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ABSTRACT 
 

Bacteria undergo a well-orchestrated cell division process with a highly regulated placement 

of the division site in order to generate progeny cells with complete hereditary information.  

Thus, bacteria have evolved mechanisms to govern the spatio-temporal dynamics and 

localization of cell division proteins in accordance with the cell cycle. Cell division needs to 

be particularly tightly regulated in differentiating bacteria where changes between different 

cell morphologies increases the complexity of the process. Vibrio parahaemolyticus exists 

as swimmer and swarmer cells, specialized for growth in liquid and on solid environments, 

respectively. Swarmer cells are highly elongated by a probable regulated inhibition of cell 

division. But, these cells still need to divide in order to proliferate and expand the colony. 

The regulators that facilitate the drastically different cell sizes between the two cell types 

and the factors that control their cell divisions are unknown. Here we show that swarmer 

cells of all lengths undergo cell divisions, but the placement of the division site is cell length-

dependent. The short swarmer cells divide at mid-cell whereas the long swarmer cells divide 

at a non-mid-cell (pole-proximal) division site. We show that the transition to non-mid-cell 

positioning of the division site is cell length-dependent. Our research reveals that V. 

parahaemolyticus uses the Min system to mark the length-dependent (LD) division site in 

the swarmer cells. Through microscopy experiments we demonstrate that the dynamics of 

the division regulator MinD switches from a pole-to-pole oscillation in short swarmer cells to 

a multi-node standing-wave oscillation in long swarmer cells. Additionally, the regulation of 

FtsZ levels restricts the number of divisions to one per cell cycle and the nucleoid occlusion 

determinant SlmA ensures sufficient free FtsZ to sustain Z-ring formation by preventing 

sequestration of FtsZ into division deficient clusters over the nucleoid. We also show that, 

in spite of several Min minima that arise during a standing wave oscillation of MinD, the cell 

divides at the utmost pole-proximal Min minimum. By limiting the number of division events 

to one per cell, V. parahaemolyticus promotes the preservation of long swarmer cells and 

permits swarmer cell division without the need for dedifferentiation. Additionally, we show 

that the ParA-like ATPase, ParC, that has previously been described to be the cell pole-

determinant in Vibrios, also regulates the localization of the major cell division protein FtsZ 

in swarmer cells, and thereby prevents polar division events. Altogether, this work sheds 

light to the study of cell division in the di-morphic pathogenic bacterium, 

V. parahaemolyticus. For the first time, we demonstrate a cell length-dependent division site 

placement in naturally occurring bacteria by employing Min oscillation. The identification of 

ParC as a protein of dual-function ties together the spatio-temporal regulation of diverse 
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processes such as bacterial chemotaxis, cell pole development and regulation of cell 

division. 
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ZUSAMMENFASSUNG 
 

Bakterien durchlaufen einen hochgradig organisierten Zellteilungsprozess bei welchem die 

Platzierung der Zellteilungsmaschinerie präzise reguliert ist. Dadurch wird sichergestellt, 

dass Tochterzellen mit vollständigen Erbinformationen erzeugt werden.  So haben 

Bakterien Mechanismen entwickelt, um die räumlich-zeitliche Dynamik und Lokalisation von 

Zellteilungs-Proteinen in Übereinstimmung mit dem Zellzyklus zu steuern. Die Zellteilung 

muss bei der Differenzierung von Bakterien besonders stark reguliert werden, wenn 

Veränderungen zwischen verschiedenen Zellmorphologien die Komplexität des Prozesses 

erhöhen. Vibrio parahaemolyticus existiert als Schwimmer- und Schwärmerzelle, 

spezialisiert auf das Wachstum in flüssiger bzw. fester Umgebung. Schwärmerzellen sind 

vermutlich durch eine regulierte Hemmung der Zellteilung während der Differenzierung 

stark verlängert. Dennoch müssen sich diese Zellen teilen, um die Kolonie zu vermehren 

und zu erweitern. Die Regulatoren, welche die drastisch unterschiedlichen Zellgrößen 

zwischen den beiden Zelltypen (Schwimmer und Schwärmer) ermöglichen und die 

Faktoren, die ihre Zellteilung steuern, sind unbekannt. Hier zeigen wir, dass 

Schwärmerzellen jeglicher Zelllängen Teilungen durchlaufen, jedoch die Platzierung der 

Teilungsstelle zelllängenabhängig ist. Kurze Schwärmerzellen teilen sich in der Mitte der 

Zelle, während lange Schwärmerzellen die Teilungsstelle näher am Zellpol platzieren (Pol-

proximal). Wir zeigen, dass der Übergang zur Pol-proximalen Platzierung der Teilungsstelle 

zelllängenabhängig ist. Unsere Forschung zeigt außerdem, dass V. parahaemolyticus das 

Min-System verwendet, um die längenabhängige (LD) Teilungsstelle in den 

Schwärmerzellen zu markieren. Durch mikroskopische Experimente zeigen wir, dass die 

Dynamik des Teilungsregulators MinD von einer Pol-zu-Pol-Schwingung in kurzen 

Schwärmerzellen zu einer Multi-Knoten-Stehwellenschwingung in langen Schwärmerzellen 

wechselt. Zusätzlich beschränkt die Regulierung des FtsZ-Spiegels die Anzahl der 

Teilungen auf eine pro Zellzyklus. Hinzukommend verhindert SlmA die Z-Ring-Bildung über 

dem Nukleoid, indem es freie FtsZ Moleküle sequestriert und deren Polymerisation 

unterbindet. Wir zeigen auch, dass sich die Zelle trotz mehrerer Min-Minima, die bei einer 

Stehwellenschwingung von MinD entstehen, am äußersten, polgelegenen Min-Minimum 

teilt. Durch die Begrenzung der Anzahl der Teilungsereignisse auf ein Ereignis pro 

Zellteilung, fördert V. parahaemolyticus den Erhalt langer Schwärmerzellen und ermöglicht 

die Schwärmerzellteilung ohne Dedifferenzierung. Darüber hinaus zeigen wir, dass die 

ParA-ähnliche ATPase, ParC, die zuvor als Zellpoldeterminant in Vibrios beschrieben 

wurde, auch die Lokalisation des Zellteilungs-Proteins FtsZ in Schwärmerzellen reguliert 

und damit Zellteilungsereignisse in Polnähe verhindert. Wir demonstrieren zum ersten Mal 
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eine zelllängenabhängige Platzierung des Zellteilungsapparates in natürlich 

vorkommenden Bakterien. Die Identifizierung von ParC als Protein mit Doppelfunktion 

verbindet die räumlich-zeitliche Regulation verschiedener Prozesse wie bakterielle 

Chemotaxis, Zellpolentwicklung und Regulation der Zellteilung. 
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1.1. Bacterial cell division 

Bacterial cell division broadly consists of a chromosome replication and segregation step, 

and a septum formation and a cell body separation step (cytokinesis). Unlike in 

eukaryotes, both these steps occur simultaneously in bacteria. DNA replication and 

segregation stay highly coordinated with the cell separation as accurate inheritance of 

complete genetic material is essential for proper colony maintenance. The division of the 

mother cell is achieved by a macromolecular protein complex called the divisome. FtsZ, a 

tubulin homologue, assembles into a ringlike structure, called the Z-ring, at the incipient 

division site and acts as the central component of the divisome (Bi & Lutkenhaus, 1991; 

Erickson, 1995). The Z-ring acts as a scaffold and recruits the downstream cell division 

proteins resulting in the formation of the structure known as the divisome or septal ring 

(Aarsman et al., 2005; Gamba et al., 2009).  

Divisome formation has been thoroughly studied in Escherichia coli and following are 

some of the proteins that have been discovered to play diverse and important functions to 

sustain the divisome. Several Z-ring associated proteins like ZapA, ZapB, ZapC and ZapD 

are involved in promoting lateral interactions of FtsZ protofilaments (Durand-Heredia et al., 

2011; Gueiros-filho & Losick, 2002; Hale et al., 2011). FtsA - an actin homologue (Dai & 

Lutkenhaus, 1992) and ZipA - an inner membrane protein (Hale & De Boer, 1997) act to 

associate FtsZ with the inner membrane. The Z-ring is stabilized by FtsA and ZipA (the 

proto-ring), which then recruits FtsK, the DNA translocase that sorts chromosomal DNA to 

the daughter cells (Begg et al., 1995; Bigot et al., 2005). Other important proteins that are 

recruited include the penicillin-binding proteins (PBPs) like PBP3 in E. coli, the FtsW and 

FtsN. The peptidogylcan synthase PBP3 generates the peptidoglycan (PG) required for 

the establishment of the division septum (Pogliano et al., 1997). Although a flippase activity 

was earlier proposed for FtsW (Mohammadi et al., 2011), it was later proved that the 

transport of PG precursors across the cytoplasmic membrane was in fact carried out by 

MurJ (Sham et al., 2014). FtsN, one of the late recruits to the divisome, activates the PG 

synthesis through its interaction with PBP3, thereby resulting in recruitment of the other 

enzymes leading to constriction of the septum (Addinall et al., 1997; Gerding et al., 2009; 

Rico et al., 2010). 

Formation of the divisome is an important hierarchical process during cell division and 

hence needs to be highly coordinated. Therefore, regulating cell division largely also points 

towards a spatio-temporal regulation of divisome formation and hence that of FtsZ.  
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1.2. FtsZ: the central component of divisome 

Identification of FtsZ resulted from a search to find out the reason behind filamentation of 

E. coli cells on DNA damage (van de Putte et al. 1964). Several fts (filamentous growth is 

thermosensitive) genes and others were identified following this study. Subsequently the 

ftsZ locus was also identified, which was later suggested to be a bacterial cytoskeletal 

protein (Bi & Lutkenhaus, 1991; Lutkenhaus et al., 1980).  

FtsZ was discovered to be a homologue to eukaryotic cytoskeletal protein tubulin 

subsequently by three research groups (De Boer et al., 1992; Mukherjee et al., 1993; 

RayChaudhuri & Park, 1992). A conserved sequence of GGGTGTG in FtsZ is almost like 

the G/AGGTGSG sequence (also known as the tubulin signature sequence) in all tubulins 

that is involved in GTP binding. With the resolution of the structures of the two proteins, 

FtsZ and tubulin, their homology was confirmed (Löwe & Amos, 1998; Nogales et al., 

1998). 

FtsZ is a cytoplasmic protein. It is a GTPase and can polymerize in a head to tail fashion 

forming filaments (protofilaments) which can further bundle to form polymers of higher 

order structures. Based on sequence homology across species, FtsZ is broadly divided 

into four regions – (i) a poorly conserved N-terminal peptide, (ii) the highly conserved core, 

(iii) the C-terminal linker (CTL) and (iv) a C-terminal conserved peptide (CTC). The function 

of the variable N-terminal segment is not exactly determined. The conserved core consists 

of the tubulin signature motif and is the region responsible for GTP binding and hydrolysis. 

This leads to the polymerization of FtsZ into filaments. The core has been shown to consist 

of two segments – (a) The N-terminal (Nt) core consisting of the GTP binding site and 

binds the bottom of the adjacent monomer of the FtsZ protofilament and (b) the C-terminal 

(Ct) core that binds the top of the adjacent monomer (Oliva et al., 2004). The CTC is the 

binding site for several regulators of FtsZ like Clp proteins (Williams et al., 2014) as well 

for the membrane anchors that tether this cytoplasmic protein to the inner membrane, like 

FtsA (Din et al., 1998) and SepF (Duman et al., 2013; Król et al., 2012). The region 

between the GTPase domain and the CTC is CTL, an unstructured region. It displays a 

broad range of length and is described to be important for the polymer structure and 

dynamics through its regulation of lateral interaction of the protofilaments (Buske & Levin, 

2013; Sundararajan & Goley, 2017). Also, an intact CTL in C. crescentus ensures a proper 

peptidoglycan synthesis whereas deletions of different lengths of this region leads to 

defective peptidoglycan synthesis and an eventual cell lysis (Sundararajan et al., 2015).  
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1.3. Cell constriction: FtsZ ring or the PG synthetic 

machinery?  

Extensive studies have been carried out to identify the force generator that constricts the 

parent cell. FtsZ is a GTPase and the energy released from GTP hydrolysis can be 

converted to mechanical energy. Additionally, FtsZ can polymerize and a biological 

polymer can generate force using its physical properties like stiffness, curvature (Jensen 

et al., 2015) and polymerization-depolymerization ability. When reconstituted in liposomes, 

FtsZ linked to membrane tethering sequences could result in indentations on the 

liposomes (Osawa et al., 2008, 2009). Using FtsA to direct FtsZ to the membrane resulted 

in complete fission of the liposomes and this prompted the conclusion that FtsZ in the 

presence of GTP and FtsA can probably orchestrate the cell constriction (Osawa & 

Erickson, 2013). These studies pointed towards FtsZ-ring being the force generator. 

However, in later experiments it was shown that the change in FtsZ assembly, its GTPase 

activity or amount of FtsZ in the Z-ring failed to alter the constriction rate (Coltharp et al., 

2016). Further, FtsZ mutants with reduced GTPase activity still formed Z-rings and 

continued to be functional for cell division, which resulted in viable cells (Lu et al., 2001). 

Taken together, these evidences point against FtsZ being the sole force generator for cell 

constriction. Additionally, L-forms (cell wall deficient bacteria) of B. subtilis was shown to 

propogate indefinitely without the expression of FtsZ (Leaver et al., 2009). Although in the 

rod-shapped B. subtilis a complete ftsZ deletion could not be achieved, its respective 

L-form survived the deletion of ftsZ. Thus, suggesting that constriction by the Z-ring alone 

is insufficient and requires cell wall synthesis in wild-type cells (Leaver et al., 2009). 

It has long been known that the factors that affect PG, like impairment of FtsI (PBP3) 

activity or use of penicillin, results in cell division defects leading to filamentous cells 

(Schwarz et al., 1969; Spratt, 1975). Suggesting, an importance for the peptidoglycan 

synthesis in cell division. Additionally, long constriction periods observed in E. coli with 

mutations in FtsI, FtsQ (Huls et al., 1999; Taschner et al., 1988) and by overexpression of 

FtsN (Aarsman et al., 2005); premature initiation of constriction by mutants of FtsL and 

FtsB (Liu et al., 2015; Tsang & Bernhardt, 2015) and hyperactive constrictions in 

C. crescentus through mutations of FtsW and FtsI (Modell et al., 2014) - all supported the 

idea that the PG metabolic enzymes drive cell constriction. These observations suggest 

that PG synthesis and not FtsZ is the plausible candidate for the rate determining 

constrictive force for cell septation.  In the subsequent breakthrough studies, the link 

between PG synthesis and constriction rate was established (Bisson Filho et al., 2016; 

Yang et al., 2016). It was established in E. coli and B. subtilis, that the GTPase driven 
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treadmilling of FtsZ directs the cell wall synthesis machinery. In  E. coli, the rate of septal 

synthesis is independent on FtsZ treadmilling (Yang et al., 2016) whereas in B. subtilis 

FtsZ treadmilling rates control the rate of peptidoglycan synthesis as well as the rate of 

cell division (Bisson Filho et al., 2016). 

Division of L-forms 

If not mediated by neither FtsZ nor PG, how do L-forms divide? Novel proliferation 

mechanisms were revealed on time-lapse imaging of L-forms (Gilpin & Nagy, 1976; Leaver 

et al., 2009). The cells were shown to undergo shape perturbations through formation of 

protrusions, which eventually resolved into several round progenies (Leaver et al., 2009). 

This L-form reproduction mechanism was later shown not to depend on any of the well-

characterized cytoskeletal systems, but on membrane fluidity (Mercier et al., 2012). Such 

modes of propagation is hence suggested to be an early mode of proliferation used by 

primitive cells before the existence of cell wall (Leaver et al., 2009).  

 

1.4. Chromosome organization - a brief comparison  

The genetic material in the cell is maintained in a conserved arrangement that are also 

replicated in progeny cells following cell division. The spatial organization of the bacterial 

chromosome can be broadly categorized into: (1) chromosomes arranged longitudinally in 

an ori-ter fashion and (2) chromosomes arranged in a transverse fashion with the left and 

right chromosomal arms lying in the two halves of the cell. Chromosome organization in 

C. crescentus, whose origin is tethered to the pole, follows pattern (1) (Figure 1A) (Viollier 

et al., 2004). Following initiation of replication, one of the two replicated origins (ori) migrate 

to the opposite pole followed by the rest of the replicating DNA, gradually positioning the 

terminus (ter) at the mid-cell/future division site (Schofield et al., 2010; Shebelut et al., 

2010). This ensures the conservation of the ori-ter arrangement in the following 

generations. Vibrio cholerae’s chromosome I (ChrI) (David et al., 2014; Fiebig et al., 2006; 

Fogel & Waldor, 2005) and Myxococcus xanthus chromosome (Harms et al., 2013) also 

follow the same arrangement (Figure 1B). Additionally, ChrII of V. cholerae, which is not 

tethered to the pole at the origin but aligns in an ori-ter manner, suggests that tethering at 

the poles is not a prerequisite for this type of chromosome alignment.  

Chromosome organization in slow growing B. subtilis presents a variation from these 

established patterns. At the time of birth of a daughter cell, the origins stay at the cell poles 

in a longitudinal arrangement following an ori-ter-ori pattern. However, following initiation 
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of replication at the poles, the newly replicated origins move to the center of the two 

cell halves followed by a rearrangement of the non-replicated chromosomal arms such 

that it adopts a ‘left-replicated oris-right’ pattern.  

 

Figure 1: Spatial organization of bacterial chromosomes. Chromosome organization in C. crescentus 
(A), V. cholerae (B), B. subtilis during vegetative growth (C), E. coli under slow growing conditions (D) and 
E. coli under fast-growing conditions (E). Replication origins are represented by grey circles and termini by 
brown lines and ovals. The left and right chromosomes are represented by thick pink and blue lines or blobs, 
respectively, and newly synthesized DNA are shown in thin lines of the respective colors. Figure modified 
from Wang and Rudner 2014.  

 

Subsequently, the replicated origins segregate to the peripheries of the respective 

nucleoid, adopting a final longitudinal alignment (Figure 1C) (Wang et al., 2014). Similarly, 

E. coli also exhibits both chromosome arrangements under different growth conditions. 

While in slow growth medium, E. coli adopts a left-ori-right pattern (Nielsen et al., 2006; 
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Wang et al., 2006), whilst fast growth, which provides multifork replication conditions, an 

ori-ter pattern is observed (Figure 1D and E) (Youngren et al., 2014). These findings give 

enough indications that the chromosome organization in a bacterial cell also depends on 

the growth conditions of the cell in addition to the proteins with which the segregating DNA 

interacts. 

Arjes et al. confirmed for the first time that there exists a direct link between DNA 

replication and cell division through the concept of ‘point of no return’ (PONR). Inhibiting 

cell division in B. subtilis and Staphylococcus aureus led to an arrest in new rounds of 

DNA replication initiation and vice-versa (Arjes et al., 2014), suggesting that cell division 

and DNA replication are not only coordinated but also represent a coupled set of events. 

 

1.5. Chromosome replication and its effect on cell division 

Unlike in eukaryotes where the different stages of cell division, DNA replication, 

segregation, and cell body separation are all regulated through checkpoints, generally in 

prokaryotic organisms, they occur simultaneously. In bacteria growing under high nutrient 

conditions, replicated chromosomes start a second round of replication even before the 

first division completes. The lack of spatio-temporal distinction in the various stages of 

prokaryotic cell division imparts more complexity in the regulation of this process. The 

exact mechanism of how bacteria accomplish coupling of the chromosome replication and 

the segregation together with the septum formation and cell separation is yet to be 

completely determined.  

DNA replication begins with binding of the ATPase, DnaA, to the origin of replication, oriC. 

This binding results in the subsequent assembly of several other components resulting in 

a nucleo-protein complex that melts and unwinds the double helix, and thus loading of the 

replication machinery (Duderstadt et al., 2010; Katayama et al., 2010). DNA synthesis 

occurs bi-directionally by two replication forks, until it encounters the terminus region (ter) 

where subsequent de-catenation and resolution of the replicated chromosomes occur 

(Bussiere & Bastia, 1999). 

The segregation of the replicating chromosomes is important to ensure proper cell division. 

The different types of active DNA segregation machineries found in bacteria share the 

three common components: an NTPase, a DNA-binding protein and a specific DNA 

sequence to which the DNA binding protein binds. The partition system ParABS is the 

most studied of all and it had been originally discovered associated with plasmid 
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segregation. This system consists of the Walker-type ATPase ParA, the DNA-binding 

protein ParB that binds to parS, which are specific cis-acting sites located in the oriC region 

(Gerdes et al., 2010; Surovtsev & Jacobs-Wagner, 2018). ParA interacts with the 

ParB-parS complex and segregates the newly replicated origin. In B. subtilis, the 

components for the ParABS system are Soj (ParA) and Spo0J (ParB), which binds to the 

parS sites (Ireton et al., 1994). Spo0J binds to parS and spreads on to the neighboring 

DNA forming complex nucleo-protein clusters. Spo0J also recruits the structural 

maintenance of chromosome (SMC) complexes to the origin (Gruber & Errington, 2009; 

Sullivan et al., 2009). SMC foci are lost on Spo0J deletion or in the absence of the parS 

sites. Ectopic positioning of the parS sites lead to mistargetting of SMC to these regions, 

resulting in chromosome organization and segregation defects (Sullivan et al., 2009). An 

absence of the segregation system leads to varing defects in different bacteria. In 

B. subtilis, the absence of Soj-Spo0J system leads to minor defects in segregation (Lee & 

Grossman, 2006; Wang et al., 2014), whereas the ParABS system is crucial for 

chromosome partitioning in C. crescentus (Toro et al., 2008). The multi-chromosomal 

bacterium V. cholerae harbors two distinct partitioning systems, ParABS1 and ParABS2, 

dedicated to the segregation of Chromosome 1 and Chromosome 2, respectively (Fogel 

& Waldor, 2006; Yamaichi et al., 2006). 

In most species cell division is mainly dependent on the assembly of FtsZ, the key 

component of the septal ring. One of the processes that has not yet been completely 

understood is how the assembly of FtsZ (and hence the divisome) is in concert with the 

replication and segregation of chromosomes. The link between DNA replication and cell 

division was obtained through studies in B. subtilis, where it was discovered that septation 

began only after 70% of the chromosome replicated. Additionally, a block in replication 

resulted in the mispositioning of the Z-ring. In the research by Moriya et al, it was 

established that the earlier the block occured at the replication initiation stage, the 

likelihood of a mid-cell positioned Z-ring decreased. The resulting proposed model linked 

the progression of DNA replication initiation to the proper positioning of the Z-ring (Moriya 

et al., 2010). Although what positioned FtsZ to the mid-cell or the future division site 

remained unanswered, it was proposed early on to be a nucleoid dependent mechanism.  

Studies on chromosome architecture categoriezed the E. coli chromosome into different 

macrodomains (MD). A macrodomain is defined as a region of the chromosome with an 

approximate size of 1Mbps, which is physically isolated from the rest of the chromosome. 

The four proposed MDs in E. coli include one surrounding the replication origin (ori MD), 

another surrounding the replication terminus region (ter MD) and two flanking the ter MD 

from the left (Left MD) and the right (Right MD) (Niki et al., 2000; Valens et al., 2004). The 
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ter MD is organized by the DNA-binding protein MatP (macrodomain Ter protein) that 

binds to the matS sequences at the terminus region (Mercier et al., 2008). In addition to 

its role in compaction of the terminus region, MatP is also attributed the function of Z-ring 

positioning. The association of the ter region to the Z-ring is established through the 

linkage of ZapA, ZapB, and MatP. This so called ter linkage consists of a network of ZapB 

filaments that extends from nucleoid to the Z-ring, to which FtsZ is linked via ZapA. ZapB 

is also linked to the DNA at the replication terminus region via MatP (Mercier et al., 2008). 

Taken together, on initiation of replication, the ter region repositions to the middle of the 

cell and this explains how replication initiation is linked to the Z-ring positioning, eventually 

facilitating the orchestration of DNA replication and divisome formation (Espeli et al., 

2012). 

