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Impact of ultrasound and blanching on functional properties of hot-air dried and 1 

freeze dried onions 2 

 3 

ABSTRACT: The aim of this study was to investigate the effect of ultrasonic 4 

treatment and blanching prior to hot-air drying and freeze drying of onions on the 5 

retention of bioactive compounds (total phenolics, total flavonoids, and quercetin). 6 

Onion slices were treated either with ultrasound at 20 kHz and different amplitude 7 

levels (24.4-61 µm) for 1, 3 and 5 min or with blanching using hot water at 70oC for 8 

1, 3 and 5 min. The ultrasound treatment improved the retention of bioactive 9 

compounds (especially quercetin) and accordingly the antioxidant activity in onion 10 

slices dried either by freeze drying or hot-air drying. This is ascribed to the 11 

destruction of the original tissue structure by ultrasound and thus higher extraction 12 

ability of the studied phytochemicals. Comparing ultrasound treated samples, freeze 13 

dried onions had a higher retention of bioactive compounds than hot-air dried ones. 14 

Blanched and ultrasound treated dried onions exhibited similar colour change. 15 

Therefore, ultrasound treatment is a potential alternative to conventional blanching 16 

before drying of onion slices. 17 

Keywords: Ultrasound treatment; Thermal blanching; Antioxidant activity; Drying; 18 

Colour.  19 

 20 

1. INTRODUCTION  21 

 22 
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Dried onions are found in different forms – flaked, minced, chopped and 23 

powdered – of extensive demand in several parts of the world (Sarsavadia, Sawhney, 24 

Pangavhane, & Singh, 1999).  25 

Sonication is a promising non-thermal technology in the food industry (Tiwari et 26 

al., 2010). Ultrasound treatments (US treatments) are used to induce desirable 27 

chemical and physical changes in foods and can support several processes, such as 28 

drying, osmotic dehydration, extraction, mixing, emulsification, filtration, 29 

crystallization, thawing and freezing (Marcuzzo, Peressini, Debeaufort, & Sensidoni, 30 

2010). Ultrasonic waves cause rapid compressions and expansions to plant cells, 31 

which leads to the formation of bubbles in the sonicated sample and its surroundings. 32 

The resulting rapid and short pressure and temperature shifts in the product leads to 33 

changes of viscosity and surface tension, destroying cell walls, forming microscopic 34 

channels and free radicals, and producing sonochemicals. Scientific evidence exists to 35 

support both the positive and the negative impacts of ultrasound treatment on the 36 

retention of bioactive compounds in various fruit and vegetables, although the 37 

particular effect depends on the process conditions and specificity of the material 38 

involved (Mieszczakowska-Frąc, Dyki, & Konopacka, 2016). Advantages of power 39 

ultrasound include reduction in processing time, the effective removal of occluded 40 

oxygen in juices, and lower energy consumption (Knorr, Zenker, Heinz, & Lee, 41 

2004). 42 

The responses of plants to abiotic stresses, such as US, associated with the 43 

production of stress signalling molecules (i.e. reactive oxygen species – ROS) activate 44 
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the expression of genes involved on the primary and secondary metabolism of the 45 

plant (Jacobo-Velázquez, González-Agüero, & Cisneros-Zevallos, 2015). These genes 46 

are associated with an increase in the activity of enzymes related with the biosynthesis 47 

of secondary metabolites and with the accumulation of secondary metabolites 48 

(Jacobo-Velázquez et al., 2015). For this reason, US can be used as an approach to 49 

increase the extractability of bioactive compounds (Nowacka & Wedzik, 2016), for 50 

instance, found a 12.5% higher extractability of carotenoid from carrots after the 51 

application of US at 21 kHz. Ultrasound has also shown higher extraction rates of 52 

phenolic compounds from carrot pomace and strawberries (Jabbar et al., 2015). Power 53 

ultrasound has also potential as a means of preservation due to the microbial 54 

inactivation ascribed to cavitation, as the resulting pressure shifts contributes to cell 55 

disruption. Ancillary chemical effects, such as the formation of free radicals as a 56 

consequence of the sonochemical reaction, also contribute to the microbial cell 57 

disruption (Kadkhodaee & Povey, 2008).  58 

The most popular drying methods for onions are hot-air drying and freeze drying. 59 

Hot-air drying involves exposure of the product to a continuously flowing hot air 60 

stream. It produces dehydrated products with a shelf life of up to one year, but their 61 

quality is usually lower than that of the original foodstuff (Ratti, 2001). Freeze-drying 62 

is based on dehydration by sublimation of water from a frozen product. Due to the 63 

absence of liquid water and the low temperatures required for freeze drying, most of 64 

the deterioration and microbiological reactions are retarded resulting in a final product 65 

of high quality (Rawson et al., 2011). However, the quality of a dehydrated product 66 
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depends also on the pre-treatments employed before drying (Negi & Roy, 2000). 67 

Hot-water blanching (heating of a product with hot water for a short period) has also 68 

been reported to reduce drying time up to a certain operation temperature. Similarly to 69 

other thermal processes, blanching affects the concentration of some bioactive 70 

compounds in vegetables (Rawson et al., 2011). 71 

Given the possible detrimental effects of blanching on the quality of onions, it is 72 

necessary to develop alternative pre-treatments to replace blanching. Despite power 73 

ultrasound has been extensively reviewed in fruits, its effects on quality parameters 74 

have not been studied in thin sliced onions. 75 

The present study investigated the effect of ultrasonic and blanching 76 

pre-treatments prior to hot-air drying and freeze drying on the retention of bioactive 77 

compounds (total phenolics, total flavonoids, and individual flavonoids), colour and 78 

antioxidant activity of onions. 79 

 80 

2. MATERIALS AND METHODS  81 

2.1 Chemicals 82 

 83 

Gallic acid, methanol, acetonitrile, ethanol, potassium acetate, aluminium chloride 84 

(AlCl 3), ferric chloride, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 85 

