \pm 0.13 d^{e}$	61.97 ± 1.24^{d}	4.58 ± 0.26^{cd}	$0.79{\pm}0.06^{d}$	0.46 ± 0.11^{bcd}
UFD 61.0 µm 1 min	1.31 ± 0.07^{c}	$0.26{\pm}0.00^{\rm b}$	17.67 ± 0.04^{d}	92.31±1.31 ^c	4.71 ± 0.47^{c}	$0.78{\pm}0.05^{d}$	0.45 ± 0.12^{bcd}
BFD 1 min	1.52 ± 0.02^{a}	0.71 ± 0.29^{a}	225.05 ± 3.00^{a}	408.37 ± 2.50^{a}	63.0 ± 0.92^{a}	1.1 ± 0.05^{a}	$0.60{\pm}0.08^{a}$
UFD 24.4 µm 3 min	0.43 ± 0.02^{g}	$0.06 \pm 0.01^{\circ}$	3.67 ± 0.15^{gf}	32.31 ± 2.20^{f}	1.24 ± 0.12^{cde}	$0.78{\pm}0.18^{d}$	0.45 ± 0.16^{bcd}
UFD 42.7 µm 3 min	0.53 ± 0.01^{f}	$0.06 \pm 0.00^{\circ}$	3.83 ± 0.31^{gf}	$35.6 \pm 5.94^{\mathrm{f}}$	1.58 ± 0.83^{cde}	0.93 ± 0.06^{bc}	$0.54{\pm}0.12^{ab}$
UFD 61.0 µm 3 min	0.63 ± 0.02^{e}	$0.09 \pm 0.01^{\circ}$	7.43 ± 0.02^{efg}	41.97 ± 1.84^{ef}	1.67 ± 0.14^{cde}	$0.91 \pm 0.08^{\circ}$	0.53 ± 0.15^{abc}
BFD 3 min	1.35 ± 0.02^{b}	$0.24{\pm}0.01^{b}$	208.38 ± 3.60^{b}	325.03±12.43 ^b	38.05 ± 3.38^{b}	$0.98{\pm}0.07^{b}$	0.53 ± 0.12^{abc}
UFD 24.4 µm 5 min	nd	nd	nd	nd	nd	nd	nd
UFD 42.7 µm 5 min	nd	nd	nd	nd	nd	nd	nd
UFD 61.0 µm 5 min	nd	nd	nd	nd	nd	nd	nd
<mark>BFD</mark> 5 min	$1.34\pm0.03^{\circ}$	0.21 ± 0.00^{b}	$175.5 \pm 1.60^{\circ}$	310.70±19.10 ^b	35.1 ± 1.58^{b}	0.94 ± 0.10^{bc}	0.51 ± 0.06^{abc}
Treatment	TPC	TFC	Q 3,4' D	Q 4' G	Q	FRAP	DPPH
UHD 24.4 µm 1 min	$0.05{\pm}0.01^{e}$	$0.01 \pm 0.00^{\circ}$	nd	7.02 ± 1.86^{de}	7.5 ± 1.05^{cd}	nd	nd
UHD 42.7 µm 1 min	$0.08{\pm}0.02^{e}$	$0.01{\pm}0.0^{c}$	nd	7 02 1 21d	17.0 ± 2.1^{b}	nd	1
	0.08 ± 0.02	0.01 ± 0.0	na	7.82 ± 1.31^{d}	$1/.0\pm 2.1$	nd	nd
UHD 61.0 µm 1 min	1.01 ± 0.03^{b}	0.01 ± 0.0 $0.03\pm0.00^{\circ}$	nd	$7.82\pm1.31^{\circ}$ 11.65±0.22°	17.0 ± 2.1 16.51±1.95 ^b	nd	nd nd
UHD 61.0 µm 1 min	1.01 ± 0.03^{b}	0.03 ± 0.00^{c}	nd	11.65 ± 0.22^{c}	16.51 ± 1.95^{b}	nd	nd
UHD 61.0 μm 1 min <mark>BHD</mark> 1 min	$\frac{1.01{\pm}0.03^{\rm b}}{1.32{\pm}0.07^{\rm a}}$	$\begin{array}{c} 0.03{\pm}0.00^{c} \\ 0.37{\pm}0.08^{a} \end{array}$	nd nd	11.65±0.22 ^c 306.4±23.50 ^a	$\frac{16.51{\pm}1.95^{b}}{31.0{\pm}2.2^{a}}$	nd 0.8±0.02 ^a	nd 0.50±0.03ª
