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ABSTRACT

Oxidative stress contributes to cell injury and ag-
gravates several chronic diseases. Dietary antioxidants 
help the body to fight against free radicals and, 
therefore, avoid or reduce oxidative stress. Recently, 
proteins from milk whey liquid have been described as 
antioxidants. This review summarizes the evidence that 
whey products exhibit radical scavenging activity and 
reducing power. It examines the processing and treat-
ment attempts to increase the antioxidant bioactivity 
and identifies 1 enzyme, subtilisin, which consistently 
produces the most potent whey fractions. The review 
compares whey from different milk sources and puts 
whey proteins in the context of other known food anti-
oxidants. However, for efficacy, the antioxidant activity 
of whey proteins must not only survive processing, but 
also upper gut transit and arrival in the bloodstream, if 
whey products are to promote antioxidant levels in tar-
get organs. Studies reveal that direct cell exposure to 
whey samples increases intracellular antioxidants such 
as glutathione. However, the physiological relevance of 
these in vitro assays is questionable, and evidence is 
conflicting from dietary intervention trials, with both 
rats and humans, that whey products can boost cellular 
antioxidant biomarkers.
Key words: whey products, whey proteins, bioactive 
peptides, antioxidant activity, oxidative stress

INTRODUCTION

Within each cell of the body, metabolic processes 
generate free radicals, and antioxidant systems are in 
place to effectively disarm them. However, this homeo-
static balance can be altered due to excess free radical 
production, antioxidant depletion, or both. When the 
controls fail, cells are exposed to high levels of free 
radicals [reactive oxygen (ROS), reactive nitrogen, or 

reactive sulfur species]. Oxidative stress ensues, leading 
to cell injury such as protein and lipid peroxidation, 
DNA strand breakage, racemization or decarboxylation 
of AA, enzyme dysfunction, and oxidative breakdown 
of carbohydrates (d’Ischia et al., 2006; Li et al., 2015). 
Sustained oxidative stress is considered a causative 
agent of neurodegenerative disorders (Gilgun-Sherki et 
al., 2001; Klein and Ackerman, 2003), cancer (Waris 
and Ahsan, 2006), liver injury (Li et al., 2015), aging 
(Lee et al., 2004), and appears to aggravate diabetes 
(Rochette et al., 2014), cystic fibrosis (Galli et al., 
2012), chronic pancreatitis (Zhou et al., 2015), and car-
diovascular disease (Sugamura and Keaney, 2011; Lönn 
et al., 2012). Cells protect themselves from oxidative 
damage by (1) prevention, (2) repair, (3) antioxidant 
production, or (4) uptake of dietary antioxidants or 
their precursors (Valko et al., 2007; Niki, 2010). Endog-
enous antioxidants include the intracellular enzymes 
superoxide dismutase (SOD) and catalase (CAT). 
The metal-binding enzyme, SOD, converts superoxide 
anion to hydrogen peroxide plus oxygen, whereas CAT 
converts hydrogen peroxide to water (Weydert and Cul-
len, 2010). The cytosolic Cys tripeptide, γ-glutamyl-
cysteinyl-glycine, reduces hydroperoxides to alcohols 
and hydrogen peroxide to water by converting from its 
reduced (GSH) to its oxidized form. Well-documented 
dietary antioxidants include ascorbic acid (vitamin C), 
α-tocopherol (vitamin E), polyphenols, and carotenoids 
(Fiedor and Burda, 2014). 

Recently, dairy proteins obtained from whey have 
received considerable attention for their antioxidant 
bioactivity (Bayram et al., 2008; Haraguchi et al., 
2011; Zhang et al., 2012). Bovine whey proteins (WP) 
are widely used in various foods for their nutritional, 
health-promoting, and functional values (Ramos et al., 
2017). Bovine liquid whey is produced by enzymatic 
treatment of milk (sweet whey) or addition of organic 
acids or minerals (acid whey) with the precipitation 
and removal of casein (Yadav et al., 2015). Bovine WP 
account for 11 to 14.5% of dry whey; the other compo-
nents of bovine whey powder are lactose (63–75%), fat 
(1–1.5%), minerals (8.2–8.8%), and vitamins (A, C, E, 
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and B groups; Miller et al., 2006; Yadav et al., 2015). The 
protein component of whey provides a complete protein 
source and is rich in sulfur-containing AA (1.7%; Fox 
et al., 2015) and in branched-chain AA (26%; Ha and 
Zemel, 2003; Paul, 2009). It is composed of β-LG (50–
60%), α-LA (15–25%), BSA (6%), lactoferrin (<3%), 
and immunoglobulins (<10%; de Wit, 1998; Madureira 
et al., 2007; Le Maux et al., 2014). Beta-lactoglobulin 
is a small globular protein, composed of 162 AA with a 
molecular weight (MW) of approximately 18,300 g/mol 
(Rade-Kukic et al., 2011). It contains all 20 EAA and is 
a rich source of sulfur. From a GSH precursor perspec-
tive, it has 5 Cys residues, 4 of them involved in disulfide 
bonds with the remaining 1 having a free reactive thiol 
group (Le Maux et al., 2014). Alpha-lactalbumin is a 
small protein with a MW of 14,200 g/mol consisting of 
123 AA arranged in a single peptide chain (Konrad and 
Kleinschmidt, 2008). It has 8 Cys as 4 disulfide bonds 
and, therefore unlike β-LG, has no free thiol group 
(Konrad and Kleinschmidt, 2008; Pepe et al., 2013). 
Bovine serum albumin is composed of 583 AA with a 
MW of 66,430 g/mol (Hirayama et al., 1990). It contains 
35 Cys groups making 17 disulfide bonds in addition to 
a free Cys which can facilitate intramolecular disulfide 
interactions (Madureira et al., 2007). Lactoferrin (MW 
80,000 g/mol) is an iron-binding monomeric globular 
glycoprotein (Wakabayashi et al., 2006) that contains 
708 AA, of which 34 are Cys and all of which partici-
pate in disulfide bonds (Marshall, 2004). In addition, 
each lactoferrin monomer can bind 2 Fe3+ ions, with 
a binding affinity of 10 to 20 M (Baker and Baker, 
2004); this iron-binding capacity is likely to contribute 
to its antioxidant potential (Baker and Baker, 2004; 
Kim et al., 2013). Bovine WP also contains dilute con-
centrations of immunoglobulins [IgA, IgM, and IgG (IgG1 
and IgG2)]. These are quaternary structure molecules, 
either monomers or polymers with 4 chains, consisting 
of 2 light polypeptide chains (MW 25,000 g/mol) and 2 
heavy chains (MW between 50,000–70,000 g/mol) linked 
by disulfide bonds (Madureira et al., 2007). Several bo-
vine whey products are produced commercially (Table 
1) and differ primarily in protein content and lactose 
concentration.

