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ABSTRACT

Anogenital distance (AGD) serves as a marker for 
prenatal androgenization, reproductive development, 
and fertility in humans and rodents. The primary ob-
jectives of this observational study in lactating dairy 
cows were to (1) characterize the distribution and vari-
ability of AGD, (2) determine the relationship among 
AGD and potential postnatal AGD determinants of age 
and height, and (3) evaluate the associations between 
AGD and pregnancy to first artificial insemination (P/
AI) and cumulative pregnancy by 250 d in milk (DIM) 
within parity groups (first, second, and third+ pari-
ties). The secondary objective was to evaluate the asso-
ciation between AGD and testosterone concentrations. 
The AGD (mm), age (yr), and height at hip (cm) at the 
time of AGD determination, and aforesaid reproductive 
outcomes were determined in 921 Holstein cows (first, 
second, and third+ parity; n = 360, 256, and 305, re-
spectively). Plasma concentrations of testosterone were 
determined in a subset of 93 cows. Overall, AGD had a 
normal distribution and high variability [mean (±stan-
dard deviation); 131.0 ± 12.2 mm], was weakly associ-
ated with cow age and height (coefficient of determina-
tion = 0.09 and 0.04, respectively), and had an inverse 
relationship with P/AI in first- and second-parity cows, 
but not in third+ parity cows. For every 1 mm increase 
in AGD, the odds of P/AI decreased by 3.4 and 2.4% 
for first- and second-parity cows, respectively. The opti-
mal AGD threshold to predict probability of P/AI was 
127.1 mm for both first- (sensitivity: 66.4; specificity: 
56.6%) and second-parity cows (sensitivity: 46.0; speci-
ficity: 70.4%). Accordingly, first- and second-parity 
cows were categorized into either short or long AGD 
(≤ or >127.1 mm), and associations with reproductive 

outcomes were evaluated. First-parity cows with long 
AGD had lower P/AI (30.9 vs. 53.6%) and decreased 
likelihood (hazard ratio: 0.68) of pregnancy by 250 
DIM than those with short AGD. Similarly, second-
parity cows with long AGD had reduced P/AI (28.3 vs. 
44.4%) and a tendency for decreased likelihood (hazard 
ratio: 0.76) of pregnancy by 250 DIM than in cows 
with short AGD. The association between AGD and 
testosterone was weak and nonsignificant. In summary, 
AGD in Holstein cows was normally distributed, highly 
variable, and weakly associated with age and height. 
Besides, AGD had an inverse relationship with P/AI 
and cumulative pregnancy by 250 DIM in first- and 
second-parity cows; however, such a relationship was 
not evident in older (third+ parity) cows.
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INTRODUCTION

Anogenital distance (AGD) has been defined as 
the distance from the center of the anus to either the 
posterior fourchette (Salazar-Martinez et al., 2004) or 
the clitoris (Sathyanarayana et al., 2010) in females. 
The in utero development of the perineum and caudal 
migration of genital tubercle, relative to the anus, are 
androgen dependent in humans and rodents (Langman, 
1975; Bowman et al., 2003). Therefore, the variation in 
AGD is a reflection of fetal androgen exposure during 
its reproductive programming window in those species 
(Macleod et al., 2010; Dean at al., 2012). In this re-
gard, Mendiola et al. (2012) reported that AGD was 
normally distributed in a population of young women 
with high variability. Several other studies demon-
strated that the AGD was approximately twice as long 
in males as in females (Salazar-Martinez et al., 2004; 
Swan, 2008; Thankamony et al., 2009; Macleod et al., 
2010; Sathyanarayana et al., 2010). Hence, AGD is not 
only a biological indicator of prenatal androgenization, 
but also a sexually dimorphic trait that may be used to 
determine fetal sex during early pregnancy.
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Prenatal exposure to excess androgen in female fe-
tuses leads to poor reproductive system development 
in utero, subsequently resulting in long AGD and poor 
postnatal fertility outcomes in rodents, rabbits, and hu-
mans (Zehr et al., 2001; Banszegi et al., 2012; Mendiola 
et al., 2012; Mira-Escolano et al., 2014a; Wu et al., 
2017, respectively). The onset of puberty was delayed 
in female mice with long AGD (Zehr et al., 2001). Rab-
bit does with long AGD delivered fewer and lighter 
offspring, and had male-biased litters (Banszegi et al., 
2012). Women with long AGD, presumably exposed pre-
natally to high androgen concentrations in utero, had 
increased numbers of ovarian follicles (Mendiola et al., 
2012) and greater testosterone concentrations during 
the early follicular phase (Mira-Escolano et al., 2014a) 
compared with women with short AGD. Recently, Wu 
et al., (2017) reported that women with longer AGD 
were approximately 18 times more likely to develop 
polycystic ovarian syndrome, which is characterized by 
hyperandrogenism and anovulation, than those with 
shorter AGD. The placenta is the primary source of 
androgens in dams bearing female fetuses in dairy cows 
(Mongkonpunya et al., 1975). Maternal concentrations 
of testosterone (110 to 166 pg/mL) and androstenedi-
one (936 to 1,400 pg/mL) during gestation were highly 
variable among individual cows bearing female fetuses 
(Gaiani et al., 1984). Thus, it is plausible that the high 
variability in in utero exposure of female bovine fetuses 
to androgens affects AGD and postnatal reproduc-
tive functions as reported in humans and rodents. In 
women, AGD was not associated with the postnatal 
determinants of age, height, and weight, but it was as-
sociated with body mass index (Mira-Escolano et al., 
2014b; Wu et al., 2017). Moreover, in one study (Mira-
Escolano et al., 2014a), for each millimeter increase in 
AGD in women, testosterone concentration increased 
by 0.006 ng/mL. Similar studies characterizing AGD 
and its associations with age, height, reproductive out-
comes, and testosterone concentrations have not been 
conducted in dairy cows.