UHD 61.0 μm 1 min <mark>BHD</mark> 1 min UHD 24.4 μm 3 min	1.01±0.03 ^b 1.32±0.07 ^a nd	0.03 ± 0.00^{c} 0.37 ± 0.08^{a} nd	nd nd nd	11.65±0.22 ^c 306.4±23.50 ^a nd	16.51±1.95 ^b 31.0±2.2 ^a nd	nd 0.8±0.02 ^a nd	nd 0.50±0.03 ^a nd nd nd
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min	1.01±0.03 ^b 1.32±0.07 ^a nd nd	0.03±0.00 ^c 0.37±0.08 ^a nd nd	nd nd nd nd	11.65±0.22 ^c 306.4±23.50 ^a nd nd	16.51±1.95 ^b 31.0±2.2 ^a nd nd	nd 0.8±0.02 ^a nd nd	nd 0.50±0.03 ^a nd nd
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min	1.01±0.03 ^b 1.32±0.07 ^a nd nd nd	0.03±0.00 ^c 0.37±0.08 ^a nd nd nd	nd nd nd nd nd	11.65±0.22 ^c 306.4±23.50 ^a nd nd nd	16.51±1.95 ^b 31.0±2.2 ^a nd nd nd	nd 0.8±0.02 ^a nd nd nd	nd 0.50±0.03 ^a nd nd nd
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min BHD 3 min	$1.01\pm0.03^{b} \\ 1.32\pm0.07^{a} \\ nd \\ nd \\ nd \\ 0.41\pm0.08^{c}$	$\begin{array}{c} 0.03{\pm}0.00^{c}\\ 0.37{\pm}0.08^{a}\\ nd\\ nd\\ nd\\ 0.26{\pm}0.03^{b} \end{array}$	nd nd nd nd 103.86±11.2 ^a	$11.65\pm0.22^{c} \\ 306.4\pm23.50^{a} \\ nd \\ nd \\ nd \\ 268.7\pm19.36^{b} \\ \end{array}$	$\begin{array}{c} 16.51{\pm}1.95^{b}\\ 31.0{\pm}2.2^{a}\\ nd\\ nd\\ nd\\ 9.55{\pm}1.98^{c} \end{array}$	nd 0.8±0.02 ^a nd nd nd 0.39±0.03 ^b	nd 0.50±0.03 ^a nd nd 0.42±0.1 ^{abc}
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min BHD 3 min UHD 24.4 μm 5 min	1.01±0.03 ^b 1.32±0.07 ^a nd nd nd 0.41±0.08 ^c nd	$\begin{array}{c} 0.03 {\pm} 0.00^{c} \\ 0.37 {\pm} 0.08^{a} \\ \text{nd} \\ \text{nd} \\ \text{nd} \\ 0.26 {\pm} 0.03^{b} \\ \text{nd} \end{array}$	nd nd nd nd 103.86±11.2 ^a nd	11.65±0.22 ^c 306.4±23.50 ^a nd nd nd 268.7±19.36 ^b nd	16.51±1.95 ^b 31.0±2.2 ^a nd nd nd 9.55±1.98 ^c nd	nd 0.8 ± 0.02^{a} nd nd nd 0.39 ± 0.03^{b} nd	nd 0.50 ± 0.03^{a} nd nd nd 0.42 ± 0.1^{abc} nd

