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ABSTRACT

Mid-infrared (MIR) spectroscopy of milk was used to 
predict dry matter intake (DMI) and net energy intake 
(NEI) in 160 lactating Norwegian Red dairy cows. A 
total of 857 observations were used in leave-one-out 
cross-validation and external validation to develop and 
validate prediction equations using 5 different models. 
Predictions were performed using (multiple) linear 
regression, partial least squares (PLS) regression, or 
best linear unbiased prediction (BLUP) methods. Lin-
ear regression was implemented using just milk yield 
(MY) or fat, protein, and lactose concentration in milk 
(Mcont) or using MY together with body weight (BW) 
as predictors of intake. The PLS and BLUP methods 
were implemented using just the MIR spectral infor-
mation or using the MIR together with Mcont, MY, 
BW, or NEI from concentrate (NEIconc). When us-
ing BLUP, the MIR spectral wavelengths were always 
treated as random effects, whereas Mcont, MY, BW, 
and NEIconc were considered to be fixed effects. Ac-
curacy of prediction (R) was defined as the correlation 
between the predicted and observed feed intake test-
day records. When using the linear regression method, 
the greatest R of predicting DMI (0.54) and NEI (0.60) 
in the external validation was achieved when the model 
included both MY and BW. When using PLS, the 
greatest R of predicting DMI (0.54) and NEI (0.65) 
in the external validation data set was achieved when 
using both BW and MY as predictors in combination 
with the MIR spectra. When using BLUP, the greatest 
R of predicting DMI (0.54) in the external validation 
was when using MY together with the MIR spectra. 
The greatest R of predicting NEI (0.65) in the external 
validation using BLUP was achieved when the model 
included both BW and MY in combination with the 
MIR spectra or when the model included both NEIconc 

and MY in combination with MIR spectra. However, 
although the linear regression coefficients of actual on 
predicted values for DMI and NEI were not different 
from unity when using PLS, they were less than unity 
for some of the models developed using BLUP. This 
study shows that MIR spectral data can be used to 
predict NEI as a measure of feed intake in Norwegian 
Red dairy cattle and that the accuracy is augmented if 
additional, often available data are also included in the 
prediction model.
Key words: mid-infrared spectroscopy, dry matter 
intake, net energy intake, prediction

INTRODUCTION

Dairy cattle breeding goals have advanced from be-
ing traditionally narrow in focus to now being more 
holistic and including functional traits (Miglior et al., 
2005). In the Nordic countries, health and fertility 
traits have been included in the breeding goal since 
the 1970s (Philipsson and Lindhé, 2003). Traits not 
currently explicitly included in most dairy cow breed-
ing goals include feed intake, product quality, and the 
environmental footprint (Berry, 2015). Breeding goal 
traits must be economically important, must exhibit 
genetic variation, and should ideally be (easily) mea-
sured at a low cost in a large population of animals or, 
at least, should be genetically correlated with heritable 
traits that can be routinely measured. Improving feed 
efficiency is economically important because feed is the 
major single variable cost in dairy production (Shalloo 
et al., 2004). Genetic variability in feed intake (and 
efficiency) in dairy cows is known to exist (Svendsen 
et al., 1993; Berry and Crowley, 2013; Hurley et al., 
2017). Thus, the main factor hampering the inclusion 
of feed intake directly in a breeding objective is routine 
access to phenotypic data of feed intake from a large 
population of animals, ideally at a low cost, to achieve 
a high accuracy of selection.

McParland et al. (2014) documented that feed intake 
in lactating dairy cows could be predicted using mid-
infrared (MIR) spectrometry of milk. Mid-infrared 
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spectroscopy is based on the study of the interaction 
between matter and electromagnetic waves (De Marchi 
et al., 2014) in the 900 to 5,000 cm−1 region and is 
routinely used globally to determine fat, protein, and 
lactose concentration in milk (Soyeurt et al., 2011; De 
Marchi et al., 2014). Because individual animal milk 
samples are routinely taken as part of day-to-day dairy 
herd management, using these samples to also predict 
feed intake would be a cost-effective strategy for gener-
ating data for management purposes as well as for in-
clusion in a breeding program. McParland et al. (2014), 
however, evaluated only the prediction of feed intake in 
lactating Holstein-Friesian dairy cows. Energy intake, 
energy balance, and residual energy intake have been 
successfully predicted using MIR in 2 production sys-
tems in the United Kingdom and Ireland (McParland 
and Berry, 2016). In addition, we (unpublished data) 
used pooled MIR data from Irish Holstein-Friesian and 
Norwegian Red dairy cattle to predict net energy in-
take (NEI) and effective energy intake and concluded 
that exploiting pooled MIR data can further increase 
the accuracy of predicting energy intake–related traits. 
Traditionally, the partial least squares (PLS) regres-
sion method has mainly been used for developing the 
prediction equations in MIR studies (McParland et al., 
2011, 2012, 2014; De Marchi et al., 2014), but recently 
Ferragina et al. (2015) proposed the use of genomic 
prediction approaches for MIR-based predictions. 
The objective of the present study was to determine 
whether MIR spectral data from milk are suitable for 
predicting feed intake in lactating Norwegian Red dairy 
cows. Also of interest was whether prediction accuracy 
could be improved using best linear unbiased predic-
tion (BLUP) methodology, which is commonly used in 
genetic and genomic prediction, relative to PLS regres-
sion approaches, which have heretofore been the only 
approach used to predict feed intake from milk MIR 
data.