If an association exists between the simple morpho-
logic measure of AGD and reproductive performance in 
dairy cows, AGD could become a new reproductive phe-
notype with potential for use in future genetic selection 
to augment fertility. Therefore, the primary objectives 
of this observational study were to (1) characterize the 
distribution and variability of AGD, (2) determine the 
relationship among AGD and potential postnatal AGD 
determinants of age and height, and (3) evaluate the 
associations between AGD and pregnancy to first AI 
(P/AI) and cumulative pregnancy by 250 DIM within 
parity groups (first, second, and third+). The second-

ary objective was to evaluate the association between 
AGD and testosterone concentrations.

MATERIALS AND METHODS

Animals and Management

This study was conducted at the Dairy Research and 
Technology Centre of the University of Alberta and 3 
commercial dairy herds located in Alberta, Canada. 
Animals were housed and cared for in accordance with 
the requirements of Canadian Council on Animal Care 
(2009). Cows were fed a TMR (primary ingredients 
were barley or corn silage, alfalfa silage, alfalfa hay, 
and concentrates) formulated according to NRC (2001) 
to meet the requirements of a 650-kg lactating cow 
producing 45.0 kg of milk/d, and had ad libitum access 
to water. Whereas cows were subjected to presynchro-
nization followed by Ovsynch (first AI) and Ovsynch 
only (second+ AI) in the university research herd and 
one of the commercial herds (timed AI; herds A and 
B, respectively), cows were predominantly inseminated 
based on estrus detection in 2 of the commercial herds 
(insemination at detected estrus; herds C and D, re-
spectively).

Determination of Anogenital Distance, Age, Height, 
Milk Yield, and Reproductive Measures

Anogenital distance was defined as the distance from 
the center of the anus to the base of the clitoris (Figure 
1a), and was measured using a stainless-steel digital 
calipers (Procise, The Innovak Group, Montreal, QC, 
Canada). The age of the cow (yr) at the time of AGD 
measurement was calculated by subtracting the date of 
birth from the date of AGD determination. The height 
at hip (hereafter referred to as “height”) was determined 
using a livestock measuring stick (Jeffers, Dothan, AL) 
from the ground to the top of the cow’s back (above 
hook bones). The AGD and height were measured 
by 2 individuals, with one person always measuring 
AGD and the other person measuring height. Data on 
AGD were collected during a single visit to each herd. 
Anogenital distance and height measurements were 
obtained from 921 cows (mean ± SD: 171 ± 93 DIM) 
that had no apparent perineal abnormalities such as 
inflamed or lacerated vulva as indicators of trauma at 
parturition, and that were later than 14 DIM at the 
time of AGD determination. Data on 305-d mature-
equivalent milk yield and reproductive measures (P/
AI and pregnancy by 250 DIM) were retrieved for all 
cows using DairyComp 305 herd management software 
(CanWest DHI, Guelph, ON, Canada).
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Blood Sampling and Determination of Plasma 
Concentrations of Testosterone