2,4,6-tripyridyl-s-triazine (TPTZ), hydrogen chloride (HCl), 86 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), and trifluoroacetic 87 

acid (TFA) were obtained from Sigma (Sigma Aldrich, Arklow, Ireland). Quercetin 88 
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4’glucoside (Q 4’ G), quercetin 3,4’ diglucoside (Q 3,4’ D) and quercetin (Q) 89 

standards were purchased from Extrasynthese (Geney Cedex, France). 90 

 91 

2.2 Sample preparation 92 

 93 

Fresh organic onions were obtained from the Kinsealy Systems field trial carried 94 

out at Teagasc, Kinsealy (53° 25N, 6° 10W), Dublin, Ireland and stored at 4oC for a 95 

maximum of 24 h prior to analysis. After hand-peeling, onions were vertically sliced 96 

(5 mm thickness) using a Berkel 800 meat slicer (Berkel company, Indiana, USA). 97 

 98 

2.3 Ultrasound and blanching pre-treatments 99 

 100 

One kg of fresh organic onion slices (thickness of approximately 1 cm) were 101 

obtained from 10 skin-peeled onion bulbs (variety: Hyskin). In each treatment, 50 g of 102 

onion slices were mixed with 100 mL of distilled water at 70oC in a 200 mL beaker.  103 

Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of 104 

water at 70oC with an ultrasonic probe (Ø19 mm) connected to an ultrasonic generator 105 

(VC 1500, Sonics and Materials Inc., USA). The energy input was controlled by 106 

setting the amplitude of the sonicator probe. Extrinsic parameters of amplitude (power 107 

output of 40%, 60% and 80%, equivalent to 24.4, 42.7 and 61 µm) and processing 108 

time (1, 3 and 5 min) were varied with pulse duration of 5 s on and 5 s off. The 109 

ultrasound probe was submerged to a depth of 25 mm into the sample. All treatments 110 
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were carried out in triplicate. The ultrasound densities ranged between 0.06 and 0.59 111 

W/mL.  112 

For the blanching pre-treatment, carried out alternatively to the-US treatment, 50 113 

g of onion slices were mixed with 100 mL of distilled water at 70oC for 1, 3 and 5 114 

min. All treatments were carried out in triplicate. 115 

 116 

2.4 Preparation of extracts from dried onions  117 

 118 

Control (fresh), sonicated and blanched slices were either freeze-dried or hot-air 119 

dried. Hot-air drying of sonicated, blanched and untreated (control) samples was 120 

carried out in a laboratory scale hot-air drier (SG96⁄06⁄333, Gallenkamp, UK) at 60oC 121 

and 0.3 m/s for 8 h. Pre-treated and control samples of 50 g were placed in a 122 

perforated basket (300 x 400 mm; perforation size of 5 x 5 mm), which was inserted 123 

in the drying chamber. Each sample was dried separately. Freeze-drying was carried 124 

out in a Cuddon freeze-drier (FD80, Cuddon Freeze Dry, Blenhein, New Zealand) at 125 

0.064 mbar for 72 h. After freeze dried or hot-air dried, the samples were 126 

vacuum-packed in polypropylene bags and stored at -20oC until analysis. 127 

The leaching water resulting from the ultrasound and blanching pre-treatments 128 

were also freeze-dried or hot-air dried, according to the drying method selected for the 129 

onion slices. The dry weights were used to calculate the transfer of material from the 130 

onions into the cooking water. For this, the dried onions were blended by a kitchen 131 

blender (Kenwood Ltd, Havant, UK). Then, 1 g of the blended sample was mixed 132 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

with 10 mL of methanol (80%) and homogenised at 24,000 rpm using an Omni-prep 133 

multi-sample homogeniser (Omni International, USA). The homogenized sample 134 

suspension was shaken overnight with a V400 Multitude Vortexer (Alpha 135 

laboratories, North York, Canada) at 1500 rpm at room temperature. The sample 136 

suspension was centrifuged (MSE Mistral 3000i, Sanyo Gallenkamp, Leicestershire, 137 

UK) at 3000 g for 15 min and immediately filtered through 0.22 µm 138 

polytetrafluoethylene filters. The extracts were kept at -20oC until further analysis. 139 

 140 

2.5 Analysis of total phenolics (TPC) 141 

 142 

The total phenolic content was determined using the Folin-Ciocalteau method 143 

with slight modifications (Singleton, Orthofer, & Lamuela-Raventós, 1999) using a 144 

spectrophotometer (Shimadzu UV-1700, Shimadzu Corporation, Kyoto, Japan) at 735 145 

nm. Aqueous gallic acid (10-400 mg/L) was used as standard. The results were 146 

expressed as gallic acid equivalents per dry weight of sample (mg GAE/g DW).  147 

 148 

2.6 Analysis of total flavonoid content (TFC) 149 

 150 

The total flavonoid content was determined by the method described by Lin and 151 

Tang (2007) using a spectrophotometer at 415 nm. Quercetin (Q) was used to build 152 

the standard calibration curve. The total flavonoid content was expressed as 153 
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milligrams of quercetin equivalents per gram of dry weight (DW) (mg quercetin/g 154 

DW). 155 

 156 

2.7. Analysis of antioxidant activity 157 

 158 

2.7.1 Ferric Reducing Antioxidant Power (FRAP) assay 159 

 160 

The FRAP assay was carried out based on the method by Stratil et al. (2006) with 161 

slight modifications. The FRAP solution was freshly prepared on the day of use by 162 

mixing acetate buffer (pH 3.6), ferric chloride solution (20 mM) and TPTZ solution 163 

(10 mM TPTZ in 40 mM HCl) in a proportion of 10:1:1, respectively. Subsequently, 164 

the FRAP solution was heated, while protected from light, until a temperature of 37°C. 165 

Appropriate dilutions of onion extracts were prepared using methanol. The sample 166 

extract (100 µL), or blank (100 µL methanol) and Trolox standard dilutions (100 µL 167 