MATERIALS AND METHODS

Data

Data from 6 different feeding experiments were col-
lected from the dairy research farm at the Norwegian 
University of Life Sciences (Ås, Norway) between 2007 
and 2015, with the exception of 2010 and 2012, from 
which DMI data could not be recovered. Traits periodi-
cally available included individual cow DMI; milk yield 
(MY); fat, protein, and lactose concentration in milk 
(Mcont); and individual cow BW (Table 1). Data were 
available from 204 lactations from 160 Norwegian Red 
dairy cows; the total number of test-day records for 
each trait was 857.

In all experiments, cows were fed timothy grass–based 
silage combined with grain-based concentrate (Table 
2). The concentrate contained mainly barley and oats 
supplemented with rapeseed cake and soybean meal as 
the main protein source. The protein concentration of 
the feed varied from 12 and 20% of DM (Table 2). 
Concentrates were fed according to individual cow MY 
(4 of the 6 feed treatments) or in fixed quantities (2 of 
the 6 feed treatments) using automatic feed stations. 
In all instances, silage was either fed ad libitum or re-
stricted using feed bins fitted with vertical feed gates 
and weighing cells underneath.

The DM of the silage was calculated based on the feed 
analyses. For concentrate, DM was based on feed analy-
ses, or tabulated information in the feed tables from 
the Nordic feed evaluation system (NorFor; Volden, 
2011). Individual feed intake and DM of feed were used 
to calculate the DMI of silage and concentrate sepa-
rately. Daily energy intake, expressed as NEI, was cal-
culated based on the NorFor evaluation system and is 
described in detail in the Appendix. Net energy intake 
was calculated from the DMI of silage and concentrate 
separately. Net energy intake for silage (MJ/kg of DM) 
was calculated based on the chemical composition of 
the feed using standard feed values in NorFor. If NEI 
for concentrate was missing, it was calculated using a 
default DM of 86% and an energy content of 7.3 MJ/kg 
of DM. Both DMI and NEI for silage and concentrate 
were summed to get total DMI and NEI per cow.

Predicted values for each performance trait were ob-
tained from interpolation of the actual observations for 
Mcont, DMI, NEI, MY, and BW; cubic splines with 6 
knot points at 20, 70, 120, 170, 220, and 270 DIM were 
fitted through individual test-day records of the traits 
to facilitate the interpolation. After interpolation, 
several restrictions were implemented to improve the 
integrity of the data. Milk yield and milk composition 
records were discarded if MY was <10 kg. Records were 
also excluded if fat concentration in milk was >6.5%, 
total DMI was >30 kg, or BW was <400 kg. Net energy 

Table 1. Phenotypic records on the days with milk mid-infrared 
spectral information for 160 cows and 204 lactations

Trait1 Mean SD

DMI (kg/d) 19.83 3.52
MY (kg/d) 24.79 5.93
Fat (%) 4.37 0.55
Protein (%) 3.42 0.28
Lactose (%) 4.65 0.18
BW (kg) 557.38 54.91
NEI (MJ/d) 125.58 22.00
1MY = milk yield; fat = fat concentration in milk; protein = protein 
concentration in milk; lactose = lactose concentration in milk; NEI = 
net energy intake.
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intake values <55 MJ or >400 MJ were also excluded 
from further analysis. A total of 15 data points (i.e., 
1.7% of the data) were discarded during this data edit-
ing step.

MIR Data

Cows were milked twice daily between 0615 and 0900 
h and again between 1500 and 1715 h. Milk samples 
were collected with varying frequency for each of the 
different experiments (Table 3). All milk samples were 
conserved with bronopol (2-bromo-2-nitropropane-1,3-
diol) and then stored at 4°C. All milk samples were 
analyzed using the same MIR spectrometer (MilkoScan 
FT6000; Foss Electric A/S, Hillerød, Denmark), and 
the resulting spectra were stored. The absorption of 
infrared light through the milk sample at wavelengths 
in the 900 to 5,000 cm−1 region is represented by 1,060 
data points in the Foss MIR spectrum. Mid-infrared 
wavelength regions known to be related to water 
absorbance were not considered in the analysis (Zim-
mermann and Kohler, 2013). Preliminary tests of al-
ternative wavelength regions yielded the most suitable 
wavelength regions for each of the 2 traits. For NEI, 
the wavelength regions of 926 to 1,601, 1,701 to 1,805, 
and 2,693 to 3,069 cm−1, which reflect the protein and 
fat regions, were used. For DMI, the regions used were 
between 926 and 1,593, between 1,745 and 3,061, and 
between 3,781 and 5,149 cm−1.

