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GWAS and eQTL analysis identifies 
a SNP associated with both residual 
feed intake and GFRA2 expression 
in beef cattle
Marc G. Higgins1,2, Claire Fitzsimons3,5, Matthew C. McClure4,6, Clare McKenna2, 
Stephen Conroy4, David A. Kenny2, Mark McGee3, Sinéad M. Waters2 & Derek W. Morris  1

Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental 
trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, 
while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to 
measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable 
rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies 
(GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants 
associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef 
cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional 
effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10−5) with RFI, ADG 
or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was 
identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with 
RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, 
suggesting a mechanism by which genetic variation may contribute to RFI. This study identified 
SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed 
efficiency.

Feed can account for more than 75% of variable costs of beef enterprises1. Consequently, selection of cattle that 
efficiently convert feed to carcass growth would improve farm profits due to reducing expenditure on feed while 
maintaining protein output2. Moreover, there is pressure on the agricultural industry to reduce methane emis-
sions and improve its environmental footprint, while simultaneously increasing beef output to meet the growing 
demand for protein worldwide3. Selection for feed efficient cattle could increase beef output while concurrently 
decreasing methane production, as it has been suggested that low residual feed intake (RFI) (feed efficient) ani-
mals emit less methane than their high RFI counterparts4.

RFI is a measure of feed efficiency, defined as the difference between actual and predicted feed intake (FI)5. 
RFI has been shown to be moderately heritable, with an estimated heritability of 0.332,6, making it an ideal trait 
for selection as any genetic gain will be maintained and propagated through the cattle herd6. However, calcula-
tion of RFI is currently impeded by both the expense and logistics associated with its measurement, involving 
recording of both FI and body weight gain for each individual animal for a period of 70 days7. Identification of 
genetic markers for RFI and component traits, such as FI and average daily gain (ADG), and their incorpora-
tion into genomic assisted breeding programmes would enable more rapid and cost effective selection of feed 
efficient cattle8. Indeed, RFI has been incorporated into the Australian dairy industry’s genomic breeding pro-
gramme9. Unlike the situation that predominates for dairy production systems worldwide, effective identification 
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of selection markers of RFI for beef cattle must take into account a multiplicity of breeds and the mainly crossbred 
nature of cattle typically utilised within the global beef industry through employing multi-breed populations in 
order to identify variants of interest10,11. Differences in linkage disequilibrium (LD) between breeds may impact 
the association of markers and quantitative trait loci across breeds. The use of multiple breeds in a reference pop-
ulation is important to account for this variation in LD between breeds10.

In Ireland, the genomic assisted breeding programme is administered by the Irish Cattle Breeding Federation 
(ICBF)12. Markers for selection are included on the International Dairy and Beef (IDB) custom genotyping chip, 
which is based on the Illumina BovineSNP50 genotyping chip providing the IDB chip with genome-wide cover-
age13,14. As well as single nucleotide polymorphisms (SNPs) that are used for the genomic selection programme, 
the IDB chip contains SNPs for parentage verification and SNPs included for research purposes only13. This 
includes a selected subset of SNPs associated with RFI in cattle populations outside of Ireland15–21 which have 
been added to the IDB chip for research purposes to validate their use as biomarkers of RFI and associated traits 
in Irish beef cattle (n = 102, Supplementary Table S1).

Genetic markers for RFI can be identified via genome-wide association studies (GWAS). Several GWAS have 
identified SNPs associated with feed efficiency-related traits in cattle populations, both purebred and crossbred, 
from North America, South America and Australia16,20–23. Despite considerable interest in identifying markers 
for RFI, ADG and FI, no published GWAS has been carried out to test for associations between SNPs and these 
traits in Irish beef cattle. In Ireland, commercial beef cattle are mainly crossbreds, with Charolais (CH), Limousin 
(LM), Aberdeen Angus (AA), Belgian Blue (BB) and Simmental (SI) breeds predominating genetically12. This 
breed heterogeneity coupled with the challenges in obtaining sufficient numbers of RFI phenotypes for GWAS 
are primary reasons for the difficulty in applying GWAS on a large-scale basis for RFI to beef cattle in Ireland and 
most other beef producing nations.

It is important to identify genetic variants that underlie phenotypic variation. One method to identify SNPs 
that are implicated in observed variation is by carrying out expression quantitative trait loci (eQTL) studies. eQTL 
analysis enables investigation of the effect of genotype on gene-expression levels which may in turn affect pheno-
type24. Previous eQTL analysis carried out in mammary tissue of dairy cattle has identified several eQTLs for milk 
production traits enabling the identification of genes such as PLAG1 and MGST1 as potentially functional in the 
development of divergent milk production traits25,26. eQTLs have been identified for temperament in the adrenal 
cortex of crossbred German cattle27. Despite the ability of eQTL analysis to identify potentially causative genes for 
complex traits, to the best of the authors’ knowledge no eQTL analysis has been carried out for RFI in beef cattle, 
or in any other livestock species. Liver and muscle are key tissues of interest with regards to feed efficiency as they 
are both large, metabolically active tissues accounting for approximately 24% and 25% of basal energy expend-
iture, respectively28,29. Thus, investigation into the presence of eQTLs in these tissues may aid in unravelling the 
biology underlying divergence in feed efficiency.