Trolox of appropriate concentration) were mixed with 900 µL of FRAP solution in a 168 

micro-centrifuge tube. The tubes were stirred and left to rest at 37°C for 40 min, and 169 

the absorbance was measured at 593 nm using a spectrophotometer. The antioxidant 170 

activity of the samples was expressed in mg of Trolox equivalent per gram of dry 171 

weight sample (mg Trolox/g DW). 172 

 173 

2.7.2 DPPH Antioxidant Power Assay  174 

 175 
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The DPPH (2, 2-diphenylpicrylhydrazyl) scavenging activity assay was 176 

performed following the method described by Goupy et al. (1999). DPPH was 177 

dissolved in methanol to a concentration of 0.238 mg/mL in a conical flask. The 178 

reagent was prepared 2 hours prior to use, to ensure that the DPPH was fully 179 

dissolved and stabilised. The flask containing the DPPH solution was covered with 180 

aluminium foil to protect it from the light and stored in a refrigerator. For the actual 181 

measurements, a 1:5 dilution of the DPPH stock was prepared using 10 mL of the 182 

stock and making up to the 50 mL with methanol. Trolox (1-10 µg/mL) dissolved in 183 

methanol in appropriate dilutions were used to build the standard curve. This 184 

experiment was carried out in three replicates for both samples and standard. In each 185 

replicate, 500 µL from the appropriately diluted sample extract was added to 500 µL 186 

of DPPH solution. Experiments were carried out to determine the exact dilutions 187 

required. In the control, 500 µL of methanol was added in place of the sample extract 188 

with an equal volume of DPPH solution. As for the blank, 500 µL of sample extract 189 

was mixed with 500 µL of methanol. The absorbance was measured at 515 nm in a 190 

spectrophotometer. The radical scavenging activity was expressed in terms of mg of 191 

Trolox equivalent per gram of dry weight (mg Trolox/g DW). 192 

 193 

2.8 HPLC analysis of the extracts 194 

 195 

Reversed phase high performance liquid chromatography (RP-HPLC) of the 196 

filtered sample extracts was carried out according to the method of Tsao and Yang 197 
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(2003). Flavonols were separated on a ZORBAX SB-C18 column (4.6 mm x 150 mm, 198 

5 µm particle size, Part no. 883975-902). The mobile phase consisted of HPLC grade 199 

water with 0.05 % trifluoroacetic acids (TFA) (A) and acetonitrile with 0.05 % TFA 200 

(B). The gradient involved a linear increase/decrease in the amount of solvent B in A, 201 

which was set as follows (% B): 0-15 min, 12-21 %; 15-25 min, 21-100 %; 25-35 min, 202 

100-12 %. The flow rate was 1 mL/min. Samples of 10 µL were injected into the 203 

column and the separation took place at 30oC. The data was presented in the 204 

SHIMADZU EZ START Version 7.3 software. The identification of compounds was 205 

achieved by comparing their retention times and UV-Vis spectra with those of 206 

authenticated quercetin standard, and the UV absorbance was measured at 360 nm. 207 

Quercetin and quercetin glucoside concentrations were calculated against authentic 208 

calibration standards (quercetin 4’ glucoside, quercetin 3,4’ diglucoside and 209 

quercetin).  210 

 211 

2.9 Colour  212 

 213 

Three onion slices were randomly selected from fresh and dried samples to 214 

determine colour at both sides (internal and external) of each slice using a colorimeter 215 

(D25A DP-9000, Hunter Lab, Reston, VA, USA). The samples were evaluated for 216 

colour (L*, a* and b*) at room temperature. L* represents luminosity and ranges from 217 

black at 0 to white at 100. The chromaticity coordinate a* indicates red when positive 218 

and green when negative, and b* indicates yellow when positive and blue when 219 
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negative (Doymaz, Tugrul, & Pala, 2006). The colour change, ∆E was calculated by 220 

Eq. 1 (Vega-Gálvez et al., 2012):  221 

 222 

∆E=	�(�∗ − ��∗ )	 + (�∗ − ��∗)	 + (�∗ − ��∗)	
                               (1) 223 

 224 

where ��∗ , ��∗ , and ��∗ are the values for fresh onion samples. 225 

 226 

2.10 Statistical analysis 227 

 228 

All experiments were carried out in triplicate and average values were reported as 229 

means ± standard deviation. The experimental data were statistically analysed using 230 

the software SAS V.9.1 (SAS Institute, NC, USA). The Tukey-Kramer test was 231 

applied for multiple comparisons among means at a 95% significance level (p<0.05). 232 

 233 

3. RESULTS AND DISCUSSION  234 

3.1 Change of total phenolic content 235 

 236 

The ultrasound and blanching treatments influenced the total phenolic content 237 

(TPC) of onion slices (Table 1). Blanching applied for 1 min and ultrasound applied 238 

for 1-3 min in general increased the TPC of dried onions. After 3 min of ultrasound 239 

treatment at 42.7 µm and 61.0 µm, for example, there was a 17%-21% TPC increase 240 

in freeze dried onions (p<0.05). Samples treated by ultrasound at 61.0 µm for 1 min 241 
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followed of hot-air drying had a 10% increase (p<0.05) compared to the untreated 242 

dried samples. The application of sonication techniques to assist in the extraction of 243 

bioactive compounds is in fact widely reported (Keenan et al., 2012). On the contrary, 244 

blanched freeze dried (BFD) and blanched hot-air dried (BHD) (3 and 5 min) samples 245 

had lower retention of phenolics compared to the control (p<0.05). Turkmen, Sari, 246 

and Velioglu (2005) also reported that blanching decreased the total phenolics in 247 

squash, peas and leek. 248 

Samples subjected to UFD (ultrasound + freeze drying) at 24.4 µm for 3 min and 249 