Blood samples were collected in a subset of 93 cows 
(research herd only) from coccygeal blood vessel us-
ing evacuated Vacutainer tubes (Becton Dickinson 
and Company, Franklin Lakes, NJ) containing so-
dium heparin immediately before the second GnRH of 
Ovsynch during a presynchronization/Ovsynch timed 
AI protocol described elsewhere (Gobikrushanth et 

al., 2017). Samples were placed on ice upon collection, 
centrifuged at 1,500 × g for 20 min at 4°C, plasma 
harvested, and frozen at −20°C until assayed. Plasma 
concentrations of testosterone were determined at En-
docrine Lab Services, University of Saskatchewan, Sas-
katoon, SK, Canada, using a commercial solid-phase 
RIA kit (ImmuChem, MP Biomedicals, LLC, Orange-
burg, NY). Procedures were carried out according to 
manufacturer’s instructions (http://​www​.radmed​.com​
.tr/​usr​_img/​urunler/​free​_testo​_mp​.pdf) except that 

Figure 1. Positioning of digital calipers to measure anogenital distance (a): the distance from the center of the anus to the base of the clitoris. 
The distribution of anogenital distance (b) in first-parity (dotted bars; n = 360), second-parity (filled bars; n = 256), and third+-parity (hatched 
bars; n = 305) cows. Color version available online.

http://www.radmed.com.tr/usr_img/urunler/free_testo_mp.pdf
http://www.radmed.com.tr/usr_img/urunler/free_testo_mp.pdf
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standards were prepared by adding known quantities 
of testosterone to charcoal-stripped bovine serum, as 
the standards supplied with the kit were optimized for 
human samples. All samples were analyzed in a single 
assay; the intraassay coefficient of variation was 1.4% 
for low reference samples (mean, 4.2 pg/mL) and 5.1% 
for high reference samples (mean, 8.8 pg/mL).

Statistical Analyses

Data were analyzed using SAS version 9.4 (SAS In-
stitute Inc., Cary, NC). Initially, AGD was determined 
by the same individual 3 times in 93 dairy cows from 
the university research herd, allowing sufficient time 
interval between measurements so that the subsequent 
readings were not influenced by the reader’s memory 
(Salazar-Martinez et al., 2004). Later, the reliability 
and variability of AGD measurements were determined 
by evaluating the Pearson correlation coefficient (r) us-
ing CORR procedure and by evaluating the coefficient 
of variation using Excel 2016 (Microsoft Corporation, 
Redmond, WA), an approach similar to that of Salazar-
Martinez et al. (2004). The correlation between the 3 
AGD measurements was high (r = 0.98) and the coef-
ficient of variation was low (1.1%), allowing AGD to be 
determined only once by the same examiner in the rest 
of the animals. In addition, in the same subset of 93 
cows from the university research herd, the association 
between AGD and plasma concentrations of testoster-
one was evaluated by linear regression analysis using 
REG procedure of SAS.

The descriptive statistics such as minimum, maxi-
mum, mean, and standard deviation (amount of disper-
sion indicative of variability) for AGD were determined 
using MEANS procedure of SAS for all cows (n = 
921) and separately for cows from first-, second-, and 
third+-parity groups (n = 360, 256, and 305, respec-
tively). The differences in mean AGD between first-, 
second-, and third+-parity cows were tested using 
GLIMMIX procedure of SAS, where AGD was modeled 
against parity and the effect of herd was treated as 
random. The associations among age, height, and AGD 
were assessed by linear regression analysis using REG 
procedure of SAS.

The relationship between P/AI (binomial outcome) 
and AGD (predictor continuous variable) was first 
evaluated for each parity by logistic regression analysis 
using LOGISTIC procedure of SAS, and the estimated 
probabilities of P/AI were plotted against AGD using 
Excel 2016. As the logistic regression model was nonsig-
nificant for third+ parity, the rest of the analyses only 
focused on first- and second-parity cows.

The optimum threshold AGD that predicted the 
probability of P/AI, including specificity and sensitiv-

ity, was determined using receiver operating character-
istic curve analysis separately for first- and second-par-
ity cows. The receiver operating characteristic curves 
analyze sensitivity and 1 − specificity. Sensitivity is 
the proportion of cows above the threshold that was 
diagnosed as pregnant to first AI, and specificity is the 
proportion of cows below the threshold and diagnosed 
as not pregnant to first AI. The threshold AGD was 
chosen based on the highest Youden’s J statistic index. 
The significance of the threshold AGD was determined 
based on the area under the curve (AUC), where the 
AUC ranged from 0.50 to 1.00, with AUC of 0.50 con-
sidered noninformative and the AUC of 1.00 considered 
perfect as previously described (Swets, 1988).