 

1.6. Negative regulation by Nucleoid Occlusion (NO) 

To prevent the incomplete inheritance of a chromosome, the divisions over the nucleoid is 

inhibited by a phenomenon called nucleoid occlusion (NO) (Mulder & Woldringh, 1989; 

Woldringh, 1989). In E. coli nucleoid occlusion is effected through SlmA (Bernhardt & De 

Boer, 2005). The cell division regulation by nucleoid occlusion in B. subtilis is effected by 

Noc (Wu & Errington, 2004). 

1.6.1. Nucleoid occlusion by SlmA  

SlmA, by binding to specific sequences on the chromosome (SlmA binding sequences, 

SBS), prevents FtsZ from forming the Z-ring over the nucleoid (Cho et al., 2011a) (Figure 

2). This in turn prevents cell constrictions that might lead to chromosome guillotining. SlmA 

contains an N-terminal TetR-like helix-turn-helix (HTH) motif that is considered to bind 

DNA facilitating its localization over the nucleoid (Bernhardt & De Boer, 2005). In E. coli, 

distribution of SlmA adopted a cell cycle dependent pattern. In newborn cells with a single 

nucleoid, SlmA localized on the nucleoid, mostly concentrating on the pole-proximal 

regions. In older cells with clearly segregated nucleoid, SlmA distributes over the two 

separated lobes of the nucleoid. Further, SlmA’s association to the DNA as well as its 

capacity to mediate nucleoid occlusion was attributed to the HTH motif of the protein 

(Bernhardt & De Boer, 2005). 

Several models were proposed on the mechanism by which SlmA regulates the positioning 

of the Z-ring. The initial proposal was that SlmA bound to the DNA competes with the 

membrane anchors of FtsZ in FtsZ binding, thus preventing Z-ring formation (Bernhardt & 
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De Boer, 2005). This study also suggested that, alternatively, SlmA might be involved in 

an active depolymerization of FtsZ filaments when bound to DNA. However, no evidence 

for SlmA’s destabilization effect on FtsZ was obtained. 

In subsequent investigations, evidences were found for SlmA’s action to disassemble FtsZ 

filaments in vitro (Cho et al., 2011a). Untagged SlmA blocked the assembly of FtsZ 

polymers. SlmAT33A in E. coli created an aminoacid substitution in the conserved HTH 

motif resulting in a protein variant that failed to associate to DNA. As a result, SlmAT33A 

localized diffusively throughout the cell. Inspite of its localization along the entire cell 

length, the non-DNA binding SlmAT33A did not lead to a complete block in cell division 

(Cho et al., 2011a). Thus, DNA binding of SlmA was concluded to activate its antagonistic 

effect on FtsZ. The identification of the specific SlmA binding DNA sequences (SBS) aided 

in proving this hypothesis. In the presence of SBS DNA fragment, SlmA robustly inhibited 

FtsZ polymerization at very low concentrations. Additionally, inhibition of FtsZ 

polymerization was achieved by SlmA-SBS by increasing FtsZ’s GTPase activity. In an 

FtsZ GTPase mutant, SlmA failed to extend this effect. SBSs were also confirmed to 

induce SlmA-SlmA and SlmA-FtsZ interactions (Cho et al., 2011b). Altogether, it was 

concluded that, SBS binding promotes oligomerization of SlmA, which inhibits FtsZ 

polymerization by preventing FtsZ-FtsZ interactions.  

However, in a parallel study it was also proposed that SlmA induces formation of 

antiparallel FtsZ protofilaments that are unable to effectively assemble to form the Z-ring  

(Tonthat et al., 2011).  

Nonetheless, the most recent study of Du and Lutkenhaus, confirmed that SlmA binds to 

SBS when it comes in contact with the FtsZ filaments and leads to its breakage. Studies 

analyzing the effect of mutations in the C-terminal tail of FtsZ confirmed the importance of 

this region of FtsZ for its interaction with SlmA. Additionally, an interaction between FtsZ 

and SlmA was also established, which triggers the filament disassembly (Du & 

Lutkenhaus, 2014). Although binding of SlmA to the SBSs is confirmed to be important for 

SlmA’s activity, both processes of SlmA binding on DNA and SlmA’s inhibitory effect on 

FtsZ are separable as a non-DNA-binding mutant of SlmA can still partially inhibit division. 

1.6.2. Nucleoid occlusion by Noc 

Noc is a DNA-binding protein that forms nucleo-protein complexes on binding to 

palindromic sequences (Noc binding sequences, NBS) spread along the entire 

chromosome with exception to the near terminus regions (Wu et al., 2009). Noc, like SlmA, 

is not essential for the organism but it is synthetically lethal together with a Min deletion. A 
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double deletion leads to random FtsZ clusters and thus resulting in an inability to form a 

complete Z-ring at any location due to insufficient availability of FtsZ. Similar to SlmA in 

E. coli, the absence of Noc binding near the terminus might be essential for timing the 

chromosome segregation and cell separation events.  

Structurally, the N-terminus of Noc has been found to be important for its membrane 

binding although it is a weak binding. Additionally, it was shown that DNA binding of Noc 

is a pre-requisite for its membrane association, thus ensuring that cell division is inhibited 

only in regions of the nucleoid. Unlike SlmA, both membrane association and DNA binding 

are required for Noc’s function (Adams et al., 2015). Interaction analysis failed to establish 

any direct interaction between Noc and FtsZ or any other divisome protein.  

Taken together, one of the earliest models proposed for the action of Noc holds 

reasonable. The nucleo-protein complexes formed by Noc by binding to NBS on the 

chromosomal DNA, which then associates to the cell periphery, presents a steric 

hindrance for the establishment of the divisome complex (Figure 2B)(Adams et al., 2015).  

 

Figure 2: Nucleoid occlusion. (A) Distribution of SlmA/Noc binding sites. In red is represented the density 
of SlmA/Noc binding sites. Lesser the intensity of red, fewer the binding sites or binding of SlmA. Nucleoid 
occlusion is facilitated by this asymmetry in DNA binding of SlmA/ Noc. (B) Negative regulation of FtsZ ring 
(in green) positioning by the activity of nucleoid occlusion protein SlmA and Noc in E. coli and B. subtilis 
respectively. Figure modified from Surovtsev and Jacobs-Wagner 2018. 

 

1.7. Negative regulation of FtsZ by the Min system 

Apart from regulation on the chromosome level by nucleoid occlusion, a large number of 

proteins across several bacteria have been discovered to be involved in regulating the 

placement of FtsZ. This regulation is achieved either by directing FtsZ to the site of future 

cell division or by inhibiting its polymerization everywhere else other than at the correct 

division site. The earliest system discovered was the Min system, which has been 
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thoroughly studied in E. coli and B. subtilis (Figure 3). In both bacteria, the Min system 

prevents the occurrence of divisions in regions close to the poles, thereby acting as the 

spatial inhibitory system for division site selection in addition to nucleoid occlusion. 

Deletion of the Min system results in divisions closer to the poles giving rise to non-viable 

mini-cells (de Boer et al., 1989). 

The Min system in E. coli consists of three proteins: MinC, the inhibitor of FtsZ 

polymerization; MinD, the ATPase that binds MinC and localizes to the membrane; and 

MinE, the stimulator of MinD’s ATPase activity. The ATPase MinD and its activator MinE 

drives the spatial organization of the Min complex. Recent studies show that MinE’s ability 

to undergo MinD-dependent conformational switching, confers the required robustness to 

the Min system to form a spatio-temporal protein pattern (Denk et al., 2018; Park et al., 

2017).Upon ATP-binding, MinD dimerizes and attaches to the cytoplasmic membrane 

through its amphipathic helix (Szeto et al., 2003). MinC is the FtsZ-interacting protein and 

has a very low FtsZ inhibitory activity by itself (Zhou & Lutkenhaus, 2005). MinC gets 

activated upon binding to the membrane bound MinD (Hu & Lutkenhaus, 2003). The 

binding of MinD to ATP causes the MinCD complex to attach to the cytoplasmic membrane 

where it prevents the polymerization of FtsZ. MinE binds the MinCD complex, stimulates 

the ATPase activity of MinD, thereby dissociating the MinCD complex from the membrane 

(Loose et al., 2008; Lutkenhaus et al., 2012) and releasing it to the cytoplasm. 

Subsequently, the cytoplasmic MinD binds ATP, rebinds MinC and reattaches the 

membrane at the farther pole. The cumulative effect results in the oscillation of the MinCD 

complex from pole-to-pole followed by a circular trail of MinE triggering this oscillation 

(Raskin & de Boer, 1999a) resulting in a time-averaged minimum of the MinCD complex 

at the mid-cell where subsequently the Z-ring establishes (Figure 3A). Z-rings are 

prevented from forming at the cell poles as they experience a time-averaged MinCD 

maximum (Figure 3). Therefore, a deletion of the Min system leads to polar divisions and 

mini-cell formation due to the polymerization of FtsZ into Z-rings near the cell poles. 

Unlike in E. coli, the Min system is not oscillatory in B. subtilis (Figure 3B). This is because 

of the absence of MinE. Instead, DivIVA is the topological factor in this bacterium. DivIVA 

localizes to the cell poles and to the division site in the later stages of cell division. DivIVA’s 

localization has been attributed to its intrinsic ability to target itself to regions of negative 

curvatures (Edwards et al., 2000). DivIVA recruits MinCD to the poles. MinJ, an integral 

membrane protein, also recruited by DivIVA, facilitates the interaction of DivIVA with the 

inhibitor complex MinCD. Earlier it was thought to be stably recruited to the cell poles to 

prevent polar accumulation of FtsZ and hence divisions at the poles (Bramkamp et al., 

2008). In subsequent studies it was shown that instead of preventing polar accumulation 
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of FtsZ, MinC interacted with and destabilized polar FtsZ polymers (Gregory et al., 2008). 

Thus, preventing an immediate new cell division in the regions close to the newly formed 

cell pole. 

 

Figure 3: Spatial and temporal regulation of Z-ring assembly by the Min system. (A) The MinCDE 
system in E. coli is oscillatory. MinD-ATP (dark green circles) binds to the membrane and recruits MinC 
(yellow circles). MinE (pink circles) binds to MinD and activates ATP hydrolysis, releasing MinD-ADP (light 
green circles) and MinC off the membrane. Nucleotide exchange in the cytoplasm reactivates the membrane 
affinity of MinD and it assembles at the membrane farther from MinE concentration (the opposite pole in 
short cells). The oscillation of MinCD creates a region of minimal concentration at the mid-cell where FtsZ 
polymerizes into a ring (blue band) and results in the formation of the divisome. (B) The MinCDJ system in 
B. subtilis is dynamic in a different way. In new born cells, DivIVA (purple circles) recruits MinCDJ complex 
to the incipient division site (dark green circles). Following the separation of the nucleoid at the future 
division site, the Z- ring (blue ring) forms at mid-cell. At this time point, MinC, ensures the prevention of 
formation of a second Z-ring adjacent to it. Following septation, MinCDJ redistributes to both the poles 
transiently. 

 

1.7.1. MinC’s mode of action on FtsZ 

The molecular details of MinC’s inhibitory effect over FtsZ polymerization was addressed 

through studies in E. coli. In vitro, MinC was found to prevent FtsZ polymerization without 

affecting the GTPase activity of FtsZ. MinC, even at higher molar concentrations, was not 

observed to affect the GTPase activity of FtsZ. However, incubation of increasing 

concentrations of MinC with FtsZ for sedimentation assay decreased the amount of FtsZ 
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recovered in the pellet post centrifugation (Hu et al., 1999). Thus indicating the inhibitory 

effect of MinC on FtsZ polymer formation. 

MinC has two functional domains, N-terminal MinCN and C-terminal MinCC (Hu & 

Lutkenhaus, 2000). Similar to the full length MinC, sedimentation assays also showed that 

MinCN is capable of inhibiting FtsZ polymerization. However, this inhibitory effect on 

polymerization is not exerted by MinCC (Hu & Lutkenhaus, 2000). Expression of MinCC 

alone in a ∆min strain did not recover the min deletion phenotype. However, it did not lead 

to any additional phenotype other than the slight elongations and mini-cells as found in a 

∆min strain. Instead, the sole expression of MinCN resulted in extensive cell elongation. 

Thus, concluding that the inhibitory role of MinC over cell division is predominantly by the 

N-terminal domain (Hu & Lutkenhaus, 2000). Later it was clarified that, although a native 

expression of MinCC did not change the phenotype of the cells, an overexpression did. 

Thus suggesting a cell division inhibitory function for the MinCC domain as well (Shiomi & 

Margolin, 2007). Later, by visualizing FtsZ polymers formed using electron microscopy, 

the effect of MinCC on FtsZ polymerization was studied. In the presence of MinCC, FtsZ 

protofilaments were long but did not form thick bundles. Thus, MinCC does not 

depolymerize the filaments but prevents their lateral assembly. Furthermore, in the 

presence of full length MinC, in addition to reduced bundling of the filaments, it also 

resulted in shorter and curved filaments, which was speculated to be the effect of MinCN 

on FtsZ polymers (Dajkovic et al., 2008).  

Follow up studies in this direction shed more insights into FtsZ-MinC interaction. 

Mutational analysis of FtsZ and the following study on its interaction with MinC led to 

strains habouring FtsZ point mutants that are resistant to the effect of either MinCC or 

MinCN. This established that different regions of FtsZ are susceptible to the two domains 

of MinC and the inhibitory effect of MinC over FtsZ is exerted through several mechanisms 

(Shen & Lutkenhaus, 2010). MinCC localizes to the FtsZ polymer through its interaction 

with the C-terminal region of FtsZ (Shen & Lutkenhaus, 2009). This region of FtsZ is also 

the one which interacts with FtsA and ZipA, the proteins that stabilizes and tethers the 

Z-ring to the membrane. Therefore, MinC competes with FtsA and ZipA to bind the 

C-terminal region of FtsZ resulting in subsequent destabilization of the Z-ring (Shen & 

Lutkenhaus, 2009). Point mutation on FtsZ that alters the interface between two FtsZ 

subunits confired resistence to the inhibitory effect of MinCN (Shen & Lutkenhaus, 2010). 

Thus, confirming the earlier findings that the N-terminal domain of MinC (MinCN) weakens 

the interaction between FtsZ subunits, thus weakening the longitudinal interaction leading 

to shorter polymers.   
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Although a clear mechanistic understanding of MinCD inhibition of FtsZ ring formation is 

yet to be reached, the current comprehension is as follows. The C-terminal domain MinCC, 

that is responsible for MinC’s dimerization and interaction with MinD, also interacts with 

the C-terminal peptide of FtsZ, bringing them together. Once this proximity is attained, the 

N-terminal domain of MinC, MinCN, gets positioned at the interface of two FtsZ subunits 

regardless of the nucleotide present at the interphase (GTP or GDP). If the FtsZ dimer 

interphase is occupied by GTP, strong FtsZ-FtsZ interactions makes the interphase less 

available for MinC. However, if it is instead occupied by GDP, MinCN accesses this site 

resulting in chopping of the FtsZ filament (Park et al., 2018; Shen & Lutkenhaus, 2010). 

1.7.2. Implications of an oscillatory Min system  

Self-organized protein patterns serve the function of providing spatial cues for positioning 

of other downstream proteins thereby aiding in cellular functions (Frey et al., 2018; 

Kretschmer & Schwille, 2016). The oscillatory Min system that sets up as a result of 

diffusion-reaction dynamics is one such well-studied protein pattern (Schweizer et al., 

2012). Since first visualized in E. coli, MinCDE oscillations have been reported in several 

other organisms. The biochemical nature of this system, and the factors contributing to the 

parameters of its oscillation, has been thoroughly investigated in in vivo and in vitro 

systems (Kretschmer & Schwille, 2016; Zieske & Schwille, 2014). Computational 

modelling studies on this system also helped to obtain a step-by-step understanding of 

these oscillations. Studies on cell division during the oscillation suggested an unequal 

inheritance of the Min components by the daughter cells (Sengupta & Rutenberg, 2007; 

Tostevin & Howard, 2006). This can lead to daughter cells with unprecise division site 

placements in the following divisions. However, a study addressing MinD oscillation in 

dividing cells suggested that by changing the oscillatory pattern at the time of division, the 

parent cell ensures an equal distribution of Min proteins between the two daughter cells 

(Juarez & Margolin, 2010). Thus, in elongated pre-divisional cells, the pattern of pole-to-

pole oscillation of MinD changes to a wave pattern with a maximum at mid-cell in addition 

to the two poles. This was then noted as ‘double pole-to-pole’ oscillation, which are now 

known as the standing wave pattern with multiple nodes. Initially it was advocated that the 

mid-cell MinD maximum was the result of the Min components recognizing an unknown 

membrane determinant at the septum. Through studies of Min oscillation in artificially 

elongated E. coli cells (Raskin & de Boer, 1999c), deformed mutant cells (Varma et al., 

2008), and vesicles of different shapes (Zieske & Schwille, 2013, 2014), it was confirmed 

that alterations in the Min wave pattern can be established by the shape or dimension of 

the cell or vesicle it is contained in. As we report in this study, the capacity of Min waves 

is utilized in naturally occurring filamentous swarmer cells of V. parahaemolyticus. In these 
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long cells the self-organized localization of Min proteins assumes the pattern similar to that 

observed in artificially elongated E. coli cells. This multi-node standing wave pattern acts 

as a scale and makes available several MinCD minima, which could then be used as 

possible sites for septum placement.  

The Min system is quite widespread among bacteria. However, bacteria that have evolved 

with genomes lacking orthologues of the Min system or nucleoid occlusion systems also 

exist. C. crescentus is one such interesting bacterium with neither of the previously 

described divisome placement regulators. MipZ, a ParA-like protein, was described to 

control the spatial regulation of septum placement in C. crescentus (Thanbichler & 

Shapiro, 2006). 

 

1.8. Negative regulation of FtsZ by MipZ 

C. crescentus lacks both the Min system and the nucleoid occlusion proteins. In a newborn 

C. crescentus cell, FtsZ initially localizes to the new pole (Figure 4A). As soon as the cell 

enters the S-phase, FtsZ undergoes a rapid shift towards the mid-cell (Figure 4B-D) and 

remains there until the division is completed. Here, the positioning of FtsZ and hence the 

regulation of cell division is carried out by yet another ParA-like ATPase, MipZ. The 

synchronization of DNA replication and cell division in this bacterium is carried out by this 

gradient forming protein (Thanbichler & Shapiro, 2006). 

The cell-cycle dependent dynamics of FtsZ localization in C. crescentus is regulated by 

MipZ, which is an inhibitor of Z-ring formation and localizes consistently to the flagellated 

pole (old pole) in swarmer cells. MipZ forms a gradient with a maximum at the old pole, 

extending towards the non-flagellated pole (new pole) with a minimum concentration at 

this site. FtsZ localizes to this site of minimum MipZ concentration. Following the transition 

to a stalked cell, MipZ forms a bi-polar gradient. In consequence, the mid-cell experiences 

the lowest concentration of MipZ. This transitioning kicks off the polar FtsZ and repositions 

it at the mid-cell. Here FtsZ polymerizes to form the Z-ring. MipZ being a direct inhibitor of 

FtsZ, Z-ring formation is prevented elsewhere along the cell length. The bi-polar 

localization of MipZ is retained until the completion of the cell division where it forms a 

swarmer cell with MipZ at the flagellated pole and a stalked cell with MipZ at the stalk pole 

(Thanbichler & Shapiro, 2006).  

MipZ exerts its inhibitory effect by interacting directly with FtsZ, thereby stimulating FtsZ’s 

GTPase activity. Like the other ParA-like proteins, MipZ can switch between monomeric 



INTRODUCTION 

26 
 

and dimeric state depending on ATP binding. The ATP-dependent conformation of MipZ 

determines its interaction partner, interacting with either the DNA segregation system or 

the cell division machinery. MipZ monomers interact with ParB while it is solely the MipZ 

dimers that interacts with and inhibits FtsZ (Kiekebusch & Thanbichler, 2014).  

The pole of highest MipZ concentration is also the region of localization of ParB. The DNA-

partitioning protein ParB associated with the chromosomal origin, is anchored to the pole 

through its interaction with the landmark protein PopZ. Following initiation of DNA 

replication, the duplicated origins segregate to the opposite poles by the ParABS 

chromosome segregation system. PopZ, which gradually forms a second focus at the new 

pole, anchors the segregated origin to this pole (Bowman et al., 2010; Ebersbach et al., 

2008). MipZ’s change in localization occurs in synchronization with the ParB-parS complex 

and is maintained through a MipZ-ParB interaction. (Kiekebusch et al., 2012; Thanbichler 

& Shapiro, 2006) (Figure 4). 

 

Figure 4: Regulation of FtsZ localization by MipZ in Caulobacter crescentus. A detailed description is 
provided in the main text. Figure adapted from Thanbichler and Shapiro 2006. 

 
ParB-parS complex located at the cell pole recruits MipZ monomers to these sites and 

stimulates their ATP-dependent dimerization. Thus formed MipZ dimers gets released 

from ParB in to the cytosol where they bind nonspecifically to the chromosomal DNA. As 

bound proteins are less mobile compared to the unbound ones, most DNA bound MipZ 

dimers localize to the pole-proximal region. The polar release of MipZ dimers together with 

reduced movement of bound dimers on the chromosome results in the development of 
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MipZ’s polar and bi-polar concentration gradients. The intrinsic ATPase activity of MipZ 

results in ATP hydrolysis triggering the formation of MipZ monomers from the dimers. 

These monomers, then undergo nucleotide exchange in the cytoplasm and are again 

recaptured by ParB-parS complex at the poles (Kiekebusch et al., 2012). 

 

1.9. Positive regulation of FtsZ by PomZ 

PomZ is the ParA/MinD-like P-loop ATPase in Myxococcus xanthus required for its cell 

division. PomZ localizes to the mid-cell prior to FtsZ and this localization is FtsZ 

independent. Deletion of pomZ results in mini-cells and elongated cells. In PomZ’s 

absence, the cells form fewer Z-rings. Additionally, the Z-rings that form are not restricted 

to mid-cell positions (Treuner-Lange et al., 2013). Thus, suggesting PomZ as a positive 

regulator of FtsZ in M. xanthus. In later studies, PomX and PomY, two genes flanking 

PomZ, were also found to be important for cell division in Myxobacteria. The three proteins 

together establish the proper positioning of division site. 

Like many other ParA-like ATPases, PomZ dimerizes on ATP binding and associates non-

specifically to DNA. PomX and PomY triggers ATPase activity of PomZ causing PomZ 

monomerization. The resultant diffusing PomZ monomers undergo quick nucleotide 

exchange forming ATP bound dimers and rebinds DNA. Nucleoid bound PomZ associates 

the PomXY cluster to the nucleoid where it remains very dynamic. The motion of this 

cluster is dependent PomZ’s ATP hydrolysis that is stimulated by PomXY. The net effect 

of PomXY acting as a sink of PomZ and the nucleoid as its source, set up a PomZ diffusive 

flux that determines the directionality of PomXY cluster motion. When the cluster is 

off-centre, it moves toward direction of higher concentration of PomZ, that is, towards the 

mid-cell. The flux on either side equalizes when the clusters is at the mid-cell where it 

eventually stabilizes and triggers Z-ring formation (Schumacher et al., 2017). The PomXYZ 

system thus presents an example of a ParA-like protein together with its ATPase activating 

components, resulting in a random walk on the nucleoid ultimately marking the site for 

divisome formation through positive regulation of FtsZ. 

 

1.10. Other known regulators of Z-ring placement 

While a variety of bacteria have mechanisms of negative regulation to direct the division 

machinery to the correct site, several others, like M. xanthus, have resorted to direct 
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recruitment by positive regulator proteins. The first evidence for positive regulation was 

provided by studies on Streptomyces (Willemse et al., 2011). 

Streptomycetes are filamentous Gram-positive bacteria that lack all the canonical 

regulators: Min, Noc and SulA. This is not surprising as in these bacteria cell division is 

dispensable for cell growth. In Streptomycetes, SsgA and SsgB play the role of pinpointing 

the cell division site by recruiting FtsZ to the septum site. During sporulation SsgB recruits 

FtsZ to the division site and localization of SsgB in turn is controlled by SsgA. Unlike the 

previously studied models for cell divisions, where FtsZ preceded the recruitment of cell 

division proteins, in Steptomyces septa formation is dependent of SsgA and SsgB and not 

vice-versa (Willemse et al., 2011).  