UHD (ultrasound + hot-air drying) at 61.0 µm for 1 min resulted in greater retention 250 

of phenolics than samples blanched for the same time. Also, blanching caused 251 

phenolics to leach into the cooking water nearly 1-3 times more than during the 252 

ultrasound treatment (Table 1). In agreement with this finding, Rawson et al. (2011) 253 

reported higher retention of carotenoids and polyacetylenes in dried carrots subjected 254 

to a 10 min-pre-treatment with a US-probe under pulsed mode than in dried carrots 255 

blanched at 80oC for 3 min.  256 

However, the relatively high temperature and longer holding time related to the 5 257 

min-ultrasound treatment led to more severe oxidative and thermal degradation than 258 

the other ultrasound treatments. The main mechanism involved in the loss of 259 

phenolics during US treatment might be the formation of microchanels during 260 

cavitation, which facilitate the transport of food constituents, especially soluble 261 

nutrients (Mothibe, Zhang, Nsor-atindana, & Wang, 2011). In fact, Opalić et al. (2009) 262 

reported that prolonged US pre-treatment in samples with the same geometry led to a 263 
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decrease in total phenolics and flavonoids and accordingly in the antioxidant capacity 264 

of dried apples. The degradation trend during ultrasonic processing may be also 265 

related to the formation of free radicals, resulting in a potential increase in the 266 

oxidation pathways (Pétrier, Combet, & Mason, 2007). The degradation related to the 267 

some of the US treatments may point to additional contributory factors. The 268 

ultrasound probe had direct contact with the sample, with the vessel opened to the 269 

atmosphere (i.e. it was not a closed system). Therefore, oxidation could freely occur 270 

at the liquid⁄atmosphere interface during processing. This effect would be increased in 271 

samples processed for longer periods (i.e. 5 min).  272 

 273 

3.2 Change of total flavonoids content 274 

 275 

There was a significant difference of TFC (p<0.05) between ultrasound-treated 276 

and blanched onions after drying compared to dried samples without pre-treatment, 277 

considering either freeze-dried or hot-air dried (Table 1). 278 

TFC in dried (freeze drying and hot-air drying) onion slices treated with 279 

ultrasound for 1-3 min in general increased compared to the control dried samples. 280 

Lower ultrasound amplitudes (24.4 µm) combined with freeze drying and higher 281 

amplitudes (61 µm) combined with hot-air drying resulted in better retention of TFC 282 

compared to other ultrasound treatment conditions or dried samples not submitted to 283 

pre-treatment (Table 1). Such increase in the retention of TFC may arise from an 284 

enhanced extractability of the compounds. Improved extraction efficiency following 285 
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sonication has been attributed to the propagation of ultrasound pressure waves, 286 

induced cavitation and high shear forces resulting in increased mas transfer (Rawson 287 

et al., 2011). There was also a significantly (p<0.05) higher retention of flavonoids in 288 

UFD (24.4 µm for 3 min) and UHD (61.0 µm for 1 min) than BHD (1, 3 and 5 min) 289 

samples. Regarding blanching, as higher the process time, lower was the retention of 290 

flavonoids.  291 

 292 

3.3 Change of antioxidant activity during pre-treatment  293 

 294 

The antioxidant activity of pre-treated and untreated (control) dried onion slices 295 

are presented in Table 1. Sonicated samples processed at the highest amplitude (61µm) 296 

for the longest time (5 min) and then freeze-dried as well as sonicated samples 297 

processed at the lowest amplitude (24.4 µm) for 5 min and then hot-air dried had the 298 

lowest (p<0.05) antioxidant activity. Generally, onions sonicated at lower amplitudes 299 

followed of freeze drying had the highest antioxidant activity (FRAP and DPPH), 300 

while longer US-times reduced the antioxidant activity (Table 1).  301 

The DPPH and FRAP values were similar and indicate that blanching generally 302 

resulted in lesser preservation of antioxidant compounds compared to fresh and 303 

sonicated samples. The exception was the 1 min-blanching, which resulted in 304 

enhanced antioxidant activity. Some studies have suggested that blanching is 305 

generally regarded as being destructive to antioxidant components (Krishnaswamy & 306 

Raghuramulu, 1998). On the contrary, Halvorsen et al. (2006) reported increased 307 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

antioxidant activity for several vegetables such as carrots, spinach, mushroom, 308 

asparagus, broccoli and cabbage after thermal treatment. Dewanto, Xu and Liu (2002) 309 

found similar results in thermally processed tomatoes compared with fresh controls. 310 

These authors hypothesised that higher antioxidant activities may be related to an 311 

increase in extractability of antioxidant components following thermal processing.  312 

 313 

3.4 Changes of quercetin and quercetin glucosides  314 

 315 

The levels of the 3 major quercetins – quercetin 3,4’diglucoside (Q 3,4’ D), 316 

quercetin 4’glucoside (Q 4’ G), and quercetin (Q) – in dried onions are presented in 317 

Fig.1-3. 318 

In general, the retention levels of Q 3,4’ D and Q for US-freeze dried and US-hot 319 

air dried samples were higher compared to the samples dried without any 320 

pre-treatment. This can be ascribed to the increased extractability induced by 321 

cavitation of US-treated samples (Rawson et al., 2011). 322 

In BFD and BHD onions slices (1 min), the retention levels of Q were higher 323 

compared to the control (p<0.05). Blanching in fact does not always result in the 324 

destruction of bioactive compounds. In some cases, thermal treatments can induce the 325 

formation of novel compounds and improve the antioxidant capacity (Xu & Chang, 326 

2008). Bunea et al. (2008) suggested that the increase in the concentrations of certain 327 

bioactive compounds after thermal treatment may be explained either by their better 328 

release from the food matrix as a result of breakdown of supramolecular structures 329 
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containing functional groups or their thermal stability. However, in BFD and BHD 330 

samples (3 and 5 min), the retention levels of Q were lower compared to the control 331 

(p<0.05). This is most likely due to the relatively high temperatures required for 332 

blanching (70℃ sustained for 3-5 min), which could lead to oxidative and thermal 333 

degradation (Rawson et al., 2010).  334 

Regarding the freeze drying, the ultrasound treatment at 24.4 µm for 3 min 335 

resulted in significantly higher retention levels of Q 3,4’ D and Q compared to BHD 336 

(1-5 min) samples. With regard to the hot air drying, there were significantly higher 337 

retention levels of Q 4’ G and Q after US treatment at 61.0 µm for 1 min compared to 338 