DO WHEY PRODUCTS SHOW ANTIOXIDANT 
ACTIVITY IN VITRO?

The antioxidant potential of WP has been assessed 
by different in vitro methodologies: 1,1-diphenyl-2-pic-
rylhydrazyl (DPPH) radical assay, 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, 
ferric-reducing antioxidant power (FRAP), and oxygen 
radical absorbance capacity (ORAC). Table 2 details 
the most recent studies of the antioxidant activity of 
whey products after processing, enzymatic hydrolysis, 
or both. Other noteworthy studies have been reviewed 
previously (Power et al., 2013; Brandelli et al., 2015). 
The WP antioxidant activity was shown to be dose-
dependent (20–100 mg/mL) by the DPPH assay, which 
measures the ability of a compound to scavenge the 
DPPH radical (Gad et al., 2011). Hydrolysis of pre-
heated whey protein isolate (WPI) with the enzyme 
subtilisin (EC 3.4.21.62), a nonspecific endopeptidase 
purified from Bacillus licheniformis and commercially 
available as Alcalase (Novozymes A/S, Bagsvaerd, 
Denmark), with specific activities ranging from 0.6 to 
2.5 U/g, increased its DPPH scavenging activity from 
11.4 to 62.9% (Peng et al., 2010). Hydrolysates of whey 
protein concentrate (WPC) produced by subtilisin 
also showed significantly greater inhibition than WP 
hydrolysates (WPH) produced by other microbial en-
zymes (Dryáková et al., 2010; Lin et al., 2012; O’Keeffe 
and FitzGerald, 2014). Dryáková et al. (2010) demon-
strated 35.5% greater inhibition of the ABTS radical 
with WPC hydrolyzed by subtilisin rather than by 
the enzymes as bacillolysin [EC 3.4.24.28, commercial 
source Neutrase (Novozymes A/S, Bagsvaerd, Den-
mark)] or Protamex (EC 3.4.21.14, Novozymes A/S). 
The WPC hydrolyzed by subtilisin also showed more 
ferric-reducing power (0.55 mM FeSO4 equivalents) 
than trypsin (EC 3.4.21.4), pepsin (EC 3.4.23.1), or 
leucyl aminopeptidase (EC 3.4.11.1, commercial source 
Flavourzyme, Novozymes A/S) hydrolysates (0.35 mM 
FeSO4 equivalents, P < 0.05). This activity was further 
increased by heat treatment (95°C, 5–10 min) of WPC 
before hydrolysis (Lin et al., 2012). However, Adjonu 
et al. (2013) observed that heat pretreatment (80°C, 
15 min) did not improve antioxidant activity of WPI 
hydrolysates from pepsin [nonheated WPH = 0.32 ± 
0.03 μmol of Trolox equivalents (TE)/mg of protein; 
heated WPH = 0.30 ± 0.03 μmol of TE/mg of pro-
tein] or chymotrypsin (EC 3.4.21.1; nonheated WPH = 
0.27 ± 0.04 μmol of TE/mg of protein; heated WPH 
= 0.31 ± 0.02 μmol of TE/mg of protein). In Adjonu 
et al. (2013), ORAC methodology was employed, which 
scavenges peroxyl radicals and compares levels to the 
vitamin E analog, Trolox.