In the experiments carried out between the years 
2007 and 2014, spectral data were available only from 
a composite morning and evening milk sample. In the 
experiment undertaken in the year 2015, spectral data 
were taken separately from the morning and evening 
milkings. A weighted average of fat, protein, and lac-
tose concentration as well as each spectrum wavelength 
was therefore calculated for data collected in the year 
2015, so the data from all years were comparable; a 
total of 473 daily records were available from the year 
2015 where this approach was applied. Each wavelength 
value of the available 857 spectral records was scaled 
such that the mean and standard deviation of each of 
the wavelengths were 0 and 1, respectively. As a sepa-
rate treatment, Savitzky-Golay smoothing was applied 
to the untreated MIR spectral data to smooth a signal 
by fitting a polynomial to a sliding window of MIR 
data. Different degrees of polynomial and window sizes 
were tested using the Unscrambler X program (version 
10.3, Camo Software AS, Oslo, Norway).

Development and Validation of Prediction Equations

Prediction models were developed using leave-one-
out cross-validation. In this approach, a single observa-T
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tion was left out, one by one, as a single-element test 
set while all the other observations were included in the 
calibration set. This was iterated until every sample 
had been predicted once. To obtain a more appropri-
ate representation of the accuracy and robustness of 
the prediction equations, external validation was also 
performed. This was achieved by randomly stratifying 
animals into 5 external validation data sets, ensuring 
that all the records of a given animal appeared only in 1 
validation set, so that the data of an animal were never 
present in both the calibration and validation data sets 
at the same time. Observations in each external vali-
dation data set were then predicted using the model 
developed from only the observations in the respective 
calibration data set (prediction models developed from 
data on the calibration animals were applied to predict 
the respective trait in the validation animals).

Prediction equations for DMI and NEI were de-
veloped and cross-validated using 9 different model 
constructs: (1) using only the observations of Mcont, 
(2) using only the observations of MY, (3) using the 
observations of both MY and Mcont, (4) using only the 
MIR spectral information, (5) using the observations of 
Mcont and the associated MIR spectral information, (6) 
using the observations of both MY and the associated 
MIR spectral information, (7) using the observations of 
both MY and the BW of the cow, (8) using the obser-
vations of both MY and the associated MIR spectral 
information as well as the BW of the cow, and (9) using 
the observations of both MY and the associated MIR 
spectral information as well as the energy intake from 
concentrate (NEIconc). Models 1 to 8 were used to 
predict both DMI and NEI, whereas model 9 was used 
to predict only NEI. The same data set was used for all 
model constructs and validation.

Models 1, 2, 3, and 7 were implemented using (mul-
tiple) linear regression (LR) models. For models 4, 5, 6, 
8, and 9, 2 alternative statistical approaches were used 
to predict either NEI or DMI, namely PLS (PROC 
PLS; SAS Institute Inc., Cary, NC) or BLUP. Best 

linear unbiased prediction was implemented using the 
same approach as in genomic prediction except that 
marker loci were replaced by the wavelengths of the 
spectra (Meuwissen et al., 2001). In BLUP, the MIR 
spectra wavelengths were always treated as random ef-
fects; when fitting models 5, 6, 8, and 9, Mcont, MY, 
BW, and NEIconc were always considered as fixed ef-
fects. Matlab (R2016a, The MathWorks Inc., Natick, 
MA) scripts were used to perform all BLUP analyses. 
The model for the BLUP analysis was

 y = Xb + Zu + e, 

where y is a vector of NEI or DMI records, which were 
scaled such that the mean and standard deviation of 
each trait were 0 and 1, respectively; b is a vector of 
fixed effects containing an overall mean and, where ap-
propriate, the additional effects of Mcont, MY, BW, 
and NEIconc scaled such that the mean and standard 
deviation of each trait was 0 and 1, respectively; X is 
the design matrix containing columns of covariates for 
the effects in b; Z is a matrix of scaled MIR spectra; u 
is the random effect of the spectral wavelengths, with 
Var(u) = Iσu

2, where I is an identity matrix and e is 
a vector of residuals with Var(e) = Iσe

2. The variance 
components σu

2 and σe
2 are unknown, but solving the 

mixed model equations to obtain solutions for b and 
u only requires knowing the ratio of the variances λ 
= σe

2/σu
2. Different values of λ were tested, and the λ 

value that resulted in the greatest accuracy of predic-
tion in the external validation was chosen separately for 
each trait and model. The effect of different values of λ 
on leave-one-out cross-validation was also considered.