BHD (1-5 min) samples.  339 

 340 

3.5 Phenolic compounds and antioxidant activity in water  341 

 342 

Blanching retained greater amounts of phenolic compounds than ultrasound 343 

(p<0.05). The losses could be attributed to water soluble phenolics leaching into the 344 

cooking water as well as breakdown of phenolics during thermal processing. These 345 

significant losses could be attributed to water soluble phenolics leaching and 346 

transferred into the cooking water as well as breakdown of phenolics during thermal 347 

processing, which rendered water a good source of dietary phenolics (Table 2). 348 

However, degradation of phenolics in onion slices may be a bigger problem than 349 

leaching. The percentage loss of phenolics undergoing degradation during the 350 

US-treatment was higher than the percentage loss to the cooking water. These results 351 
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suggest that the degradation of phenolics after sonication was greater than the losses 352 

due to leaching. Some authors have indicated that pressure-cooking enhanced the 353 

antioxidant composition and palatability of vegetables (Xu & Chang, 2009). However, 354 

higher power could result in greater degradation (Hiemori, Koh, & Mitchell, 2009).  355 

 356 

3.6 Flavonoids in water  357 

 358 

The total flavonoid content in the cooking water revealed a trend similar to that 359 

described for the TPC (Table 2). The flavonoid losses could be a result of degradation 360 

or decomposition of flavonoids (Ioannou, Hafsa, Hamdi, Charbonnel, & Ghoul, 2012). 361 

The ultrasound treatment resulted in a higher percentage of flavonoids being degraded 362 

than retained in the cooking water (p<0.05). There was a transfer of especially Q 3,4' 363 

D and Q 4' G from onions to water. This suggests that the decrease of flavonoid 364 

during ultrasound was predominantly caused by breakdown of flavonoids rather than 365 

their leaching. Higher ultrasound amplitudes and longer time resulted in greater 366 

leaching of flavonoids. 367 

 368 

3.7 Quercetin and its glucosides in water  369 

 370 

The amounts of quercetin 3,4’diglucoside and quercetin 4’ glucoside were also 371 

measured in water after ultrasound and blanching treatments (Table 2). In the 372 

US-treatment water, the quercetin 4’glucoside fraction was greater than the quercetin 373 
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3,4’diglucoside one. Hirota, Shimoda, and Takahama (1998) observed that the 374 

monoglucoside derivative was oxidized more rapidly than its diglucoside form during 375 

cooking, and that the difference in the stability between mono and diglucoside was 376 

due to the presence or absence of a hydroxyl group at the C-3 position in the 377 

glucosides. As the antioxidant power of flavonols substantially depends on the 378 

catechol group in the B-ring and on the 3-hydroxyl group (Rodrigues, Pérez-Gregorio, 379 

García-Falcón, & Simal-Gándara, 2009), the monoglucoside is likely to have a higher 380 

antioxidant capacity than the diglucoside, since in the latter these two basic functions 381 

are blocked. In this work, there was a lower content of flavonols in water, which was 382 

however enriched with antioxidant monoglucoside forms. 383 

Free quercetin was found in the onion slices (Table 2) but only in very small 384 

amounts in the cooking water (Table 2), which may correspond to its poor solubility 385 

in water and/or stronger binding to plant structures than its glycoside forms. Quercetin 386 

was not detected in water after the 5 min-ultrasound treatment, indicating that this 387 

compound is not prone to leaching.  388 

 389 

3.8 Antioxidant activity in water  390 

 391 

The blanching water had high antioxidant (Table 2), especially for the 1 392 

min-treatment, followed by 3 min. The cooking water from US-treated onions had 393 

low values of antioxidant activity according to both assays. The sum of antioxidant 394 

activity of the cooked onion and cooking water is different from the antioxidant 395 
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activity of fresh samples, which may suggest losses in the antioxidant activity due to 396 

breakdown or degradation of antioxidant compounds. 397 

 398 

3.9 Effect of ultrasound and blanching on colour  399 

 400 

Colour has a major impact on the acceptance of a product by the consumer (Kalt, 401 

2005). Fresh onions were characterized by high luminosity (L* = 74.24 ± 2.15), with 402 

a tendency to green and yellow (a* = -6.23±0.53 and b* = 22.79±2.8, respectively) 403 

(Table 3). The L* of dried samples ranged from 58.3 to 93.74, b* varied from 23.7 to 404 

33.98, and a* varied from -9.73 to -4.36, indicating the dried onions had more intense 405 

green and yellow tones than the fresh ones. All dried samples were characterized by 406 

high ∆E values, regardless of the ultrasound and blanching conditions (Table 3). 407 

Although luminosity was similar for fresh, blanched-dried and US-dried onions, 408 

sonicated samples had higher colour difference (∆E) than blanched ones (p<0.05). 409 

The longer the sonication time (and blanching time as well), the higher was the colour 410 

difference, regardless of the ultrasound amplitude. The use of ultrasound as a 411 

pre-treatment to onions contributed to a significant colour change. UFD and UHD 412 

(highest amplitude applied for 5 min) samples showed significantly (p<0.05) higher 413 

∆E compared to other amplitudes and to BFD and BHD samples. These changes can 414 

be explained by the formation of free radicals and sonochemicals as a result of 415 

cavitation (Bermúdez-Aguirre, Mobbs, & Barbosa-Cánovas, 2011), which may 416 

influence the food properties. The change of coordinate a*, in specific, can be linked 417 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

to the formation of colour compounds (Vadivambal & Jayas, 2007) related to 418 

non-enzymatic browning during treatment. The greatest colour change for the samples 419 

treated by ultrasound is also ascribed to the presence of air during processing, leading 420 

to enzymatic browning. In the case of blanching, the colour was better preserved as 421 

the contact between samples and air was limited. 422 

The colour of vegetables is determined by natural colour compounds that can be 423 

oxidized during the pre-treatment, and the most important factor accelerating 424 

degradation is high temperature and presence of oxygen. Enzymatic browning also 425 

plays an important role in colour change due to the brown pigments formed from 426 

colourless polyphenols (Maskan, 2001). Table 4 shows that the b* chroma was 427 

correlated to TPC and Q 4’ G at 5% significance (Table 4) in the hot-air drying, but 428 

the colour coordinates had no correlation with the bioactive compounds in freeze 429 

drying.  430 

 431 

4. Conclusions  432 

 433 

Blanching and ultrasound treatments significantly affected the colour, TPC, TFC, 434 

individual phenolic compounds and antioxidant activity of onion slices dried either by 435 

freeze drying or hot-air drying. In this work, ultrasound has been identified as an 436 

alternative pre-treatment to blanching regarding the enhancement of functional 437 

properties in onions. The ultrasound-treatment applied for 1-3 min at any amplitude 438 