Due to multiple breeds of cattle present in beef production systems, it is important to identify markers for 
traits that have effects across multiple breeds10. Thus, the objectives of this study were to: (i) perform GWAS for 
RFI, and its component traits, namely FI and ADG, in different breeds of Irish beef cattle and combine results in 
order to identify associated SNPs in a mixed breed cohort, (ii) validate a selection of internationally identified 
markers of RFI present on the IDBv3 chip for utility as selection markers for RFI in Irish cattle and (iii) to investi-
gate the effects of associated variants on gene expression in metabolically important tissues using eQTL analysis, 
in order to understand the biological mechanisms underlying divergence in RFI and component traits.

Methods
All biological sampling and procedures involving animals within this study were reviewed by the Teagasc Animal 
Ethics Committee and/or the UCD Animal Research Ethics Committee. All procedures carried out prior to 2013 
were licenced by the Irish Department of Health, all procedures carried out since 2013 were licenced by the Irish 
Health Products Regulatory Authority in accordance with the cruelty to Animals Act 1876 and the European 
Communities (Amendment of Cruelty to Animals Act 1876) Regulations 2002 and 2005.

Phenotypic data collation. Data were collated for this study from growing bulls (n = 1823), steers 
(n = 459) and heifers (n = 164), which had previously undergone phenotypic measurement testing in Ireland 
between 2006 and 2017. The average ages and standard deviations for cattle included in the phenotypic data file 
were available were available on a group-by-group basis (Supplementary Table S2). Throughout each phenotypic 
measurement trial, the health of the animals was monitored. Any animal that required treatment was noted and 
excluded from further analysis. Phenotypes were gathered at the national beef research centre in Teagasc Grange; 
UCD Lyons Research Farm, University College Dublin and the ICBF national beef performance test station, Tully, 
Co. Kildare, Ireland. Phenotypes were collected from both purebred and crossbred beef cattle. For crossbred ani-
mals to be included in the phenotypic dataset the proportion of genetic material from a single parental breed had 
to be greater than 50%. Prior to further analysis cattle were grouped by breed. Predominant breeds were LM, CH, 
SI, BB and AA (n = 737, 499, 413, 191 and 174, respectively), other breeds were represented at smaller numbers. 
The RFI range for LM, CH, SI, BB and AA was 2.69 to −2.52, 2.70 to −2.48, 2.75 to −2.82, 1.63 to −2.00, and 2.87 
to −2.64 respectively.

This resulted in the generation of a phenotypic file consisting of 2,446 cattle. For 429 of these animals, data 
relating to breed, diet, and methods used to calculate RFI, ADG and FI has been previously described4,28,30–33. 
Records for remaining cattle were made available by the ICBF from the national beef performance test centre at 
Tully, Co. Kildare, Ireland.

The management protocol of the ICBF animals is described briefly here. Animals were housed in pens for 
the duration of their test period which was between 70 and 105 days. A Calan gate system (American Calan, 
Northwood, NH, USA) was used to record individual animal FI. Bulls were individually offered ad libitum 
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concentrates and 3 kg fresh weight of hay, while steers were offered 8 kg concentrates and 5 kg fresh weight of hay. 
Hay was offered in order to maintain healthy rumen function and to reflect an Irish commercial high concentrate 
based dietary regimen. Refused feed was weighed weekly and subtracted from total feed offered in order to cal-
culate total feed consumed. Dry matter intake was then calculated in order to determine FI, which was used for 
calculation of RFI. Cattle were weighed at the beginning and end of the test period, and every 21 days during the 
test period. ADG was calculated as the coefficient of linear regression of body weight on time, computed in the 
software package R34. Mid-test metabolic bodyweight (body weight0.75, MBW) was calculated as body weight0.75 
in the middle of the RFI measurement period, which was estimated from the intercept and slope of the regression 
line after fitting a linear regression through all MBW observations. RFI was calculated for each animal as the 
difference between actual and predicted FI. Predicted FI for each animal was computed by regressing FI on MBW 
and ADG. Calculation of predicted FI was calculated for each contemporary group individually.

Genotyping. DNA was isolated for genotyping from one of two tissue types sourced from 429 cattle 
described previously. Muscle was used when blood was unavailable. Blood samples were obtained by jugular 
venipuncture at the end of the RFI measurement period, as per Fitzsimons et al.4, and stored at −80 °C prior to 
use4. Muscle samples were obtained via biopsy of the M. longissimus dorsi following the RFI measurement period, 
as per Kelly et al.35, and stored at −80 °C before DNA extraction. DNA from blood samples was extracted using 
the Maxwell 16 Blood DNA kit (Promega, Madison, WI, USA) as per manufacturer’s instructions. DNA was 
extracted from muscle samples using a phenol-chloroform extraction method. Briefly, 0.1 g of frozen muscle 
tissue was immersed in 1 mL of Trizol and homogenized using a Precellys 24 homogeniser. 200 µl chloroform was 
added to the homogenate, which was then centrifuged at room temperature for five minutes at 16,000 g. After 
centrifugation the aqueous phase was transferred to a new tube. Two volumes of ice cold ethanol were added to 
the aqueous phase and this mixture was centrifuged at 16,000 g for 15 minutes at 4 °C resulting in the formation 
of a DNA pellet. The supernatant was removed and the pellet was washed by the addition of 1 ml 70% ethanol and 
centrifuged at 16,000 g for 5 minutes at 4 °C. Washing was carried out twice. Following washing, any remaining 
supernatant was removed and the pellet was left to air-dry. The DNA was then re-suspended in 150 µl RNase/
Dnase free H2O.