The main difference between the BLUP and PLS ap-
proach is that the BLUP approach uses all eigencom-
ponents of the milk spectra to predict NEI and DMI 
but reduces the weight of the smallest eigencomponents 
proportionally more (which is determined by λ in that 
λ = 0 implies full weights for all components). The 
strong reduction of the weight on the smallest compo-

Table 3. Summary of feeding experiments1

Experiment  Experiment period
No. of 
cows

No. of 
records Frequency

A Jan. 1 to May 7, 2007 33 33 1.00
B Jan. 8 to Apr. 2, 2008 43 119 2.77
C Feb. 2 to Apr. 5, 2009 14 14 1.00
D Aug. 22 to Dec. 9, 2011 22 61 2.77
E Sep. 1, 2012, to Jan. 5, 2014 44 128 2.91
F Jan. 19 to Mar. 13, 2015 48 502 10.46
1No. of cows = total number of cows within each feeding experiment. No. of records = total number of col-
lected records for DMI; milk yield; fat, protein, and lactose concentration in milk; BW; and net energy intake 
within each feeding experiment. Frequency = how frequently records were collected per cow and within each 
feeding experiment.
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nents may reflect the minimal information contributed 
by some wavelengths. Partial least squares restricts 
itself to the components associated with the dependent 
variable and ignores the small components altogether, 
whereas the biggest components obtain their full weight 
(the number of components with full weight is deter-
mined by cross-validation).

The square root of the coefficient of determination 
from the regression model of true on predicted values 
(i.e., the correlation between true and predicted values) 
was used as a measure of the accuracy (R) of predic-
tion. In the PLS regression analysis, a variable number 
of explanatory factors is used to explain the maximum 
amount of variation of the correlated wavelength values 
as well as their correlation with the dependent variable. 
Increasing the maximum number of explanatory factors 
permitted in the prediction models can improve the ac-
curacy of cross-validation but may reduce the accuracy 
of prediction in external validation. Determining the 
maximum number of explanatory factors in the model 
was achieved by visually inspecting the changes in R for 
leave-one-out cross-validation and external validation. 
When undertaking the external validation of the PLS 
analysis, model performance was also assessed by the 
mean bias of prediction as well as both the root mean 
squared error of prediction and the LR coefficient (b) 
of true values on their respective predicted values using 
simple least squares regression.

RESULTS

The mean phenotypic values for the different perfor-
mance traits of the 160 cows, on days where MIR data 
were also available, are summarized in Table 1. Average 
daily DMI and NEI were 19.8 kg and 125.6 MJ, re-
spectively. The average NEI and DMI lactation profiles 
on days with MIR spectral data are in Figures 1 and 
2. When using the LR models without MIR spectral 
information (i.e., models 1–3 and 7), the prediction ac-
curacy in external validation ranged from 0.10 to 0.54 
for DMI and from 0.25 to 0.60 for NEI (Tables 4 and 5). 
Of all the LR models, the greatest R of predicting both 
DMI and NEI in the external validation was achieved 
when the LR model included both MY and BW. The 
prediction accuracy was lower in the external validation 
compared with the leave-one-out cross-validation when 
using the LR models to predict DMI and NEI. For all 
the LR models, the average LR coefficient of actual on 
predicted NEI and DMI in the external validation was 
not different from 1 (P > 0.05). In addition, the mean 
bias for NEI and DMI in the external validation for 
these models was not different from 0 (P > 0.05), indi-
cating unbiased prediction. Relative to using untreated 
spectral data, using smoothed MIR wavelengths did 
not improve the prediction accuracies; reported results 
in the present study therefore relate only to the analy-
ses using the untreated spectra.

Figure 1. Lactation profile of the net energy intake (NEI) on days with milk mid-infrared spectral recordings with an average trend line. 
Color version available online.
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PLS Regression

The accuracy of predicting DMI and NEI from PLS 
regression is presented in Tables 4 and 5. The accu-
racy of prediction for the traits was dependent on the 
maximum number of explanatory factors permitted 
in the prediction equations. The greatest accuracy of 
predicting NEI when using only MIR spectral informa-
tion in the leave-one-out cross-validation was achieved 
when the maximum number of permitted factors in 

the prediction equations was between 10 and 20 and in 
the external validation when the maximum number of 
permitted factors was between 12 and 20 (Figure 3). 
The PRESS statistic (Hastie et al., 2001) was used to 
determine the optimum number of permissible factors 
in the present study. The number of prediction factors 
used in the PLS models to achieve the greatest accu-
racy of prediction ranged from 5 to 8 depending on the 
trait and model (Tables 4 and 5). The R of predicting 

Figure 2. Lactation profile of the DMI on days with milk mid-infrared spectral recordings with an average trend line. Color version avail-
able online.