Furthermore, the phosphorylation regulated cell division in Streptococcus pneumonia, 

another bacterium that lacks the Min and nucleoid occlusion proteins, presents an entirely 

diverse mechanism of Z-ring placement. The Serine/Threonine kinase StkP localizes to 

the mid-cell in S. pneumonia after FtsA, but prior to DivIVA, and phosphorylates DivIVA. 

Mutations in StkP resulted in elongated cells, confirming that StkP signaling is essential in 

regulating cell division of S. pneumonia (Beilharz et al., 2012).  

Later studies reported the discovery of a phosphorylation target of StkP in S. pneumonia, 

whose phosphorylated and non-phosphorylated forms are important for proper Z-ring 

formation and dynamics. This mid-cell anchored protein, MapZ, that shares sequence 

similarity with no other proteins, acts as a marker for the cell division site. In newborn cells, 

MapZ co-localizes as a ring along with the FtsZ-ring at the mid-cell. As the cells elongate, 

MapZ forms a double band at the mid-cell position with the Z-ring in between them. As 

peptidoglycan insertion begins at mid-cell, the newly formed MapZ rings gets pushed away 

to the right and left. This is followed by the appearance of a MapZ ring at the ongoing 

constriction site and splitting of the FtsZ ring that begins migrations to the attain 

co-localization with the MapZ rings at the future division sites of the future daughter cells. 

Therefore MapZ arrives and leaves the equator of the cell earlier than FtsZ and its position 

marks the site for upcoming division events (Fleurie et al., 2014; Holečková et al., 2014).  

 

1.11. Involvement of ParA/MinD-like proteins in cell division  

Decades of research in various cell division model organisms have added evidence for an 

extensive involvement of ParA/MinD-like ATPases in several aspects of cell division. 

These proteins are members of a large family of P-loop ATPases (Leipe et al., 2002). MinD 
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and ParA subfamilies of these ATPases are widespread among bacteria. The ATP-bound 

state of these proteins form a dimer that can then bind to the DNA or the cell membrane, 

because the dimerization brings together two half sites that form a binding site with a high 

affinity for surfaces and protein partners. Usually the partner proteins of these ATPases 

activate the ATP hydrolysis, thereby functioning as an ATPase activating protein (AAP) 

(Wu et al., 2011). ATP binding and hydrolysis is regulated by a spatially restricted AAP, 

which in turn sets up a self-organized localization pattern of these ParA/MinD proteins. For 

instance, the MinCDE system as described in E. coli, where MinD is the ATPase and MinE 

is the AAP. In certain other MinD/ParA related proteins, dimerization upon ATP binding do 

not lead to membrane binding, but only to other proteins. In such cases, the cell employs 

a landmark protein that act as the recruiter of these ATPases. For example, MinD in 

B. subtilis gets specifically recruited to the incipient division site and transiently to the poles 

through its interaction with DivIVA (Eswaramoorthy et al., 2011).  

Irrespective of the localization pattern, ParA/MinD-like proteins are responsible for 

maintaining a wide variety of cellular functions. A vast number of functions ensure the 

equal distribution of cellular components between the mother and the daughter cells, 

thereby aiding proper cell division. Two ATPases, MipZ and ParA, are employed by 

C. crescentus for proper cell division. Both MipZ and ParA bind non-specifically to the 

nucleoid, but the timing of their bindings and their localization patterns are different. 

Interestingly, in this case both the proteins are regulated spatially by the same AAP, ParB.  

For ParA, ParB acts as the ATPase activating protein, thereby removing ParA from the 

nucleoid. Therefore, hydrolysis of ParA bound to the nucleoid results in a receding gradient 

and a chasing motion of the origin bound ParB from one pole to the other. This effectively 

results in segregation of the replicated DNA to the opposite cell pole. On the other hand, 

for MipZ, ParB is a recruiter of monomers and facilitates its dimerization. The dimers thus 

formed are capable of nonspecific DNA binding (Kiekebusch et al., 2012). As explained 

earlier, the initial uni-polar and eventual bi-polar gradient of MipZ results in the spatial and 

temporal regulation of FtsZ positioning and hence division of C. crescentus (Thanbichler 

& Shapiro, 2006). 

As described earlier, chromosomal ParA proteins are responsible for the segregation of 

chromosomes. Different types (depending on the nucleotide hydrolyzing enzyme) of such 

proteins are also involved in the segregation of plasmids. The first type employs ParA like 

ATPases, the second type consists of an actin-like protein, and the third consists of 

GTPases. While the latter two form filaments that segregate plasmids, the ParA-like 

proteins function similar to the chromosomal ParA proteins with the exception of their polar 

tethering. ParA binds non-specifically to the nucleoid until it interacts with ParB. When 
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plasmid-bound ParB encounters ParA on the nucleoid, it stimulates the ATP activity of 

ParB and causes its removal from the nucleoid. The remaining nucleoid-bound ParA acts 

as a pull for the ParB, pulling the bound plasmid together with it (Hatano et al., 2007; 

Ringgaard et al., 2009). The ParA-free zone that develops behind the trailing plasmid gets 

re-filled with ParA-ATP dimers. On plasmid duplication, the two ParB-parS complexes get 

pulled to opposite directions by the two ParA clouds (Surovtsev et al., 2016).  

 

1.12. ParA-like protein ParC and chemotaxis 

1.12.1. ParC-ParP system 

Those ParA proteins that are not associated with a partner protein which regulates its 

ATPase activity are called orphan ParAs. They follow restricted localization in the cell and 

usually ensure the inheritance of key proteins by both daughter cells upon division. In 

V. cholerae (Ringgaard et al., 2011) and V. parahaemolyticus (Ringgaard et al., 2014), a 

ParA-like protein, ParC (partitioning chemotaxis) was discovered to be important for the 

polar recruitment of chemotaxis signaling arrays. It is a member of a separate clade of 

ParA-like proteins, which are encoded within the chemotaxis operon.  

In Vibrios, chemotactic signaling arrays are localized to the old flagellated pole in newborn 

cells. As the cell grows, a second focus is recruited to the new pole, resulting in a bi-polar 

localization (Ringgaard et al., 2011). This localization pattern ensures that upon cell 

division each daughter cell inherits a signaling array at its old pole, indicating a cell cycle 

dependent maturation of the poles. Through localization studies, it was ascertained that 

ParC is responsible for cell-cycle dependent polar localization of the chemotaxis proteins. 

ParC followed a similar sub-cellular localization pattern as that of the chemotaxis proteins. 

It localized to the old pole in newborn cells and later was recruited also to the new pole 

with progression of the cell cycle (Ringgaard et al., 2011). Although the pattern of 

localization of ParC and chemotaxis proteins were similar, co-localization studies 

confirmed that ParC gets recruited to the new pole prior to chemotaxis proteins.  

ParC was clarified to be the guiding factor or recruiter for chemotaxis protein localization 

through analyzing the position of chemotaxis foci in ∆parC background. In the absence of 

ParC, chemotaxis proteins are no longer directed to the poles and instead localize 

randomly along the cell length. For instance, deletion of ParC in V. cholerae resulted in a 

population with 25% of the cells with mislocalized CheW1 (a chemotaxis protein) 

compared to the <2% in the wild-type background in V. cholerae. Although, cell divisions 
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in wild-type cells occurred only after a bi-polar localization of the chemotaxis proteins, this 

was not the case in ∆parC. As a result, not every daughter cell inherits a chemotaxis cluster 

(Ringgaard et al., 2011, 2014).  

ParC’s role in positioning the chemotaxis proteins, however, takes place through its 

interaction with ParP. In the genome, parP is encoded adjacent to parC. The localization 

pattern of ParP is also similar to that of ParC and the chemotaxis proteins, with newborn 

cells inheriting a single focus at the old pole and later acquiring a bi-polar pattern as the 

cell grows (Ringgaard et al., 2014). Through co-localization and time-lapse experiments in 

V. parahaemolyticus, Ringgaard et al. confirmed that while ParP arrived at the poles prior 

to chemotaxis proteins, ParC and ParP arrived simultaneously at this site. However, 

localization of ParP is dependent on ParC. On deletion of ParC, about a quarter fraction 

of the cell population positioned ParP foci randomly and the cells divided prior to ParP’s 

bi-polar localization resulting in another quarter fraction of cell population without any 

inherited ParP foci. Athough absence of both ParC and ParP affected the polar distribution 

of chemotaxis proteins, ParP was also found to promote gradual accumulation of 

chemotaxis arrays at the poles by preventing dissociation of CheA from the chemotactic 

signalling complex (Ringgaard et al., 2014).  Further, ParP prevents dissociation of CheA, 

ParC and itself from the cell poles (Alvarado et al., 2017; Ringgaard et al., 2014). ParC 

targets ParP to the poles, Furthermore, in the absence of ParP, a fraction of ParC diffuses 

in the cytoplasm in addition to forming polar foci. Altogether, ParC and ParP together 

establish the right positioning of stable chemotactic clusters. While ParC establishes the 

site of localization, ParP ensures the sequestering and stability of the proteins forming the 

chemotactic cluster (Ringgaard et al., 2014). 

ParC, posses an intrinsic ATPase activity, which is comparable to the other ParA-like 

proteins. Mutation analysis of ParC was used to determine the effect of ParC’s ATPase 

activity in its ability to recruit chemotaxis proteins. Amino acid substitutions introduced into 

the ATP-binding motif of ParC resulted in protein variants devoid of specific functions. 

ParCK15Q is predicted to prevent ATP binding and is locked in the apo-monomeric form. 

ParCG11V is in the ATP-bound monomeric form, unable to dimerize and hydrolyze ATP 

(Ringgaard et al., 2011). These variants of ParC localized diferrently compared to the 

wild-type ParC. While ParCK15Q diffused throughout the cell, ParCG11V formed non-

polar foci in addition to the uni-polar and bi-polar foci. Neither of the variants could restore 

the normal distribution of chemotaxis proteins in a ∆parC background (Ringgaard et al., 

2011). By affecting the positioning of chemotaxis proteins, deletion of parC disrupts the 

co-localization of chemotaxis clusters with the flagellar machinery, thus resulting in 

reduced chemotaxis and altered swimming behavior (Ringgaard et al., 2011).  
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Additionally, absence of ParP also resulted in reduced chemotaxis and swimming of the 

cells. ParC has also been suggested to be important for motility in non Vibrios. For 

instance, deletion of ParC in Pseudomonas aeruginosa results in a similar reduction of 

swimming motility as observed in V. parahaemolyticus (Reinhardt & Bardy, 2018).  

1.12.2. HubP, the polar hub, positions ParC 

As mentioned earlier, ParC follows a cell cycle dependent polar localization. It forms 

uni-polar and bi-polar foci depending on the age of the cell. In V. cholerae and 

V. parahaemolyticus, ParC is directed to the cell pole by the polar landmark protein HubP. 

On deletion of hubP, cells harboured either non-polar ParC foci or both polar and non-polar 

foci. Chemotaxis protein CheY3 was also found to be mislocalized together with 

mislocalized ParC in the ∆hubP strain (Yamaichi et al., 2012). The formation of non-polar 

ParC foci and mislocalization of downstream chemotaxis proteins in a ∆hubP background 

emphasizes the role of HubP in chemotaxis. Although ParC-ParP system is the 

chemotaxis cluster targeting system in Vibrios, HubP is the pole organizing protein that 

positions ParC to its destined location (Yamaichi et al., 2012). 

When discovered, YFP-HubP was reported to be bi-polarly localized in new born 

V. cholerae cells (Yamaichi et al., 2012). However, later studies expressing HubP-sfGFP 

from its native locus confirmed a uni-polar foci at the old pole that in later stages of cell 

cycle attains a bi-polar localization, which is a similar to the localization pattern of ParC 

(Galli et al., 2017).   

HubP, in addition to positioning ParC, is also involved in the localization of FlhG and 

ParA1, two other ParA-like proteins. For instance, in wild-type V. cholerae, ParA1 formed 

uni-polar or bi-polar foci together with a gradient-like diffused localization (Figure 5A).  In 

the absence of HubP, ParA1 no longer forms the polar foci and instead is entirely diffused 

(Figure 5B). HubP facilitates proper chromosome segregation by directing ParA1 to the 

poles (Yamaichi et al., 2012). ParA1 in turn binds the origin-bound ParB1, thereby 

tethering the origins to the cell poles (Figure 5C). Therefore, in a ∆hubP strain, where 

ParA1 is no longer polar, ParB1 also remain unattached to the poles (Figure 5D). 

Consequently, the localization of ParB1 in ∆parA1 and ∆hubP strains resemble eachother 

(Figure 5D and Figure 5E).  

Furthermore, the placement of the flagellum is also regulated by HubP through FlhG. FlhG 

localizes uni-polarly or bi-polarly in wild-type V. cholerae cells. However, it becomes 

diffused or forms a non-polar focus in a ∆hubP strain. While ∆flhG results in an 80% 

increase in multiple flagella formation, ∆hubP leads to only a minor increase of 6%. Hence, 
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in spite of HubP’s effect on localization of FlhG, the mislocalization does not alter the 

negative regulation exerted by FlhG on flagella formation. On the contrary, in 

Vibrio alginolyticus, HubP is directly involved in the regulation of the number of polar 

flagella where deletion of HubP leads to a significant increase in the fraction of cells with 

multiple flagella (Takekawa et al., 2016).  

Altogether, HubP in Vibrios is an important pole organizing landmark protein that regulates 

positioning of wide variety of proteins and thereby regulating diverse processes. HubP, by 

regulationg ParC positioning, impacts the chemotaxis of this group of bacteria. 

 

Figure 5: In V. cholerae, localization of ParB1 is governed by ParA1 which in turn is localized by 

HubP. (A-D) Subcellular localization of ParA1-YFP and ParB1-CFP in wild-type and ∆hubP V. cholerae 

swimmer cells. ParB1 in wild-type are attached to the poles (C, white arrows). On deletion of hubP, this 

anchoring is lost (D, red arrows). This mislocalization is similar to that in the ∆parA1 strain in panel B. Scale 

bar 2μm. (Yamaichi et al., 2012) (E) Localization of YFP-ParB1 in ∆parA1 background. The ParB1 foci are 

not anchored to the cell poles. Scale bar 1µm.  (Fogel & Waldor, 2006). 

 

1.13. Cell division in Vibrios  

Even though cell division is well studied in a several organisms including E. coli, B. subtilis, 

and C. crescentus, they have in common that their genome is present as a single 

chromosome. Most information regarding cell division in multi-chromosomal bacteria is 

derived from studies of V. cholerae, a close relative of V. parahaemolyticus. However, 

unlike V. cholerae, V. parahaemolyticus undergoes a dimorphic life cycle. 

V. cholerae encodes homologues of most genes that are known for replication, 

segregation, and cell division in E. coli. Some distinct differences between them are the 



INTRODUCTION 

34 
 

presence of HubP, the polar landmark protein that acts as a recruiter for several important 

proteins (Yamaichi et al., 2012) and the presence of the chromosome partitioning system. 

As described earlier, chromosome arrangement in V. cholerae is ori-ter and the ParABS 

system takes care of the alignment. The positioning and segregation of the terminus region 

is orchestrated by an ortholog of MatP that binds to the matS sequences encoded on the 

ter1 and ter2 regions (Demarre et al., 2014; Mercier et al., 2008) and keeps it coordinated 

with the divisome through the interaction of MatP ortholog to the divisome component 

(Espeli et al., 2012).  

Although V. cholerae encodes for most of the cell division proteins also found in E. coli, 

the relative timing of various cell division steps is considerably different. The cell division 

protein, FtsZ, localizes to the cell pole at the beginning of the cell cycle in spite of the 

presence of an oscillating Min system. The uni-polar FtsZ in the new polar cells later 

relocalized to the mid-cell position. This relocalization occurs at around 50% of the cycle. 

The remaining late cell division proteins localize to the Z-ring at around 80% of the cell 

cycle and the constriction proceeds in the last 10% (Galli et al., 2016a, 2017). V. cholerae 

encodes for all the 3 components of the oscillating Min system. In spite of an oscillating 

Min, deletion of MinCD on its own only leads to mild mini-cell formation. Also, it only barely 

affects the localization pattern of FtsZ. However, deletion of slmA abolishes polar FtsZ in 

V. cholerae.  

V. cholerae also encodes for SlmA, which is known to directly inhibit FtsZ polymerization 

when bound to specific binding motifs in chromosomal DNA (Bernhardt & De Boer, 2005). 

The SBS in V. cholerae are distributed on the origin proximal region of both the 

chromosomes. The ectopically expressed fluorescently tagged SlmA localizes over 

chromosomal DNA in V. cholerae. In a new born V. cholerae cell, where the chromosomal 

origin and terminus are located at the old pole and new pole respectively, SlmA located 

over the entire chromosomal region with exception of the cellular region with the terminus 

(the new pole). As the cell grows and the replicated chromosomes segregate, the termini 

positions to the mid-cell. At this stage SlmA localizes like a gradient extending from both 

the poles leaving a SlmA free-zone at the mid-cell. Therefore, SlmA localization throughout 

the cell cycle is mutually exclusive to the positioning of FtsZ. Altogether, suggesting that 

in V. cholerae nucleoid occlusion mediated by SlmA is the major cell division regulating 

component (Galli et al., 2016a). Additionally, earlier studies addressing the chromosome 

segregation choreography of Chr1 and Chr2 of V. cholerae shows that the SlmA bound 

DNA is excluded from the mid-cell only in the late stages of cell cycle (Demarre et al., 

2014; Galli et al., 2016a). This explains the late Z-ring formation at the SlmA-absent region 

in V. cholerae cell.  
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Unlike the synthetic lethality of min slmA deletion in E. coli, this double deletion strain of 

V. cholerae is viable. The effect of the Min deletion in perturbing cell division increases 

when the cellular chromosome arrangement is compromised, suggesting that nucleoid 

occlusion has a major role in regulating the placement of the division site in V. cholerae 

(Galli et al., 2016a). 

 

1.14. Vibrio parahaemolyticus: a model for cell division 

An organism that undergoes dimporphic differentiation is Vibrio parahaemolyticus, a 

Gram-negative −proteobacterium that is found in estuarine, marine and coastal 

environments. It is an important human pathogen, which has emerged as the most 

common cause of seafood-borne acute gastroenteritis world-wide (Letchumanan et al., 

2014). The cell biology of V. parahaemolyticus is a very interesting field because of the 

bacterium’s ability to exhibit a dimorphic lifestyle. In liquid environments it exists as a 

swimmer cell propelled by a single polar flagellum (Figure 6). In media of higher viscosity, 

where the motion of the polar flagellum becomes increasingly hindered, the swimmer cells 

differentiate into long swarmer cells. Furthermore, long swarmer cells from the periphery 

resume division and become short in a few minutes once they come in contact with a liquid 

environment (Shinoda & Okamoto, 1977). 

Additionally, the differentiation to the swarmer cell cycle induces a second motility system 

that results in the formation of hundreds of lateral flagella (Figure 6). There are 

considerable differences between the polar and lateral flagella. The single polar flagellum 

is covered by a membrane (sheath) that is assumed to be the extension of the outer cell 

membrane while the lateral flagella are unsheathed (McCarter, 1999). The polar flagellum 

is propelled by the energy of sodium motive force. The two flagella do not share even a 

single structural component and are employed by the organism in entirely different niches 

even though the polar flagellum is constitutively present. In addition to aiding motility, the 

polar flagellum is suggested to act as a surface sensor, as conditions that slow down the 

rotation of the polar flagellum lead to induction of differentiation to swarmer cells (Belas et 

al., 1986; McCarter et al., 1988). However, further evidence also suggests that obstruction 

of the polar flagellar rotation cannot act as the sole trigger for initiation of the swarm 

program. Limitation of iron in the growth medium was also shown to act as a second signal 

for this regulation (McCarter & Silverman, 1989).  

Swarming is a form of motility that bacteria employs to move rapidly on surfaces. It is 

assayed by inoclutaing a liquid culture of swimmer cells on hard agar surfaces (for 
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example, heart infusion agar). When spotted onto a hard agar surface, the cells 

differentiate, swarm out from the site of inoculation forming a swarm colony. Cell 

elongation is one of the initial events during the differentiation of V. parahaemolyticus cells 

into swarmer cells. During the swarmer life cycle these cells can reach lengths greater 

than 50 μm. These long cells can swarm together rapidly and expand over surfaces. As 

the progression of the swarm colony proceeds, the long cells that are not part of the 

expanding periphery any longer dedifferentiate to form short cells and those that comprise 

the fast-expanding outer periphery remain elongated. For the swarm colony to continue 

the expansion of the colony, swarmer cells must undergo a regulated division such that 

the population of long swarmer cells are not lost.  

 

Figure 6: Vibrio parahaemolyticus swimmer cell and swarmer cell. (A) A swimmer cell grown in liquid 
culture and a swarmer cell grown on a surface were fixed and stained with the membrane dye FM 4-64 (in 
red) and the anti-polar flagellin antiserum (in swimmer cell) or the anti-lateral flagellin antiserum (in swarmer 
cell). Figure adapted from Gode-Potratz et al. 2011. (B) The left panel is a transmission electron micrograph 
of swimmer cell with a uni-polar flagellum and the right panel shows swarmer cells of different lengths. The 
longest cell is undergoing a non-mid-cell division (red arrow). 

 

How the bacterium regulates the cell elongation and chromosome segregation to enable 

its differentiation to swarmer cells remain uninvestigated. At what position in the long 

swarmer cells the divisome establishes and what regulators determine this placement also 

remain unaddressed. Furthermore, the mechanisms that ensure swarmer division without 

diminishing the long swarmer cell population are unknown. 
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1.15. Scope of the research 

Many bacteria, including species of Serratia (Alberti & Harshey, 1990) , Aeromonas (Kirov 

et al., 2002), Salmonella (Harshey, 1994), Proteus (Rather, 2005), and Vibrio (Sar et al., 

1990), differentiate between two developmentally distinct cell types – a free living swimmer 

cell found in liquid environments and a swarmer cell that is specialized for attachment and 

movement across solid surfaces (McCarter, 2004). An organism that undergoes such 

differentiation is Vibrio parahaemolyticus. V. parahaemolyticus swimmer cells are 

optimized for swimming in liquid environments and exist as short rod-shaped cells with a 

single polar flagellum to propel themselves forward. When swimmer cells encounter a solid 

surface, differentiation into a swarmer cell is triggered by the physical contact. Swarmer 

cells are optimized for movement on solid surfaces or through viscous environments, 

enabling V. parahaemolyticus to rapidly colonize surfaces (Gode-Potratz et al., 2011; 

Makino et al., 2003; McCarter, 1999, 2004, 2010; McCarter & Silverman, 1990; Stewart & 

McCarter, 2003). Swarmer cells express a second motility system, resulting in a multitude 

of lateral flagella, which are essential for swarming behavior and for surface and cell-cell 

contact in order to coordinate movement across surfaces (Baumann & Baumann, 1977; 

Böttcher et al., 2016; McCarter, 2004). One of the initial events of differentiation is inhibition 

of cell division. Consequently, swarmer cells are typically highly elongated compared to 

planktonic swimmer cells (Baumann & Baumann, 1977; Böttcher et al., 2016; McCarter, 

2004). However, in order for the swarm colony to expand, swarmer cells must divide and 

proliferate and thus rely on a mechanism that allows for cell division without diminishing 

the long swarmer population. It is not clear how cell division, chromosome segregation 

and chromosome organization are regulated in V. parahaemolyticus. Furthermore, it is not 

clear how chromosome segregation is coordinated with cell elongation during 

differentiation. Also, the mechanisms that ensure swarmer division without diminishing the 

long swarmer cell population are unknown. 

Thus, here we aim to study i) the mechanisms regulation cell division, ii) chromosome 

organization and iii) how chromosome organization is coordinated with cell division in 

V. parahaemolyticus. These aims will be with a special focus on how these precesses are 

regulated and coordinated with the cell cycle during the swarming life style of this 

bacterium. 
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2.1. Part I-Understanding the classical regulators of cell 

division 

2.1.1. V. parahaemolyticus encodes the general division 

determinants FtsZ, MinCDE and SlmA 

The genome of the multi-chromosomal V. parahaemolyticus encodes for homologues of 

the major cell division effectors and regulator proteins, namely FtsZ, SlmA, and the 

MinCDE components, which are the same as for the mono-chromosomal E. coli, a well-

studied model organism for bacterial cell division.  