(24.4-61 µm) increased (1%-20%) the content of phytochemicals regarding phenolic 439 
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compounds, flavonoids and quercetin. As a consequence, sonicated onion slices (1-3 440 

min) featured higher antioxidant activity than blanched ones. However, the 5 441 

min-sonication had a deleterious effect (more than 10% degradation) on the bioactive 442 

compounds and antioxidant activity. At last, as the leaching water from onions treated 443 

with ultrasound and blanching contained high amounts of antioxidants, it may be 444 

considered a valuable co-product for the food and nutraceutical industries.  445 

Further research is required to optimize the retention of bioactives by varying 446 

ultrasonic processing parameters such as power level, treatment time and temperature, 447 

allowing a successful implementation in the food industry. 448 
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Table 1 – Influence of ultrasound and blanching treatments followed of drying on the total phenolics content (TPC), total flavonoid content 
(TFC) and antioxidant activity of onion slices. 

FREEZE DRYING TPC Retention (%) TFC Retention (%) FRAP Retention (%) DPPH Retention (%) 
Control 9.21±0.82cdef --- 4.10±0.08bcd --- 11.05±0.99c --- 4.42±0.82bc --- 

UFD 24.4 µm 1 min 9.65±0.24bcd 104.87% 4.19±0.18abc 102.08% 11.58±0.29bc 104.87% 5.21±0.84abc 117.98% 
UFD 42.7 µm 1 min 9.48±0.40bcde 102.99% 4.13±0.07abcd 100.59% 11.38±0.48bc 102.99% 5.12±0.83abc 115.87% 
UFD 61.0 µm 1 min 9.31±0.37cdef 101.13% 4.15±0.03abcd 101.15% 11.17±0.44bc 101.13% 5.03±0.8abc 113.78% 

BFD 1 min  9.22±0.10cdef 100.18% 4.16±0.10abcd 101.27% 11.07±0.12c 100.18% 4.98±0.84b 112.71% 
UFD 24.4 µm 3 min 11.18±1.27a 121.41% 4.47±0.15a 108.93% 13.41±1.52a 121.41% 6.04±0.89a 136.59% 
UFD 42.7 µm 3 min 10.81±0.43ab 117.48% 4.42±0.24ab 107.65% 12.98±0.52a 117.48% 5.84±0.88ab 132.16% 
UFD 61.0 µm 3 min 9.76±0.56abc 106.06% 4.27±0.56abc 104.06% 11.72±0.68bc 106.06% 5.27±0.85abc 119.32% 

BFD 3 min  8.19±0.11defg 88.96% 3.81±0.11bcde 92.83% 9.83±0.14d 88.96% 4.40±0.76bc 100.08% 
UFD 24.4 µm 5 min 8.09±0.07efg 87.91% 3.76±0.06cdef 91.71% 9.71±0.09d 87.91% 4.37±0.75abc 98.90% 
UFD 42.7 µm 5 min 7.68±0.06g 83.45% 3.49±0.10ef 84.96% 9.22±0.07de 83.45% 4.15±0.70c 93.88% 
UFD 61.0 µm 5 min 7.33±0.14g 79.61% 3.15±0.06f 76.75% 8.79±0.17e 79.61% 3.96±0.63c 89.56% 

BFD 5 min  7.86±0.15fg 85.41% 3.57±0.30def 86.98% 9.43±0.18de 85.41% 4.25±0.71c 96.08% 
HOT-AIR DRYING TPC Retention (%) TFC Retention (%) FRAP Retention (%) DPPH Retention (%) 

Control 7.76±0.39abc --- 3.34±0.36bcde --- 9.31±0.47b --- 3.82±0.67bc --- 
UHD 24.4 µm 1 min 6.50±0.37def 83.84% 3.35±0.20bcde 100.12% 7.80±0.45ef 83.84% 3.36±0.70de 87.93% 
UHD 42.7µm 1 min 7.67±0.47abc 98.88% 3.66±0.18bc 109.43% 9.20±0.56bc 98.88% 3.96±0.73b 103.70% 
UHD 61.0 µm 1 min 8.58±0.44a 110.65% 4.34±0.27a 130.04% 10.30±0.53a 110.65% 4.43±0.87a 116.05% 

BHD 1 min 7.93±0.14ab 102.24% 3.90±0.31b 116.71% 9.52±0.17b 102.24% 4.09±0.78ab 107.23% 
UHD 24.4 µm 3 min 6.69±0.65cde 86.26% 3.45±0.34bcd 103.15% 8.03±0.78e 86.26% 3.45±0.69cd 90.47% 
UHD 42.7 µm 3 min 7.34±0.26bcd 94.58% 3.79±0.35bc 113.57% 8.80±0.31cd 94.58% 3.79±0.76bc 99.19% 
UHD 61.0 µm 3 min 7.74±0.27abc 99.83% 3.83±0.14ab 114.63% 9.29±0.33b 99.83% 4.00±0.79b 104.70% 