Once DNA was isolated, samples were analysed for quality and quantity using a Nanodrop spectrophotometer. 
DNA of sufficient quality for genotyping was available for 422 samples. All DNA samples were normalised to a 
concentration of 50 ng/µl for genotyping analysis. Genotyping was carried out on the IDBv3 chip13 by Weatherby’s 
Scientific Ltd. (Johnstown, Naas, Co. Kildare, Ireland). The ICBF provided a further genotypes for 1,262 cattle that 
had been genotyped on the IDBv3 chip by Weatherby’s Scientific.

In addition to the 1,684 animals genotyped directly on the IDBv3 chip, 338 cattle were genotyped on the 
Illumina Bovine HD genotyping chip. These 338 cattle were imputed to IDBv3 density using Fimpute version 
2.236. The reference population used for Fimpute was 50,000 Irish cattle with genotyped parents. Imputation of all 
338 cattle was conducted across breed type to reflect the Irish national cattle population.

Once genotyping and imputation were complete the study consisted of 2,022 animals with genotypic data for 
all IDBv3 markers. This genetic data was uploaded to the SNP Variation Suite (SVS) environment (Golden Helix, 
Version 7.7.6).

Preparation of files for analysis. Quality control (QC) was carried out on genotypes imported into the 
SVS environment. SNPs were removed from analysis if they had a call rate of less than 0.80 or a minor allele 
frequency of less than 0.05. Cattle were removed from analysis if they had a call rate of less than 0.95. Following 
QC, 2,008 cattle and 44,338 markers remained for analysis. LD pruning was carried out at r2 threshold of 0.5 and 
7,841 markers were discarded following pruning37. The remaining 36,496 SNPs that passed all QC measures were 
acceptable for further analysis (Supplementary Table S3).

The collated phenotypic data were merged with the genotype data, creating a dataset containing 1,822 cattle 
eligible for analysis. A genomic kinship matrix was computed from the population, which was included as a 
covariate in the GWAS in order to account for relatedness. From this dataset, cattle from five beef breeds were 
analysed (n = 1492). The breeds included in the analysis were AA, BB, CH, LM and SI (n = 102, 177, 387, 537 and 
289, respectively).

Genome-wide association studies. GWAS were carried out in the SVS environment of Golden Helix 
using a mixed linear model method, EMMAX38, for each breed individually. GWAS resulted in the generation of 
summary statistics for each trait of interest, i.e. RFI, ADG and FI, for each breed (AA, BB, CH, LI, and SI).

Meta-Analysis. Following initial breed specific GWAS, meta-analyses were carried out for each trait using 
the software package METAL39. METAL combines P-value and direction of effect from each GWAS to conduct 
Z-score method meta-analysis. METAL analysis results in two outputs, the Z-score for each SNP and a P-value 
for each SNP. A large positive Z-score results in a small P-value providing evidence that the allele positively asso-
ciated with the trait under test. Conversely, a large negative Z-score results in a small P-value, showing an allele is 
negatively associated with the trait39. A P-value of less than 5 × 10−5 was used to denote genome-wide significance 
as per recent GWAS studies22.

Validation of internationally identified RFI SNPs in Irish beef cattle. The inclusion of internation-
ally identified RFI SNPs (n = 102, Supplementary Table S1) in the current study enabled investigation of their role 
as markers for feed efficiency in an Irish population of beef cattle.

Functional annotation of genes. Functional annotation of candidate genes was carried out to gain insight 
into the underlying biology of RFI, ADG and FI. Database for Annotation, Visualisation and Integrated Discovery 



www.nature.com/scientificreports/

4SCIeNTIFIC RePoRTS |  (2018) 8:14301  | DOI:10.1038/s41598-018-32374-6

(DAVID, version 6.8)40 was used for functional annotation. From the meta-analysis, a list of candidate genes was 
generated using Ensembl’s Variant Effect Predictor. The list contained the nearest gene within a 500 kb window 
to each nominally significant SNP (P < 0.05). DAVID assigned genes to pathways as per the Kyoto Encyclopaedia 
of Genes and Genomes (KEGG), and determined enrichment of pathways using Fisher’s exact test41. In order to 
account for multiple testing, a Benjamini-Hochberg correction was applied42. Pathways were deemed to be signif-
icant if they obtained a corrected P-value of <0.05. Pathways specifically addressing human diseases and disor-
ders were not included in further analysis of DAVID identified pathways, as these were not relevant to this study.

eQTL analysis. Samples for eQTL analysis were obtained from CH and Holstein-Friesian cattle that had 
been genotyped as part of the current study and for which RNA-Seq data were available within our group. The 
RFI range of the CH and Holstein-Friesian cattle were 1.48 to −0.98 and 1.48 to −1.41 respectively. RNA-Seq raw 
read counts were collated from liver and muscle tissue analyses carried out by our group in published studies29,43 
and studies in preparation (Higgins et al., McKenna et al.) related to feed efficiency traits. Forty-two liver samples 
and 39 muscle samples were brought forward to eQTL analysis. For eQTL identification, liver and muscle samples 
were analysed separately.