An alignment of FtsZ, SlmA, and MinD of V. parahaemolyticus against the corresponding 

proteins from V. cholerae, E. coli, C. crescentus, B. subtilis, and M. xanthus was carried 

out. V. parahaemolyticus FtsZ (FtsZV.p) displayed 91% and 79% sequence similarity with 

FtsZ of V. cholerae and E. coli, respectively. The tubulin–like signature motif is conserved 

in FtsZV.p as described for other bacterial model organisms (Figure 7A, in yellow). The 

asparagine (N) and aspartic acid (D) residues that have been shown in E. coli to be 

essential for FtsZ’s GTPase activity are all conserved in FtsZV.p (Figure 7A, in blue) (Wang 

et al., 1997). The C-terminal core, established to be important for FtsZ’s interaction with 

FtsA and/or ZipA (Figure 7A, in green) are also conserved in FtsZV.p (Ma & Margolin, 1999). 

This region also includes the residues important for FtsZ’s interaction with SlmA 

(Schumacher & Zeng, 2016).  

SlmAV.p displayed 89% and 66% sequence similarity with that of SlmAV.c and SlmAE.c, 

respectively. Furthermore, SlmAV.p has conserved residues for all positions described in 

SlmAE.c for its interaction with FtsZ C-terminal domain (CTD) through hydrophobic 

interactions (Figure 7B, in yellow), salt bridges (Figure 7B, in blue) and hydrogen bonds 

(Figure 7B, in green) (Schumacher & Zeng, 2016). The sequence of MinDV.p is 88% similar 

to that of MinDV.c and 78% to that of MinDE.c. In MinDV.p, the 16th Lysine residue in the 

Walker A motif (Figure 7C, in red), previously described to be important for MinDE.c 

dimerization, is also conserved. Moreover, the Arginine-Aspartic acid-Lysine residues, 

which are essential for the pole-to-pole oscillation as shown in studies with E. coli (Szeto 

et al., 2005), are conserved in MinDV.p (Figure 7C, in purple). Residues in MinDE.c that 

interact with ATP are also conserved in MinDV.p (Figure 7C, indicated by an asterisk). 

Additionally, as studies in E. coli showed, the residues found to be important for (i) MinD’s 

interaction with MinE (Figure 7C, in blue); (ii) MinD’s interaction with MinC, and (Figure 

7C, in red) (iii) MinD’s interaction with MinC and MinE (Figure 7C, in grey) (Wu et al., 2011) 
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are all conserved in MinDV.p. The C-terminal amphipathic helix involved in the membrane-

binding of MinD is also conserved in V. parahaemolyticus (Figure 7C, in violet).  

In conclusion, V. parahaemolyticus encodes for the main cell division determinants and 

regulators FtsZ, SlmA and MinD 

 

Figure 7: Sequence conservation of FtsZ, SlmA, and MinD in V. parahaemolyticus in comparison to 
other bacterial model organisms. (A) Tubulin-like motif in yellow; asparagine and aspartic acid residues 
important for GTPase activity in blue; C-terminal region required for FtsA, ZipA and SlmA interaction in 
green. (B) Residues of SlmA that interact with FtsZ through hydrophobic interactions (in yellow), salt bridges 
(in blue), and hydrogen bonds (in green). (C) MinD residues that are important for ATP interaction (marked 
with asterisks), MinE interaction (in blue), MinC interaction (in grey), and with both MinE and MinC (in red). 
Lysine in MinD is important for its dimerization (in yellow), residues that are important for MinD’s pole-to-

pole oscillation (in purple), and the C-terminal amphipathic helix (in violet). 

 

2.1.2. Localization dynamics of FtsZ in V. parahaemolyticus swimmer 

cells 

It is not ascertained that sequence or structural conservation of proteins across species 

guarantee similarities in cellular localization pattern or in its functions. Hence, we set to 

study the localization of FtsZ in V. parahaemolyticus. Thus, an N-terminal YFP tagged 

fusions of the early cell division protein FtsZ was ectopically expressed in addition to the 

native ftsZ allele in wild-type V. parahaemolyticus.  

YFP-FtsZ localized to one pole of the new born swimmer cells in V. parahaemolyticus 

(Figure 8A, red arrows). This pattern is distinctly different in E. coli, where FtsZ localizes 

strictly to the mid-cell (Galli et al., 2016a). The localization of FtsZ in V. parahaemolyticus 

was  similar to that reported in V. cholerae (Galli et al., 2016a; Srivastava et al., 2006).  



RESULTS 

43 

 

 

Figure 8: Polar FtsZ localization transitions to mid-cell upon the onset of cell division in swimmer 
cells of V. parahaemolyticus. (A) Fluorescence microscopy showing the intracellular localization of YFP-
FtsZ in wild-type V. parahaemolyticus swimmer cells. Red arrows show uni-polar FtsZ and blue arrows 
indicate mid-cell Z-ring. (B) Demographic analysis indicating the position and intensity of fluorescence of 
YFP-FtsZ along the cell length in a population of swimmer cells. (C) Graph depicting the distance of division 
sites from the cell pole as a function of cell length. (D) Time-lapse fluorescence microscope showing the 
dynamic localization of YFP-FtsZ in new born swimmer cells until the next division event. (E) 
Co-immunoprecipitation experiment using beads with attached α-YFP antibodies on wild-type 
V. parahaemolyticus cells expressing YFP (negative control) or YFP-FtsZ, respectively. Cell extracts before 
incubation with α-YFP beads and precipitated α-YFP beads, were analyzed by Western blot using α-FtsZ 
antibodies to test for the co-purification of FtsZ protein. 

 
Additionally, FtsZ also localized as a prominent ring-like structure at mid-cell (Z-rings) 

(Figure 8A, blue arrows). To further understand the localization pattern of FtsZ during the 

cell cyle we performed a demographic analysis. This, showed that in short young cells 

FtsZ localized as a focus a one cell pole. As cells became longer the localization of FtsZ 

shifted to mid-cell (Figure 8B, C), indicating a cell-cycle dependent localization of FtsZ. To 
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further explore this localization pattern we followed the dynamics of YFP-FtsZ from parent 

cell to the daughter cells by time lapse microscopy. YFP-FtsZ was observed as a single 

focus at one of the poles in the short cell (Figure 8D at 0’). As the cell elongated, the polar 

FtsZ focused disappeard and a classical Z-ring was formed at mid-cell (Figure 8D). This 

ring persisted until the entire division was completed and the two new daughter cells 

inherited a focus each at their respective new poles. Therefore, from the time-lapse it 

became evident that the single focus observed in the short cells is present at the new pole. 

Importantly, co-immunoprecipitation assays indicated that YFP-FtsZ interacted with native 

FtsZ (Figure 8E) and YFP-FtsZ localized to and marked the positioning of future division 

sites as would be expected for functional FtsZ protein. Altogether, this suggests that the 

YFP-FtsZ fusion protein is partially functional and can be used as a marker for studying 

the regulation and localization of FtsZ.  

Thus, the swimmer cells of V. parahaemolyticus undergo binary cell divisions with 

symmetric placement of the division sites like E.coli or V. cholerae. We further decided to 

investigate the positioning of the chromosomes by visualizing the origins of the two 

chromosomes. 

2.1.3. OriI localizes to both cell poles whereas oriII is not tethered 

within the cells 

It is essential for cell survival that each daughter cell inherits a complete copy of the 

genome after completion of cell division. The genome of V. parahaemolyticus is divided 

between chromosome 1 and chromosome 2. In V. cholerae the ParAB1 and ParAB2 

systems are responsible for proper segregation of ori1 and ori2 of chromosome 1 and 2, 

respectively (Yamaichi et al., 2007b).  

 

Figure 9: Schematic depicting the consensus sequence (sequence logo) of parS1 and parS2 
centromere sites and their location on V. parahaemolyticus chromosome 1 and 2, respectively.  
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Similarly, V. parahaemolyticus encodes two ParABS chromosome partitioning systems, 

ParABS1 and ParABS2 for chromosome 1 and 2, respectively. Additionally, each 

chromosome encodes predicted parS1 and parS2 centromere sites near ori1 and ori2 

(Figure 9) (Yamaichi et al., 2007a). 

 

Figure 10: Specific DNA binding properties of ParB1 and ParB2. Gel-shift experiment with (A) ParB1 

and (B) ParB2 testing for their ability to bind Cy5-labeled DNA (green) containing parS1 and parS2 sites, 

respectively. Cy3-labeled non-specific DNA (not containing either parS1 or parS2) was added as a 

negative control (red). Graphs show the percentage of shifted DNA as a function of ParB1/ParB2 

concentration. (C) EMSA experiment with ParB1 testing for its ability to bind Cy5-labeled parS2-DNA. (D) 

EMSA experiment with ParB2 testing for its ability to bind Cy5-labeled parS1-DNA. Error bars indicate 

SEM. ParB1 and ParB2 were added in the following concentrations: 0.022 µM, 0.044 µM, 0.088 µM, 

0.18 µM, 0.35 µM, 0.70 µM, 1.40 µM, 2.82 µM and 5.63 µM. 

 

We investigated the localization pattern of the putative centromere binding protein ParB1 

and ParB2 as a reporter of replication status and origin localization of chromosome I and 

chromosome II, respectively. We first confirmed the binding of ParB1 to parS1 and ParB2 

to parS2 by electrophoretic mobility shift assays (EMSA), using purified C-terminally His6-

tagged ParB1 and ParB2 proteins. The EMSA showed that ParB1 and ParB2 specifically 

binds to DNA that includes the parS1 and parS2 sites, respectively (Figure 10A and B, in 

green). Neither proteins bound to non-specific DNA free of parS1 and parS2 sites (Figure 
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10A and B, in red). Importantly, ParB1 does not bind to parS2 sites and ParB2 does not 

bind parS1 sites (Figure 10C and D). Thus, by fluorescently labeling ParB1 and ParB2, we 

could specifically localize the position of the parS1 and parS2 sites within the cell – 

corresponding to the position of ori1 and ori2 respectively. 

 

Figure 11: Proper ParB1 localization in V. parahaemolyticus swimmer cells is dependent on ParA1. 
(A) Fluorescence microscopy and demograph showing the intracellular localization of ParB1-YFP in wild-
type V. parahaemolyticus swimmer cells. (B) Fluorescence microscopy and demograph showing the 

intracellular localization of ParB1-YFP in ∆parA1 V. parahaemolyticus swimmer cells. (C) Fluorescence 

microscopy and demograph showing the intracellular localization of ParB1-YFP in ∆hubP 
V. parahaemolyticus swimmer cells. Scale in each image is 5µm. 

 

Afterwards, strains were generated in which the native parB1 and parB2 were replaced 

with parB1-YFP and parB2-mCherry, respectively. The resulting strain with tagged ParB1 

strictly displayed at least two ParB1-YFP foci in the new born (short) cells (Figure 11A, red 

arrow) and three or four foci in the growing (long) cells (Figure 11A, blue arrow). This 
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strongly indicates that the new born cell inherits an already replicating Chromosome I as 

was already observed in V. cholerae grown in rich media (Stokke et al., 2011). Additionally, 

both the ParB1 foci localized to the two poles of the cell, suggesting an anchoring of the 

segregated origins of chromosome 1 to the opposite poles. HubP, which localizes bi-

polarly in Vibrios (Galli et al., 2017; Yamaichi et al., 2012), could localize the origin bound 

ParB1 to the poles by directing ParA1 to the cell poles.  

To verify this hypothesis, the localization pattern of ParB1 in the ∆parA1 and the ∆hubP 

strain was compared to that of the wild-type. Both deletions resulted in a deviant 

positioning of ParB1. In the ∆parA1 background, ParB1 still formed foci, but was no longer 

strictly tethered to the poles (Figure 11B, white arrow). Also, the number of foci in growing 

cells seemed to be fewer than in wild-type (Figure 11B). This could be because the 

segregation of the replicated origins from each other is affected in the absence of ParA1. 

This may influence the resolution of the chromosomes and thus the two foci could appear 

to be one. Additionally, the deletion of hubP also affected ParB1 localization in an almost 

similar way as that in the ∆parA1 mutant. In the absence of hubP (that directs positioning 

of ParA1), ParB1-YFP was also not tethered to the poles and remained not well separated 

as in the ∆parA1 mutant (Figure 11C, white arrow). Interestingly, ParB1 displayed an 

additional diffused signal in the cytosol in ∆hubP (Figure 11C). 

Similar to ParB1-YFP, ParB2-mCherry also formed at least one focus in the new born cells 

and more foci as the cells grew. However, the ParB2 foci did not attach to the cell poles 

and instead localized between the quarter positions of the cell (Figure 12A). This suggests 

that either ChrII is not anchored to the cell poles, or that it’s anchoring point is not the 

origin, as was suggested for V. cholerae (Fiebig et al., 2006). Additionally, in a parA1 

deletion background, no significant change in the localization pattern of ParB2 was 

observed (Figure 12B). This suggests that the two chromosomes could be following 

different mechanisms of segregation. 

The analysis of the static images suggested that the replication and origin segregation 

dynamics of the two chromosomes are distinct. A comparison of the scatter plots of ParB1  

and ParB2 foci clearly shows more ParB1 foci at any point in the cell cycle, suggesting 

that oriI initiates replication ahead of oriII (compare demographs of Figure 11A and Figure 

12A) as was also observed earlier in V. cholerae (Fogel & Waldor, 2005).  
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Figure 12: Segregation of chromosome II is not likely dependent on ParA1 in swimmer cells of 
V.  parahaemolyticus. (A) Fluorescence microscopy and demograph showing the intracellular localization 
of ParB2-mCherry in wild-type V. parahaemolyticus swimmer cells. (B) Fluorescence microscopy and 

demograph showing the intracellular localization of ParB2-YFP in ∆parA1 V. parahaemolyticus swimmer 

cells. Scale is 5µm. 

 

Our data revealed that the mode of division of V. parahaemolyticus swimmer cells, as well 

as the localization of several cell division proteins, shares similarities with V. cholerae. 

However, unlike V. cholerae, V. parahaemolyticus follows a dimorphic lifestyle (Figure 6). 

The localization of the cell division proteins, division regulators, and their function in 

swarmer cells remain unaddressed until now. Therefore, we next addressed cell division 

and its regulation in swarmer cells. 

2.1.4. A cell length-dependent switch from mid-cell to non-mid-cell 

placement of the Z-ring and the division site in 

V. parahaemolyticus swarmer cells 

The flares extending outward from V. parahaemolyticus swarmer colonies consist of 

swarmer cells stacked in a few layers, thinning to a monolayer of swarmer cells at the very 

edge (Figure 13A), which enables single cell microscopy analysis (Heering et al., 2017; 

Heering & Ringgaard, 2016). The population of swarm flares is heterogeneous, comprising 

cells ranging from 2 µm to >40 µm in length (Figure 13B).  
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Figure 13: A cell length-dependent switch in the positioning of the Z-ring and division site in 

swarmer cells. (A) Stereo- and DIC microscopy of swarm-flares and individual swarmer cells from swarm-

flares, respectively. (B) Scatter plot showing the cell length-distribution of wild-type swarmer cells from 

swarm-flares. (C) Phase contrast time-lapse microscopy of dividing V. parahaemolyticus swarmer cells. 
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Orange arrow indicates a mid-cell division. Green arrow indicates a non-mid-cell division. (D) Bar graph 

showing the percentage of division event ocurring proximal to same or opposite pole in respect to the 

previous division events during non-mid-cell division of swarmer cells. Error bars indicate standard error of 

the mean. (E) Fluorescence microscopy showing the intracellular localization of YFP-FtsZ in wild-type V. 

parahaemolyticus swarmer cells. (F) Demographic analysis showing the fluorescence intensity of YFP-FtsZ 

along the cell length in a population of V. parahaemolyticus swarmer cells relative to cell length. In cells 

shorter than 10 µm FtsZ is symmetrically positioned at mid-cell. In cells longer than 10 µm FtsZ is positioned 

at a non-mid-cell position. Red lines indicate the cell length at which the transition from mid-cell to the non-

mid-cell LD-site (Length Dependent-site) positioning of the Z-ring occurs. (G) Graph depicting the ratio of 

shortest distance of division site from cell pole as a function of cell length in swarmer cells. Placement of 

the division site falls within two groups; mid-cell (yellow) and the non-mid-cell LD-site (green) position. Red 

line indicates the cell length at which a transition from mid-cell to LD-site positioning of division occurs. (H) 

Scatter-plot of the distance of Z-ring from the cell pole in swarmer cells. Green lines indicates the region of 

2.5-8 µm from the cell pole – the LD-site – where the cell division takes place during non-mid-cell division 

of swarmer cells. (A, F) Scale bar represents 5 µm. 

 

Interestingly, we observed that swarmer cells divide but experienced different types of 

division events; a subset of cells divided at mid-cell (Figure 13C, orange arrow), while in 

others division occurred at a non-mid-cell position, resulting in progeny cells of different 

sizes (Figure 13C, green arrow) - suggesting that the heterogeneity in cell size could in 

part be a result of non-mid-cell division events. Time-lapse microscopy demonstrated that 

during non-mid-cell division, cells showed no preference for one cell pole in the placement 

of the division site, as non-mid-cell division occurred equally often towards the same pole 

or the opposite pole, with respect to the previous division event (Figure 13D).  

In order to further characterize cell division in swarmer cells we localized YFP-FtsZ in the 

wild-type swarmer cells. Importantly, swarmer cells displayed marked differences in FtsZ 

positioning and placement of the division site, depending on their cell length: in short 

swarmer cells (< 10 µm), the Z-ring formed at mid-cell (Figure 13E, orange arrows, F). We 

then analyzed the position of division sites by measuring the distance of division 

invaginations to the cell pole and relative to the cell length (henceforth, these invaginations 

are referred to as division sites). Consistently, short swarmer cells divided at mid-cell 

(Figure 13G, orange group), resulting in daughter cells of equal sizes. However, when 

swarmer cells reached 8 - 10 µm in length, a transition from a mid-cell localization to a 

non-mid-cell placement of the Z-ring occurred (Figure 13E, green arrows, F). Non-mid-cell 

localization of the Z-ring in swarmer cells longer than 10 µm always (97 % of cells) 

occurred at distance of 2.5-8 µm from the cell pole (Figure 13H) – thus, we defined this 

region as the swarmer’s LD-site (Length-Dependent division-site). Consistent with 

placement of the Z-ring at the LD-site, swarmer cells ultimately divided at this position 

(Figure 13G, green group), resulting in progenies of different cell lengths. Divisions were 

never observed within the first 0-2.5 µm, therefore polar regions of the cell are protected 

from division events (Figure 13G, H). Altogether, these data show that both long and short 
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swarmer cells can divide and that the placement of the division site is cell length-

dependent. 

2.1.5. The MinCDE system is required for proper cell division in 

swimmer cells and swarmer cells of V. parahaemolyticus.  

Despite the clear differences in the spatio-temporal regulation of FtsZ positioning during 

the developmental stages of V. parahaemolyticus (Compare Figure 8B and Figure 13F), 

a subset of the swimmer and swarmer cell populations also share the common 

characteristic of Z-ring formation at mid-cell, suggesting a common mechanism regulating 

the positioning of the division machinery at mid-cell. As the MinCDE system regulates the 

positioning of the Z-ring to mid-cell in many rod-shaped bacteria, the effect of deleting the 

Min-system (ΔminCDE) in swimmer and swarmer cells was analyzed. In swimmer cells, 

deletion of minCDE resulted in non-mid-cell divisions leading to the formation of both mini-

cells (4.0 %) and elongated cells (4.6 %) (Figure 14A, C, D), a common phenotype of cells 

relying on MinCDE for the positioning of the Z-ring (Ortiz et al., 2015).  

In swarmer cells, deleted of minCDE an even larger proportion (21.3 %) were mini-cells 

compared to 1.3 % the wild-type swarmer cells (Figure 14B, C, and G). Consistent with 

the formation of mini-cells, YFP-FtsZ localized to the cell pole (Figure 14E, F, and H) in 

50.5 % of the swarmer cells lacking MinCDE, while only 7.2 % of wild-type swarmer cells 

showed polar localization of FtsZ (Figure 14H). Importantly in the swarmer cells deleted of 

the MinCDE system, polar localization of FtsZ and all polar division events occurred within 

0-2 µm from the cell pole (Figure 14I). However, this region is always protected from 

division events in wild-type cells (Figure 14I). Thus, the Min system regulates cell division 

and protects the pole from aberrantly localized FtsZ and consequently from polar division 

events in both swimmer and swarmer cells. 
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Figure 14: MinCDE system regulates cell division in both swimmer cells and swarmer cells of 
V. parahaemolyticus. (A) DIC microscopy images of wild-type and ∆minCDE swimmer cells. Red arrow 
inicates long cells and white arrow indicates mini-cells. (B) DIC microscopy images of wild-type and 
∆minCDE swarmer cells. White arrow indicates mini-cells. (C) Bar graph showing the percentage of a 
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population that consists of mini-cells in wild-type and mutant V. parahaemolyticus swimmer and swarmer 
cells. (D) Box plot showing the cell length distribution in wild-type and ∆minCDE swimmer cells. (E) 
Fluorescence microscopy of YFP-FtsZ in different ∆minCDE V. parahaemolyticus swarmer cells. Magenta 
arrows indicate polarly localized FtsZ. (F) Demographic analysis showing the fluorescence intensity of 
YFP-FtsZ along the cell length in a population of ∆minCDE V. parahaemolyticus swarmer cells. (G) Scatter 
plots depicting the ratio of the shortest distance of the division site to cell pole as a function of cell length in 
∆minCDE swarmer cells. (H) Stacked bar-graphs showing the percentage of a bacterial population with 
distinct localization patterns of YFP-FtsZ in wild-type and ∆minCDE V. parahaemolyticus swarmer cells. (I) 
Scatter-plot of the distance of division-site from the cell pole in wild-type and ∆minCDE  swarmer cells. 
Scale bar represents 5 µm. 

 

2.1.6. The MinCDE system ensures the correct positioning of the 

divisome at the LD-site in swarmer cells.  

Importantly, in the absence of minCDE, the position of the Z-ring (Figure 15) and division 

site (Figure 14G-comapre to wild-type in Figure 13G) were not confined to the mid-cell and 

LD-site positions, but instead on a population basis distributed along the entire cell length. 

This indicates that the Min-system is also important for the proper mid-cell and LD-site 

Z-ring positioning and subsequently for the division site-placement in short and long 

swarmer cells respectively. 

 

Figure 15: Min system regulates the LD site divisions. Scatter plots depicting the ratio of the shortest 

distance of the Z-ring to cell pole as a function of cell length in wild-type and ∆minCDE swarmer cells. 

 

2.1.7. SlmA prevents the formation of division incompetent FtsZ 

clusters  

Next we addressed the importance of the nucleoid occlusion factor SlmA on regulation of 

cell division. Cell division in swimmer and swarmer cells deleted for minCDE alone, slmA 

alone, and both systems simultaneously (ΔminCDE ΔslmA) were analyzed to determine 

the extent of the effect of each of the systems.  
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Figure 16: Absence of SlmA exerts significant elongation in swimmer cells when deleted alone and 
severe elongation on deletion together with Min system. (A-C) Deletion of slmA results in elongation of 
swimmer cells. Deletion of slmA together with minCDE deletion results in severe elongation of swimmer 
cells. (D) Fluorescence microscopy of YFP-FtsZ in swimmer cells of ∆slmA background (E) Fluorescence 
microscopy of YFP-FtsZ in swarmer cells of ∆minCDE ∆slmA background. Multiple Z-rings are formed in 
the double deletion background. Scale bar represents 5 µm.  

 
Swimmer cells 

Deletion of slmA resulted in mild elongation of swimmer cells when deleted alone. The 

cells exhibited slight increase in cell length (Figure 16A and B). On deletion of slmA in a 

minCDE deletion background, the cells were hyper elongated, almost resembling the 
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swarmer cells (Figure 16A and C). The localization of FtsZ was distinctly different upon 

deletion of SlmA. Unlike the polar YFP-FtsZ that was only observed in short (new born) 

cells in wild-type, the longer (older) cells of the ΔslmA strain exhibited polar foci (Figure 

16D, white arrow). In addition to the Z-rings formed in dividing cells, there were random 

clusters of YFP-FtsZ along the cell length (Figure 16D, red arrow). However, irrespective 

of polar FtsZ, there was no formation of mini-cells in the ∆slmA strain.  