BHD 3 min 6.23±0.17def 80.27% 3.10±0.33cdef 92.67% 7.47±0.21fg 80.27% 3.21±0.62de 84.19% 
UHD 24.4 µm 5 min 5.50±0.37f 70.94% 2.70±0.17f 80.85% 6.60±0.45h 70.94% 2.84±0.54f 74.40% 
UHD 42.7 µm 5 min 6.34±0.26def 81.69% 2.88±0.08def 86.35% 7.60±0.3ef 81.69% 3.27±0.58de 85.67% 
UHD 61.0 µm 5 min 7.25±0.23bcd 93.46% 3.34±0.27bcde 100.11% 8.70±0.27d 93.46% 3.74±0.68bc 98.02% 

BHD 5 min 5.93±0.14ef 76.46% 2.77±0.32ef 82.84% 7.12±0.17g 76.46% 3.06±0.55ef 80.19% 
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For each row, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean ± standard deviation in dry weight (%) for n=3. TPC 
= Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight). FRAP and 
DPPH = Antioxidant activity (mg Trolox/g DW). UFD = ultrasound pre-treatment followed of freeze drying; UHD = ultrasound pre-treatment followed of hot-air drying; 
BFD = blanching followed of freeze drying; BHD = blanching followed of hot-air drying. 
*Blanching was carried out at 70oC, Hot-air drying at 60oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 2 – Effect of ultrasound and blanching treatments followed of drying on the bioactive compounds and antioxidant activity of the 
leaching water from onion slices. 

Treatment TPC TFC Q 3,4’ D Q 4’ G Q FRAP DPPH 
UFD 24.4 µm 1 min 0.66±0.03e 0.22±0.01b 10.43±0.31def 55.56±5.42de 4.42±0.71cd 0.81±0.04d 0.47±0.03abcd 
UFD 42.7 µm 1 min 0.96±0.01d 0.24±0.01b 11.83±0.13de 61.97±1.24d 4.58±0.26cd 0.79±0.06d 0.46±0.11bcd 
UFD 61.0 µm 1 min 1.31±0.07c 0.26±0.00b 17.67±0.04d 92.31±1.31c 4.71±0.47c 0.78±0.05d 0.45±0.12bcd 

BFD 1 min 1.52±0.02a 0.71±0.29a 225.05±3.00a 408.37±2.50a 63.0±0.92a 1.1±0.05a 0.60±0.08a 
UFD 24.4 µm 3 min 0.43±0.02g 0.06±0.01c 3.67±0.15gf 32.31±2.20f 1.24±0.12cde 0.78±0.18d 0.45±0.16bcd 
UFD 42.7 µm 3 min 0.53±0.01f 0.06±0.00c 3.83±0.31gf 35.6±5.94f 1.58±0.83cde 0.93±0.06bc 0.54±0.12ab 
UFD 61.0 µm 3 min 0.63±0.02e 0.09±0.01c 7.43±0.02efg 41.97±1.84ef 1.67±0.14cde 0.91±0.08c 0.53±0.15abc 

BFD 3 min 1.35±0.02b 0.24±0.01b 208.38±3.60b 325.03±12.43b 38.05±3.38b 0.98±0.07b 0.53±0.12abc 
UFD 24.4 µm 5 min nd nd nd nd nd nd nd 
UFD 42.7 µm 5 min nd nd nd nd nd nd nd 
UFD 61.0 µm 5 min nd nd nd nd nd nd nd 

BFD 5 min 1.34±0.03c 0.21±0.00b 175.5±1.60c 310.70±19.10b 35.1±1.58b 0.94±0.10bc 0.51±0.06abc 
Treatment TPC TFC Q 3,4’ D Q 4’ G Q FRAP DPPH 

UHD 24.4 µm 1 min 0.05±0.01e 0.01±0.00c nd 7.02±1.86de 7.5±1.05cd nd nd 
UHD 42.7 µm 1 min 0.08±0.02e 0.01±0.0c nd 7.82±1.31d 17.0±2.1b nd nd 
UHD 61.0 µm 1 min 1.01±0.03b 0.03±0.00c nd 11.65±0.22c 16.51±1.95b nd nd 

BHD 1 min 1.32±0.07a 0.37±0.08a nd 306.4±23.50a 31.0±2.2a 0.8±0.02a 0.50±0.03a 
UHD 24.4 µm 3 min nd nd nd nd nd nd nd 
UHD 42.7 µm 3 min nd nd nd nd nd nd nd 
UHD 61.0 µm 3 min nd nd nd nd nd nd nd 

BHD 3 min 0.41±0.08c 0.26±0.03b 103.86±11.2a 268.7±19.36b 9.55±1.98c 0.39±0.03b 0.42±0.1abc 
UHD 24.4 µm 5 min nd nd nd nd nd nd nd 
UHD 42.7 µm 5 min nd nd nd nd nd nd nd 
UHD 61.0 µm 5 min nd nd nd nd nd nd nd 

BHD 5 min 0.29±0.1d 0.20±0.00b 78.23±6.60b 258.60±18.97b 6.2±0.44cd 0.34±0.10b 0.39±0.08abc 
 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

For each row, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean ± standard deviation in dry weight (%) for n=3. 
TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight). Q 
3,4’ D = quercetin 3,4’glucoside (µg/g); Q 4’ G = quercetin 4’glucoside (µg/g); Q = quercetin (µg/g). FRAP and DPPH = Antioxidant activity (mg Trolox/g DW). UFD 
= ultrasound pre-treatment followed of freeze drying; UHD = ultrasound pre-treatment followed of hot-air drying; BFD = blanching followed of freeze drying; BHD = 
blanching followed of hot-air drying. 
*Blanching was carried out at 70oC, Hot-air drying at 60oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  
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Table 3 – Colour of freeze dried and hot-air dried onion slices subjected to blanching and 
ultrasound pre-treatments. 

For each row, values followed by the same letter are not statistically different at p<0.05. Values are expressed as 
mean ± standard deviation in dry weight (%) for n=3. UFD = ultrasound pre-treatment followed of freeze 
drying; UHD = ultrasound pre-treatment followed of hot-air drying; BFD = blanching followed of freeze drying; 
BHD = blanching  followed of hot-air drying. 
*Blanching was carried out at 70oC, Hot-air drying at 60oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar 
for 72 h.  
 