Raw read counts were filtered and genes with more than 10 instances of zero expression were removed from 
analysis, resulting in 14,588 and 14,309 genes with expression in the liver and muscle, respectively, remaining 
for eQTL analysis. Filtered raw read counts were normalised using DESeq2′s variance stabilizing transformation 
(VST) command44. Covariates included in DESeq2 were batch, RFI status (i.e. high or low RFI) and breed. VST 
normalised counts were brought forward for eQTL analysis.

eQTL analysis was carried out using the R package Matrix eQTL45. Only SNPs that reached genome-wide 
significance after meta-analysis (n = 24) and their nearest gene were considered for eQTL analysis. If a nearest 
gene was greater than 100 kilobases away from a SNP, this combination was not included in eQTL analysis. As 
part of eQTL analysis RFI, breed and sex were included as covariates. SNPs with a MAF of less than 0.1 or with 
known functions, i.e. missense mutations, were excluded, as were genes that were not expressed in either tissue 
of interest, i.e. liver or muscle. This resulted in 11 SNPs in the analysis. A Bonferroni correction was applied to 
account for the 11 SNPs. If an eQTL reached a P-value of 0.0045 or less, it was considered significant after multiple 
test correction.

Results
GWAS and meta-analysis for RFI. GWAS results generated for RFI by meta-analysis are plotted in 
Fig. 1. Seven SNPs achieved genome-wide significance for RFI (Table 1). The SNP most associated with RFI was 
rs43555985, located at chromosome 8 position 69,658,202, a non-coding region 53.4 kb upstream from GFRA2. 
Two variants were within the start-stop coordinates of genes; intronic variant rs110418027 in SMC1B and 3′ 
untranslated region (UTR) variant rs43691372 in DIS3. The remaining four SNPs are located in the non-coding 
region of the Bovine genome and their distance to nearest gene is specified in Table 1. The per breed GWAS results 
for each of these RFI associated variants are illustrated in Table 2 and Supplementary Table S4. Functional annota-
tion of genes containing or near to nominally significant SNPs for RFI using DAVID did not identify any enriched 
pathways that survived Benjamini-Hochberg correction42.

GWAS and meta-analysis for ADG. GWAS results for ADG are illustrated in Fig. 2. A total of 14 SNPs 
reached genome-wide significance for ADG. The most significantly associated SNP was rs386023985 which is 
located at chromosome 19 position 48,916,589, 7.9 kb upstream from the ERN1 gene. One missense variant, 
rs136457441 in RPL26, was associated with ADG. One associated variant was synonymous, rs382426807 in 
STAT5A. Five intronic variants were associated with ADG in the genes: CSFRA2, ITFG1, TBC1D16, TLL1 and 
BCAS3. The remaining 5 associated SNPs were located upstream or downstream of genes as indicated in Table 1. 

Figure 1. Manhattan plot represents meta-analysis results for RFI, which combined GWAS carried out for five 
cohorts of Irish beef cattle. The blue line indicates P-value < 5 × 10−5.
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Individual breed GWAS results for the SNPs associated with ADG following meta-analysis are outlined in Table 2 
and Supplementary Table S4.

Functional annotation of genes nearest to nominally significant SNPs for ADG identified 7 pathways that 
were significantly enriched following Benjamini-Hochberg correction42 (Table 3). The thyroid hormone signal-
ling pathway was the most enriched pathway (corrected P = 0.01).

GWAS and meta-analysis for FI. GWAS results for FI are plotted in Fig. 3. Three SNPs reached 
genome-wide significance for FI (Table 1). Individual breed GWAS results for these variants are presented in 
Table 2 and Supplementary Table S2. The SNP most associated with FI was IDBV32000008978 located at chro-
mosome 20 position 67,944,737. This is a synonymous variant in ADAMTS16. The other two were an intronic 
variant in HNF1B and a variant located 58.9 kb upstream of MAP3K7CL. Functional annotation of the FI SNP 
results identified two pathways that were significantly enriched after correction; axon guidance and the thyroid 
hormone signalling pathway (Table 3).