Table 1. Composition of commercial whey protein products

Whey products

Composition

Protein (%) Fat (%) Lactose (%)

Whey protein concentrate 34–80 1–7 4–52
Whey protein isolate 90–95 0.5–1 0.5–1
Hydrolyzed whey protein 80–90 0.5–8 0.5–10
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In an effort to increase antioxidant properties of 
peptides from WP, Le Maux et al. (2016) altered the 
hydrolysis conditions (pH, enzyme type, reaction time, 
and temperature). Hydrolysis of WP (81% protein) test 
samples with papain (EC 3.4.22.2) at a constant pH 
of 7.0 gave significantly higher ORAC values (285.32 
± 36.71 μmol of TE/g of powder) than those obtained 
from hydrolysates generated under noncontrolled pH 
conditions (192.54 ± 42.61 μmol of TE/g of powder, 
P < 0.05). To characterize the functional fraction of 
whey, WPC was hydrolyzed by several enzymes and the 
resultant hydrolysates were fractioned by size using gel 
or membrane filtration (Peng et al. 2009; Önay-Ucar et 
al. 2014; Tarango-Hernández et al. 2015). The ORAC 
results showed that fractions containing peptides with 
smaller molecular weight (subtilisin hydrolysate 1-kDa 
permeate = 0.91 μmol of TE/mg of powder) exhibited 
more antioxidant activity than those fractions contain-
ing larger peptides (subtilisin hydrolysate 5-kDa per-
meate = 0.75 μmol of TE/mg of powder; O’Keeffe and 
FitzGerald, 2014). 

Mass spectrometry analysis revealed the AA se-
quences of peptides in antioxidant fractions (Table 3). 
Several peptides from β-LG were identified in anti-
oxidant fractions produced by enzymatic hydrolysis of 
whey products. Many of these peptides occurred within 
3 location hotspots (42–61, 77–110, and 123–135 AA). 
Interestingly 125 to 135 AA contains the iron-binding 
peptide TPEVDDEALEK (Cruz-Huerta et al., 2016). 
Bertucci et al. (2015) also discovered several α-LA 
peptides in fractions exhibiting antioxidant activity. In 
this case, peptides from location 15 to 23 AA were fre-
quently identified. To date none of these peptides have 
been synthesized and tested in DPPH, ABTS, ORAC, 
or FRAP assays for antioxidant activity. The free AA 
present in these fractions, some of which may contrib-
ute to the antioxidant activity (e.g., Trp, Phe, Tyr, 
Cys, and His) have also not been described. In contrast 
(Table 3), Hernández-Ledesma et al. (2005) identified 
several peptides and AA from a 3-kDa permeate of the 
β-LG hydrolyzed by Corolase PP (AB Enzymes, Darm-
stadt, Germany). Three peptides, MHIRL, YVEEL, 
and WYSLAMAASDI, were synthesized and exhibited 
antioxidant activity by ORAC (MHIRL = 0.306 μmol 
of TE/μmol of peptide; YVEEL = 0.799 μmol of TE/
μmol peptide; and WYSLAMAASDI = 2.621 μmol of 
TE/μmol of peptide). In particular, the antioxidant 
activity of WYSLAMAASDI is comparable to the syn-
thetic antioxidant butylated hydroxyanisole (2.43 μmol 
of TE/μmol pure compound), but 1.7 to 4 fold lower 
than the plant polyphenols catechin and quercetin (14.9 
and 10.5 μmol of TE/μmol of compound, respectively; 
Dávalos et al., 2004). Additionally, Hernández-Ledesma 
et al. (2007) identified 3 synthetic peptides derived 

from β-LG (19–24 AA; WY, WYS, and WYSLAM) 
that exhibited ORAC values [4.45 (WYS) to 7.67 (WY) 
μmol of TE/μmol of peptide] higher than equimolar 
mixtures of their corresponding free AA. Nongonierma 
and Fitzgerald (2013) identified a synthetic dipeptide 
WC present in α-LA (60–61 AA) and lactoferrin (8–9 
and 347–348 AA) that exhibited 50% DPPH scaveng-
ing capacity at 0.26 mM, equivalent to 17.2 nM Tro-
lox. Moreover, purified peptides, LDQW and INYW, 
derived from thermolysin (EC 3.4.24.27) hydrolysis of 
α-LA were capable of a 100% ABTS radical inhibition 
at 2.5 μM (Sadat et al., 2011).

In addition to processing, whey origin may also play 
a role in antioxidant activity. Salami et al. (2010) hy-
drolyzed camel WP with either chymotrypsin, trypsin, 
proteinase K (EC 3.4.21.64), or thermolysin. Camel 
liquid whey is rich in α-LA and lysozyme, but lacks 
β-LG. Camel WP exhibited 40% higher antioxidant ac-
tivity by ABTS than bovine WP (Salami et al., 2010). 
In addition, sheep WP was found to be more active 
against the DPPH radical, requiring 3.1 ± 0.09 mg/mL 
to inhibit 50% of the radical compared with 8.2 ± 0.77 
mg of bovine WP/mL (Kerasioti et al., 2014). It also 
exhibited greater iron-reducing power than bovine WP, 
although, in this case, ABTS data was similar (Kera-
sioti et al., 2014). Indeed, conflicting data between 
different radical scavenging methods (ORAC, DPPH, 
ABTS) is common to the majority of studies (Adjonu 
et al., 2013; Kerasioti et al., 2014), indicating the need 
to perform several antioxidant assays to be confident of 
results. Interestingly, other components in milk appear 
to synergistically enhance the antioxidant activity of 
WP. Zulueta et al. (2009) showed higher ORAC val-
ues for pasteurized milk (13,935 μM TE) than from 
whey obtained after casein precipitation of pasteur-
ized milk (1,078 μM TE). In this regard, Conway et 
al. (2013) observed that hydrolysates from buttermilk 
protein (54.6% protein content) were more effective 
(P < 0.05) at scavenging free radicals than those from 
WPC (74.5% protein content). The ORAC values were 
1,319.6 ± 46.7 μmol TE/g of protein for buttermilk 
compared with 782.5 ± 34.8 μmol TE/g of protein for 
WPC. Although buttermilk is unlikely to contain large 
quantities of WP, analysis revealed 4 β-LG peptides 
(VAGTWY, TKIPAVFK, IPAVF, and VLVLDTDYK) 
that were proposed to contribute to the antioxidant 
activity (Conway et al., 2013).