  

FREEZE DRYING L* a* b* ∆E 
Control 74.24±2.15e -6.23±0.53a 22.79±2.80c --- 

UFD 24.4 µm 1 min 80.8±0.60cd -8.84±0.62ef 31.07±2.17a 10.88±1.13g 
UFD 42.7 µm 1min 81.51±1.21bcd -9.21±0.19fg 29.78±1.66ab 11.51±1.02g 
UFD 61.0 µm 1min 92.41±0.66a -9.01±0.43fg 29.25±0.78ab 19.47±0.50c 

BFD 1 min 86.51±0.38bc -7.08±0.05b 25.72±0.60c 12.64±0.47e 
UFD 24.4 µm 3 min 81.5±1.54bcd -8.98±0.83ef 31.80±1.09a 11.90±1.15fg 
UFD 42.7 µm 3 min 82.35±1.32bcd -9.32±0.21gh 29.98±0.93ab 12.27±0.82ef 
UFD 61.0 µm 3 min 92.41±0.30a -8.21±0.13de 29.25±0.06ab 19.31±0.16c 

BFD 3 min 89.34±0.61bc -7.28±0.18bc 27.61±0.50ab 15.97±0.43d 
UFD 24.4 µm 5 min 91.85±0.45a -9.30±1.04hi 32.80±2.07a 20.49±1.19b 
UFD 42.7 µm 5 min 91.51±1.18ab -9.73±0.63i 33.97±5.83a 20.87±2.55b 
UFD 61.0 µm 5 min 93.74±0.11a -7.97±0.45cd 33.82±4.76a 22.47±1.74a 

BFD  5 min 88.06±0.8ab -7.44±0.20bc 29.93±0.60abc 15.60±0.53d 
HOT-AIR DRYING L* a* b* ∆E 

Control 74.24±2.15c -6.23±0.53b 22.79±2.80de --- 
UHD 24.4µm 1 min 85.8±1.61b -7.84±0.51cd 30.07±0.98a 10.06±1.030k 
UHD 42.7 µm 1 min 82.501±0.36b -8.21±0.08d 28.78±0.16ab 10.74±0.20i 
UHD 61.0 µm 1 min 90.41±0.09a -6.18±0.08b 28.25±0.51ab 17.06±0.23c 

BHD 1 min 59.1±0.34e -6.04±0.29b 23.71±0.78de 15.50±0.45f 
UHD 24.4 µm 3 min 85.98±0.88b -7.98±0.48cd 30.51±0.65a 10.46±0.67j 
UHD 42.7 µm 3 min 82.85±1.02b -8.62±0.03de 28.98±0.91ab 10.87±0.65h 
UHD 61.0 µm 3 min 90.94±1.37a -6.43±0.51bc 28.52±0.76ab 17.66±0.88b 

BHD 3 min 58.29±0.46e -5.85±0.22b 25.60±0.22bc 15.70±0.33e 
UHD 24.4 µm 5 min 86.28±0.95b -8.40±0.28d 31.05±1.86a 14.76±1.03g 
UHD 42.7 µm 5 min 83.15±0.86b -8.82±0.38de 29.28±1.29a 15.72±0.84e 
UHD 61.0 µm 5 min 91.34±2.36a -6.74±0.05bcd 28.85±1.18ab 18.15±1.20a 

BHD 5 min 64.40±0.88d -4.36±0.38a 29.29±1.10 15.93±0.79d 
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Table 4 – Correlation matrix of colour and chemical indices of freeze dried and hot-air dried 
onion slices.  

Chromameter describes colour in three coordinates: L, lightness, from 0 (black) to 100 (white); a, from -60 
(green) to 60 (red); and b, from -60 (blue) to 60 (yellow). 
TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight); TFC = Total flavonoids 
content (mg of quercetin equivalents per g of dry weight); Q 4’ G = quercetin 4’glucoside (µg/g); Q 3,4’ D = 
quercetin 3,4’glucoside (µg/g); Q = quercetin (µg/g). 
* Represents significance at 5%. 

FREEZE 
DRYING 

 
TPC 

 
TFC Q 3,4’ D Q 4’ G Q L a b 

TPC 1.00 0.83 0.63 0.58 0.21 -0.55 -0.06 -0.23 

TFC 
 

1.00 0.52 0.66 0.34 -0.50 -0.03 -0.33 

Q 3,4’ D 
  

1.00 0.19 0.09 -0.57 -0.01 -0.31 

Q 4’ G 
   

1.00 0.47 -0.22 -0.20 -0.04 

Q 
    

1.00 -0.11 -0.13 -0.08 

L* 
     

1.00 -0.07 0.45* 

a* 
      

1.00 -0.54* 

b*        1.00 
HOT-AIR 
DRYING 

TPC TFC Q 3,4’ D Q 4’ G Q L a b 

TPC 1.00 0.79 0.75 0.83 0.75 0.17 0.05 0.46* 

TFC  1.00 0.68 0.81 0.64 0.23 -0.05 -0.27 

Q 3,4’ D   1.00 0.77 0.67 0.30 -0.25 -0.23 

Q 4’ G    1.00 0.65 0.01 -0.05 0.52* 

Q     1.00 0.51 -0.17 -0.06 

L*      1.00 -0.44* 0.64 

a*       1.00 -0.32 

b*        1.00 
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Figure 1 – Retention of quercetin 3,4’-diglucoside after different pretreatments followed of (a) 

freeze drying and (b) hot-air drying. 
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Figure 2 – Retention of quercetin 4’-glucoside after different pretreatments followed of (a) 

freeze drying and (b) hot-air drying. 
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Figure 3 – Retention of quercetin after different pretreatments followed of (a) freeze drying 

and (b) hot-air drying. 
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Highlights 

 

1. The US-treatment improved the retention of bioactive compounds in dried onions. 

2. The colour change was similar between blanched and US-treated dried onions. 

3. US-freeze dried onions had higher retention of phenolics than US-hot air dried. 

4. Dried onions had higher antioxidant activity when sonicated for 1-3 min. 