Validation of internationally identified SNPs in an Irish cattle population. Of the 102 interna-
tionally identified RFI SNPs included on the custom IDBv3 genotyping chip, 71 passed all QC measures and were 
included in the GWAS for RFI in the current study. Two of these SNPs, rs29014641 and rs109500421, were nom-
inally significant in our study but did not survive multiple test correction for this subset of SNPs. This subset of 
SNPs was not exhaustive for RFI and did not include all variants within quantitative trait loci (QTLs) as identified 
by Nkrumah, et al.18, for example. However, a post-hoc search for genotyped SNPs within those regions which 
found that no genetic variants within these QTLs reached genome-wide significance following meta-analysis.

eQTL analysis of SNPs identified as significant from meta-analysis. Table 4 contains results of 
eQTL analysis. One cis-eQTL was detected in liver, between rs43555985, the top associated SNP from the RFI 
GWAS, and GFRA2 (P = 0.0038; survives multiple test correction). eQTL analysis indicated that the minor allele 
of rs4355985 is associated with increased expression of GFRA2 (Fig. 4). The same minor allele is associated with 
lower RFI in the GWAS. The effect of GFRA2 expression on RFI is presented in Supplementary Fig. S5 on a per 
genotype basis.

Discussion
Despite the economic and environmental benefits of RFI, the trait or indeed any measure of feed efficiency, is 
not widely adopted within breeding programmes for beef cattle due to the difficulty and expense associated with 
measuring feed intake10. The identification of robust genetic markers of RFI applicable to several breeds, as well as 
crossbred cattle, would enable the traits inclusion in genomic breeding programmes. This study sought to identify 

SNP I.D.
Trait of 
interest

Chr_
mb Zscore P-value Nearby gene

SNP location relative 
to gene

rs43555985 RFI 8_69 −4.458 8.28E-06 GFRA2 53.4 kb upstream

rs41638273 RFI 2_6 4.4 1.08E-05 SLC40A1 15.7 kb upstream

rs109695205 RFI 5_113 4.313 1.61E-05 NFAM1 26.5 kb upstream

rs110161277 RFI 2_2 4.192 2.76E-05 PLEKHB2 143.8 kb downstream

rs110418027 RFI 5_116 −4.089 4.34E-05 SMC1B Intron variant

rs43691372 RFI 12_47 4.082 4.47E-05 DIS3 3′ UTR variant

rs42820242 RFI 14_44 4.081 4.48E-05 IL7 104.2 kb downstream

rs386023985 ADG 19_48 −6.593 4.32E-11 ERN1 7.9 kb upstream

rs135897656 ADG 3_119 6.195 5.83E-10 CSF2RA Intron variant

rs136457441 ADG 19_28 5.936 2.93E-09 RPL26 Missense variant

rs110660154 ADG 1_19 5.314 1.08E-07 SPATA16 265 kb downstream

rs110780286 ADG 18_15 4.492 7.06E-06 ITFG1 Intron variant

rs382426807 ADG 19_43 4.473 7.70E-06 STAT5A Synonymous variant

rs41595251 ADG 9_91 −4.375 1.22E-05 OPRM1 269 kb upstream

rs110590483 ADG 11_39 −4.243 2.21E-05 CCDC85A 509 kb downstream

rs109252082 ADG 19_53 4.124 3.72E-05 TBC1D16 Intron variant

rs41592667 ADG 9_35 4.12 3.78E-05 FRK 88 kb downstream

rs41630180 ADG 17_1 −4.097 4.18E-05 TLL1 Intron variant

rs41614223 ADG 9_27 −4.086 4.39E-05 NKAIN2 8.8 kb downstream

rs137576435 ADG 19_12 −4.079 4.52E-05 BCAS3 Intron variant

rs136789347 ADG 23_52 −4.069 4.72E-05 OR5M10 13.8 kb upstream

IDBV32000008978 FI 20_67 4.355 1.33E-05 ADAMTS16 Synonymous variant

rs55617218 FI 19_14 −4.205 2.61E-05 HNF1B Intron variant

rs109691080 FI 1_6 4.084 4.43E-05 MAP3K7CL 58.9 kb upstream

Table 1. SNPs which reached significance (P < 5 × 10−5) in a multi-breed population of beef cattle after meta-
analysis of GWAS results for each respective trait. SNP: Single nucleotide polymorphism; RFI: Residual feed 
intake; ADG: Average daily gain; FI: Feed intake; Chr_mb: Chromosome_megabase.
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SNPs associated with RFI that could be applicable to Irish beef production enterprises as well as uncovering novel 
markers of potential use to international beef producers. To unravel the underlying biology causing phenotypic 
variation in feed efficiency related traits, we carried out eQTL analysis of GWAS-identified variants to study their 
effect on local gene expression.

rs43555985 was associated with RFI and is an eQTL of the GFRA2 gene in liver tissue. The minor allele of 
this SNP was associated lower RFI within each of the individual breed GWAS and following meta-analysis. The 