 Table 2 – Effect of ultrasound and blanching treatments followed of drying on the bioactive compounds and antioxidant activity of the leaching water from onion slices.

For each row, values followed by the same letter are not statistically different at p < 0.05. Values are expressed as mean \pm standard deviation in dry weight (%) for n=3. TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight). Q 3,4' D = quercetin 3,4'glucoside (μ g/g); Q 4' G = quercetin 4'glucoside (μ g/g); Q = quercetin (μ g/g). FRAP and DPPH = Antioxidant activity (mg Trolox/g DW). UFD = ultrasound pre-treatment followed of freeze drying; BHD = blanching followed of hot-air drying.

*Blanching was carried out at 70°C, Hot-air drying at 60°C and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.

FREEZE DRYING	L*	a*	b*	ΔΕ
Control	74.24 ± 2.15^{e}	-6.23±0.53 ^a	$22.79 \pm 2.80^{\circ}$	
UFD 24.4 µm 1 min	$80.8{\pm}0.60^{cd}$	-8.84 ± 0.62^{ef}	31.07 ± 2.17^{a}	10.88 ± 1.13^{g}
UFD 42.7 µm 1min	81.51 ± 1.21^{bcd}	$-9.21 \pm 0.19^{\text{fg}}$	29.78 ± 1.66^{ab}	11.51 ± 1.02^{g}
UFD 61.0 µm 1min	92.41 ± 0.66^{a}	-9.01 ± 0.43^{fg}	29.25 ± 0.78^{ab}	$19.47 \pm 0.50^{\circ}$
<mark>BFD</mark> 1 min	86.51 ± 0.38^{bc}	-7.08 ± 0.05^{b}	$25.72 \pm 0.60^{\circ}$	12.64 ± 0.47^{e}
UFD 24.4 µm 3 min	81.5 ± 1.54^{bcd}	-8.98±0.83 ^{ef}	31.80 ± 1.09^{a}	11.90 ± 1.15^{fg}
UFD 42.7 µm 3 min	82.35 ± 1.32^{bcd}	-9.32±0.21 ^{gh}	29.98 ± 0.93^{ab}	$12.27 \pm 0.82^{\text{ef}}$
UFD 61.0 µm 3 min	92.41 ± 0.30^{a}	-8.21±0.13 ^{de}	29.25 ± 0.06^{ab}	$19.31 \pm 0.16^{\circ}$
<mark>BFD</mark> 3 min	89.34±0.61 ^{bc}	-7.28±0.18 ^{bc}	27.61 ± 0.50^{ab}	15.97 ± 0.43^{d}
UFD 24.4 µm 5 min	91.85 ± 0.45^{a}	-9.30±1.04 ^{hi}	32.80 ± 2.07^{a}	20.49 ± 1.19^{b}
UFD 42.7 µm 5 min	91.51 ± 1.18^{ab}	-9.73 ± 0.63^{i}	33.97 ± 5.83^{a}	20.87 ± 2.55^{b}
UFD 61.0 µm 5 min	93.74±0.11 ^a	-7.97±0.45 ^{cd}	33.82 ± 4.76^{a}	$22.47{\pm}1.74^{a}$
BFD 5 min	$88.06{\pm}0.8^{ m ab}$	-7.44 ± 0.20^{bc}	29.93 ± 0.60^{abc}	15.60 ± 0.53^{d}
HOT-AIR DRYING	L*	a*	b*	ΔE
Control	$74.24 \pm 2.15^{\circ}$	-6.23±0.53 ^b	22.79 ± 2.80^{de}	
UHD 24.4µm 1 min	85.8 ± 1.61^{b}	-7.84 ± 0.51^{cd}	30.07 ± 0.98^{a}	10.06 ± 1.030^{k}
UHD 42.7 µm 1 min				
$011D + 2.7 \mu m 1 mm$	82.501 ± 0.36^{b}	-8.21 ± 0.08^{d}	28.78 ± 0.16^{ab}	$10.74{\pm}0.20^{i}$
UHD 61.0 μm 1 min	$\begin{array}{c} 82.501{\pm}0.36^{\rm b} \\ 90.41{\pm}0.09^{\rm a} \end{array}$		$\begin{array}{c} 28.78 \pm 0.16^{ab} \\ 28.25 \pm 0.51^{ab} \end{array}$	10.74±0.20 ⁱ 17.06±0.23 ^c
		-8.21 ± 0.08^{d}		
UHD 61.0 µm 1 min	90.41±0.09 ^a	-8.21±0.08 ^d -6.18±0.08 ^b	28.25 ± 0.51^{ab}	17.06±0.23 ^c
UHD 61.0 µm 1 min <mark>BHD</mark> 1 min	90.41±0.09 ^a 59.1±0.34 ^e	-8.21 ± 0.08^{d} -6.18 ± 0.08^{b} -6.04 ± 0.29^{b}	28.25±0.51 ^{ab} 23.71±0.78d ^e	$\begin{array}{c} 17.06{\pm}0.23^{c} \\ 15.50{\pm}0.45^{f} \end{array}$