Table 4. Average number of factors (Fac), root mean squared error (RMSE), correlation coefficient (r), mean bias (SE in parentheses),1 and 
slope (b; SE in parentheses)2 obtained from predicting DMI using centered and scaled mid-infrared (MIR) spectra, tested using leave-one-out 
cross-validation and external validation with partial least squares regression and (multiple) linear regression3

Model  Predictors used4

Leave-one-out 
cross-validation

 

External validation

Fac RMSE r Fac Bias (SE)1 b (SE)2 RMSE r

13 Mcont — 3.46 0.20  — 0.00 (0.12) 0.75 (0.39) 3.52 0.10
23 MY — 3.05 0.50  — 0.00 (0.11) 0.98 (0.13) 3.07 0.49
33 MY, Mcont — 3.01 0.52  — 0.02 (0.10) 0.96 (0.13) 3.06 0.50
4 MIR 6 3.15 0.45  6 0.01 (0.11) 0.88 (0.16) 3.27 0.38
5 MIR, Mcont 5 3.35 0.32  5 −0.03 (0.12) 0.77 (0.21) 3.44 0.24
6 MY, MIR 8 2.84 0.59  8 −0.01 (0.10) 0.88 (0.11) 3.01 0.52
73 MY, BW — 2.95 0.55  — 0.00 (0.10) 0.99 (0.12) 2.97 0.54
8 MY, BW, MIR 7 2.84 0.59  7 −0.02 (0.10) 0.90 (0.11) 2.98 0.54
1Average difference between predicted values and true values in external validation data set.
2Linear regression coefficient of true value on predicted value.
3Linear regression model, no factors used.
4Mcont = milk concentration (i.e., fat, protein, and lactose); MY = milk yield.
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DMI and NEI was generally lower for external valida-
tion compared with cross-validation.

The R of prediction using external validation ranged 
from 0.24 to 0.54 for DMI and from 0.42 to 0.65 for NEI 
(i.e., models 4–6 and 8–9). Compared with the model 
with spectral information only (i.e., model 4), including 
MY in the prediction model increased the R of predict-
ing DMI by 0.14 units in both the cross-validation and 
external validation and the R of NEI by between 0.13 

(cross-validation) and 0.14 (external validation) units 
(Tables 4 and 5). The greatest accuracy of predicting 
DMI (0.54) and NEI (0.65) in the external validation 
was achieved when both BW and MY were included in 
the model as predictors together with the MIR spectra 
(i.e., model 8).

For all the PLS models, the average LR coefficients 
of actual on predicted NEI and DMI in the external 
validation were not different from 1 (P > 0.05), which 

Table 5. Average number of factors (Fac), root mean squared error (RMSE), correlation coefficient (r), mean bias (SE in parentheses),1 and 
slope (b; SE in parentheses)2 obtained from predicting net energy intake (NEI) using centered and scaled mid-infrared (MIR) spectra, tested 
using leave-one-out cross-validation and external validation using partial least squares regression and (multiple) linear regression3

Model  Predictors used4

Leave-one-out 
cross-validation

 

External validation

Fac RMSE r Fac Bias (SE)1 b (SE)2 RMSE r

13 Mcont — 21.00 0.30  — −0.02 (0.73) 0.92 (0.25) 21.33 0.25
23 MY — 17.95 0.58  — 0.02 (0.62) 0.99 (0.11) 18.05 0.57
33 MY, Mcont — 17.79 0.59  — 0.14 (0.62) 0.98 (0.11) 18.03 0.57
4 MIR 6 18.49 0.54  6 0.16 (0.65) 0.95 (0.12) 19.17 0.49
5 MIR, Mcont 7 18.78 0.52  7 0.14 (0.69) 0.83 (0.13) 20.11 0.42
6 MY, MIR 8 16.35 0.67  8 −0.16 (0.59) 0.95 (0.09) 17.15 0.63
73 MY, BW — 17.42 0.61  — 0.01 (0.60) 1.00 (0.10) 17.54 0.60
8 MY, BW, MIR 8 16.02 0.69  8 −0.17 (0.57) 0.94 (0.08) 16.83 0.65
9 MY, NEIconc, MIR 8 16.13 0.68  8 0.04 (0.58) 0.94 (0.09) 17.03 0.63
1Average difference between predicted values and true values in an external validation data set.
2Linear regression coefficient of true value on predicted values.
3Linear regression model, no factors used.
4Mcont = milk concentration (i.e., fat, protein, and lactose); MY = milk yield; NEIconc = energy intake from concentrate.

Figure 3. Influence of maximum number of predictive factors permitted in the calibration equation on the accuracy of the leave-one-out 
cross-validation and the external validation when predicting net energy intake using only milk mid-infrared spectral information. Color version 
available online.
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indicates that the predicted differences in NEI and 
DMI were close to the actual values (Tables 4 and 5). 
The mean bias of prediction for NEI and DMI in the 
external validation was not different from 0 (P > 0.05), 
indicating unbiased prediction.