Trait SNP ID
Meta-analysis 
P-value

Direction of 
Effect AA P-value BB P-value CH P-value LM P-value SI P-value

RFI

rs43555985 8.28E-06 −−−−− 2.14E-01 1.18E-01 5.30E-01 1.24E-03 2.39E-03

rs41638273 1.08E-05 +++++ 1.65E-01 3.16E-03 5.79E-03 9.03E-02 1.74E-01

rs109695205 1.61E-05 +++++ 3.02E-02 4.12E-02 1.09E-01 4.04E-02 2.35E-02

rs110161277 2.76E-05 +++++ 1.68E-01 5.24E-03 1.41E-02 1.50E-01 8.58E-02

rs110418027 4.34E-05 −−−−− 7.77E-02 8.29E-02 4.74E-02 3.92E-02 7.50E-02

rs43691372 4.47E-05 +++++ 1.74E-01 5.36E-02 6.36E-01 8.67E-03 4.65E-03

rs42820242 4.48E-05 +++++ 1.49E-01 2.74E-01 7.48E-02 1.06E-02 4.41E-02

ADG

rs386023985 4.32E-11 −−−−− 3.43E-01 3.82E-01 4.71E-04 1.16E-07 1.30E-03

rs135897656 5.83E-10 +++++ 1.54E-01 1.70E-01 3.64E-07 1.19E-06 3.01E-01

rs136457441 2.93E-09 +−+++ 4.58E-01 −9.64E-01 4.55E-06 1.88E-05 1.03E-02

rs110660154 1.08E-07 +++++ 3.69E-02 −3.56E-01 5.20E-05 9.81E-02 5.63E-03

rs110780286 7.06E-06 +++++ 2.13E-01 −9.79E-03 3.94E-01 9.86E-02 4.21E-04

rs382426807 7.70E-06 +−+−+ 5.84E-01 −7.69E-01 1.50E-07 5.65E-06 6.85E-01

rs41595251 1.22E-05 −−−−−− 1.83E-01 −9.94E-01 1.17E-01 4.61E-05 1.70E-02

rs110590483 2.21E-05 −−−−− 3.60E-01 1.69E-01 5.64E-03 5.12E-01 2.27E-03

rs109252082 3.72E-05 +++++ 8.27E-02 5.49E-01 1.26E-03 5.09E-01 1.07E-02

rs41592667 3.78E-05 +++++ 4.92E-01 −6.02E-01 7.18E-03 8.14E-02 6.75E-03

rs41630180 4.18E-05 −−−−− 8.08E-01 −1.87E-03 1.25E-01 6.19E-04 2.61E-01

rs41614223 4.39E-05 −−−−− 2.94E−01 −7.84E-03 9.24E-04 6.27E-02 5.16E-01

rs137576435 4.52E-05 −−−−−− 3.95E-01 4.11E-01 2.03E-02 7.64E-01 1.66E-04

rs136789347 4.72E-05 −−−−−− 1.99E-01 6.66E-01 1.35E-01 1.77E-04 5.03E-02

FI

IDBV32000008978 1.33E-05 ++++− 6.00E−03 1.69E-03 7.68E-03 3.35E-02 8.59E-01

rs55617218 2.61E-05 +−−−− 4.22E-01 1.75E-01 2.83E-01 1.92E-04 8.14E-03

rs109691080 4.43E-05 −++++ 6.89E-01 4.45E-01 1.41E-04 1.88E-01 6.53E-03

Table 2. Individual breed GWAS results for all genetic variants that reached genome-wide significance 
following meta-analysis. SNP: single nucleotide polymorphism; RFI: residual feed intake; ADG: average daily 
gain; Direction of effect: direction of effect of the Illumina A allele; FI: feed intake; AA: Aberdeen Angus; BB: 
Belgian Blue; CH: Charolais; LM: Limousin; SI: Simmental.

Figure 2. Manhattan plot of meta-analysis results for ADG. Meta-analysis was carried out on GWAS results 
generated for five breeds of Irish beef cattle. The blue line indicates P-value < 5 × 10−5.
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minor allele of rs43555985 was also associated with increased expression of GFRA2 following eQTL analysis. 
GFRA2 is a cell-surface receptor that facilitates binding of a member of the glial cell-derived neurotrophic fac-
tor family. GFRA2 knock-out mice are unable to digest food correctly, have impaired salivary secretion and gut 
motility and exhibit a slower growth rate than wild-type mice while having an increased basal metabolic rate46. 
If increased GFRA2 expression is associated with improved feed efficiency, the mechanism may involve lowering 
metabolic rates. Increased metabolic rate leads to increased energy requirements to carry out biological processes 
and to maintain physiological homeostasis, resulting in less consumed energy being used for growth47. It has been 
illustrated previously that high-RFI lambs have a higher basal metabolic rate than their low-RFI (more desira-
ble) counterparts and low-RFI heifers exhibited lower metabolic rates than their high-RFI (inefficient) counter-
parts48,49. Further investigation and validation of rs43555985 prior to inclusion in genomic breeding programmes 
is required. Furthermore, rs43555985 is also located 79.9 kb upstream from XPO7. Post-hoc eQTL analysis for 
this gene illustrated that there is no statistically significant relationship between rs43555985 genotype and XPO7 
expression.