UHD 61.0 µm 1 min BHD 1 min UHD 24.4 µm 3 min	$\begin{array}{c} 90.41{\pm}0.09^{a} \\ 59.1{\pm}0.34^{e} \\ 85.98{\pm}0.88^{b} \end{array}$	-8.21±0.08 ^d -6.18±0.08 ^b -6.04±0.29 ^b -7.98±0.48 ^{cd}	$\begin{array}{c} 28.25{\pm}0.51^{ab}\\ 23.71{\pm}0.78d^{e}\\ 30.51{\pm}0.65^{a} \end{array}$	$\begin{array}{c} 17.06{\pm}0.23^{c} \\ 15.50{\pm}0.45^{f} \\ 10.46{\pm}0.67^{j} \end{array}$
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min	$\begin{array}{c} 90.41{\pm}0.09^{a} \\ 59.1{\pm}0.34^{e} \\ 85.98{\pm}0.88^{b} \\ 82.85{\pm}1.02^{b} \end{array}$	$\begin{array}{c} -8.21 {\pm} 0.08^{d} \\ -6.18 {\pm} 0.08^{b} \\ -6.04 {\pm} 0.29^{b} \\ -7.98 {\pm} 0.48^{cd} \\ -8.62 {\pm} 0.03^{de} \end{array}$	$\begin{array}{c} 28.25 \pm 0.51^{ab} \\ 23.71 \pm 0.78 d^{e} \\ 30.51 \pm 0.65^{a} \\ 28.98 \pm 0.91^{ab} \end{array}$	$\begin{array}{c} 17.06 {\pm} 0.23^{c} \\ 15.50 {\pm} 0.45^{f} \\ 10.46 {\pm} 0.67^{j} \\ 10.87 {\pm} 0.65^{h} \end{array}$
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min	$\begin{array}{c} 90.41{\pm}0.09^{a} \\ 59.1{\pm}0.34^{e} \\ 85.98{\pm}0.88^{b} \\ 82.85{\pm}1.02^{b} \\ 90.94{\pm}1.37^{a} \end{array}$	-8.21±0.08 ^d -6.18±0.08 ^b -6.04±0.29 ^b -7.98±0.48 ^{cd} -8.62±0.03 ^{de} -6.43±0.51 ^{bc}	$\begin{array}{c} 28.25 \pm 0.51^{ab} \\ 23.71 \pm 0.78 d^{e} \\ 30.51 \pm 0.65^{a} \\ 28.98 \pm 0.91^{ab} \\ 28.52 \pm 0.76^{ab} \end{array}$	$\begin{array}{c} 17.06 {\pm} 0.23^{c} \\ 15.50 {\pm} 0.45^{f} \\ 10.46 {\pm} 0.67^{j} \\ 10.87 {\pm} 0.65^{h} \\ 17.66 {\pm} 0.88^{b} \end{array}$
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min BHD 3 min	$\begin{array}{c} 90.41 {\pm} 0.09^{a} \\ 59.1 {\pm} 0.34^{e} \\ 85.98 {\pm} 0.88^{b} \\ 82.85 {\pm} 1.02^{b} \\ 90.94 {\pm} 1.37^{a} \\ 58.29 {\pm} 0.46^{e} \end{array}$	$\begin{array}{c} -8.21 \pm 0.08^{d} \\ -6.18 \pm 0.08^{b} \\ -6.04 \pm 0.29^{b} \\ -7.98 \pm 0.48^{cd} \\ -8.62 \pm 0.03^{de} \\ -6.43 \pm 0.51^{bc} \\ -5.85 \pm 0.22^{b} \\ -8.40 \pm 0.28^{d} \\ -8.82 \pm 0.38^{de} \end{array}$	$\begin{array}{c} 28.25 \pm 0.51^{ab} \\ 23.71 \pm 0.78 d^{e} \\ 30.51 \pm 0.65^{a} \\ 28.98 \pm 0.91^{ab} \\ 28.52 \pm 0.76^{ab} \\ 25.60 \pm 0.22^{bc} \end{array}$	$\begin{array}{c} 17.06 \pm 0.23^{c} \\ 15.50 \pm 0.45^{f} \\ 10.46 \pm 0.67^{j} \\ 10.87 \pm 0.65^{h} \\ 17.66 \pm 0.88^{b} \\ 15.70 \pm 0.33^{e} \end{array}$
UHD 61.0 μm 1 min BHD 1 min UHD 24.4 μm 3 min UHD 42.7 μm 3 min UHD 61.0 μm 3 min BHD 3 min UHD 24.4 μm 5 min	$\begin{array}{c} 90.41{\pm}0.09^{a}\\ 59.1{\pm}0.34^{e}\\ 85.98{\pm}0.88^{b}\\ 82.85{\pm}1.02^{b}\\ 90.94{\pm}1.37^{a}\\ 58.29{\pm}0.46^{e}\\ 86.28{\pm}0.95^{b} \end{array}$	$\begin{array}{c} -8.21 \pm 0.08^d \\ -6.18 \pm 0.08^b \\ -6.04 \pm 0.29^b \\ -7.98 \pm 0.48^{cd} \\ -8.62 \pm 0.03^{de} \\ -6.43 \pm 0.51^{bc} \\ -5.85 \pm 0.22^b \\ -8.40 \pm 0.28^d \end{array}$	$\begin{array}{c} 28.25 \pm 0.51^{ab} \\ 23.71 \pm 0.78 d^{e} \\ 30.51 \pm 0.65^{a} \\ 28.98 \pm 0.91^{ab} \\ 28.52 \pm 0.76^{ab} \\ 25.60 \pm 0.22^{bc} \\ 31.05 \pm 1.86^{a} \end{array}$	$\begin{array}{c} 17.06 \pm 0.23^{c} \\ 15.50 \pm 0.45^{f} \\ 10.46 \pm 0.67^{j} \\ 10.87 \pm 0.65^{h} \\ 17.66 \pm 0.88^{b} \\ 15.70 \pm 0.33^{e} \\ 14.76 \pm 1.03^{g} \end{array}$