The hyper elongated cells with the ΔminCDE ΔslmA background displayed numerous FtsZ 

clusters and patches along the entire cell length (Figure 16E). This probably is because 

the deletion of the exclusion mechanisms of FtsZ polymerization leads to non-functional 

FtsZ polymers that are incompetent of cell division. Thus, in the absence of the negative 

regulators of FtsZ polymerization proper cell division in the swimmer cells is impaired. 

 

Figure 17: The Min-system regulates cell division and the proper transition from mid-cell to non-
mid-cell LD-site division in swarmer cells. (A) DIC microscopy imaging of wild-type and mutants of 
V. parahaemolyticus swarmer cells. White arrows indicate mini-cells in ∆minCDE swarmer cells. Scale bar 
represents 5 µm. (B) Bar graph showing the percentage of a population that consists of mini-cells in wild-
type and mutant V. parahaemolyticus swarmer cells. Error bars indicate standard error of the mean (SEM). 
(C) Box plot showing the cell length distribution in wild-type and mutants of V. parahaemolyticus swarmer 

cells. (D) Bar graph showing the percentage of swarmer cells undergoing division. 
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Swarmer cells 

The absence of SlmA in the swarmer cells did not result in formation of mini-cells (Figure 

17A-B), however, it resulted in an increase in cell length when compared to the wild-type 

and the ΔminCDE strain (Figure 17C). Cells lacking both systems (ΔminCDE ΔslmA) also 

did not form mini-cells (Figure 17A-B), but were highly elongated (Figure 17 C) and divided 

less frequently compared to wild-type, ΔminCDE, and ΔslmA cells (Figure 17D). 

Importantly, in the absence of SlmA, division sites were properly positioned at the mid-cell 

in short swarmer cells and at the LD-site in long swarmer cells, similar to wild-type cells 

(Figure 18B – compare to Figure 13G) and unlike the broad distribution in the ΔminCDE 

strain (Figure 18A). However, the absence of SlmA significantly influenced the intracellular 

localization of FtsZ, as YFP-FtsZ localized as clusters randomly positioned along the cell 

length (Figure 18C and D). Lateral clusters of YFP-FtsZ were present in ~95 % of the 

ΔslmA cells compared to 0 % in both the wild-type and the ΔminCDE strain (Figure 18D). 

Lateral clusters did not coincide with division sites and did not transverse the cytoplasm 

perpendicular to the long axis of the cell (Figure 18C, yellow arrows), as is observed when 

the Z-ring required for cell division is formed (Figure 18C, green arrow). Therefore, these 

lateral clusters most likely do not represent functional Z-rings. A Z-ring was present in 

~50 % of ΔslmA cells compared to ~65 % of wild-type cells (Figure 18D). 

Since wild-type and ΔslmA cells divided with equal frequencies (Figure 17D), it is likely 

that the Z-rings formed in ΔslmA cells are fully functional. Clusters of YFP-FtsZ were also 

observed at the cell poles in the absence of SlmA (Figure 18C, purple arrows, Figure 18D). 

However, since no polar divisions occurred in the ΔslmA strain (Figure 18B), these polar 

clusters likely do not represent functional Z-rings, but instead are similar to the lateral 

clusters of YFP-FtsZ formed in this background. Additionally, the levels of native FtsZ 

remained largely the same in all the mutant backgrounds as that in the wild-type, indicating 

that the observed phenotypes is not due to differences in FtsZ levels in the different mutant 

backgrounds (Figure 18E). Altogether, these data suggest that SlmA prevents the 

formation of division deficient FtsZ clusters along the cell length but does not regulate 

proper positioning of non-mid-cell division sites in long swarmer cells.  
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Figure 18: Effect of minCDE deletion and slmA deletion in FtsZ localization in swarmer cells. Graphs 
depicting the ratio of the shortest distance of the division site to the cell pole as a function of cell length in 

∆minCDE (A) and ∆slmA (B) swarmer cells. (C) Fluorescence microscopy of YFP-FtsZ in ∆slmA 

backgrounds. Magenta arrows indicate polarly localized FtsZ. Yellow arrows indicate lateral FtsZ clusters. 
Green arrows indicate Z-rings, that at these sites lead to division. Scale bar represents 5 µm. (D) Bar graph 
showing the percentage of cells with distinct YFP-FtsZ localization patterns in different V. parahaemolyticus 
strain backgrounds. (E) Bar graph showing the FtsZ protein level of mutant V. parahaemolyticus cells 

relative to wild-type. Error bars indicate standard error mean. 

 

2.1.8. MinD undergoes a pole-to-pole oscillation in swimmer cells 

The minCDE operon in V. parahaemolyticus encodes for all three components of the Min-

system (MinC, MinD, and MinE). In order to follow the dynamics of the Min system, an N-
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terminal YFP fusion of MinD was expressed ectopically from an L-arabinose inducible 

promoter in addition to the native minD allele. The YFP-MinD signal extended from the cell 

poles to the middle of the cell in a gradient fashion irrespective of the cell size (Figure 19A, 

B). This was the first indication of the classical pole-to-pole oscillation of MinD as was 

previously described in E. coli. Furthermore, the cells were followed in a time-lapse 

experiments. YFP-MinD oscillated in a pole-to-pole manner with a time-averaged minimum 

developing at mid-cell (Figure 19C), where eventually the mother cell formed the septum 

and divided.  

 

Figure 19: Pole-to-pole MinD oscillation in swimmer cells of V. parahaemolyticus. Microscopy 

images showing the intracellular localization of YFP-MinD in swimmer (A. Scale-bar represents 5 µm. (B) 

Demographic analysis showing the fluorescence intensity of YFP-MinD along the cell length in a 

population of V. parahaemolyticus relative to cell length in swimmer cells. (C) Time-lapse microscopy of 

YFP-MinD dynamics showing tha MinD undergoes pole-to-pole oscillation in swimmer cells. 

 

2.1.9. A cell length-dependent transition in MinD-dynamics 

To understand how the Min-system promotes proper positioning of the Z-ring at mid-cell 

and the LD-site, the subcellular localization of MinD in swarmer cells was analyzed. In 

short swarmer cells (cells <10 µm), YFP-MinD formed a gradient extending from one cell 

pole towards mid-cell (Figure 20A-B). The time-lapse microscopy confirmed the YFP-MinD 

pole-to-pole oscillation (Figure 20C), resulting in a time-averaged lowest concentration of 

MinD at the mid-cell (Figure 20C, bottom panel). Interestingly, a change in MinD 

localization dynamics occurred in swarmer cells longer than ~10 µm, the same cell length 

at which the transition in positioning of the Z-ring from mid-cell to the LD-site in swarmer 

cells occurred. Demographic analysis indicated that in the long swarmer cells, MinD no 

longer localized as a gradient extending from the cell pole (Figure 20B).  
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Figure 20: A cell length-dependent switch from pole-to-pole to multi-node standing-wave oscillation 
of MinD. (A) Microscopy images showing the intracellular localization of YFP-MinD in swarmer cells. Scale 
bar represents 5 µm. (B) Demographic analysis showing the fluorescence intensity of YFP-MinD along the 
cell length in a population of V. parahaemolyticus swarmer cells relative to cell length. (C) Time-lapse 
microscopy of YFP-MinD localization-dynamics in swarmer cells shorter than 10 µm in cell length (< 10 µm), 
showing that MinD undergoes pole-to-pole oscillation in short swarmer cells. (D) Time-lapse microscopy of 
YFP-MinD localization-dynamics in swarmer cells longer than 10 µm in cell length (> 10 µm), showing that 
dynamic localization of MinD change from a pole-to-pole oscillation to a multi-node standing wave oscillation 
in swarmer cells > 10 µm in cell length. The number of nodes increases with increasing cell length. (C, D) 
Numbers in white indicate time in minutes. Graphs next to the YFP-MinD images represent a line-scan of 
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the corresponding YFP-MinD intensity as indicated by the red dashed line in the DIC image. The nodes of 
YFP-MinD oscillations are indicated by green dashed lines. Scale bar represents 5 µm. (E) Graph showing 
the number of MinD nodes per cell as a function of cell length. 

 

Instead, MinD localized in local minima and maxima along the cell length and moved from 

regions of local maxima to regions of previous local minima and back again (Figure 20D). 

This is consistent with a multi-node standing wave oscillation of MinD, where the point 

along the standing wave with minimum amplitude (the node), corresponds to the sites 

along the cell length experiencing the time-averaged minimum concentration of MinD (and 

consequently MinC) (Figure 20, bottom panel). The number of nodes correlated with cell 

length and as cells reached a length longer than ~8-10 µm, the number of nodes increased 

from one to two. Thereafter, for every ~8-10 µm, two additional MinD-nodes were added 

to the oscillation pattern (Figure 20E). Hence, indicating that the maximum length of a 

MinD-wave is 10 µm, which is consistent with the cell length at which the transition from 

pole-to-pole to multi-node standing wave oscillation occurred. Thus, the localization 

dynamics of MinD in swarmer cells is cell length-dependent and changes from a pole-to-

pole oscillation in short swarmer cells (<10 µm), to a multi-node standing wave oscillation 

with a maximum wavelength of approximately 10 µm in long swarmer cells (>10 µm). 

A multi-node standing-wave oscillation of MinD was also observed in artificially elongated 

planktonic cells (Figure 21), further supporting that the switch in MinD localization 

dynamics is a consequence of cellular elongation. 

 

Figure 21: Localization dynamics of YFP-MinD in artificially elongated planktonic cells. Time-lapse 
microscopy of YFP-MinD localization-dynamics in aztreonam treated, artificially elongated wild-type 
planktonic cells, showing that MinD undergoes multi-node standing-wave oscillation in long planktonic cells. 
Numbers in white indicate time in minutes. Graphs next to YFP-MinD images represent a line-scan of the 
corresponding YFP-MinD intensity as indicated by the red dashed line in the DIC image. The nodes of YFP-
MinD oscillations are indicated by green dashed lines. Scale bar represents 5 µm.  
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2.1.10. The LD-site at which division occurs in long swarmer cells is at 

the utmost pole proximal MinD node  

After understanding the central role of the Min system in positioning the division site exactly 

at the LD-sites, a close look at the oscillation pattern of the waves was attempted in an 

effort to correlate the precise scaling of divisions in elongated cells. 

The LD-site was positioned at 2.5-8 µm from the cell pole (Figure 13H), indicating that the 

Z-ring primarily forms at one specific MinD-node, even in very long cells with four or six 

nodes. To further address this, the position of the division site from the cell pole relative to 

cell length was measured. Cells were then grouped into four categories based on their 

length: group (1), < 10 µm; (2), 10 – 20 µm; (3), 20 – 30 µm; and (4), 30 – 40 µm, which 

based on data from Figure 20E primarily will have 1, 2, 4, and 6 MinD-nodes, respectively.  

Strikingly, there was a clear shift in the primary placement of the division site towards a 

closer proximity to the cell pole relative to mid-cell. The more MinD-nodes (the longer the 

cell is) the closer the division site was positioned to the cell pole relative to mid-cell (Figure 

22A). A similar shift is expected for the placement of the most pole-proximal MinD-node 

with increasing cell length (Figure 22B). Thus the question arose if the division site 

corresponds to the first MinD-node from the cell pole. Indeed, analysis of YFP-MinD 

localization in long swarmer cells, in comparison with positioning of the division site, 

showed that the placement of the LD-site of long swarmer cells precisely corresponded to 

the position of the most pole-proximal MinD-node during the multi-node standing wave 

oscillation (Figure 22C). Altogether, this further supports the result that the Min-system 

contributes to the positioning of the Z-ring at this site and shows that the LD-division site 

primarily forms at the utmost pole proximal MinD-node independent of the cell length.  

Furthermore, the utmost pole-proximal MinD-maximum occupied the initial 0-2 µm from 

the cell pole (Figure 22C), which exactly corresponds to the region protected from Z-ring 

formation and cell division in wild-type cells (Figure 13F-H). This explains how the Min-

system can simultaneously protect the cell poles from aberrantly positioned division sites 

and regulate proper divisions at mid-cell and the LD-site. A similar correlation between 

MinD-localization and placement of the division site was observed in the absence of the 

SlmA-system (Figure 22D), further supporting that primarily MinCDE and not SlmA 

regulates the positioning of the division machinery. 
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Figure 22: The LD-division site is positioned at the utmost pole-proximal MinD-node. (A) Graph 
showing the percentage of cells as a function of the position of the division site from the cell pole relative to 
cell length. Cells were divided into four groups based on their cell length. (B) Schematic showing the position 
of the most pole-proximal MinD-node from the cell pole relative to cell length and the number of nodes in 
the cell. (C,D) The LD-site is positioned at the utmost pole-proximal MinD-node. Combined graphs showing 
the flourescence intensity of MinD as a function of the distance from the cell pole (blue graph) and scatter 
plot showing the position of the division site in individual cells as a function of the distance from the cell pole 
(green) in wild-type (C) and (D) ΔslmA V. parahaemoltycus cells. For the scatter plot, error bars indicate 
SEM. The red line indicates the position of the utmost pole proximal MinD-node. 

 

 

2.1.11. Positive linear correlation between cell length and ori count in 

polyploid swarmer cells 

For a bacterium like V. parahaemolyticus that can switch between two cell types, varying 

approximately 20-fold in cell length, organization of the chromosome for proper inheritance 

of genetic material is of prime importance. To investigate the effect of non-mid-cell 

divisions on the inheritance of genetic material, the position and organization of both the 

chromosomes, with respect to cell length and cell division in swarmer cells, were studied. 

By fluorescently labeling ParB1 and ParB2, we could specifically localize the position of 

the parS1 and parS2 sites within the cell – corresponding to the position of ori1 and ori2, 

respectively.  
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Figure 23: Equidistant segregation of the chromosomal origins in polyploid swarmer cells. (A) 
Fluorescence microscopy showing the intracellular localization of ParB1-YFP (green) and ParB2-mCherry 
(magenta) in wild-type V. parahaemolyticus swarmer cells. (B) Graph showing the fluorescence intensity as 
a function of cell length from a line-scan of the cell indicated by a red dashed line in “D”. Green and magenta 
circles indicate the position of ParB1 and ParB2 foci (peaks of the line scan) along the cell. In general two 
ParB1 foci are associated with one ParB2 focus as highlighted by the large circle. One ParB1 focus is 
tethered at each cell pole and has an associated pole-proximal ParB2 focus, as highlighted by a rectangle. 
(C) Graphs showing the number of ParB1-YFP and ParB2-mCherry foci as a function of swarmer cell length. 
Dashed line shows the trend line. Trend line equation is shown. (D) The average distance of ParB1-YFP 
and ParB2-mCherry foci from the cell pole as a function of swarmer cell length. Numbers next to each 
colored graph indicate the focus number from the cell pole. Black line indicates the shortest distance of the 
division site from the cell pole. 
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ParB1-YFP and ParB2-mCherry localized as distinct foci that were distributed along the 

long axis of the cell (Figure 23A-B), with a ratio between ParB1 and ParB2 foci of 1.4:1, 

with a positive linear correlation between cell length and the number of both ParB1-YFP 

and ParB2-mCherry foci, indicating an increasing copy number of each chromosome with 

increasing cell length (Figure 23C).  

2.1.12. Equidistant positioning of ParB1/ori1 and ParB2/ori2 in 

swarmer cells is independent of cell length 

Analysis of the distribution of ParB1-YFP and ParB2-mCherry foci along the cell length, 

revealed that independent of the number of origins and cell length, both ori1 and ori2 were 

on average equidistantly positioned along the cell (Figure 23B and D). Importantly, a 

ParB1/ori1 focus was always positioned at each cell pole accompanied by a pole proximal 

ParB2/ori2 focus. The pole proximal ParB2/ori2 focus was always positioned closer to the 

cell pole than the division site (shortest distance of the division site from the pole- 2.5 µm, 

Figure 13H) (Figure 23D, black dashed line). This suggests that each daughter cell will 

inherit at least one copy of each chromosome after cell division, independently of cell 

length and placement of the division site. 

 

2.1.13. A cell length-dependent switch from mid-cell to LD-site 

placement of complete chromosome segregation correlates with 

the position of the division site 

Interestingly, nucleoid staining of swarmer cells with DAPI, revealed that despite the 

ordered segregation of the ori regions, the entire cell was occupied by chromosomal DNA 

with no clear segregation of nucleoids (Figure 24A, white arrows, B), indicating that 

complete chromosome segregation had not occurred in the majority of swarmer cells. 

However, a subpopulation of cells did show a single clear nucleoid free region along the 

cell (Figure 24C, white arrows). Line-scan analysis of the DAPI signal revealed that the 

DNA free region was positioned at mid-cell in short swarmer cells (< 10 µm) and at non-

mid-cell in cells longer than 10 µm (Figure 24E). This revealed a cell length-dependent 

positioning of the nucleoid free region similar to that observed for the placement of the Z-

ring and division site (Fig. 8C-E). Indeed, double labeling of YFP-FtsZ and the late cell 

division protein YFP-FtsK with DAPI showed that localization of both the Z-ring (Figure 

24C, green arrows) and FtsK (Figure 24F, green arrows) coincided with the position of the 

nucleoid free region. Thus, indicating that there is a correlation between the position of the 

division site and the region of complete chromosome segregation. 
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Figure 24: Cell length-dependent switch in the site of complete chromosome segregation correlates 
with the position of the division site. (A) Fluorescence microscopy of swarmer cells treated with the 
nucleoid stain DAPI. White arrows indicate cells where the nucleoid fills the entire cell and no nucleoid free 
region (no DAPI signal) is observed. (B) Demograph of DAPI signal in non-dividing swarmer cells. (C) 
Double labeling fluorescence microscopy of YFP-FtsZ and DAPI stained nucleoid DNA in swarmer cells 
shorter and longer than 10 µm in length. Green arrows indicate localization of YFP-FtsZ. White arrows 
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indicate the position of complete chromosome segregation. (D) Demographic analysis showing the 
fluorescence intensity of DAPI along the cell length in a population of V. parahaemolyticus swarmer cells 
with a clear DAPI free region relative to cell length. In cells shorter than 10 µm the DAPI free region is 
symmetrically positioned at mid-cell. In cells longer than 10 µm the DAPI free region is positioned at a non-
mid-cell position. Dashed red lines indicate the cell length at which the transition from mid-cell to non-mid-
cell positioning of the Z-ring occurs. (E) Graphs showing the fluorescence intensity YFP-FtsZ and DAPI 
along the cell length in a short (< 10 µm) and a long (> 10 µm) double labeled swarmer cell. The cells from 
which the line scan originates are highlighted with a red dashed line in panel C. (F) Double labeling 
fluorescence microscopy of YFP-FtsK and DAPI stained nucleoid DNA in cells shorter and longer than 10 
µm in length. Graphs show the fluorescence intensity along the cell length. Green arrows indicate 
localization of YFP-FtsK. White arrows indicate the position of complete chromosome segregation. 

 

Interestingly, and in contrast to long swarmer cells, multiple Z-rings were positioned 

regularly along the cell in artificially elongated planktonic swimmer cells (Figure 25A green 

arrows, B), with the number of Z-rings increasing with increasing cell length (Figure 25B). 

Furthermore, DAPI staining showed multiple sites of nucleoid free regions positioned 

regularly along the cell length (Figure 25A white arrows, C), which coincided precisely with 

the localization of the Z-rings (Figure 25A, graph and B-C) and YFP-FtsK (Figure 25D-F). 

These data further demonstrate the correlation between the localization of the division 

apparatus and the site of complete chromosome segregation and suggests that formation 

of the Z-ring directs the site at which complete chromosome segregation occurs. 

 

2.1.1. Regulation of FtsZ levels ensures only one Z-ring is formed in 

swarmer cells 

In order to understand how swarmer cells ensure that primarily only one Z-ring forms 

independent of cell length, while artificially elongated planktonic cells are able to form 

multiple Z-rings, FtsZ protein levels in planktonic cells, swarmer cells, and artificially 

elongated planktonic cells were analyzed by liquid chromatography-mass spectrometry 

(LC-MS) (Figure 26 A-C). Interestingly, FtsZ levels were identical in planktonic and 

swarmer cells (Figure 26A), while in comparison, artificially elongated planktonic cells 

showed a significantly higher level of FtsZ (Figure 26B). Likewise, the level of FtsA was 

identical in planktonic cells and swarmer cells (Figure 26C), while artificially elongated 

planktonic cells showed a significantly higher level of FtsA (Figure 26D). The level of 

LafA -the lateral flagellin subunit, which is specifically expressed in swarmer cells (Gode-

Potratz et al., 2011) was measured as a control. Indeed, the level of LafA was much higher 

in swarmer cells compared to planktonic cells (Figure 26E), and thus did not follow the 

same pattern in protein level as FtsZ and FtsA. This suggests that the FtsZ expression 

level is regulated in swarmer cells to match that of planktonic cells. This could ensure that 

only enough FtsZ is present in swarmer cells for the formation of a single Z-ring, effectively 

restricting the number of Z-rings to one, independent of cell length in swarmer cells. 
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Figure 25: Formation of multiple division sites in artificially elongated planktonic cells correlates 
with positions of complete chromosome segregation. (A) Double labeling fluorescence microscopy of 
YFP-FtsZ and DAPI stained nucleoid DNA in Aztreonam treated, artificially elongated planktonic cells. 
Graph shows the fluorescence intensity along the cell length of the single cell in panel “A”. Green arrows 
indicate localization of YFP-FtsZ rings. White arrows indicate the position of complete chromosome 
segregation.  (B, C) Demographs showing the fluorescence intensity of (B) YFP-FtsZ and (C) DAPI along 
the cell length in a population of Aztreonam treated, artificially elongated wild-type planktonic cells relative 
to cell length. (D) Double labeling fluorescence microscopy of YFP-FtsK and DAPI stained nucleoid DNA in 
Aztreonam treated, artificially elongated planktonic cells. Graph shows the fluorescence intensity along the 
cell length. (E, F) Demographs show the fluorescence intensity of (E) YFP-FtsK and (F) DAPI along the cell 
length in a population of double labeled V. parahaemotyticus swarmer cells relative to cell length. 

  

Figure 26: The FtsZ protein level of swarmer cells is similar to that of planktonic cells. (A) FtsZ protein 
level in planktonic and swarmer cells relative to planktonic cells. (B) FtsZ protein level in planktonic cells 
and Aztreonam-treated, artificially elongated wild-type planktonic cells relative to planktonic cells. (C) FtsA 
protein level in planktonic and swarmer cells relative to planktonic cells. (D) FtsA protein level in planktonic 
cells and Aztreonam-treated, artificially elongated planktonic cells relative to planktonic cells.  (E) LafA 
protein level in planktonic and swarmer cells relative to planktonic cells. (A-E) FtsZ/FtsA/LafA levels are 
presented as the mean level with error bars indicating standard deviation.  
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Indeed, upon overproduction of YFP-FtsZ from an IPTG inducible promoter in swarmer 

cells, multiple Z-rings were observed along the cell length of long swarmer cells (Figure 

27A). Furthermore, there was a significant decrease in swarmer cell length with increasing 

concentration of the inducer IPTG (Figure 27B), consistent with multiple divisions per 

swarmer cell and the formation of shorter cells. 

 

Figure 27. Overexpression of FtsZ results in the formation of multiple Z-rings in swarmer cells, 
reduced swarmer cell length and swarming behavior.  (A) Fluorescence microscopy of YFP-FtsZ 
ectopically expressed from the IPTG inducible Plac, in wild-type swarmer cells from swarm plates with 
different amounts of IPTG. (B) Cell length distribution of swarmer cells imaged in “A”. Swarmer cell length 
decreases with increasing amount of FtsZ expression. 

 

Altogether, these data indicate that the concentration of FtsZ in swarmer cells are 

regulated to match that of planktonic cells, so that only the formation of a single Z-ring is 

allowed, regardless of the length of the swarmer cells – thus, effectively restricting the 

number of division events per cell to one, independent of their cell length. 