BLUP

The accuracy of BLUP predictions of DMI and 
NEI is presented in Table 6. The R of predicting DMI 
and NEI was lower in the external validation data set 
compared with the cross-validation data set. The R of 
prediction using the external validation ranged from 
0.30 to 0.54 for DMI and from 0.43 to 0.65 for NEI. 
Compared with the model with spectral information 
only (i.e., model 4), including MY in the model (i.e., 
model 6) increased the R of predicting DMI by between 
0.07 (cross-validation) and 0.14 (external validation) 
units and the R of predicting NEI by between 0.07 
(cross-validation) and 0.13 (external validation) units 
(Table 6). Compared with all other BLUP models, 
using MIR spectra together with Mcont in the model 
(i.e., model 5) reduced the R of predicting DMI and 
NEI. The greatest accuracy for predicting DMI in the 
external validation (0.54) was achieved when predicted 
from the MIR spectra and MY combined (i.e., model 
6). Treating BW as a fixed effect (i.e., model 8) when 
predicting DMI resulted in considerably less accuracy, 
especially in the external validation, than using models 

4 and 6. The greatest accuracy for predicting NEI in 
the external validation (0.65) was achieved when using 
a model including BW, MY, and MIR spectra (i.e., 
model 8) or using a model that included NEIconc, MY, 
and MIR spectra (i.e., model 9).

The LR coefficients of actual on predicted DMI for 
model 8 and the LR coefficients of actual on predicted 
NEI and DMI for models 4 and 5 in the external vali-
dation were less (P < 0.05) than 1 (Table 6). For all 
the other models, the LR coefficient of actual on pre-
dicted NEI and DMI in the external validation was 
not different from 1 (P > 0.05). For DMI, only model 
4 resulted in unbiased prediction (P > 0.05), whereas 
the mean bias of prediction was different from 0 (P < 
0.05) for all the other models. For NEI, only model 5 
resulted in biased prediction (P < 0.05). Based on the 
regression coefficient and the bias, the best model for 
predicting NEI using BLUP included BW, MY, and the 
MIR spectra, and for DMI the best model included MY 
together with the MIR spectra.

DISCUSSION

The objective of the present study was to predict NEI 
and DMI as measures of feed intake in lactating Norwe-
gian Red cows using milk MIR spectral data, sometimes 
accompanied in the prediction model by ancillary, often 
available, data. Accurate and easily accessible informa-
tion about individual cow feed intake and efficiency 

Table 6. Error variance/variance of the spectra (λ), root mean squared error (RMSE), correlation coefficient 
(r), mean bias (SE in parentheses),1 and slope (b; SE in parentheses)2 obtained from predicting DMI and net 
energy intake (NEI) using centered and scaled mid-infrared (MIR) spectra, tested using leave-one-out cross-
validation and external validation with best linear unbiased prediction3

Item4 λ

Cross-validation

 

External validation

RMSE r Bias (SE)1 b (SE)2 RMSE r

DMI (kg/d)
 Model 4 4 2.93 0.56   0.18 (0.11) 0.61 (0.15) 3.25 0.40
 Model 5 20 2.96 0.54   0.47 (0.12) 0.50 (0.16) 5.99 0.31
 Model 6 20 2.74 0.63   0.24 (0.10) 0.81 (0.12) 2.96 0.54
 Model 8 20 2.96 0.54   0.49 (0.12) 0.49 (0.16) 3.40 0.30
NEI (MJ/d)
 Model 4 4 17.10 0.63   0.95 (0.65) 0.66 (0.16) 19.14 0.50
 Model 5 10 17.37 0.62   2.41 (0.68) 0.60 (0.17) 19.94 0.43
 Model 6 10 15.77 0.70   1.08 (0.59) 0.89 (0.12) 17.18 0.63
 Model 8 10 15.49 0.71   0.99 (0.57) 0.93 (0.12) 16.78 0.65
 Model 9 4 15.43 0.71   1.02 (0.57) 0.90 (0.12) 16.78 0.65
1Average difference between predicted values and true values in an external validation data set.
2Linear regression coefficient of true value on predicted value.
3In models 6, 8, and 9, milk yield, BW, and NEI from concentrate are treated as fixed effects.
4Model 4 used only MIR spectral information as a predictor. Model 5 used MIR spectral information together 
with fat, protein, and lactose concentration in milk as predictors. Model 6 used observations of milk yield to-
gether with MIR spectral information as predictors. Model 8 used observations of BW and milk yield together 
with MIR spectral information as predictors. Model 9 used observations of energy intake from concentrate and 
milk yield together with MIR spectral information as predictors.
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could help manage feed costs and might enable genetic 
improvement of feed efficiency by providing large-scale 
data for breeding value evaluation. Wallén et al. (2017) 
showed that to genetically improve feed efficiency us-
ing genomic selection, 4,000 additional genotyped and 
phenotyped heifers need to be added to the reference 
population annually. Generating such large quantities 
of feed intake measurements at a low cost is challeng-
ing. Hence, considerable research has focused on find-
ing solutions to this conundrum, one of which is to pool 
data from different populations (de Haas et al., 2012; 
Veerkamp et al., 2013). Furthermore, McParland et al. 
(2011) proposed that MIR spectral data may be useful 
to predict energy intake because fat-to-protein ratio 
and milk fatty acid composition, which are reported to 
be associated with energy balance (Reist et al., 2002; 
Friggens et al., 2007), are already predicted from MIR 
spectra. McParland et al. (2011) successfully related 
milk MIR spectral data to both body energy status 
and energy intake in lactating Holstein dairy cows. 
The hypothesis, therefore, for the present study was 
that MIR spectral data could be used as a predictor of 
NEI and DMI. Of particular interest was the marginal 
improvement in predictive ability by considering data 
from potentially informative traits often available at 
the time of milk sampling but also the usefulness of 
BLUP approaches in improving the predictive ability 
over the commonly used PLS approaches. Moreover, 
studies to date have been confined to Holstein-Friesian 
cows, but Norwegian Red cows predominate in Norway, 
and the ability of milk MIR to predict intake in this 
breed is currently unknown.