Table 3 – Colour of freeze dried and hot-air dried onion slices subjected to blanching and ultrasound pre-treatments.

For each row, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean \pm standard deviation in dry weight (%) for n=3. UFD = ultrasound pre-treatment followed of freeze drying; UHD = ultrasound pre-treatment followed of hot-air drying; BFD = blanching followed of freeze drying; BHD = blanching followed of hot-air drying.

*Blanching was carried out at 70°C, Hot-air drying at 60° C and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.

FREEZE DRYING	TPC	TFC	Q 3,4' D	Q 4' G	Q	L	a	b
TPC	1.00	0.83	0.63	0.58	0.21	-0.55	-0.06	-0.23
TFC		1.00	0.52	0.66	0.34	-0.50	-0.03	-0.33
Q 3,4' D			1.00	0.19	0.09	-0.57	-0.01	-0.31
Q 4' G				1.00	0.47	-0.22	-0.20	-0.04
Q					1.00	-0.11	-0.13	-0.08
L*						1.00	-0.07	0.45*
a*							1.00	-0.54*
b*							L	1.00
HOT-AIR DRYING	TPC	TFC	Q 3,4' D	Q 4' G	Q	L	a	b
TPC	1.00	0.79	0.75	0.83	0.75	0.17	0.05	0.46*
TFC		1.00	0.68	0.81	0.64 🖌	0.23	-0.05	-0.27
Q 3,4' D			1.00	0.77	0.67	0.30	-0.25	-0.23
Q 4' G				1.00	0.65	0.01	-0.05	0.52*
Q					1.00	0.51	-0.17	-0.06
L*						1.00	-0.44*	0.64
a*					Υ.		1.00	-0.32
b*	1 11							1.00

Table 4 – Correlation matrix of colour and chemical indices of freeze dried and hot-air dried	
onion slices.	

Chromameter describes colour in three coordinates: L, lightness, from 0 (black) to 100 (white); a, from -60 (green) to 60 (red); and b, from -60 (blue) to 60 (yellow).

TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight); TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight); Q 4' G = quercetin 4'glucoside ($\mu g/g$); Q 3,4' D = quercetin 3,4'glucoside ($\mu g/g$); Q = quercetin ($\mu g/g$).

* Represents significance at 5%.