2.1.2. All cells from swarm flares have initiated the swarm  program 

Next we analyzed if all cells from swarm flares have initiated the swarm program 

independent of cell length. For this purpose we used the promoter of lafA, encoding the 
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lateral flagellin subunit, LafA, as a maker for cells that have initiated the swarm program 

(Gode-Potratz et al., 2011).  

 

Figure 28: All cells from swarm flares have initiated the swarm-program independent of their length. 

(A-B) Fluorescence microscopy of wild-type V. parahaemolyticus cells, encoding the PlafA::mCherry 

reporter for swarm-program induction, from swarm-flares (A) or as planktonic cells from a liquid culture (B). 

(C) Fluorescence intensity of mCherry expressed from the PlafA::mCherry reporter in swarmer cells and 

planktonic cells relative to cell length. 

 

The promoter of lafA (PlafA) was fused to the gene encoding mCherry (PlafA::mCherry) 

and integrated in the chromosome of wild-type V. parahaemolyticus. Indeed, 100 % (n = 

500) of cells from swarm flares expressed mCherry from the lafA promoter (Figure 28A–

C). Importantly, both short (Figure 28A magenta arrows, C) and long cells (Figure 28A 

yellow arrows, C) from swarm colonies expressed mCherry. This was in contrast to 
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planktonic cells from liquid cultures where no fluorescent cells were seen (0 %, n = 350) 

(Figure 28B and C). Independent of their length, cells from swarm-flares expressed equal 

amounts of mCherry (Figure 28C), indicating that all cells independent of their length have 

initiated the swarm-program to the same degree. This suggests that both progenies of 

non-mid-cell LD-site division continues the swarm program subsequent to completion of 

cell division. 

 

2.1.3. Asymmetric division results in progeny cells with different 

swimming abilities and the formation of a heterogeneous 

population  

Swarming behavior primarily takes place in the periphery of the swarm-colonies, where 

swarmer cells assemble into flares that extend outward from the colony (Figure 13A) 

(Heering et al., 2017; Heering & Ringgaard, 2016). We hypothesized that the purpose of 

asymmetric division of long swarmer cells might be to create progeny cells with distinctive 

capacities and thus have a sub-population of cells prepared for potentially changing 

environmental conditions. We therefore collected cells from the swarm flares and analyzed 

their swimming proficiency as a function of cell length, since the natural habitat for 

V. parahaemolyticus is the marine environment. Indeed, there was a clear correlation 

between swimming speed and cell length (Figure 29A), with short cells swimming at much 

higher speeds than long cells.  

Importantly, we also observed a clear correlation between cell length and cellular 

displacement (Figure 29B-C), where short cells had a significantly higher displacement 

than long cells. Thus, short cells from the swarm flares not only swim at much higher 

speeds but also travel much further from their starting point than long cells. Almost no 

swimming or cellular displacement was observed for cell longer than 10 µm of cell length. 

These results show that positioning of the LD-site within 2-8 µm from the cell pole (Figure 

13H) will result in at least one daughter cell with a high swimming and displacement 

proficiency. Thus, asymmetric division leads to the formation of a heterogeneous 

population; specifically, in the formation of cells with distinct swimming capabilities – fast 

swimming short cells and swimming deficient long cells. 
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Figure 29: Asymmetric division results in the formation of progeny cells with distinct swimming 

capabilities and drives population heterogeneity. (A) Graph showing the swimming speed of single cells as 

a function of their cell length. (B) Schematic depicting the definition of swimming displacement. (C) Graph 

showing the displacement of single cells as a function of their cell length. 
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2.2. Part II-Cell type specific regulation of cell division by 

ParC in Vibrio parahaemolyticus 

2.2.1. Specific developmental regulation of cell division by ParC 

To identify additional regulators of cell division in swarmer cells, we performed a visual 

assay screening for V. parahaemolyticus mutants with cell division defects during the 

swarmer cell cycle. Interestingly, we observed the appearance of mini-cells in a strain 

lacking the cell pole determinant ParC. (Figure 30A, C and F). In the absence of parC, 

18.6% of the swarmer population consisted of mini-cells, a comparable fraction to that 

observed in ΔminCDE (21.8%), but completely opposed to the wild-type strain, where mini-

cells accounted for only 1.3% of the population (Figure 30C). Time-lapse microscopy 

revealed that mini-cell formation in swarmer cells upon deletion of parC was a result of 

division events occurring in the sub-polar region of the cells (Figure 30D). These 

observations indicate ParC is a regulator of cell division and is required to prevent cell 

division occurring at the cell pole and subsequent formation of mini-cells. 

As the Min system also is required for preventing cell divisions close to the cell pole, we 

tested the effect on cell division on a strain lacking both ParC and MinCDE. Interestingly, 

in the strain deleted for both parC and minCDE, a higher percentage of the population 

consisted of mini-cells compared to the single deletion mutants (Figure 30C). This 

indicates that each system functions independently in preventing polar divisions and that 

the lack of both the systems has an additive adverse effect on the placement of the division 

site.  

Strikingly, we noted that the absence of ParC did not lead to any cell division defect or 

mini-cell formation in swimmer cells of V. parahaemolyticus (Figure 30B, C), while deletion 

of minCDE resulted in mini-cells (Figure 30B, white arrow) and elongated cells (Figure 

30B, red arrow) in swimmer population. A double deletion of parC and minCDE in swarmer 

cells resulted in an increased occurence of mini-cells and we tested if the same was true 

for swimmer cells. Importantly, no increase in mini-cell formation (Figure 30C) or of 

swimmer cells of aberrant sizes (Figure 30E) was observed when deletion of minCDE was 

combined with deletion of parC.  Thus, indicating that the function of ParC in preventing 

polar division depends on the differentiated state of the bacterium and is specific to the 

swarmer cells.  
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Figure 30: ParC exerts specific developmental regulation of cell division. (A-B) DIC microscopy 
imaging of wild-type and mutant V. parahaemolyticus swimmer (A) and swarmer cells (B). White arrows 
indicate mini-cells. Red arrows indicate elongated swimmer cells. Scale-bar represents 5 µm. (C) Bar graph 
showing the percentage of a population that consists of mini-cells in wild-type and mutant 
V. parahaemolyticus swarmer cells. Error bars indicate standard error of the mean (SEM). (D) Time-lapse 
imaging of dividing V. parahaemolyticus ΔparC swarmer cells showing that mini-cells originate from polar 
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division events in swarmer cells deleted for parC. (E-F) Box plot showing the cell length distribution in wild-
type and mutants of V. parahaemolyticus swimmer (E) and swarmer cells (F). 

 

2.2.2.  ParC prevents polar localization of FtsZ in swarmer cells  

To understand how ParC prevents polar division events, we analyzed the intracellular 

localization of FtsZ in swarmer cells deleted for parC. YFP-FtsZ localized to the cell poles 

in a uni- and/or bi-polar manner in the absence of ParC (Figure 31A (b) purple arrows) in 

56.0% of swarmer cells (Figure 31B), which was only very rarely observed in wild-type 

background (Figure 31A (a) and Figure 31B).  

Importantly, in the absence of ParC, polar localization of YFP-FtsZ, and consequently 

polar division events, occurred in the pole-proximal region of the cell. These pole-proximal 

regions are otherwise devoid of YFP-FtsZ localization and division events in wild-type cells 

(Figure 31C). These data suggest that ParC has an additional role in regulating cell division 

by preventing aberrant positioning of FtsZ to the cell poles in V. parahaemolyticus swarmer 

cells. However, polar accumulation of FtsZ did not seem to affect the mid-cell and LD-site 

divisions in swarmer cells (Figure 31C). 

Due to the similarity of ∆parC phenotype in swarmer cells to that observed in ∆minCDE 

swarmer cells, we compared the effects in the single deletions to that in the strain lacking 

both systems. An absence of both systems resulted in an increased fraction of cells with 

uni-polar and bi-polar positioning of YFP-FtsZ (Figure 31B), which is consistent with the 

increase in formation of mini-cells in the absence of both systems (Figure 30C). Notably, 

there was a significant increase in the percentage of ΔminCDE ΔparC cells with bi-polarly 

localized YFP-FtsZ (30.2%) compared to the single mutants (ΔparC, 11.1%; ΔminCDE, 

4.7%). Additionally, the cells in the single deletion backgrounds that did not exhibit a 

wild-type like FtsZ localization majorly displayed uni-polar FtsZ localization (Figure 31B). 

These results indicate that ParC and MinCDE function independently in preventing polar 

divisions and that the two systems have an additive effect on the protection of the polar 

regions (0-2 µm from the cell pole) from aberrantly positioned FtsZ.  

 
Figure 31: ParC prevents polar localization of FtsZ in swarmer cells. (A-a to d) Fluorescence 
microscopy of YFP-FtsZ in swarmer cells of different V. parahaemolyticus strain backgrounds. (B) Stacked 
bar-graphs showing the percentage of a bacterial population with distinct localization patterns of YFP-FtsZ 
in wild-type and mutants of V. parahaemolyticus swarmer cells. Black: diffuse cytosolic YFP-FtsZ 
localization; dark gray: Z-ring either at mid-cell or pole proximal position; light gray: distinct uni-polar 
localization of FtsZ either in the absence or presence of a Z-ring positioned either at mid-cell or at the pole 
proximal position; white: distinct bi-polar localization of FtsZ either in the absence or presence of a Z-ring 
positioned either at mid-cell or at the pole proximal position. Error bars indicate standard error of the mean 
(SEM). (C) Scatter-plots of the distance of Z-ring from the cell pole in swarmer cells of wild-type and mutant 
backgrounds. 
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By studying the phenotypic changes, we suggested in the previous section that the 

deletion of parC did not alter cell division in swimmer cells. We further investigated the 

localization of YFP-FtsZ in ∆parC. As expected, there was no observable deviations in 

FtsZ localization in swimmer cells of ∆parC strain. Short cells haboured a uni-polar FtsZ 

focus and the long cells showed a mid-cell FtsZ localization (Figure 32A), comparable to 

that observed in the wild-type (Figure 8A).  

Deletion of parC did not alter the precise mid-cell divisions of swimmer cells. The mid-cell 

localization of FtsZ in growing cells of ∆parC strain (Figure 32A, B) was further supported 

by quantification of position of division sites in ∆parC swimmer cells (Figure 32C). Thus, 

supporting that the function of ParC in preventing polar localization of FtsZ is specific to 

the swarmer cell stage. Therefore, ParC is a dual functional protein that in addition to 

ensuring polar recruitment of chemotaxis signaling arrays in swimmer and swarmer cells 

(Heering & Ringgaard, 2016; Ringgaard et al., 2011) cells, can prevent polar divisions in 

swarmer cells. 

 

 

Figure 32: Deletion of parC does not affect cell division in swimmer cells.  (A) Fluorescence 

microscopy showing the intracellular localization of YFP-FtsZ in ∆parC swimmer cells. Scale bar is 5um (B) 

Demographic analysis showing the fluorescence intensity of YFP-FtsZ along the cell length in a population 

of V. parahaemolyticus swimmer cells relative to cell length. (C) Graph depicting the distance of division 

sites from the cell pole as a function of cell length. 
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2.2.3. ParC cycles between the cell poles and cytoplasm  

As ParC was now established to also function in preventing polar cell division in swarmer 

cells, we next analyzed the intracellular localization of ParC in this cell type by ectopically 

expressing a functional YFP-ParC fusion (Ringgaard et al., 2014). Fluorescence 

microscopy of YFP-ParC showed bi-polar localization pattern throughout the entire 

swarmer cell-cycle (Figure 33A-B). The bi-polar localization of ParC is consistent with its 

proposed function where the polar ParC prevents accumulation of FtsZ at the poles.  

To further understand how the polarly localized ParC can protect the sub-polar region from 

aberrantly positioned divisome, we performed a detailed characterization of ParC 

dynamics using time lapse microscopy. FRAP (fluorescent recovery after photobleaching) 

experiments showed that there is an exchange between polar and cytoplasmic ParC. 

When polar YFP-ParC foci were photobleached, a recovery of polar YFP-ParC 

fluorescence was observed (Figure 33C-D, red arrowheads). Within 3 minutes of 

bleaching of the polar ParC focus, 35-40% of the signal had recovered and reached a 

steady-state level (Figure 33C-D). This shows a continuous recruitment of new ParC from 

the cytosol to the cell pole.  

In order to analyze if ParC is likewise released from the cell pole into the cytoplasm, we 

performed photoactivation experiments. Photoactivation of PAmCherry-ParC at the cell 

pole generated polar ParC foci (Figure 33E, red arrowhead). A follow-up time-lapse 

microscopy showed that the activated PAmCherry-ParC focus at the cell pole decreased 

in intensity over time and in co-occurrence of PAmCherry-ParC fluorescence was detected 

in the cytoplasm (Figure 33E-F). This indicated that, over time, a portion of 

PAmCherry-ParC is released from the cell pole into the cytoplasm. Furthermore, 

photoactivation of PAmCherry-ParC along the cell length (excluding the cell poles), 

generated a diffusely localized PAmCherry-ParC signal in the cytosol (Figure 33G). 

Subsequent time-lapse microscopy revealed that activated cytosolic PAmCherry-ParC 

was recruited to the cell poles where it localized as distinct foci (Figure 33G, 

red arrowheads). This confirmed the results from FRAP microscopy of YFP-ParC, 

i.e.  there is a continuous recruitment of cytosolic ParC to the cell pole.  

Altogether, these data show that there is a continuous release of ParC molecules from the 

pole to the cytoplasm and recruitment of new ParC from the cytoplasm to the cell pole 

(Figure 33H). This cycle of ParC possibly extends the reach of ParC’s action beyond the 

extreme cell pole. Thus, explaining how ParC is able to regulate FtsZ localization in a sub-

polar region of almost 2 µm from the cell poles.  
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Figure 33: An ATP-driven ParC cycle is required for its regulation of FtsZ localization. (A-B) 
Intracellular localization of YFP-ParC in V. parahaemolyticus swarmer cells. (A) Flourescence microscopy 
imaging showing the intracellular localizaiton of YFP-ParC in ΔparC swarmer cells of V. parahaemolyticus. 
Scale-bar represents 5 µm. (B) Demographic analysis showing the fluorescence intensity of YFP-ParC 
along the cell length in a population of V. parahaemolyticus swarmer cells relative to cell length. (C) 
Fluorescence-recovery-after-photobleaching (FRAP) experiment of YFP-ParC localized at the cell poles in 
swarmer cells showing that bleached regions of YFP-ParC at the cell pole recover post-bleaching. Numbers 
indicate minutes pre- and post-bleach. The red dashed circle shows the bleached region, and red 
arrowheads indicate areas of Yfp-ParC recovery post-bleaching. (D) Graph depicting the fluorescence 
intensity of YFP-ParC pre- and post-bleach at the bleached cell pole relative to the initial intensity at the 
pole pre-bleach during time-lapse series. The average recovery is shown along with the standard error 
mean. (E) Photoactivation of PAmCherry-ParC localized to the cell pole in wild-type V. parahaemolyticus 
swarmer cells. Numbers indicate minutes pre- and post-activation. The red dashed circle shows the 
activated region, the red arrow indicates the signal from PAmCherry-ParC localized to the old pole after 
activation. The outline of the cell is highligted by a green dashed line. (F) Graph depicting the fluorescence 
intensity of PAmCherry-ParC pre- and post-activation at the activated cell pole relative to the initial intensity 
at the pole pre-activation during time-lapse series. The average intensity is shown along with the standard 
error mean. (G) Photoactivation of PAmCherry-ParC localized in the cytosol in wild-type 
V. parahaemolyticus swarmer cells. Numbers indicate minutes pre- and post-activation. The red dashed 
circle show the activated region, the red arrows indicate the signal from PAmCherry-ParC that has been 
recruited from the cytoplasm to the cell poles after activation in the cytoplasm. The cell body is highligted 
by a green dashed line. (H) Schematic showing the cycle of ParC between the cell pole and the cytoplasm. 
There is a continuous release of ParC molecules from the pole to the cytoplasm and recruitment of new 
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ParC from the cytoplasm to the cell pole resulting in a continuous cycle of ParC between the pole and the 
cytoplasm. 

 

2.2.4. ParC’s intracellular localization is regulated by its ATPase 

cycle and DNA binding 

The ATPase activity of ParC is found in an earlier study to be important for its function of 

cell pole maturation when facilitating proper recruitment of the chemotaxis proteins 

(Ringgaard et al., 2011). Based on previous works, we constructed ParC variants that 

carried amino acid substitutions, which were predicted to i) prevent ATP binding and lock 

ParC in its apo-monomeric form (ParCK15Q), ii) prevent DNA binding and ATP hydrolysis 

and lock ParC in its monomeric ATP-bound form (ParCG11V) and iii) prevent non-specific 

DNA binding of ParC (ParCR191E). Unpublished results by Alvarado et al., (Riggaard lab) 

showed that ParC non-specifically associates with DNA and that DNA binding by ParC 

was required for its function in recruitment of chemotaxis proteins to the cell pole. 

Particularly, they have shown that the ParCR191E variant is unable to bind DNA.   

We studied the intracellular localization of these mutants in swarmer cells to address how 

ParC’s DNA binding and ATPase cycle influence its localization dynamics in this cell type. 

The three variants, ParCK15Q, ParCG11V and ParCR191E were individually expressed 

in V. parahaemolyticus ∆parC swarmer cells. The microscopy analysis showed that 

YFP-ParCK15Q did not localize to the poles but remained largely in the cytosol forming 

random foci or patches along the cell length (Figure 34A). In contrast, YFP-ParCG11V 

localized to the cell poles and formed bi-polar foci (Figure 34B). In addition to the foci 

formation at the cell poles, demographic analysis revealed that a larger proportion of YFP-

ParCG11V was retained diffused in the cytosol when compared to wild-type YFP-ParC 

(Figure 33A-B). Furthermore, YFP-ParCR191E strictly localized to the poles in a bi-polar 

manner and almost no cytosolic signal was observed (Figure 34C).  

These data suggest that the ATP-bound form of ParC is recruited to the poles, while the 

Apo-monomeric form is excluded from the pole. Thus, suggesting that ATP binding of ParC 

is required its polar localization. The variation in polar and cytosolic signal internsity of the 

ParC variants suggests significance of the ATPase cycle and DNA binding state in the 

protein’s localization. In conclusion, this suggests that ParC’s ATPase activity and DNA 

binding ability drive the cycling of ParC between the cell pole and the cytoplasm. 
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Figure 34: Intracellular localization of ParC is regulated by its ATPase cycle and DNA binding. 
Flourescence microscopy imaging and demographic analysis showing the intracellular localizaiton of 
(A) ParCK15Q, (B) ParCG11V and (C) ParCR191E along the cell length in a population of 
V. parahaemolyticus ΔparC swarmer cells. 

 

 

2.2.5. ParC’s ATPase cycle and DNA binding determines its effect on 

polar FtsZ 

Since the ATPase activity of ParC is important for its function in polar recruitment of 

chemotaxis proteins (Ringgaard et al., 2014) and its polar localization in swarmer cells, we 

speculated that its ATPase activity might also be important for ParC’s function in cell 

division by preventing polar accumulation of FtsZ. Thus, we investigated the localization 

of YFP-FtsZ in V. parahaemolyticus strains where the native parC locus was replaced 

individually by parCK15Q, parCG11V and parCR191E, which encode the protein variants 

ParCK15Q, ParCG11V and ParCR191E, respectively.  

Interestingly, in all the three backgrounds we observed polar localization of FtsZ to a 

degree similar to that of a strain lacking ParC In the parCK15Q background YFP-FtsZ 

localized at the cell poles (Figure 35A-C, purple arrows, D).  
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Figure 35: ParC’s ATPase cycle and DNA bindign determines its effects on polar FtsZ. (A)(B)(C) 
Flourescence microscopy imaging showing the intracellular localizaiton of YFP-FtsZ in 
V. parahaemolyticus strains encoding parCK15Q, parCG11V and parCR191E respectively. Demographs 
show the fluorescence intensity of YFP-FtsZ along the cell length in a population of V. parahaemolyticus 
swarmer cells relative to cell length. Scale-bar represents 5 µm. 
(D) Stacked bar-graph showing the percentage of a bacterial population with distinct localization patterns 
of YFP-FtsZ in wild-type and mutant V. parahaemolyticus swarmer cells. Black: diffuse cytosolic YFP-FtsZ 
localization; dark gray: Z-ring either at mid-cell or pole proximal position; light gray: distinct uni-polar 
localization of FtsZ either in the absence or presence of a Z-ring positioned either at mid-cell or at the pole 
proximal position; white: distinct bi-polar localization of FtsZ either in the absence or presence of a Z-ring 
positioned either at mid-cell or at the pole proximal position. Error bars indicate standard error of the mean 
(SEM). 
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Additionally, like ∆parC strain, proper FtsZ localization at its swarmer specific division sites 

were formed in these strain backgrounds, further confirming that ParC acts to prevent polar 

localization of FtsZ but not regulate its position in the swarmer specific LD-sites (compare 

Figure 35A-C, demograph and Figure 13B). It was particurlarly interesting that ParCG11V 

and ParCR191E were non-functional in regulating FtsZ localization as both these protein 

variants localize to the cell pole.  

These data suggests that polar localization of ParC itself is not sufficient for ParC function 

but ATP hydrolysis and DNA binding are also both required for ParC function in preventing 

polar localization of FtsZ and formation of mini-cells. 

 

2.2.6. ParC actively prevents polar division events through a possible 

direct interaction with FtsZ 

To analyze if ParC regulates cell division through its direct interaction with FtsZ, we 

performed a yeast-two-hybrid experiment to test for protein-protein interactions. These 

experiments suggested that FtsZ self-interacts, and importantly that ParC and FtsZ 

interact directly (Figure 36A).  

To further analyze if ParC directly interacts with FtsZ as suggested by the yeast-two-hybrid 

experiment, we performed a co-immunoprecipitation experiment using α-YFP antibodies 

on cells expressing only YFP, YFP-FtsZ and YFP-ParC and tested for co-

immunoprecipitation of FtsZ using α-FtsZ antibodies. No FtsZ was pulled down in cells 

expressing only YFP (negative control) (Figure 36B, lane 1). Native FtsZ was clearly pulled 

down from cells expressing YFP-FtsZ (Figure 36B, lane 2), hence confirming that FtsZ 

self-interacts and that the YFP-FtsZ fusion is functional for self-interaction. Importantly, we 

could detect the presence of FtsZ when using YFP-ParC as bait (Figure 36B, lane 3), 

showing that immunoprecipitation of YFP-ParC is able to co-purify native FtsZ. Thus, 

indicating that ParC and FtsZ interact directly and confirming the results of the yeast-two-

hybrid assay. Altogether, this indicates that ParC actively prevents polar localization of 

FtsZ and mini-cell formation by direct protein interaction with FtsZ. 
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Figure 36: ParC actively prevents polar division events through direct interaction with FtsZ. (A) 
Yeast-two-hybrid experiment assaying for protein interactions between ParC and FtsZ. Growth of yeast 
colonies suggests a protein interaction occurs. (B) Co-immunoprecipitation experiment using α-YFP 
antibodies on wild-type V. parahaemolyticus cells expressing YFP (negative control), YFP-FtsZ, and YFP-
ParC respectively. Samples were analyzed by Western blot using α-FtsZ antibodies to test for the co-
purification of FtsZ protein. 
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3.1. FtsZ forms distinct localization patterns in the 

swimmer cells 

In this study we address the cell division of the two cell types of Vibrio parahaemolyticus. 

The 2.5-4 µm long swimmer cells of V. parahaemolyticus propagate by a binary division 

resembling that of V. cholerae. V. parahaemolyticus encodes in its genome the central 

division protein, FtsZ, which localizes in a distinct pattern in the swimmer cells. It also 

encodes some of the most widely studied cell division regulators, MinCDE - an FtsZ 

positioning system, SlmA - the nucleoid occlusion factor and ParABS-the chromosome 

partitioning system. The polar localization of FtsZ at the new pole following division, 

although momentary, is distinct as has not been widely reported. Polar FtsZ was first 

reported in chromosome segregation study in V. cholerae (Srivastava et al., 2006), and 

further confirmed in the cell division studies of the same bacterium (Galli et al., 2016a). 