Prediction Equations

The number of explanatory factors permitted in the 
prediction model affected the resulting prediction ac-
curacy in the present study. This is in line with the re-
sults from both McParland et al. (2011), who predicted 
body energy status in Holstein cows using PLS on milk 
MIR, and Martínez et al. (2017), who studied a model 
selection criterion for PLS regression using simula-
tions. In the present study, too few explanatory factors 
in the model contributed to a reduction in R, most 
likely due to an oversimplified prediction model. The 
optimum number of permissible factors in the present 
study appears to be 10 to 12 when predicting NEI. The 
optimum number of permissible factors in the study of 
McParland et al. (2011) was 20 for body energy status 
when predictions were across lactation. For this rea-
son, the maximum number of explanatory factors in 
the prediction models was limited to 12 in the present 
study, which was lower than the 20 explanatory factors 

permitted in the study of McParland et al. (2011) and 
is lower than the 16 factors permitted by Soyeurt et al. 
(2011), who also used PLS but in the prediction of milk 
fatty acids from milk MIR in dairy cows.

The results from the present study regarding smooth-
ing of the spectral data agree with those of McParland 
et al. (2011), who used MIR of milk to predict animal-
level phenotypes, yet contradict those of Soyeurt et al. 
(2011), who predicted milk fatty acid composition from 
milk MIR. The apparent discrepancy between studies 
could simply be due to whether the MIR data originated 
from 1 or multiple spectrometers. Soyeurt et al. (2011) 
used data from multiple spectrometers, whereas data 
from only 1 spectrometer was used both by McParland 
et al. (2011) and in the present study.

Comparison Between PLS and BLUP Methods

Partial least squares methods traditionally have been 
used to develop the prediction equations in dairy cows 
from milk MIR (McParland et al., 2011, 2012, 2014; 
De Marchi et al., 2014). Best linear unbiased predic-
tion approaches, however, are the norm in genetic and 
genomic evaluations. Because one of the objectives of 
the present study was to develop prediction models for 
possible use in breeding programs, consideration was 
given to whether BLUP approaches could also be used 
to predict NEI and DMI, thus simplifying the pipelines 
used. Furthermore, because BLUP provides the oppor-
tunity to treat some of the predictors as fixed effects 
(i.e., MY and BW) and because there is strong prior 
knowledge to indicate these are informative in predict-
ing feed intake (Berry and Crowley, 2013; McParland 
et al., 2014), we expected that BLUP could improve 
prediction accuracy relative to PLS. Although the R 
of cross-validation was generally better for BLUP, the 
R of both BLUP and PLS was similar in the external 
validation (Tables 4, 5, and 6). Worrying, however, was 
the evidence of mean bias and an LR coefficient of the 
actual values on BLUP-predicted values differing from 
unity; such biases were not evident for PLS. McParland 
et al. (2011) reported a LR coefficient of the actual 
values of energy balance on PLS-predicted values not 
differing from unity. However, the LR coefficient of 
actual on predicted energy content was different from 
unity (0.77–0.83 ± 0.06). McParland et al. (2011) also 
reported a biased prediction for energy content. Mean 
biases, however, are not necessarily a big issue for ge-
netic evaluations becase genetic evaluations are all un-
dertaken within a contemporary group and in doing so 
remove the mean contemporary group effect from the 
individual records. One possible reason why BLUP re-
sulted in biased predictions is that λ was chosen based 
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on external validation R values and was not estimated 
using variance components. Thus, based on our results, 
PLS seems to be a better method for predicting feed 
intake using milk MIR than BLUP.