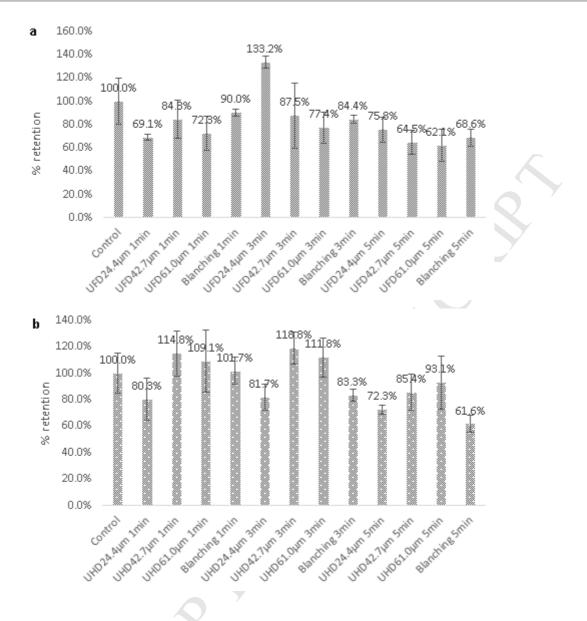


Figure 1 – Retention of quercetin 3,4'-diglucoside after different pretreatments followed of (a) freeze drying and (b) hot-air drying.

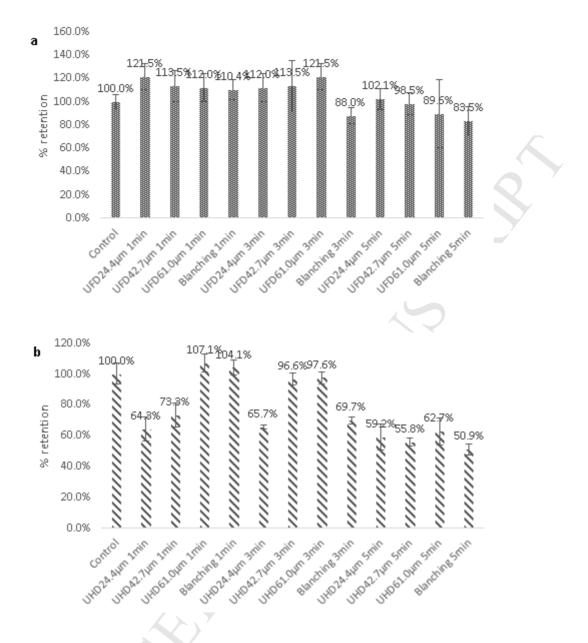


Figure 2 – Retention of quercetin 4'-glucoside after different pretreatments followed of (a) freeze drying and (b) hot-air drying.

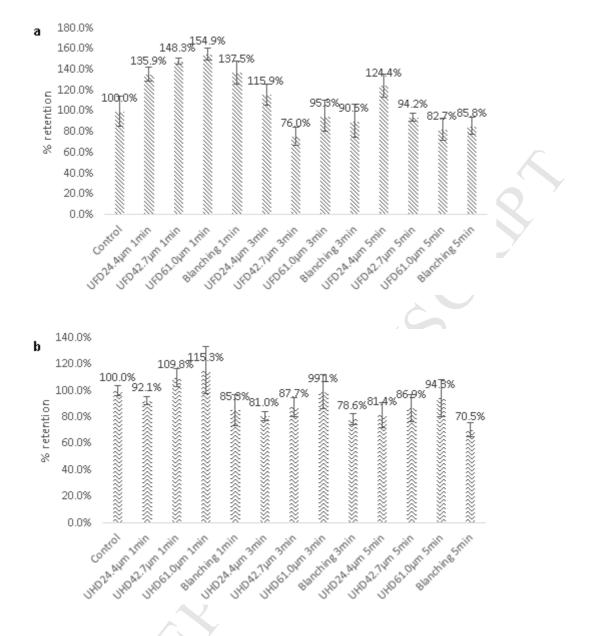


Figure 3 – Retention of quercetin after different pretreatments followed of (a) freeze drying and (b) hot-air drying.

Highlights

- 1. The US-treatment improved the retention of bioactive compounds in dried onions.
- 2. The colour change was similar between blanched and US-treated dried onions.
- 3. US-freeze dried onions had higher retention of phenolics than US-hot air dried.
- 4. Dried onions had higher antioxidant activity when sonicated for 1-3 min.