Galli et al., by timing cell division using cell length distribution, suggest that FtsZ relocalizes 

to the mid-cell from the new pole in V. cholerae for the Z-ring formation at a much later 

stage of the cell cycle compared to that in E. coli. Interestingly, polar localization of FtsZ 

was also reported in short cells of Helicobacter pylori (Specht et al., 2013). They describe 

that this polar focus at the new pole relocates to the mid-cell forming spiral intermediates. 

Thus H. pylori is yet another example of a bacterium displaying polar FtsZ despite 

harboring Min system in its genome. 

Masking of function of the oscillating Min system by the chromosome arrangement factors 

was proposed as the reason for the occurrence polar FtsZ localization in V. cholerae (Galli 

et al., 2016a). This could be verified in V. parahaemolyticus by studying the effect of 

MinCDE deletion together with the deletion of the chromosome arrangement proteins 

(HubP, ParAB1 and MatP). However, we have not probed into this yet. Together with 

evidences from other organisms, our research points out that, unlike the popular belief, a 

bacterial cell with a functional oscillating Min system can still exhibit deviations in divisome 

protein dynamics. 

3.2. Daughter cells of the swimmer cell cycle inherit 

replicating chromosomes 

The characterization of genome organization and replication has been widely studied in 

bacteria with a single chromosome. Only in the last decade, several studies have begun 

to unravel the differences in chromosome organization, replication and segregation in 

multi-chromosomal species with V. cholerae as the popular model. Although 

V. parahaemolyticus is also a two-chromosomal bacterium like V. cholerae, it is not certain 
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to what extend the processes in the latter can be extrapolated to the former. 

V. parahaemolyticus are fast dividing bacteria with replication time of 12-14 minutes at 

37oC in LB (Dryselius et al., 2008). Localizing the origin associated proteins of the two 

chromosomes, ParB1 and ParB2, allowed us to track the positions of the origins during 

cell cycle. The cells were born with one oriI at each cell pole while oriII largely localized at 

the mid-cell. The single ParB2 foci seen in the new born cell suggest either a non-

replicated origin of chromosome II or a replicated but unresolved origin. The chromosomes 

appear to be symmetrically placed in the cell and appear to follow a symmetric segregation 

pattern. This is different compared to the well-studied chromosome organization and 

segregation in V. cholerae primarily in chromosome I. In the new born cells of V. cholerae, 

oriI is located near the pole. During segregation, one of the replicated oriI moves to the 

opposite pole while the other stays at the initial pole, thereby following an asymmetric 

segregation (Fogel & Waldor, 2005). However, in V. parahaemolyticus the ParB1 focus at 

each of the poles suggests replicated origins tethered to the poles, indicating an already 

segregating chromosome I. This allows replication to span more than a single generation 

facilitating a shorter generation time than the chromosome replication time, which have 

been described for fast growing bacteria (Skarstad et al., 1985).  

In V. cholerae HubP was discovered to be the landmark protein that anchors several 

proteins and thus playing an essential role in pole maturation. HubP was shown to localize 

ParB1 to the poles via directing the localization of ParA1 (Yamaichi et al., 2012). In a later 

study, HubP was shown to localize only to the old-pole in new born cells and to form a bi-

polar pattern as the cell elongates, explaining how HubP could orchestrate the segregation 

of oriI/ParB1 sister copies (Galli et al., 2017). Therefore, anchoring of origins to the poles 

observed in our study could also be facilitated by the interaction of HubP to ParA1 which 

is known to directly interact with ParB1. The failure to tether the ParB1 foci to the poles in 

a parA1 deletion background supports this hypothesis. Polar HubP could sequester the 

replicated oriI/ParB1 to the poles, ensuring proper inheritance of chromosome in the 

rapidly dividing swimmer cells. Thus, the presence of bi-polar HubP in the new born cells 

explains the tethering of sister oriI/ParB1 in new born V. parahaemolyticus swimmer cells 

to either poles. Although the exact localizations of ParB1 in ∆parA1 and ∆hubP strains 

vary, both deletions result in mislocalization of ParB1. Thus, suggesting that HubP is 

involved in chromosome segregation of V. parahaemolyticus by tethering origins through 

ParA1. 

Additionally, the untethered ParB1 foci observed occasionally in wild-type cells might be 

due to a momentary release of the origins from the polar anchor during the replication of 

this region. Following the release of ParB1 anchoring and subsequent replication of the 
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oriI site, one sister oriI re-attaches to the pole and the other possibly gets segregated 

directed by ParA1.  

3.3. Min, NO and their role in division of swimmer cells 

The polar positioning of FtsZ could cause an uncertainty in the functionality of the Min 

system. The localization of YFP tagged MinD confirmed an oscillatory Min. On quantifying 

the effect of a Min deletion by estimating the percentage of mini-cell formation, it turned 

out to pose the same extend of effect as that in V. cholerae. The Min system in V. cholerae 

is active in regulating division but this function is masked by the regulators of chromosome 

segregation and chromosome arrangement (Galli et al., 2016a). Albeit, the scenario of 

polar FtsZ in an environment of oscillating Min in V. parahaemolyticus displays a stark 

similarity to the observations in V. cholerae, the chromosome segregation state and hence 

chromosome positioning are very different. The origins of the replicating chromosomes in 

a new born V. parahaemolyticus swimmer cell are already segregated and positioned at 

the opposite poles. This is unlike that of ChrI in V. cholerae where its origin is positioned 

at the old pole. Hence, the arrangement of chromosome cannot be the driving force behind 

polar FtsZ or the factor masking the effect of Min deletion in V. parahaemolyticus. Further 

research needs to be carried out to investigate this interesting FtsZ dynamics. 

In spite of the differences in localization patterns of the key cell division proteins and 

deviation in functions of the conserved regulator proteins compared to previously studied 

organisms, V. parahaemolyticus swimmer cells continue to divide at precise mid-cell 

positions.  

Absence of any observable phenotype in a ∆slmA background was not surprising because 

the discovery of the function of SlmA itself was in a Min deletion background (Bernhardt & 

De Boer, 2005). ∆slmA cells of E. coli were also reported to appear wild-type like, although 

no quantification of cell length was shown. The slight elongation effect in a ∆slmA 

V. parahaemolyticus swimmer cells became evident on quantification. The hyper 

elongation of swimmer cells in the double deletion background ∆minCDE ∆slmA indicates 

that oscillating Min system is essential in a nucleoid occlusion deficient environment to 

regulate cell division.  

Studies in E. coli have shown multiple Z-ring clusters in Min and partition double mutants 

(Yu & Margolin, 1999). According to the model ‘targeting and activation of division sites 

are activated by the position of nucleoids’, all positions along a cell length are equally 

competent for cell division. But these divisions are prevented in regions of the nucleoid by 

the nucleoid occlusion factors. Therefore, this inhibition should get lifted as soon as the 
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chromosome segregates or in the absence of occlusion factors. This explains what we see 

in V. parahaemolyticus cells. When SlmA is deleted, misplaced nucleation of FtsZ 

polymers are observed in the cell. Nucleation of FtsZ polymerization at non-mid-cell sites, 

also reduces the availability of FtsZ molecules for Z-ring formation at the proper division 

sites, which might be the cause for slight elongation phenotype. However, we do not 

observe several divisions at these random sites probably because of the still oscillating 

Min system that exerts a significant force on FtsZ ring placement. Absence of extreme cell 

division defects could be because of the strong regulation by the Min system and also by 

other unknown division regulators. In the observations associated with the discovery of 

nucleoid occlusion function of Noc in B. subtilis, deletion of Noc on its own also did not 

produce any apparent growth defect, chromosome segregation defect or other division 

phenotypes (Wu & Errington, 2004). Although it was mentioned that cell lengths were 

normal and FtsZ localized as bands at the expected future division sites, the data is not 

shown. Hence the possibility of slight elongation phenotypes cannot be ignored. 

Effect of Min deletion is largely the formation of mini-cells and mildly elongated daughter 

cells. The concentration of FtsZ in a cell supports only a single functional Z-ring. Therefore, 

a misplaced polar division occurs at the cost of a mid-cell division ring. This being the 

cause of the observed mildly long progenies (Bernhardt & De Boer, 2004). Strikingly, the 

average site of division of a Min deletion, in spite of mini-cells and elongated cells, is biased 

to the mid-cell, suggesting the presence of other factors or mechanisms that place 

divisions to the mid-cell.  In the observations associated with discovery of the Noc in B. 

subtilis, Wu et al reports the observation of multiple non-productive accumulations of 

division proteins and hence block in cell division (Wu & Errington, 2004). This also explains 

our observation of accumulation of non-functional FtsZ clusters along the cell length in a 

∆minCDE ∆slmA double deletion background. The scattered spots and weak tilted or 

incomplete bands of FtsZ in this background results from the availability of new regions 

for potential FtsZ clustering in the absence of the above mentioned ‘FtsZ-targetting and 

activation’ systems.  

3.4. Cell division in swarmer cells 

During differentiation of V. parahaemolyticus swimmer cells in viscous environment, an 

inhibition of cell division results in the formation of highly elongated cells, the swarmer 

cells, a morphological change that is important for swarming behavior (Böttcher et al., 

2016; McCarter, 2010). For a swarmer colony to expand, it is crucial for the population to 

combine the seemingly contradictory requirements of cell division and maintenance of the 

characteristic long cells that are ideally equipped for swarming behavior. However, it was 
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not known how the highly elongated V. parahaemolyticus cells are able to divide without 

diminishing the population of long cells required for swarming. Here we show that 

V. parahaemolyticus has developed a mechanism to achieve this by switching from a 

mid-cell to a non-mid-cell division when a total cell length of approximately 10 µm is 

attained. This simultaneously allows for the maintenance and growth of the long cell and 

for proliferation, hereby presenting an elegant solution for this problem (Figure 37A). The 

Min-system is required for proper positioning of the division site, both at mid-cell and the 

non-mid-cell LD-site. Our data indicate that the proper switch to non-mid-cell division at 

the LD-site is mediated by a cell length-dependent transition in the localization-dynamics 

of MinD from a pole-to-pole oscillation in short swarmers to a multi-node standing-wave 

oscillation in long swarmers. 

The swarmer cells divide in a pattern that has not been previously described. Although this 

is not the first study directed towards understanding the pattern of cell division in 

supersized bacteria, it is for the first time that an asymmetry in division site placement is 

being reported in such organisms. A prominent study reported by Pende et al. shows 

symmetric divisions in the Gammaproteobacteria attached to the nematodes Eubostrichus 

fertilis and Eubostrichus dianeae, where those on E. dianeae are the longest cells in which 

symmetric divisions has ever been observed. They rule out size as a trigger for division 

(Pende et al., 2014). On the contrary, V. parahaemolyticus swarmer cells that also attain 

great lengths of 55-60um, exhibit a cell length dependent positioning of division site. In this 

surface growing cell type of V. parahaemolyticus, short cells divide symmetrically and the 

long cells switch to a pole-proximal division pattern. The lengths of these cells evidently 

seem to play an important role in deciding the placement of division site. The swarmer 

cells of this bacterium switch from symmetric to asymmetric placement of division site at 

precise cell lengths. Furthermore, with steady increments in cell lengths, the division sites 

move to precise locations that are increasingly closer to the cell poles relative to total cell 

length (Figure 22B).  

Proliferating cells have to ensure a safe and reliable cell division without putting the 

genomic integrity and overall cellular fitness in jeopardy. Swarmer cells are polyploid and 

there is a positive linear correlation between chromosome count and cell length. The ori 

regions of both chromosomes are equidistantly segregated along the long axis of the cell, 

however, our results indicate that independent of the cell length, complete chromosome 

segregation only occurs at one site and once per cell cycle. The site of complete 

chromosome segregation is correlated with the position of the division machinery and 

follows a similar cell length-dependent transition from a mid-cell position in short swarmer 

cells to a non-mid-cell position at the LD-site in long swarmer cells.  
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In the earliest studies of MinCDE system in E. coli cells, standing wave oscillations were 

observed in FtsZ— cells (Raskin & de Boer, 1999c). In the same strain background several 

MinE rings were also described (Raskin & De Boer, 1997). This was the first time standing 

wave pattern formation of MinD was observed in cells. The cell divisions in such artificially 

elongated cells were not followed up after the study by W.D. Donachie and K.J. Begg. 

Donachie and Begg proposed a model of cell growth that suggested an increase in 

potential division sites with an increase in cell length (Donachie & Begg, 1970).  In our 

study, we report a correlation of increased cell lengths to its corresponding MinD wave 

pattern and location of division sites. A parallel study to ours, followed divisions in 

elongated E. coli, almost five decades after the study by Donachie and Begg (Wehrens et 

al., 2018). They observed characteristic divisions at specific lengths from the poles in spite 

of multiple Z-rings. The findings by Wehrens and colleagues support our conclusions on 

positioning division sites in long cells by a multi-node standing wave oscillation of MinD. 

Studies on Min oscillation in long rods (Raskin & de Boer, 1999c) and aberrantly shaped 

cells (Varma et al., 2008) has pointed out that the oscillation periods remain same in 

normal and as well as atypically shaped cells. This is because fast diffusion of proteins in 

a cell ensures that the oscillation period is dependent on the accumulated protein 

concentrations and not the length or structure of the cells. However, the resultant patterns 

formed will depend on the dimensions of the cell or vesicle. Our study thereby confirms 

that the geometry detection mechanism of Min oscillatory system, that has been proposed 

(Varma et al., 2008), can in fact be utilized by naturally occurring differently shaped 

bacteria as a scale to position divisions at the desired sites. 

3.5. Role of Min and NO in division of swarmer cells 

The Min-system is required for proper positioning of the division site, both at the mid-cell 

and the length dependent division site (LD-site). Our data indicate that the switch to non-

mid-cell division is mediated by a cell length-dependent transition in the localization-

dynamics of MinD from a pole-to-pole oscillation in short swarmers to a multi-node 

standing-wave oscillation in long swarmers.  

Multi-node standing wave oscillation of MinD has been reported in artificially elongated 

E. coli cells that are unable to divide due to an artificial block in cell division. When these 

artificially elongated cells reach a length of ~10 µm or more, the number of wavelengths 

of MinD oscillations present in the cell increases and the MinD dynamics change to a 

multi-node standing wave oscillation (Fu et al., 2001; Huang et al., 2003; Meinhardt & de 

Boer, 2001; Raskin & de Boer, 1999b). Thus, the wavelength of the MinD wave, and 

consequently the cell length at which a transition in MinD dynamics occur, are very similar 
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between the Min systems of E. coli and V. parahaemolyticus. Hence, suggesting that the 

number of MinD nodes and the MinD localization dynamics will remain cell 

length-dependent. This is further supported by in vitro reconstitution experiments of Min 

dynamics in fabricated microchambers, where Min dynamics has been observed to switch 

from a pole-to-pole oscillation to symmetric double oscillations or traveling waves and is 

correlated with chamber length for a constant protein concentration(Caspi & Dekker, 2016; 

Schweizer et al., 2012; Zieske & Schwille, 2013, 2014). In this study, we show for the first 

time that multi-node standing wave MinD-oscillations happen in naturally occurring cells, 

and that the oscillation pattern ensures the proper positioning of the Z-ring and division 

site in naturally occurring filamentous swarmer cells. Additionally, providing probable 

explanation for the cell growth model that was proposed five decades ago suggesting an 

increase in potential division sites with increase in cell length. The number of MinD nodes 

per cell increased with increasing cell length. However, Z-ring formation, and in 

consequence cell division, almost always occurred at the most cell pole-proximal MinD-

node (the LD-site) (Figure 22A-C), preferring this node over the others in swarmer cells 

with more than two nodes. Formation of a single Z-ring in V. parahaemolyticus swarmer 

cells, at the pole-proximal MinD node, is unlike what has been described in the artificially 

elongated E. coli cells. E. coli formed multiple Z-rings positioned in an almost equidistant 

manner along the cell length. However, only one site underwent division at a time. 

Additionally, the positions of the Z-rings remained dynamic with the increasing cell length 

and also with subsequent divisions. Artificially elongated swimmer cells of 

V. parahaemolyticus also has been observed to form multiple Z-rings. What leads to the 

robust increase in FtsZ levels on artificial elongation, which in turn results in multiple Z-

rings, remain unknown. Nevertheless, in both naturally occurring and artificially elongated 

cells, only one division occurs at a time and the most probable division site is the 

pole-proximal site. 

Our finding that MinCDE system is in fact responsible for specific division rules agreed 

with the finding of Wehrens et al. The probability of divisions occurring at the cell length 

specific sites reduced drastically in ∆minCDE swarmer cells and the same was observed 

in artificially elongated E. coli. The consistent mid-cell divisions even in the absence of Min 

system implies the presence of additional regulators. It is possible that epigenetic 

information based on previous division events, as has been reported in Staphylococci 

(Turner et al., 2010), or perhaps unknown cell pole factors or birth scar proteins similar to 

C. crescentus (Huitema et al., 2006; Lam et al., 2006), helps to direct Z-ring formation 

towards the region proximal to the pole. Furthermore, here we show that the chromosomal 

origins are equidistantly placed along the swarmer cell, however, the positioning of termini 
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remains to be elucidated. One possibility is that they are differently positioned at the poles, 

and this may assist in pole-proximal positioning of FtsZ via a positive regulation for FtsZ 

through an FtsZ-ZapB-MatP-matS  mechanism (Castillo et al., 2016; Demarre et al., 2014; 

Espeli et al., 2012; Espinosa et al., 2017; Mercier et al., 2008) – however, more research 

is needed to understand this question. 

Our results suggest that SlmA does not direct positioning of the division site, but instead 

prevents the accumulation of FtsZ into division-deficient clusters along the cell length. The 

prospective outcome is that free FtsZ molecules exist in a concentration sufficient for Z-

ring formation at mid-cell and LD-sites when directed to these locations by the Min-system. 

In E. coli (Bernhardt & De Boer, 2005; Cho et al., 2011b; Nam K. Tonthat, Sara L. Milam, 

Nagababu Chinnam, Travis Whitfill, William Margolin, 2013) and V. cholerae (Galli et al., 

2016b), SlmA prevents Z-ring formation when bound to specific DNA sequences. It is likely 

that SlmA similarly in V. parahaemolyticus needs to be DNA bound in order to perform its 

role in preventing formation of division-deficient FtsZ clusters. As our results suggest that 

FtsZ is present at a level that sustains only the formation of a single Z-ring, complete 

chromosome segregation at multiple localizations along the cell, too, would have the 

potential to deplete FtsZ and interfere with cell division, as incomplete Z-rings likely would 

form at each nucleoid free site. Thus, our results suggest that by segregating the 

chromosomal origins regularly along the cell length, but only allowing complete 

chromosome segregation at one specific site, swarmer cells ensure that SlmA is able to 

act along the entire length of the cell. 

3.6. Ensuring the preservation of long swarmer cells 

The significant extension of the cell body that occurs during differentiation of swimmer cells 

to swarmer cells suggest an inhibition or regulation of cell division once differentiation is 

initiated. The mechanism responsible for this process remains an open question. We show 

that neither of the cell division regulators MinCDE and SlmA are essential for such a 

regulation. However, our results suggest that regulation of FtsZ levels contributes to the 

preservation of long cells within the swarmer population. If long swarmers were able to 

divide at multiple sites, the population of long cells would quickly get diminished. Thus, by 

regulating FtsZ levels to only sustain one division event per cell, V. parahaemolyticus 

ensures that long swarmer cells are allowed to divide, while simultaneously maintaining 

their their population.  

DAPI staining experiments indicate that, in contrast to swarmer cells, the chromosomes of 

artificially elongated planktonic cells are completely segregated at multiple sites along the 
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cell length. However, similar to swarmer cells, each site of complete chromosome 

segregation correlates with the position of the division machinery. Furthermore, we show 

that the concentration of FtsZ is identical in planktonic and swarmer cells, while artificially 

elongated planktonic cells have significantly higher concentration of FtsZ than both 

wild-type planktonic cells and swarmer cells. It suggests that formation of a Z-ring at each 

MinD-node in artificially elongated planktonic cells simply is a consequence of the higher 

FtsZ concentration in these cells – i.e. FtsZ is abundant enough to sustain formation of 

multiple Z-rings, one at each MinD-node. Thus, the regulation of the FtsZ concentration 

level in swarmer cells to match that of planktonic cells, likely ensures that only enough 

FtsZ is present in swarmer cells to sustain the formation of a single Z-ring. Thus, effectively 

restricting the number of Z-rings formed to one, independent of swarmer cell length and 

the number of MinD-nodes. Furthermore, as the position of each Z-ring in artificially 

elongated planktonic cells correlates with the site of complete chromosome segregation, 

and as our data suggest that the formation of multiple Z-rings in artificially elongated 

planktonic cells is a consequence of higher FtsZ level, it probably suggests that the division 

machinery assists in determining the site at which complete chromosome segregation 

takes place. 

Furthermore, a non-mid-cell position of the division site in long swarmers, ensures a 

continuous population of long cells, as non-mid-cell division results in a short and a long 

daughter cell. Consequently, by limiting the number of cell division events to one per cell 

at a non-mid-cell position in long swarmer cells, V. parahaemolyticus promotes the 

preservation of long cells within a multiplying population of swarmer cells. Therefore, this 

mechanism of cell division regulation allows swarmer cells to divide without the need for 

dedifferentiation. 

3.7. A model summarizing the processes leading to an 

asymmetric cell division in swarmer cells 

Our data support a model, where swarmer cells are polyploid with a positive linear increase 

in chromosome count with increasing cell length. The origins of both chromosomes are 

distributed evenly along the cell length, but complete chromosome segregation does not 

occur at this stage. SlmA prevents the formation of division deficient FtsZ clusters over the 

nucleoid. The even distribution of chromosomal origins along the cell length ensures that 

SlmA can act along the entire cell length. Pole-to-pole oscillation of MinD in short swarmer 

cells and multi-node standing-wave oscillation in long swarmer cells promote the 

positioning of the Z-ring to mid-cell and the non-mid-cell LD-site, respectively (Figure 37B, 

#1).  



DISCUSSION 

96 
 

 

Figure 37: Cell division in swarmer cells of V. parahaemolyticus. (A) Model figure showing the cell 
cycle and cell division characteristics of V. parahaemolyticus. Depending on their cell length, swarmer cells 
undergo two distinct types of cell division: short swarmer cells position the Z-ring at mid-cell, resulting in 
swarmer progenies of equal sizes (#1); in long swarmer cells the Z-ring is positioned at the non-mid-cell 
LD-site, resulting in daughter cell of different sizes – a long and a short cell (#2). Division occurs with equal 
frequency towards either of the cell poles.  (B) Schematic summarizing the spatio-temporal localization-
dynamics of MinD and chromosome segregation in short and long swarmer cells. The model is described 
in detail in the main text. 
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The level of FtsZ protein allows for the formation of only one Z-ring at one MinD-node 

independent of cell length. The site of Z-ring formation in turn directs the site at which 

complete chromosome segregation takes place (Figure 37B, #2 → #3). Ultimately the cell 

divides at either mid-cell or the LD-site, resulting in daughter cells of equal sizes or in one 

short and one long daughter cell, respectively (Figure 37B, #4). In this way the combined 

actions of cell length-dependent MinD-dynamics, origin segregation, nucleoid occlusion by 

SlmA and regulation of FtsZ levels ensure that formation of the Z-ring and complete 

chromosome segregation only occurs once per cell at a cell length dependent location. 

3.8. Cell type specific regulation of cell division by ParC in 

swarmer cells. 