Recently, whey products have been added to nutri-
tional beverages to boost their antioxidant capacity. 
Supplementation of a lemon drink with 1% WP hydro-
lyzed by subtilisin increased the antioxidant activity of 
the beverage from 0.75 to 7.79 mmol of TE/L (Athira 
et al., 2014). In addition, a flavored milk beverage 
fortified with 1 or 2% WPH from different enzymes 



4 CORROCHANO ET AL.

Journal of Dairy Science Vol. 101 No. 6, 2018

Table 2. Effect of processing treatments and enzyme hydrolysis on the antioxidant activities of whey protein isolate, whey protein concentrate, 
and whey protein

Product1  
Heat 
treatment  Hydrolysis/filtration/other2  Antioxidant assay3  Results4  Reference

WPI (95% 
protein)

Preheating 
95°C, 5 min

Subtilisin (pH 8.5, 65°C, 1, 2, 
3, 4, 5, and 8 h)

Inhibition liposomes 
peroxidation 
TBARS 
FRAP 
Metal-chelating activity 
DPPH

Hydrolysis ↑ AOX (DPPH 
inhibition: WPI = 11.4%, 
5h-WPH = 62.9%)

Peng et al. 
(2010)

WPI Preheating 
85°C, 15 min

Papain (pH 8.0, 35–55°C, 2–6 
h)

Reducing power assay 
DPPH

<AOX at 3.6 h, 45.7°C 
(DPPH = 31.36%)

Zhidong et al. 
(2013)

WPI Unheated or 
Preheated 
(80°C, 15 
min)

Pepsin (pH 2.6, 37°C) 
Trypsin (pH 7.8, 37°C) 
Chymotrypsin (pH 7.8, 37°C) 
12 or 24 h

ABTS 
ORAC

Hydrolysis ↑ AOX (WPH 
trypsin = 0.32, WPI = 0.08 
μmol of TE/mg of protein) 
No differences between 
enzymes, time or preheating

Adjonu et al. 
(2013)

Native and 
pressurized 
WPI (1 mg/
mL)

 Pressure treatment (1 cycle of 
550 MPa) followed by SGID: 
pepsin (pH 1.9, 37°C, 0.25 h), 
trypsin, chymotrypsin and 
peptidase (pH 7.4, 37°C, 1.0 
h), membrane filtration (10 
kDa permeate)

FRAP SGID pressurized WPI 
showed 21% more AOX 
activity than SGID native 
WPI

Iskandar et al. 
(2015)

WPI  Papain (pH 7.0, 65°C, 0–5 h) 
Pepsin (pH 2.0, 37°C, 0–5 h) 
Subtilisin (pH 8.3, 55°C, 0–5 
h)

Ferric reducing power Papain AOX results were 
time-dependent. No change 
in AOX activity of subtilisin 
or pepsin hydrolysates

Mohan et al. 
(2015)

WPI (≥90% 
protein)

Preheated 
(85°C, 5 h, 
pH 2.0)

Corolase N (pH 7.7, 55°C, 5 h) DPPH 
Reducing power

Hydrolysis and heat ↑ AOX 
activity (Scavenging activity: 
WPI = 13%, WPH = 60%)

Mohammadian 
and Madadlou 
(2016)

WPI (90% 
protein)

Preheating 
80°C, 7 min

Pepsin (pH 2.0, 37°C, 0–12 h) Ferric reducing power Maximum AOX activity at 
6 h

Nourbakhsh et 
al. (2017)

WPC (80% 
protein)

  DPPH 
Ferrous-chelating activity

WPC AOX activity dose-
dependent (20–100 mg/100 
mL)

Gad et al. 
(2011)

WPC Unheated or 
Preheated 
(95°C, 5 or 10 
min)

Pepsin (pH 2.0, 37°C, 2 h) 
Trypsin (pH 8.0, 37°C, 2 h) 
Subtilisin (pH 9.0, 50°C, 2 h) 
Leucyl aminopeptidase (pH 
7.0, 50°C, 2 h)

Total AOX activity 
FRAP 
DPPH

Hydrolysis ↑ AOX activity 
(subtilisin = 62% DPPH 
inhibition > trypsin or 
pepsin)

Lin et al. 
(2012)

WPC Preheating 
90°C, 5 min

Pepsin (pH 1.5, 37°C) followed 
by trypsin (pH 7.6, 50°C) for 
1.5 h

DPPH 
Superoxide anion radical 
scavenging activity 
Ferric reducing power

WPH dose dependent AOX 
activity (0–10 mg/mL)

Zhang et al. 
(2012)

WPC, 
commercial 
WPH (DH = 
32%; DH = 
45%)

 SGID: 
Pepsin (pH 2.0, 37°C, 1.5 h) 
followed by Corolase PP (pH 
7.5, 37°C, 2.5 h)

ORAC WPH AOX activity 3 - 6 
fold > WPI. SGID ↑ AOX 
WPC (WPC = 13,662; 
SGID WPC = 36,605 μmol 
of TE/100 g powder)

Power-Grant 
et al. (2015)