Improving Feed Efficiency

In the present study, the most accurate model for 
predicting both DMI and NEI included BW, MY, and 
MIR spectra when using PLS. For DMI, including only 
MY and BW in the prediction model resulted in similar 
accuracy. Even though BW itself is currently not read-
ily available on many commercial dairy farms, it can 
be estimated using, for example, chest width because 
a strong genetic correlation between BW and chest 
width has been reported (0.75–0.86; Veerkamp and 
Brotherstone, 1997). Moreover, developments in sensor 
technologies could result in live weight (and other phe-
notypes such as BCS) being routinely recorded daily 
in the future. Using Mcont in the prediction model 
or combining them with MIR spectra resulted in low 
accuracy of prediction. However, combining MY with 
Mcont increased the accuracy considerably. It is clear 
that using only Mcont or MIR spectra in the model 
does not result in high prediction accuracy for NEI or 
DMI; in fact, the accuracy of prediction using just the 
MIR data was always inferior to a model that used 
just MY, fat, protein, and lactose concentration. The 
use of MY and BW together with MIR spectra in the 
prediction model increased the prediction accuracy 
considerably and resulted in an R of 0.65 for NEI in 
the external validation. This is slightly lower than the 
study of McParland et al. (2014), where PLS was used 
to predict effective energy intake using just MY and 
milk MIR, resulting in an R of 0.70 in the external vali-
dation. The differences in the results between McPar-
land et al. (2014) and the present study could be due 
to the fact that the data used in the present study were 
considerably smaller than those used in the study of 
McParland et al. (2014), which might have an effect on 
the robustness of the prediction models in the present 
study. Furthermore, the variability in the frequency of 
data available as well as the diversity in feeding experi-
ments represented in the data set used in the present 
study may also have affected the results of the present 
study. Nonetheless, most of the data used in the pres-
ent study originated from a feeding experiment with 
regular collection of data. Additionally, the construc-
tion of the calibration and validation data sets differed 
between the study of McParland et al. (2014) and the 
present study. Finally, the use of different wavelengths 
from the MIR spectra in the development of the predic-
tion models across studies could have an effect on the 
prediction accuracies.

Dry matter intake was more difficult to predict us-
ing milk MIR in the present study because the spectra 
are expected to reflect the absorbed feed components 
and therefore cannot necessarily predict the amount 
of feed that the cow ate to obtain these absorbed feed 
components. Therefore, NEI is more useful for prac-
tical application because it reflects the energy in the 
consumed feed instead of merely the amount of feed 
consumed. The prediction accuracy of 0.65 (external 
validation) for NEI seems promising, especially if we 
consider that energy intake is a phenotype that itself 
encompasses recording errors (McParland and Berry, 
2016). For instance, diurnal variation may also exist in 
energy intake (McParland et al., 2011), which makes 
the maximum achievable prediction accuracy less than 
100% (possibly 75% for body energy status according 
to McParland et al., 2011, and 70% for energy intake 
according to McParland et al., 2014). McParland et al. 
(2015) reported heritable genetic variability for energy 
intake, energy balance, and residual energy intake pre-
dicted using milk MIR. In addition, this variability is 
sufficiently large to justify consideration of including 
FE in dairy cattle breeding goals (Hurley et al., 2017). 
McParland et al. (2015) also reported that phenotypic 
differences in energy intake existed among animals, 
which were stratified, based on their EBV for energy 
intake predicted from MIR. Therefore, genetic improve-
ment of feed efficiency could be possible. Feed intake 
itself is the actual gold standard trait and can be used 
when actual feed intake data are available. Hence, as 
more actual feed intake data accumulate for an animal 
or a sire, the importance of the MIR-predicted feed 
intake diminishes. Nonetheless, the accuracy of predic-
tion of feed intake from daughter phenotypes can never 
be greater than the genetic correlation between the 
predicted phenotypes and the actual feed intake.

Results from the present study suggest that MIR 
spectral data can be used to predict NEI as a measure 
of feed intake in Norwegian Red dairy cattle. When 
using PLS with 8 factors, the most accurate model of 
predicting NEI included all of BW, MY, and MIR spec-
tra as predictors. The BLUP predictions yielded similar 
accuracies but were biased. Nonetheless, no matter 
which feed efficiency measure would be chosen, before 
including the trait in the breeding program, genetic 
correlations between predicted feed intake, actual feed 
intake, and other performance traits—especially health 
and fertility traits—need to be estimated to derive the 
selection index weights.
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APPENDIX

Formulae used to calculate energy intake based on 
NorFor (Volden, 2011).

Gross Energy Intake
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where gross energy intake (GEI) is expressed as mega-
joules per day and, for feedstuff i, DMIi is the DMI 
(kg/d), CPcorri is the content of ammonia- or urea-
corrected CP, CFati is the crude fat content (g/kg of 
DM), OMi is the OM content (g/kg of DM), CPi is the 
CP content (g/kg of DM), and NH3Ni is the ammonia 
or urea N content (g/kg of CP; i = 1, . . . , n).

ME Intake
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where ME intake (MEI) is expressed as megajoules per 
day, DMIi is the DMI (kg/d) of feedstuff i (i = 1, . . . , 
n), SUi is the sugar content (g/kg of DM) of feedstuff 
i (i = 1, . . ., n), tdCPcorr is the total-tract diges-
tion of ammonia- or urea-corrected CP, tdCFat is the 
total-tract digestion of crude fat, and tdCHO is the 
total-tract digestion of carbohydrates.

NEI

In NorFor, NEI is based on the equations of Van Es 
(1975, 1978). The NEI per individual was calculated 
based on ME and gross energy of feed:

 NEI = 0.6 × [1 + 0.004 × (q – 57)] × MEI, 

where NEI is expressed as megajoules per day and q is 
the ratio (%) between ME and gross energy.
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