The second most statistically significant SNP for RFI, rs41638273, maps to a region of chromosome 2 that 
contains the SLC40A1 gene. This region is also the site of a QTL for RFI which contains the myostatin gene50. 
Specific mutations in the myostatin gene have been linked with increased muscle growth traits51. Improved feed 
efficiency was associated with double muscled Angus steers by Cafe et al.52 when compared to lesser muscled 

Trait Biological Process B-H P-value Number of genes

ADG Thyroid hormone signalling pathway 0.010 20

ADG cGMP-PKG signalling pathway 0.011 25

ADG Vascular smooth muscle contraction 0.015 18

ADG Retrograde endocannabinoid signalling pathway 0.013 18

ADG Focal adhesion 0.027 27

ADG cAMP signalling pathway 0.026 26

ADG Adherens junction 0.029 13

FI Axon guidance 0.001 23

FI Thyroid hormone signalling pathway 0.015 19

Table 3. Significant KEGG pathways identified for each trait in a multi-breed population of beef cattle 
following meta-analysis of GWAS results. B-H P-value: Benjamini-Hochberg corrected P-value; ADG: average 
daily gain; FI: feed intake. Pathways were designated as significant if they reached Benjamini-Hochberg 
corrected P < 0.05.

Figure 3. Manhattan plot of FI meta-analysis of GWAS results for Irish beef cattle. The blue line indicates P-
value < 5 × 10−5.
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counterparts52. DIS3, a gene nearby to a variant associated with RFI in the current study, encodes a protein 
involved in RNA metabolism53 and has been linked with feed conversion efficiency in pigs54.

The minor allele of rs386023985 was negatively associated with ADG following GWAS meta-analysis in the 
current study. Similarly, this variant was negatively associated with ADG within each individual breed GWAS 
conducted, this SNP also reached genome-wide significance within the LM individual breed GWAS. rs386023985 
has not previously been associated with ADG or other growth traits in cattle. The gene nearest to rs386023985 is 
ERN1 (IRE1), a sensor of metabolic stress, is involved in the unfolded protein response55.

Copy number variation in RPL26, a ribosomal protein gene, has been linked to RFI divergence in Holstein 
cows56. A variant identified in this study, rs136457441, is a missense variant in RPL26 causing an isoleucine to 
threonine change at amino acid position 67 in the RPL26 protein. This variant, associated with ADG following 
meta-analysis in the current study and reached genome-wide significance for ADG within the CH individual 
breed GWAS, is located in exon 3 of RPL26. rs136457441 has been designated as tolerated by the Sorting Tolerant 
from Intolerant (SIFT) algorithm, which predicts whether amino acid substitutions effect protein function57. 
Further investigation into the functional effect of this mutation is required to elucidate its biological role in ADG.

SNP Nearest Gene Trait Liver P-value Muscle P-value

rs43555985 GFRA2 RFI 0.0038* 0.25

rs109695205 NFAM1 RFI 0.95 0.55

rs110418027 SMC1B RFI 0.15 Not expressed

rs43691372 DIS3 RFI 0.96 0.16

rs386023985 ERN1 ADG 0.99 0.23

rs110780286 ITFG1 ADG 0.83 0.23

rs382426807 STAT5A ADG 0.94 0.72

rs41592667 FRK ADG 0.22 0.19

rs41630180 TLL1 ADG Not expressed 0.33

rs137576435 BCAS3 ADG 0.25 0.93

rs109691080 MAP3K7CL FI Not expressed 0.80

Table 4. Results from eQTL analysis of genome-wide significant SNPs in liver and muscle. SNP: Single 
nucleotide polymorphism; ADG: average daily gain; FI: feed intake; RFI: residual feed intake, *eQTLs were 
designated as significant if they reached P < 0.0045.

Figure 4. Boxplot representing the relationship between rs43555985 genotypes and normalised liver gene-
expression of GFRA2. Presence of the minor allele of rs43555985 is correlated with increased expression of 
GFRA2. 0: GG; 1: GA; 2: AA.
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An exonic variant associated with ADG is rs382426807, a synonymous variant in STAT5A. This gene encodes 
a transcription factor that can be activated as part of the somatotropic axis, which is the pathway involved in 
the secretion of growth hormone and skeletal muscle growth58. STAT5A has been associated with increased live 
weight gain in Polish Black-and-White bulls59 and increased expression of the growth hormone receptor, an 
upstream activator of STAT5A, has been previously demonstrated in efficient beef heifers by Kelly et al.60.

Five variants associated with ADG were located in introns of the following genes: TLL1, CSF2RA, ITFG1, 
TBC1D16 and BCAS3. TLL1 encodes a member of the tolloid family metalloproteases that have been previously 
implicated in the cleavage and development of myostatin in humans61. Myostatin in its normal state negatively 
regulates muscle growth. The production of aberrant myostatin protein isoforms results in the development of 
the double muscle phenotype51.

CSF2RA encodes for a granulocyte/macrophage colony stimulating factor62. ITFG1, the gene within which 
rs110780286 is located, is involved in T-cell differentiation and may induce the production of anti-inflammatory 
cytokines63. It has been previously illustrated that immune genes and immune pathways are associated with vari-
ation in feed efficiency and ADG in cattle64,65. Several groups have suggested that the immune system plays a key 
role in weight gain and feed efficiency in cattle. For example, Reynolds et al.64 found that steers with higher ADG 
have lower immunity related gene expression64 and it has been demonstrated that cattle with poor feed efficiency 
had increased activation of their immune system65. It is possible that cattle with poor feed efficiency and low ADG 
are experiencing chronic inflammation which results in poor feed efficiency which has been suggested previously 
by Alexandre et al.65 following analysis of beef cattle divergent in RFI and by Mani et al.66 upon investigation of 
inflammation in RFI divergent pigs65,66.