WPC (4% 
protein)

Preheating 
50–54°C, 10 
min

Protamex, subtilisin, or both 
(pH 7.0; 0.5, 1, 1.5 h; 45, 50, 
55°C)

ABTS 
ORAC

WPC = 2.83 mM TE 
WPH Protamex = 4.27 mM 
TE 
WPH both enzymes = 6.33 
mM TE

Torkova et al. 
(2016)

WPX (11% 
protein)

 DPPH WP 72.15% scavenging 
activity

Ashoush et al. 
(2013)

WPX Leucyl aminopeptidase 
Subtilisin 
Protease from Aspergillus 
oryzae 
Optimal temperature and pH, 
4 h

ORAC 
DPPH

Hydrolysis ↑ AOX activity 
of WP 
Hydrolysates by protease 
from Aspergillus oryzae 
> ORAC values (172.11 
μmol of TE/g) and DPPH 
inhibition (69.53%)

de Castro and 
Sato (2014)

Sweet and acid 
WPC

Polymerization by glycation  
(pH 7.0 and 9.0) 
Hydrolyzed by biomass of  
Bacillus subtilis (pH 7.0, 50°C, 
24 h)

ABTS Hydrolysis and glycation ↑ 
AOX activity (acid WPC = 
55%, WPH = 85%, WPC 
glycated = 75%, WPH 
glycated = 95%)

Ortega et al. 
(2015)

Continued
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[leucyl aminopeptidase, subtilisin, or Corolase PP (AB 
Enzymes)] increased the ABTS radical inhibition of 
the beverage by 21 and 33%, respectively. Interestingly, 
adding intact WPC (1–2%) to the beverage did not 
alter ABTS values (Mann et al., 2015). A polyphenol 
rich beverage [chlorogenic acid (0.01%) or catechin 
(0.01%)], thermally treated (121°C, 10 min) at pH 3.7, 
exhibited ABTS values of 0.45 to 1.22 mM TE/L re-
spectively. However, the addition of WP (0.2%; ABTS 
= 0.45 mM TE/L) to this model beverage did not re-
sult in additive antioxidant activity, although ABTS 
results were higher than the beverage with polyphenol 
values alone (0.90–1.77 mM TE/L; He et al., 2015). 
Indeed, addition of WP (0.5, 2.0, 4.0, or 6.0%) did not 
significantly change (P > 0.05) the antioxidant activity 
of another beverage with 0.0032% lutein, a carotenoid 
antioxidant (Rocha et al., 2017). Interestingly, the com-
bination of WPC and the algae Spirulina platensis, rich 
in carotenoids, tocopherol, and phycocyanin, showed 
less antioxidant power (125 TE mg/L of sample) than 
Spirulina platensis (100 mg/100 mL) alone (170 TE 
mg/L of sample), which indicates that whey products 
can exert an antagonistic effect on the antioxidant ac-
tivity of other compounds (Gad et al., 2011).

How WP compare in terms of their antioxidant activ-
ity to other proteins and known antioxidant compounds 
has been investigated (Dávalos et al., 2004; Hernández-
Ledesma et al., 2007; Castro and Sato, 2014). Intact 
WP showed significantly lower DPPH radical inhibi-
tion (17.13 ± 2.33%) than soy protein isolate (27.18 
± 0.15%) or egg white protein (33.39 ± 0.26%; Castro 
and Sato, 2014), although the purity of each protein 

was not described. Interestingly, no significant differ-
ences in DPPH inhibition were found between WP 
(29.81 ± 0.48%) and egg (31.50 ± 0.24%) hydrolysates 
using leucyl aminopeptidase (Castro and Sato, 2014). 
In contrast, ORAC values for WPH were lower (160.72 
± 26.26 μmol of TE/g) than results obtained for their 
counterparts from egg (546.45 ± 55.75 μmol of TE/g) 
or soy (1,157.18 ± 134.66 μmol TE/g), which again 
underlines the inconsistencies across antioxidant assays 
(Castro and Sato, 2014). It is noteworthy that 100 g 
of WPC (79.0% protein) results in ORAC values of 
13,662 ± 1,018 μmol of TE (Power-Grant et al., 2015), 
whereas 100 g of concentrated green tea extract results 
in 758,000 μmol of TE (de la Luz Cádiz-Gurrea et al., 
2014). However, as a protein, WP can be added to 
foods at concentration of 22.2% (Chavan R. S. et al., 
2015), whereas green tea extract is usually added to 
foods at concentrations less than 0.04% (Maruyama et 
al., 2017).

CAN WHEY PRODUCTS BOOST INTRACELLULAR 
ANTIOXIDANT DEFENSES IN VITRO?