Thereafter, cows were categorized as either short or 
long AGD (≤ or >threshold) based on the threshold 
AGD. The associations among categories of AGD 
(short and long AGD), herds (A, B, C, and D), type 
of AI (insemination at detected estrus and timed AI), 
305-d mature-equivalent milk yield (low; ≤average and 
high; >average), and P/AI were analyzed using the 
GLIMMIX procedure of SAS separately for first- and 
second-parity cows, whereas the model specifications 
included a binomial distribution and logit function, 
and an option to retrieve odds ratios. The P/AI was 
initially modeled against all of the aforementioned cat-
egorical variables and their interactions. As none of the 
interactions was significant, the final model only had 
the categorical variables modeled against P/AI.

The differences in intervals from calving to preg-
nancy between categories of AGD up to 250 DIM were 
evaluated using the Kaplan-Meier survival analysis 
(LIFETEST procedure), separately for first- and 
second-parity cows, and the results from Kaplan-Meier 
survival analysis were confirmed by a Cox proportional 
hazard model (PHREG procedure). Significant differ-
ences were reported if P ≤ 0.05 and considered to be a 
tendency if P > 0.05 and ≤0.10.

RESULTS AND DISCUSSION

Anogenital distance has been identified as a marker 
of prenatal androgenization (Macleod et al., 2010; Dean 
at al., 2012) and associated with postnatal reproduc-
tive outcomes in female rats (Zehr et al., 2001), rabbits 
(Banszegi et al., 2012), and humans (Mendiola et al., 
2012; Mira-Escolano et al., 2014a; Wu et al., 2017). To 
our knowledge, this is the first report to characterize 
the distribution and variation in AGD and evaluate 
its association with reproductive outcomes in lactating 
dairy cows. In the current study, AGD was normally 
distributed (Figure 1b) and highly variable [mean 
(±SD); 131.0 ± 12.2 mm]. The patterns of distributions 
and ranges reported (Table 1) remained approximately 
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the same within parities even though the mean AGD 
differed (P < 0.01) between first-, second-, and third+-
parity cows (126.9, 132.5, and 134.5 mm, respectively). 
The distribution and variability of AGD found in dairy 
cows was comparable to the pattern of distribution and 
variability reported for AGD in women (Mendiola et 
al., 2012). In this regard, Mendiola et al. (2012) showed 
that AGD was normally distributed in a population of 
young women with a mean (±SD) of 80.4 ± 10.5 mm. 
The normal distribution and the degree of dispersion 
for AGD in dairy cows and in women indicate that 
large phenotypic variation in AGD exists in different 
species.

The current study determined the phenotypic varia-
tion in AGD that was attributable to postnatal factors 
such as cow age and height. The overall associations 
between age and AGD (R2 = 0.09; P < 0.01; Figure 
2a) and between height and AGD (R2 = 0.04; P < 0.01; 
Figure 2b) were very weak when evaluated across all 
cows, and remained weak when height and AGD were 
evaluated separately for first-, second-, and third+-
parity cows (mean R2 = 0.02; P < 0.10). In this regard, 
either weak or nonsignificant associations were reported 
between AGD and other anthropometric measures such 
as length and BW in female infants (Thankamony et 
al., 2009) and age, height, and weight in young women 
(Mendiola et al., 2012; Mira-Escolano et al., 2014b; 
Wu et al., 2017). Whereas Thankamony et al. (2009) 
reported weak associations between AGD and length 
(R2 = 0.09), and between AGD and BW (R2 = 0.03) in 
female infants at 24 mo of age, others (Mendiola et al., 
2012; Mira-Escolano et al., 2014b; Wu et al., 2017) have 
shown that age, height, and weight were nonsignificant 
factors associated with AGD in women. However, Mira-
Escolano et al. (2014b) and Wu et al. (2017) reported 
a positive association between body mass index and 
AGD. Collectively, the findings in human studies and 
the current results in dairy cows suggest that AGD 
measures are largely independent of postnatal factors, 
and perhaps primarily influenced by the prenatal in 
utero concentrations of androgens as shown in rodents 
(Wolf et al., 2002; Hotchkiss et al., 2007; Dean et al., 
2012).