rs41595251 is associated with ADG and is a variant located upstream from OPRM1, the µ-opioid receptor 
gene, on chromosome 9. OPRM1 has been associated with increased food intake in humans67. ADG-associated 
SNP rs136789347 is nearby to OR5M10 which encodes for an olfactory receptor in humans68. Olfactory recep-
tors have been suggested as one method by which the endocannabinoid system stimulates the feeding drive 
in mice69. rs41614223 is located downstream from the transcriptional start site of NKAIN2, which produces a 
Sodium-Potassium ATPase involved in action potential generation in neurons70. Each of these genes, OPRM1, 
OR5M10 and NKAIN2 have a neurological function. There is evidence from bovine studies71,72 that there is sig-
nificant neurological control of food consumption. The association of these neurological genes with ADG in this 
cohort of beef cattle may further indicate that feeding behaviour in cattle may also be subject to some degree of 
neurological control73. Further investigation is required to investigate the role neurological systems play in mod-
ulating the development of divergent RFI and related traits in cattle.

rs41592667 is upstream of FRK which encodes for tyrosine-protein kinase FRK. Gene sets enriched for 
cell cycle-related genes, similar to FRK, have previously been shown to be associated with feed intake and 
feed efficiency in beef cattle74. TBC1D16, a gene which encodes for a GTPase and contains the intronic variant 
rs109252082, has been associated with growth rate in pigs75. Despite these SNPs not being associated with feed 
efficiency or component traits prior to the current study, they are near to, or within, genes that have been associ-
ated with feed efficiency related traits previously.

HNF1B, nearby to a variant associated with FI, has previously been identified as differentially expressed in 
Holstein cattle divergent for RFI76, and this gene is a target of miR-802, which has been identified as upregulated 
in high RFI cattle77. The silencing of HNF1B in mice leads to impaired insulin sensitivity78. However, previous 
work by our group has shown that RFI divergent beef cattle have similar levels of insulin sensitivity and it is 
unlikely that insulin sensitivity plays a role in RFI divergence28. Further work is required to understand the contri-
bution of HNF1B to the development of divergence in FI. In this study the variant IDBV332000008978 was asso-
ciated with FI. This variant is a synonymous variant within the ADAMTS16 gene which is a member of ADAMTS 
protease family and has previously been identified as associated with FCR in pigs79.

Following functional gene set enrichment analysis using DAVID, the thyroid hormone signalling pathway 
was found to be most enriched for ADG. Thyroid hormones play a key role in the regulation of basal metabolism 
in mammals80, although, it has been demonstrated previously that the levels of thyroid hormones are not related 
to RFI status in heifers81. However, in a study of dairy cattle is was reported that low levels of thyroid hormones 
are associated with lower RFI82. Further investigation into the role of the thyroid hormone signalling pathway 
is warranted to further elucidate the role this biological mechanism plays in the divergence of RFI in cattle. The 
retrograde endocannabinoid signalling pathway was also found to reach significance level in the list of nominal 
significant genes for ADG. It has been demonstrated that the endocannabinoid system plays a role in inducing 
food intake and modulating energy expenditure and feed intake in mice83,84. It is possible that alterations in genes 
in the retrograde endocannabinoid pathway may also stimulate or inhibit feeding behaviours in cattle which may 
impact on feed efficiency. It has been observed previously that low RFI cattle have fewer daily feeding events and 
have a lower eating rate than high RFI cattle85. Focal adhesion was another pathway found to be enriched for 
nominally significant ADG associated SNPs. Focal adhesion is a pathway involved in cell motility, proliferation 
and survival. This pathway is dependent upon focal adhesion kinase86. PTK2, the gene encoding for focal adhe-
sion kinase has been previously noted as downregulated in high-RFI animals from a population of dairy cattle87.

Conclusion
In this study we illustrate genome-wide associations between SNPs and RFI and its component traits in beef cat-
tle. In total, we identified 24 SNPs as reaching statistical significance for RFI, ADG and FI in a multi-breed cohort 
of beef cattle. Several of the SNPs identified in this study are located nearby or within genes related to immune 
function, muscle growth and development, and neurological pathways. The identification of a novel eQTL for RFI 
at GFRA2 also represents an insight into the biology of feed efficiency.

Due to the small sample size of our individual breed GWAS, which we used meta-analysis to overcome, 
all identified SNPs and the eQTL must be validated, both in larger Irish and international populations before 
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incorporation into genomic assisted beef cattle breeding programmes. Furthermore, validation is required in 
larger reference populations to account for the LD and genetic heterogeneity which exists between breeds of 
cattle.

An additional method which may have been employed to increase sample size could have been single step 
GWAS (ssGWAS)88–90. ssGWAS incorporates genotypes, phenotypes and pedigree information to calculate 
genomic estimated breeding values for animals with or without genotypes88.

It is important to ensure that the SNPs influence these traits and have no negative impact on other economi-
cally important production traits. SNPs with a validated desirable effect can be included in Irish and international 
genomic assisted breeding programmes to facilitate the rapid and cost effective selection of more feed efficient 
beef cattle.
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