According to the Swedish Agency for Health Tech-
nology Assessment and Assessment of Social Services 
and cited by the World Health Organization, boosting 
antioxidants capabilities (GSH, CAT, and SOD) in cells 
by the diet will achieve long life and well-being (SBU, 
1997). At cellular levels, GSH (1) directly scavenges 
free radicals (for example hydroxyl radicals); (2) is 
a substrate for the antioxidant enzymes glutathione 
peroxidase and glutathione transferase; (3) facilitates 

Table 2 (Continued). Effect of processing treatments and enzyme hydrolysis on the antioxidant activities of whey protein isolate, whey protein 
concentrate, and whey protein

Product1  
Heat 
treatment  Hydrolysis/filtration/other2  Antioxidant assay3  Results4  Reference

MPC, 
commercial 
WPH (DH 
= 32%, 78% 
protein; DH 
= 45%, 75% 
protein)

 ORAC WPH45 = 77,691 μmol of 
TE/100 g powder > WPH32 
= 37,391 μmol of TE/100 g 
powder > MPC 15,678 μmol 
of TE/100 g powder

Power-Grant 
et al. (2016)

WPX (81% 
protein)

Papain (pH 7.0, 6.3 and 
without  
pH control, 50°C, 3 h)

ORAC Higher AOX at constant 
pH 7.0 (WP = 71.52 μmol 
of TE/g protein, WPH 
= 285.32 μmol of TE/g 
protein)

Le Maux et al. 
(2016)

1WPI = whey protein isolate; WPC = whey protein concentrate; WPH = whey protein hydrolysate; DH = degree of hydrolysis; WPX = whey 
protein, type not specified; MPC = milk protein concentrate.
2SGID = simulated gastrointestinal digestion; Corolase N and Corolase PP (AB Enzymes, Darmstadt, Germany); Protamex (Novozymes A/S 
Bagsvaerd, Denmark).
3TBARS = thiobarbituric acid reactive substances; FRAP = ferric-reducing antioxidant power; DPPH = 1,1-diphenyl-2-picrylhydrazyl radical; 
ABTS = 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); ORAC = oxygen radical absorbance capacity.
4AOX = antioxidant; TE = Trolox equivalents.
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transport of AA, specifically Cys, across the plasma 
membrane; (4) regenerates antioxidants (e.g., vitamins 
C and E) to their functional form; and (5) forms con-
jugates with toxic electrophilic compounds, catalyzed 
by glutathione transferase, which are excreted from 
cells (Pastore et al., 2003; Masella et al., 2005; Valko 
et al., 2007). Tseng et al. (2006) reported that the rat 
renal cell line, PC12, pretreated with WPC at 10 mg/L 
for 24 h before an ethanol stress, produced 59.4 mM 
GSH/mg of protein compared with 29.9 mM GSH/
mg of protein (P < 0.05) for cells with no WPC pre-
treatment. This indicates whey products may offer a 
protective benefit to cells when stressed. In agreement, 
stressing myoblast cells C2C12 with 0.3 mM tert-butyl 
hydroperoxide (t-BHP) for 30 min decreased GSH 
levels by 31.5% compared with control, as measured 
by flow cytometry. These t-BHP stressed C2C12 when 
pretreated for 24 h with sheep WP at 1.56, 3.12, and 
6.24 mg increased GSH levels 112.9, 118.0, and 138.0%, 
respectively, compared with levels of t-BHP–stressed 
cells (Kerasioti et al., 2014). In a recent study (Table 
4), t-BHP was also used to stress human hepatocytes 
(HepG2) for 2 h after 24 h of WPC treatment (100 μg/
mL; Pyo et al., 2016). The WPC treatment increased 
GSH levels (130%) from basal conditions and also re-
covered GSH levels from stressed cells (80%). In an 
attempt to identify which whey fraction is responsible 
for increasing GSH, O’Keeffe and FitzGerald (2014) 
used enzymatically hydrolyzed WPC to treat human 
umbilical vein endothelial cells (HUVEC) and GSH 
levels were monitored. The WPC was hydrolyzed by 
subtilisin, bacillolysin, Corolase PP (AB Enzymes), 
and leucyl aminopeptidase and the resulting peptide 
fractions were separated according to size using 0.2 μm, 
10 kDa, 5 kDa, and 1 kDa cut-off membranes. Whey 
hydrolysate fractions by subtilisin, bacillolysin, Coro-
lase PP, and leucyl aminopeptidase at 1 mg/mL signifi-
cantly increased intracellular GSH in HUVEC cells (P 
< 0.05) after 48 h of incubation compared with HUVEC 
cells cultured in media alone. The 1-kDa permeate of 
hydrolysate from subtilisin treatment increased GSH 
levels by 153% in HUVEC cells compared with media 
alone (P < 0.001). Kent et al. (2003) incubated prostate 
epithelial cells (RWPE-1) for 48 h with (1) 0.5 mg/
mL of hydrolyzed WPI, (2) 0.5 mg/mL of hydrolyzed 
casein, (3) 500 μM buthionine sulfoximine (GSH syn-
thesis inhibitor), or (4) 500 μM N-acetylcysteine (GSH 
stimulant). N-Acetylcysteine increased GSH by 88% 
in RWPE-1 cells. Hydrolysates of WP with trypsin, 
chymotrypsin, and peptidase increased GSH by 64% 
compared with hydrolyzed casein-treated and control 
cells (P < 0.05). Interestingly, the 50% reduction of 
GSH levels in RWPE-1 cells by buthionine sulfoximine 
could not be reversed by co-treatment with WPH, but 

could be reversed with N-acetylcysteine (Kent et al., 
2003). Vilela et al. (2006) evaluated a combination of 
high hydrostatic pressure processing and low-MW whey 
peptide fractions, but did not observe a boost in GSH 
levels in human tracheal epithelial cells (9HTEo cell 
line).