Anogenital distance and P/AI had a significant 
negative relationship in first- and second-parity cows 

(Figure 3a and 3b, respectively); however, AGD was 
not associated with P/AI in older cows (P = 0.30). 
In confinement dairy management systems such as 
those in Canada, the average longevity of a dairy cow 
is 2.5 lactations (about 5 yr of age), and only cows that 
excel in both fertility and milk production are likely 
to remain in the herd longer, which would at least 
partially explain the absence of association reported 
between AGD and fertility in third+ parity cows. In-
terestingly, the variation in AGD observed in third+ 

Table 1. Descriptive statistics for anogenital distance (AGD)1 in lactating dairy cows

Item Minimum (mm) Maximum (mm) Mean ± SD (mm)

Overall AGD, all parities (n = 921) 96.0 170.0 131.0 ± 12.2
AGD in first-parity cows (n = 360) 96.0 169.0 126.9 ± 11.9
AGD in second-parity cows (n = 256) 100.0 170.0 132.5 ± 11.7
AGD in third+-parity cows (n = 305) 103.0 164.0 134.5 ± 11.4
1AGD = the distance from the center of the anus to the base of the clitoris (Figure 1a).

Figure 2. Association between age and anogenital distance (a; R2 
= 0.09; P < 0.01) and height at hip and anogenital distance (b; R2 = 
0.04; P < 0.01) in lactating dairy cows (n = 921).
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parity cows was quite comparable to the variations in 
AGD for first- and second-parity cows. Hence, the lack 
of association between AGD and P/AI in third+ par-
ity cows was not attributable to a more homogeneous 
AGD, but could be due to other potential factors that 
affect pregnancy establishment to first AI such as in-
cidence of early postpartum diseases, negative energy 
balance, and higher milk production that are more 
common in older cows (Lee and Kim., 2006). Because 
the optimal AGD threshold to predict the probability 
of P/AI was 127.1 mm for both first- and second-parity 
cows, only first- and second-parity cows were catego-
rized into short or long AGD (≤or >127.1 mm) groups 
and the associations with reproductive outcomes were 
evaluated. The sensitivity and specificity of the optimal 
AGD threshold that predicted P/AI were moderate in 
both first- and second-parity cows (Figure 4a and 4b, 
respectively). We compared AGD groups separately for 
first- and second-parity cows because, in general, fertil-
ity declines as parity increases (Norman et al., 2009). 
Therefore, analyzing parity groups separately would 

provide an insight into the true association between 
AGD and fertility within each parity.

Overall reproductive performance (P/AI and preg-
nancy by 250 DIM) was poorer in cows with long AGD 
than those with short AGD (Table 2 and Figure 5). 

Figure 3. The estimated probability of pregnancy to first AI (P/
AI) plotted against anogenital distance (AGD) in first- and second-
parity cows (a; n = 360 and b; n = 256). For every 1-unit (mm) in-
crease in AGD, the odds of conceiving to first AI decreased by 3.4 and 
2.4% for first- and second-parity cows, respectively (P < 0.05).

Figure 4. The receiver operating characteristic curve analysis for 
anogenital distance (AGD) that predicted probability of pregnancy 
to the first AI in first-parity (a; n = 360; area under the curve: 0.62; 
sensitivity: 66.4; and specificity: 56.6%; P < 0.01) and second-parity 
cows (b; n = 256; area under the curve: 0.58; sensitivity: 46.0; and 
specificity: 70.4%; P = 0.04).
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The results of the present study were broadly com-
parable to the outcomes reported for different AGD 
categories and fecundity/fertility in other species (Zehr 
et al., 2001; Banszegi et al., 2012; Mendiola et al., 2012; 
Mira-Escolano et al., 2014a; Wu et al., 2017). Specifi-
cally, the onset of puberty was delayed in female mice 
with long AGD (Zehr et al., 2001). Rabbit does with 
long AGD had smaller, lighter, and male-biased litters 
(Banszegi et al., 2012). Women with longer AGD had 
increased follicular recruitment and higher testosterone 
concentrations (Mendiola et al.,2012; Mira-Escolano et 
al., 2014a) during the early follicular phase, and were 
18 times more prone to polycystic ovarian syndrome 
(Wu et al., 2017) than those with shorter AGD. Like-
wise, Steckler et al. (2005) showed that pregnant ewes 
treated twice weekly with testosterone propionate from 
30 to 90 d of pregnancy had increased ovarian follicular 
recruitment in fetal ovaries. The authors (Steckler et 
al., 2005) suggested that this observation was due to 
activation of large number of primordial follicles into 

primary follicles by increasing the androgen receptor 
expression in primordial follicles as reported previously 
(Vendola et al., 1999).