To investigate if WP increased CAT activity in cells, 
C2C12 muscle cells were treated with 0.1 to 0.4 mg/
mL of WP (80.05% protein) for 24 h and then stressed 
with 0.75 mM H2O2 for 1 h (Xu et al., 2011). The CAT 
activity was significantly enhanced from 15.1 ± 0.7 to 
23.7 ± 1.3 U/mg of total cellular protein (P < 0.05) 
by WPC. Similarly, CAT activity was increased 141% 
in HUVEC cells after a 48-h incubation with 1 mg/mL 
of 1-kDa permeate of WP hydrolyzed with Corolase 
PP compared with media alone (P < 0.01) (O’Keeffe 
and FitzGerald, 2014). In addition, CAT activity also 
increased in H2O2-stressed lung fibroblasts (MRC-5 
cell line) after 24 h of treatment with 100 μg/mL of 
subtilisin WPH from 25 to 65 U/mg of protein (Kong 
et al., 2012).

The SOD activity was also determined in stressed 
C2C12 cells (Xu et al., 2011). Once again, cells were 
preincubated with WP (0.1–0.4 mg/mL) for 24 h, and 
then stressed for 1 h with 0.75 mM H2O2. Pretreatment 
with WP significantly increased SOD levels (11.7 ± 0.5 
U/mg of protein) in stressed cells compared with cells 
that did not receive WP treatment (5.27 ± 0.41 U/mg 
of protein). In addition, WP also increased SOD activ-
ity in nonstressed cells from 13.4 ± 0.82 to 19.4 ± 0.6 
U/mg of protein. Similarly, 24 h of pretreatment with 
subtilisin hydrolysates of WPI (20 μg of WPH/mL) in-
creased SOD activity in H2O2-stressed lung fibroblasts 
compared with non-whey–treated cells by 248% (Kong 
et al., 2012).

The vast majority of experiments to date expose cells 
lines to whey test samples. The usual mode of delivery 
of whey products is via food consumption, so the physi-
ological relevance of such experiments is questionable. 
Target cells will only be exposed to whey components 
arriving in the bloodstream from the gut. Bovine WP 
are easily and rapidly digested to individual AA in the 
gastrointestinal tract, showing maximum concentration 
of total AA in plasma at 69 min post-WPI consump-
tion (Purpura et al., 2014). Indeed, WPI has a digest-
ible indispensable AA score of 1.09 (Rutherfurd et al., 
2015). Power-Grant et al. (2015) performed a simulated 
gastrointestinal digestion of intact WPC and then mea-
sured its antioxidant activity by ORAC. Gastric diges-
tion of WPC increased its ORAC values by 2.5 fold 
compared with intact WPC. However, when the WPC 
was in a hydrolyzed form, gastric digestion resulted in 
a 22% decrease in ORAC values, which indicates that 
bioactivity of hydrolyzed whey samples was reduced 
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during gut transit (Power-Grant et al., 2015). To assess 
the antioxidant benefit to intestinal cells exposed to 
gastric-digested whey products, the intestinal epithelial 
cell line, Caco-2, was stressed with 0.25 mM H2O2 for 
1 h and then treated with gastric-digested WPI (0–2 
mg/mL) for 23 h. The ROS activity in Caco-2 cells 
were reduced by 32.5% when cells were treated with 2 
mg/mL of gastric-digested WPI compared with ROS 
values from stressed cells (Piccolomini et al., 2012). 
Picariello et al. (2013) recently reported whey peptides 
that are bioavailable across the Caco-2 intestinal bar-
rier model, postgastrointestinal digestion. Interestingly, 
the iron-binding peptide TPEVDDEALEK (125–135 
AA) from β-LG was found to be transported across the 
intestinal barrier (Picariello et al., 2013). Whether any 
of the other whey peptides are antioxidant has yet to 
be determined.

DO WHEY PRODUCTS ACT AS ANTIOXIDANT 
PROTECTOR IN VIVO?

Although physiological biomarkers are limiting, hu-
man or animal intervention trials with diets that include 
whey products are the best assessment of antioxidant 
benefit. Table 5 summarizes the most recent animal tri-
als that tested the antioxidant effect of WP rich diets. 
Bounous et al. (1989) proposed that a diet rich in GSH 
AA precursors, such as Cys, would boost cellular GSH 
production. As WP are Cys-rich, Bounous et al. (1989) 
fed elderly (17–20 mo old) C7BL/6NIA male mice a 
diet rich in WPC (20 g/100 g of diet) for 3 mo. Animals 
were euthanized and GSH levels in liver and heart were 
measured. Mice on WPC diets had significantly higher 
GSH levels in liver (9 μmol GSH/g of liver) and heart 
(1.6 μmol of GSH/g of heart) than those animals fed a 
casein-rich diet (20 g/100 g of diet) or a control chow 
diet (8 μmol of GSH/g of liver and 1.3–1.5 μmol of 
GSH/g of heart; P < 0.05) for the same time period. 
In addition, the WP-rich diet appeared to extend the 
lifetime of the aged mice, with a 55% mortality rate 
reached at 125.0 ± 41.6 d compared with 92.2 ± 55.2 
and 92.7 ± 31.7 d for mice fed casein-rich or chow diets, 
respectively (P < 0.05). Liver GSH was also increased in 
Fisher rats fed with WP (150 g/1,000 g of diet; 55 μmol 
of GSH/mL of tissue extract) during 8 wk compared 
with those on a casein-rich diet (44 μmol of GSH/mL; 
Haraguchi et al., 2011). Interestingly, a diet supple-
mented with 10% whey powder protected Wistar rats 
against induced CCl4 hepatotoxicity (Ashoush et al., 
2013). Ashoush et al. (2013) proposed that this protec-
tion was as a result of an increase in total GSH plasma 
levels (CCl4 plus WP = 16.74 ± 1.2 mg/dL vs. CCl4 
= 9.94 ± 0.84 mg/dL). As a model of oxidative stress, 

Sprague-Dawley rats were fed a diet high in iron (2,000 
mg/kg) for 6 wk. Those animals that also received 10% 
WP had increased GSH in blood erythrocytes (11.43 
± 0.71 μM) compared with controls (GSH = 8.75 ± 
0.71 μM; Kim et al., 2013). However, CAT levels were 
not significantly increased after WP supplementation 
(Kim et al., 2013). In agreement, a combination of 
exercise and WP intake over an 8-wk test period had 
little effect on liver CAT activity in Fisher rats fed a 
WP-rich diet (150 g/1,000 g) compared with those on 
a casein-rich diet (30 U/mg of protein; Haraguchi et 
al., 2011). In contrast, Athira et al. (2013) observed 
a significant increase in liver CAT levels in Swiss al-
bino mice who received an intraperitoneal injection of 
WP hydrolyzed by subtilisin (4 mg/kg of BW; CAT = 
193.66 ± 18.61 U/mg of protein) compared with mice 
without WP administration (149.67 ± 12.83 U/mg of 
protein). All of the Swiss albino mice in their study 
received paracetamol orally (300 mg/kg of BW) for 2 
d to induce oxidative stress before WP administration 
(Athira et al., 2013).

In a human intervention study, blood GSH levels 
were evaluated over 6 wk in 18 male participants 
subjected to strenuous aerobic training and a dietary 
supplement of 1 g of WPI/kg of body mass per day. 
Blood GSH levels were significantly lower in those sub-
jects who performed exercise that those who did not 
(P < 0.05). The addition of WP supplementation to an 
exercise regimen prevented this GSH depletion in blood 
(Middleton et al., 2004). In agreement, Sheikholeslami 
Vatani and Ahmadi Kani Golzar (2012) observed in-
creased GSH plasma levels in 30 overweight young men 
who consumed WPI and performed resistance training 
for 8 wk (173 ± 22 nM GSH/L vs. control group, 144 
± 20 nM GSH/L; P < 0.05). Levels of GSH in plasma 
were also increased by 23% in steatohepatitis patients 
who received 20 g of WPI/d for 12 wk compared with 
GSH levels before WPI supplementation (Chitapana-
rux et al., 2009). In another human trial, 31 subjects 
received 15 to 45 g of pressurized WPI/d over a 2-wk 
period. The GSH levels in lymphocytes extracted from 
blood were 24% higher after 45 g of WPI consumption 
than participants who did not consume WPI (Zavorsky 
et al., 2007). In contrast, blood GSH levels remained 
unchanged over the 4-h sampling period in male sub-
jects who received an acute dose of WPI (0.8–1.6 g of 
WPI/kg of BW) (Middleton et al., 2004). Measuring 
levels of GSH in plasma is one of the most common 
techniques to detect whey product antioxidant protec-
tion in vivo. A positive correlation exists between low 
plasma GSH levels and disorders in which oxidative 
stress is a contributing factor, such as cardiovascular 
disease (Shimizu et al., 2004), polycystic ovary syn-
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drome (Murri et al., 2013), and autism (Frustaci et 
al., 2012). However, plasma GSH levels are unlikely to 
reflect intracellular GSH in target organs such as the 
liver, brain, or muscle routinely exposed to oxidative 
stress (Ballatori et al., 2009). In contrast, charting the 
oxidation levels of particular proteins involved in dis-
ease onset and progression would provide more relevant 
biomarkers in cellular assays and dietary intervention 
trials (Frijhoff et al., 2015).

CONCLUSIONS

Bovine whey and individual WP exhibit antioxidant 
activity. This bioactivity is observed with different 
commercial whey products (WPI, WPC), is relatively 
resistant to processing method, and is increased by 
enzymatic hydrolysis. Subtilisin appears the enzyme 
of choice to deliver the most potent whey hydrolysate 
fractions. Several synthetic peptides derived from β-LG 
and α-LA have demonstrated antioxidant activity. It 
is also likely that free AA released during hydrolysis 
contribute to this bioactivity. It is important to note 
that readouts are conflicting from different antioxidant 
methodologies, different whey products, different dos-
ages, and in the translation of cellular assays to plasma 
biomarkers. Exposing cell lines to whey test samples 
directly results in an increase in GSH levels; however, 
the biological relevance of these experiments is ques-
tionable. Whether the bioactivity survives gut transit, 
passes through the intestinal barrier, and reaches its 
target cells will ultimately determine its efficacy as a 
dietary antioxidant ingredient. Certainly, some evidence 
suggests that WP supplementation alters plasma bio-
markers for antioxidant activity, especially in individu-
als exposed to high oxidative stress levels, either from 
illness or intense exercise. However, the number of par-
ticipants in these studies is small and the relevance of 
these biomarkers to target organs exposed to oxidative 
stress requires further investigation. The antioxidant 
potency of whey products is lower than well-known 
plant antioxidants, such as green tea, although WP can 
be added to food at much higher concentrations. Future 
studies should focus on the synergistic or antagonistic 
effect of novel combinations of whey products with 
other known antioxidants within food matrixes if whey 
products are to deliver antioxidant benefits.
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