We evaluated the association between AGD and 
testosterone in a subset of 93 cows, using an ap-
proach similar to that used by Mira-Escolano et al. 
(2014a) in women to determine whether cows with long 
AGD, presumably exposed to high androgens during 
fetal life, also had higher testosterone concentrations 
during postnatal life. In the current study, the asso-
ciation between AGD and testosterone was weak and 
nonsignificant (R2 = 0.02; P = 0.19), perhaps due to 
the relatively small sample size. In this regard, Mira-
Escolano et al. (2014a) reported that in women, testos-
terone concentration increased by 0.006 ng/mL for each 
1 mm increase in AGD. Interestingly, a recent study 
(Mossa et al., 2010) that evaluated antral follicle counts 
(AFC) in dairy cattle showed that cows with high AFC 
(≥25) had almost double the concentrations of circulat-
ing testosterone (~60 vs. 30 pg/mL) throughout the 

Table 2. Associations among anogenital distance (AGD) categories, herd, type of AI, 305-d mature-equivalent (MEQ) milk yield, and pregnancy 
to first AI in first- and second-parity dairy cows

Variable Pregnancy to first AI (%) Odds ratio estimates 95% CI P-value

First-parity cows        
  AGD category1 (mean ± SEM)        
    Long AGD2 (135.6 ± 1.5 mm) 30.9 0.41 (0.22–0.74) <0.01
    Short AGD2 (117.5 ± 1.5 mm) 53.6 Reference    
  Herd        
    A 47.0 — — 0.81
    B 51.0 — —  
    C 45.9 — —  
    D 35.4 Reference    
  Type of AI3        
    IDE 45.9 0.87 (0.50–1.51) 0.61
    TAI 50.0 Reference    
  305-d MEQ milk yield4        
    High (>10,693 kg) 35.3 0.37 (0.14–0.96) 0.04
    Low (≤10,693 kg) 49.3 Reference    
Second-parity cows        
  AGD category1 (mean ± SEM)        
    Long AGD2 (138.3 ± 1.3 mm) 28.3 0.33 (0.15–0.72) <0.01
    Short AGD2 (119.8 ± 1.4 mm) 44.4 Reference    
  Herd        
    A 31.0 — — 0.24
    B 38.0 — —  
    C 38.3 — —  
    D 30.8 Reference    
  Type of AI3        
    IDE 38.3 1.08 (0.53–2.20) 0.82
    TAI 34.4 Reference    
  305-d MEQ milk yield4        
    High (>11,827 kg) 28.1 0.21 (0.27–1.45) 0.27
    Low (≤11,827 kg) 38.8 Reference    
1AGD = the distance from the center of the anus to the base of the clitoris (Figure 1a).
2AGD categories: cows that had their AGD ≤ or > the threshold AGD (127.1 mm) that predicted probability of pregnancy for the first insemi-
nation in first- and second-parity cows were designated into either short- or long-AGD categories.
3Type of AI; cows were inseminated at detected estrus (IDE) or timed AI (TAI) following synchronization of ovulation.
4305-d MEQ milk yield categories were based on the average 305-d MEQ milk yield determined for first-parity (10,693 kg) and second-parity 
(11,827 kg) cows.
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estrous cycle compared with cows with low AFC (≤15). 
In addition, dairy heifers with high AFC had poorer 
fertility and reduced longevity (Jimenez-Krassel et al., 
2017). It is plausible that exposure of the female fetus 
to high levels of maternal androgens results in altera-
tions in the development of female reproductive tissues 
including the external manifestation of long AGD, and 
these animals subsequently have increased follicular re-
cruitment and androgen concentrations during estrous 
cycles that consequently lead to poor fertility outcomes 
and reduced longevity in dairy cattle. The proposed 
associations between maternal concentrations of an-
drogens during the first trimester of pregnancy [under 

natural (endogenous) and experimental (exogenous) 
scenarios] and AGD at birth, puberty, and adulthood, 
and subsequent associations with fertility outcomes in 
dairy cows warrant further in depth investigations. The 
heritability of AGD and whether AGD could be used as 
a reproductive phenotype in genetic selection of dairy 
cattle to improve fertility also remain to be determined.

In conclusion, the present study has demonstrated for 
the first time that AGD is normally distributed and has 
high variability in lactating dairy cows. The variation 
identified for AGD was weakly associated with postna-
tal factors such as cow age and height. Furthermore, 
our results indicate an inverse relationship between 
AGD and P/AI and cumulative pregnancy by 250 DIM 
in first- and second-parity cows.
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