How cell division occurs and is regulated in swarming bacteria has so far been unknown 

and uncharacterized. In addition to the function of the MinCDE system in protecting the 

cell poles from aberrant divisions and ensuring proper position of the Z-ring in a cell length 

dependent manner, here we show that the placement of the division site is differentially 

regulated by distinct mechanisms, depending on the developmental stage. Particularly, we 

show that ParC, previously shown to function as a cell pole determinant (Ringgaard et al., 

2011, 2014), is a bi-functional protein with an additional important role as regulator of 

cell division, specifically during swarmer cell development. ParC inhibits polar division 

events in swarmer cells by directly interacting with and actively preventing polar 

localization of FtsZ, and therefore division at that site. As ParC does not appear to fulfil the 

same function in swimmer cells, it is possible that another so far uncharacterized 

development-specific cue, which is only present in swarmer cells mediates or regulates 

ParC’s action on FtsZ. Importantly, ParC functions in cooperation with the Min-system, 

which regulates cell division in both swimmer and swarmer cells.  Occurrence of polar 

divisions in cells solely lacking ParC suggests that the Min-system is not able to absolutely 

protect the cell poles during the swarmer cell stage. Indeed, ParC is an important regulator 

of cell division in swarmer cells because absence of ParC results in aberrant polar divisions 

to an extent comparable to that of a ΔminCDE strain. Our results indicate that the ParC 

and Min-system function independently in swarmer cells, as deletion of both systems leads 

to an increased polar FtsZ localization and mini-cell formation compared to the single 

deletions. The precise reason for the requirement of an additional regulator of cell division 

(ParC) during swarmer development is interesting, but not clearly understood. Why an 

additional regulator of cell division (ParC) is required during swarmer development is 

interesting. In swarmer cells undergoing morphological differentiation there is a continuous 

elongation of the cell body, which our data clearly shows influences MinD-dynamics. The 
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effect of cell elongation on MinD-dynamics would be particularly prominent when the 

transition to an oscillation pattern with a higher degree of nodes occurs and could 

potentially disrupt Min-function for a period of time as the system adjusts to the new 

oscillation pattern. It is possible that during such transitions the Min-system is 

compromised and no longer be able to protect the cell poles from aberrantly positioned 

FtsZ as efficiently. In consequence, a factor preventing Z-ring formation, like ParC, that is 

always present as the cell poles is essential for protecting this region of the cell from 

aberrantly positioned division site. 

Consistent with its role in preventing polar division events, ParC itself is bi-polarly localized 

during the swarmer cell cycle. Importantly, FRAP and photoactivation experiments showed 

a continuous exchange of ParC molecules between the cell pole and the cytoplasm. 

Localization of the ParC variants ParCK15Q and ParCG11V suggested that recruitment 

of ParC to the cell pole requires ATP binding and that the exchange of ParC between the 

pole and the cytoplasm is an active process driven by ParC’s ATP-hydrolysis, similar to 

what has been reported for ParC in V. cholerae and swimmer cells of V. parahaemolyticus 

(Ringgaard et al. 2011, 2014). This cycle of release and recruitment from the cell pole 

could explain how ParC’s function is sequestered to the cell pole region but enables ParC 

to extend its effect on FtsZ localization to a distance of 2 µm from the cell pole. This mode 

of action could be similar to that of MipZ in C. crescentus, another ParA-like ATPase, which 

protects the cell poles and restricts Z-ring formation to mid-cell. MipZ is a direct inhibitor 

of Z-ring formation and forms a steady-state gradient extending from the cell poles towards 

mid-cell.  

MipZ is a ParA-like ATPase that restricts Z-ring formation to mid-cell and protects the cell 

poles by forming a gradient distribution extending from cell poles to the mid-cell with a 

concentration maximum at the cell poles (Thanbichler & Shapiro, 2006). MipZ’s ATP 

binding and hydrolysis is important for its function and MipZ’s gradient localization 

indicates the distribution of its dimers over the nucleoid (Kiekebusch et al., 2012). The 

ParB-parS complex recruits MipZ monomers to the poles and stimulates its dimerization. 

These MipZ dimers are then released from ParB and bind nonspecifically to the 

chromosome. The chromosomal binding results in MipZ’s reduced diffusion rate. This 

leads to a higher retension of MipZ dimers to the regions close to the cell pole. As solely 

the dimeric form of MipZ interacts with FtsZ and inhibits Z- ring formation, division sites 

are correctly positioned at the region of minimum MipZ concentration in the gradient. 

Spontaneous ATP hydrolysis results in the dissociation of MipZ dimers to monomers, 

which then undergoes nucleotide exchange and gets recaptured by the ParB-parS 

complex. Mutations in MipZ that locks the protein in its monomeric or dimeric state results 
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in an increase or decrease in MipZ’s diffusion rate, respectively, abolishing the gradient 

formation. Therefore, the polar source of MipZ dimers and its reduction in mobility are 

important for the establishment of cellular MipZ gradient (Kiekebusch et al., 2012). 

Although the exact mechanism behind the formation of such protein gradients are 

incompletely understood, data suggests that variations in diffusion rates of the different 

nucleotide dependent conformations of proteins (like MipZ) contribute to their gradient 

distribution.  

A parallel study in our lab addresses the detailed intracellular localization of ParC and its 

variants in swimmer cells in V. parahaemolyticus using confocal fluorescence microscopy 

and single particle tracking super resolution microscopy (Alvarado et al, unpublished). This 

study indeed shows that ParC in swimmer cells forms a gradient that extends from the 

cell pole towards mid-cell with a concentration maximum at the cell pole. Indeed, this study 

shows that ParC’s gradient formation is regulated by its ability to bind and hydrolyze ATP 

and associate with the nucleoid. Particularly, differential diffusion rates of ParC’s distinct 

protein states drive gradient formation. Thus, similar to MipZ, ParC would be able to exert 

its function on regulating FtsZ localization beyond the immediate cell pole. However, the 

molecular mechanism by which ParC prevents polar localization of FtsZ and how 

ATP-binding and hydrolysis affect its interaction with FtsZ remains to be elucidated. 

Interestingly, ParC is required for polar localization of chemotaxis arrays during both the 

developmental stages of V. parahaemolyticus (Ringgaard et al. 2011, 2014; Heering and 

Ringgaard 2016). Previously it has been shown that ParC acts with its cognate partner 

protein ParP in the recruitment of chemotaxis proteins to the cell pole. ParC primarily 

governs chemotaxis signaling array localization by mediating the polar localization of ParP, 

whereas ParP serves both to sequester arrays at the cell pole and stabilize arrays by 

preventing the release of chemotaxis proteins (Ringgaard et al. 2014). It is likely that ParP 

also influences ParC’s function in regulation of cell division, since ParP regulates the polar 

localization of ParC in swimmer cells and likely influences the ParC cycle between the cell 

pole and the cytoplasm (Ringgaard et al. 2014). However, a potential role for ParP in 

regulation of cell division still is unknown and is an interesting question to be addressed in 

the future. 

Our data show that ParC is a ParA-like ATPase with dual function that is essential for 

proper development of the cell pole. Particularly, ParC i) promotes cell pole maturation by 

facilitating polar localization of chemotaxis proteins in accordance with the cell cycle and 

ii) protects the cell pole from aberrant placement of the division machinery during swarmer 

cell development. Our results suggest that ParC’s two functions in promoting localization 
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of signaling arrays and regulating cell division are interconnected, since disruption of 

ParC’s ATP-cycle and polar localization influence both processes. Thus, our data indicate 

that the multiple functions of ParC connect the spatio-temporal regulation of diverse 

processes such as bacterial chemotaxis, cell pole development and regulation of cell 

division. 

3.9. Conclusions and outlook 

Here we have shown that several mechanisms regulate cell division in 

V. parahaemolyticus swimmer and swarmer cells. Particularly, swarmer cells undergo a 

novel and so far uncharacterized type of cell division regulated by ParC, MinCDE, SlmA 

as well as FtsZ protein levels. While the result of multi-node standing wave oscillation of 

MinD in swarmer cells, an asymmetric cell division, is similar to the first step of endospore 

formation in B. subtilis (Hutchison et al., 2014), the underlying mechanisms and purposes 

are very different. We show that, all cells from swarm-flares independent of their cell 

length, have initiated the swarm-program, and thus the swarmer-population is very 

heterogeneous in terms of cell length (Figure 28). Furthermore, our results indicate that 

the cell length-dependent asymmetric division of swarmer cells is a major regulator of this 

heterogeneity, as the consequence of an asymmetric division in V. parahaemolyticus 

swarmer cells is progeny cells of different cell lengths. However, the swarmer population 

is not only heterogeneous in cell length, but also in swimming capabilities, where short 

swarmer cells are swimming proficient and long swarmer cells are swimming deficient 

when released into a liquid environment (Figure 29). Thus, our results indicate that 

asymmetric division drives the separation of V. parahaemolyticus into two distinct 

population within the swarm colony. Particularly, both the progeny cells of an asymmetric 

division have initiated the swarm program but possess distinct capabilities- a swimming 

proficient short cell and a swimming deficient long cell. The sub-population of swimming 

proficient short swarmer cells has the potential to explore new surroundings by swimming 

if released into a liquid environment. We define cells belonging to this group as a 

population of “explorer” cells (Figure 38, explorers). This suggests that asymmetric division 

of long swarmer cells allows for swarming across surfaces while maintaining a sub-

population of explorer cells that are ready to be released into liquid environments and 

immediately capable of exploring new surroundings (Figure 38). This result is in agreement 

with the finding that chemotaxis arrays always are positioned bi-polarly in swarmer cells 

(Heering & Ringgaard, 2016). Since only one division occurs in swarmer cells, a bi-polar 

positioning of signaling arrays will ensure that each daughter cell inherits an array upon 

cell division and thus the explorer cells will be able to immediately respond to changes in 
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their external milieu when released from the swarm-colony into their liquid surroundings. 

However, when not released, the fate of short cells within swarm colonies remains 

unknown – though, since they have initiated the swarm-program, it is likely that they are 

able to continue the swarmer life-style within the swarming population (Figure 38).  

V. parahaemolyticus is a significant human pathogen and the cause of gastroenteritis 

worldwide – particularly due to consumption of undercooked seafood (Letchumanan et al., 

2014). It is commonly found free swimming, attached to underwater surfaces, or 

associated with various species of shellfish (McCarter, 1999). Thus, the formation and 

release of explorer cells might also contribute to the spread of V. parahaemolyticus cells 

amongst shellfish and its dissemination in the environment (Figure 38). Importantly, 

V. parahaemolyticus cells that grow on a surface have increased cytotoxicity and likely an 

elevated virulence potential (Gode-Potratz et al., 2011). Consequently, the release of 

explorer cells from swarmer colonies has the potential to spread hyper infectious bacteria 

and thus increase the likelihood of human infections. 

 

Figure 38: Development cycle of Vibrio parahaemolyticus. 

 

Altogether, this work shows that V. parahaemolyticus swarmer cells exploit the dynamic 

nature of the Min-system to regulate an asymmetric cell division in consequence to 

swarmer cell elongation. This results in the formation of two distinct sub-populations of 

swarmer cells and explorer cells within the swarming colony. It is clear that swarm colonies 

are complex structures that consists of distinct sub-populations of cells. Future work is 
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needed to further characterize the coordination between chromosome segregation and 

cell division in swarmer cells and how the utmost pole-proximal MinD node is almost 

always chosen as division site. Furthermore, the architecture of the swarm colony needs 

to be charachterized in order to understand how individual cells of the different 

sub-populations behave within the overall structure of the colony. 

We hope this work will act as a base to initiate more cell division studies that shed insight 

into division mechanisms in naturally occurring bacteria with deviant cell shapes or that 

display dimorphism, unlike the popularly investigated cell division model organisms. 
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4.1. Chemicals, equipment and software 

Reagents used (Table 1), kits (Table 2), software (Table 3) and equipments (Table 4) are 

listed below along their supplier and/or manufacturer. When available an identifier number 

is also provided. 

Table 1: Reagents 

Reagents Supplier Identifier 

Genetic reagents 

Restriction enzymes New England Biolabs 
(NEB) (Frankfurt a.M.) 

 

2-Log DNA Ladder (0.1-
10.0KB) 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: N3200S 

Color Pre-stained Protein 
Standard Broad Range (11-
245 KDA) 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: P7712S 

T4 Ligase New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: M0202L 

10X Buffer for T4 DNA 
Ligase with 10mM ATP 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: B0202S 

Q5 Hot Start High Fidelity 
DNA Polymerase 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: M0493S 

Q5 High GC Enhancer New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: B9028A 

Q5 Reaction buffer New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: B9027S 

Desoxyribonucleotide (dNTP) 
Solution Mix 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: N04475 

Alkaline Phosphatase Calf 
Intestinal (CIP) 

New England Biolabs 
(NEB) (Frankfurt a.M.) 

NEB Cat#: M0290L 

Antibody 

Living Colors A.v. 
Monoclonal Antibody (JL-8) 
(Mouse monoclonal anti-
GFP) 

Clontech Laboratories, 
Inc. (USA) 

Cat#: 632381 

Chemical compound, drug 

Antibiotics: Chloramphenicol; 
Ampicillin sodium salt;  
 
Kanamycin sulfate  

Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: 3886.3; k029.3; 0236.2 

Isopropyl β-D-1 
thiogalactopyranoside (IPTG) 

Peqlab (Erlangen) Nr.: 35-2030 

Difco Agar, Granulated BD Ref#: 214510 
LB-Medium (Luria/Miller) Carl Roth GmbH + Co 

KG (Karlsruhe) 
Art.-Nr: X968,3 

L(+)-Arabinose Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: 5118.3 

peqGOLD Universal Agarose Peqlab (Erlangen) Nr.: 35-1020 
Agarose NEEP Ultra-Quality Carl Roth GmbH + Co 

KG (Karlsruhe) 
Art.-Nr: 2267.3 
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D(+) Saccharose Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: 4621.1 

Bacto Yeast Extract BD Ref#: 212750 
Tryptone Carl Roth GmbH + Co 

KG (Karlsruhe) 
Carl Roth GmbH + Co KG 
(Karlsruhe) 

Instant Blue Expedeon (United 
Kingdom)  

 

EZ rich defined liquid 
medium 

EZRDM, VWR, Germany  

Gel loading dye purple 6X  New England Biolabs 
(NEB) (Frankfurt a.M.) 

#B7025S 

5-Bromo-4-Chloro-3-Indolyl-
ß-D-Galactopyranoside (X-
Gal) 

Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: 2315.4 

Materials   

96-well plates Greiner Bio-One GmbH, 
Frickenhausen 

 

Microscopy slides Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: 0656 

Cover slips Carl Roth GmbH + Co 
KG (Karlsruhe) 

Art.-Nr: H875 

Petri dish 92x16mm Sarstedt Cat#: 82.1472.001 

 

Table 2: Commercial kits and assays 

Name Manufacturer Identifier 

NucleoSpin Gel and PCR 
Clean-up kit 

Macherey-Nagel (Düren) Ref.: 740609.250 

NucleoSpin Plasmid Kit Macherey-Nagel (Düren) Ref.: 740588.250 
   

 

Table 3: Software and on-line resources   

Name Source/Reference Additional information 

MetaMorph v7.5 Molecular Devices 
(Union City, CA) 

 

SeqBuilder v12.3.1 DNASTAR Software for 
Life Scientists (Madison, 
WI) 

 

SeqMan Pro v12.3.1 DNASTAR Software for 
Life Scientists (Madison, 
WI) 

 

ImageJ-Fiji (Schindelin et al., 2012) http://rsbweb.nih.gov/ij 
R studio version 
3.0.1 

 http://www.rstudio.com/ 

GraphPad Prism 
version 6.07 

GraphPad Software (La 
Jolla CA) 

https://www.graphpad.com/ 

Customized script for 
cell sorting 

(Cameron et al., 2014b) http://github.com/ta-cameron/Cell-
Profiles 
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ggplot2 version 
0.9.3.1 

Hadley Wickham, 
Department of Statistics, 
Rice University 

http://ggplot2.org 

NIS-Elements 
Software AR 4.60.00 
(Nikon) 

NIS-Elements Software 
AR 4.60.00 (Nikon) 

 

STRING-known and 
predicted protein-
protein interactions  

(Jensen et al., 2009) http://string-db.org/ 

Oligo Calc: 
Oligonucleotide 
Properties Calculator 

(Kibbe, 2007) http://biotools.nubic.northwestern.edu 
/OligoCalc.html  

SMART: EMBL-
Heidelberg 
 

(Letunic & Bork, 2018) http://smart.embl-heidelberg.de/ 

 

Table 4: Essential equipment 

Application Device Manufacturer 

Electroporation MicroPulser electroporator Bio-rad (München)  
PCR Mastercycler nexus PCR 

System 
Eppendorf (Hamburg) 

Centrifugation Centrifuge 5424 and 5424R. 
Multifuge 1 S-R, Biofuge 
Pico17, multifuge X1R 

Eppendorf (Hamburg) 
Heraeus/Thermo 
Scientific (Dreieeich) 

Thermomixing Thermomixer compact  Eppendorf (Hamburg) 
DNA illumination and 
documentation 

E-BOX VX2 imaging system PeqLab (Eberhardzell) 

DNA illumination UVT_20 LE Herolab (Wiesloch) 
Protein electrophoresis Mini-PROTEAN 3 cell Bio-rad (München) 
Western blotting Transfer system from PeqLab PeqLab (Eberhardzell) 
Chemical-luminescence 
detection 

Luminescent image analyzer 
LAS-4000 

Fujifilm (Düsseldorf)  

Microscopy Ziess Axio Imager M1 
fluorescence microscope, 
Zeiss Axioplan 2 fluorescence 
microscope, Nikon eclipse Ti 
inverted microscope  
 

 

 

4.2. Media, buffers and solutions 

All media were sterilized by autoclaving at 121 °C for 20 min. Antibiotics and carbohydrates 

were filter-sterilized (pore size 0.2 μm or 0.45 µm; Sarstedt, Germany) and added to 

medium (at ~60 °C) at concentrations mentioned in Table 6. Standard buffers and 

solutions were prepared as described by Ausubel and Sambrook (Ausubel et al., 2002; 

Green & Sambrook D.W., 2012). Buffers and solutions used in specific experiments were 

described in the respective protocols. If needed, buffers and solutions were sterilized by 
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filtration (pore size 0.2 μm or 0.45 µm; Sarstedt, Germany) or by autoclaving at 121°C for 

20 min. 

Table 5: Media, buffers and solutions 

Media Components 

LB (lysogeny broth) medium 1.0% (w/v) 

0.5% (w/v) 

1.0% (w/v) 

Tryptone 

Yeast extract 

NaCl 

YPAD 2.0% (w/v) 

1.0% (w/v) 

2.0% (v/v) 

0.003% (v/v) 

2.0% (w/v) 

BactoPeptone 

Yeast extract 

Glucose 

Adeninehemisulphate 

Agar (for plates only) 

SD 0.67% (w/v) 

2.0% 

 

Yeast nitrogen base without amino 

acids 

Agar (for plates only) 

Dropout supplement 

 

Table 6: Concentrations of antibiotics used 

 

Antibiotics 

Final concentrations 

E. coli V. parahaemolyticus 

liquid media solid media liquid media solid media 

Ampicillin 100µg/µL 100µg/µL 100µg/µL 100µg/µL 

Kanamycin 50µg/µL 50µg/µL 50µg/µL 50µg/µL 

Chloramphinicol 20µg/µL 20µg/µL 5µg/µL 5µg/µL 

 

4.3. Microbiological Methods 

4.3.1. Bacterial growth conditions 

V. parahaemolyticus was grown at 37˚C in LB broth with shaking at 220 rpm, or on LB 

agar plates. Antibiotics were added when necessary (Table 6). All V. parahaemolyticus 

strains used in this work were derived from the wild-type strain V. parahaemolyticus RIMD 

2210633. Expression of genes under the control of arabinose promoter was induced with 

L-arabinose at 0.02% (w/v) concentration. E. coli was grown at 37 ˚C in LB with shaking 

at 220 rpm or on LB-agar plates. Antibiotics were supplemented to the final concentrations 

listed in Table 2. E. coli TOP10 (Invitrogen) or DH5αλpir chemically competent cells were 

used for general cloning purposes.  
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4.3.2. Strain storage 

Densely grown bacterial cultures were stored supplemented with 16% (v/v) DMSO 

(dimethylsulfoxide) at -80 °C. 

4.3.3. Growth curves 

V. parahaemolyticus strains were grown in LB to OD >2.0, and then diluted with LB media 

to 1:200. Growth was then monitored by measuring the OD600 at different time points for 

18 hours with three replicates per strain. 

4.3.4. Swarming motility assay of V. parahaemolyticus 

V. parahaemolyticus cells were inoculated in 5mL LB from a freshly streaked plate and 

grown to an OD600 of approximately 1.0. 1µL of this culture was spotted on swarm agar 

(40 g/L Difco Heart Infusion Agar (BD) supplemented with 4mM CaCl2 and 50mM 2, 2’-

bipyridyl (Sigma Aldrich)) Plates were then subsequently sealed and incubated overnight 

at 24oC.  

4.3.5. Yeast Two-Hybrid assay 

GAL4-based yeast two-hybrid system from Clontech was used as described by the 

manufacturers to analyze protein-protein interactions of the candidate genes. In GAL4 

based systems, a native or synthetic GAL UAS (upstream activating sequence) consensus 

sequence provides the binding site for the GAL4 DNA-BD (Binding Domain) thereby 

conferring regulated expression of reporter genes. The HIS3 reporter of AH109 (yeast 

strain) is tightly regulated by GAL1 promoter. The plasmids encoding fusions of gene of 

interest to the GAL4 activation domain and DNA binding domain were transformed to 

GAL4 Yeast reporter strain AH109 in which the entire HIS3 promoter is replaced by GAL1 

promoter (to ensure tight regulation of HIS3 reporter). The GAL4 DNA BD will be brought 

in interaction with the activation domain only when the two proteins fused to them interacts. 

This interaction results in activation of the HIS3 reporter, enabling the strain to grow on 

histidine deficient media. Thus growth of AH109 yeast strain on HIS- media is utilized as 

read out for positive protein-protein interaction (Egea-Cortines et al., 1999). 

4.4. Molecular cloning 

4.4.1. Isolation of chromosomal DNA 

V. parahaemolyticus strains grown on LB plates overnight were re-suspended in distilled 

water and boiled at 98oC for 10 minutes. The samples were then centrifuged at 10,000rpm 
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for 5 minutes and the supernatant (which is the genomic DNA) were transferred to fresh 

eppendorfs for downstream usage. 

4.4.2. Isolation of plasmid DNA 

Plasmid DNA was isolated using NucleoSpin Plasmid kit (Macherey-Nagel).according to 

the instruction provided by the manufacturer. The concentration of DNA was determined 

using Nanodrop 

4.4.3. Polymerase chain reaction (PCR) 

The specific amplification of DNA fragments was conducted using Taq DNA Polymerase 

(homemade) or Q5 (NewEngland BioLabs). The reaction mixtures and programs are listed 

in Table 7. Amplification was verified by agarose gel electrophoresis. The reaction 

products were purified using NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) 

Table 7: Standard PCR reaction 

Reagents Concentrations 

dNTPs 0.2mM 

Buffer 1 1× 

Buffer 2 1× 

Template 50-200ng 

Primer 1 0.5µM 

Primer 2 0.5µM 

Polymerase 0.5µL 

ddH2O To make up to 50 µL 

 

Colony PCR was performed using BioMix™ Red (Bioline, Germany). For colony PCR with 

E. coli, instead of DNA template the colony of interest was suspended in the PCR reaction 

mixture. For V. parahaemolyticus, genomic DNA was obtained by the method described 

earlier and was used a template in the reaction. Amplification was verified by agarose gel 

electrophoresis.  

4.4.4. Restriction digestion 

DNA digestion was performed by incubating 1-5 µg of DNA with selected restriction 

endonucleases (NEB, Germany; Fermentas, Canada) for 1-1.5 hours at 37 °C. 0.1 mg/ml 

bovine serum albumin (BSA; NEB, Germany) was supplemented if necessary. Similar 

procedure was also used to generate digested vector backbones. Digested products were 

further purified using NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) 
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4.4.5. Ligation 

DNA ligation was performed using T4 DNA ligase (New England BioLabs). In general, a 

mixture of digested insert DNA and recipient vector was incubated in 1:5 ratio with T4 DNA 

ligase and 10X Buffer for T4 DNA Ligase with 10mM ATP (New England BioLabs) at room 

temperature or 16oC for 1-2 hours. 

4.4.6. Detection of DNA by agarose gel electrophoresis 

DNA products were mixed with 16× DNA loading buffer (New England BioLabs) and 

separated in 1% agarose gels. The agarose gel was prepared in 0.5× TAE buffer (20 mM 

Tris/HCl, pH 8, 0.175 % acetic acid, 0.5 mM EDTA, pH 8) and supplemented with 0.005% 

ethidium bromide for visualization. A UV-transilluminator was used to detect DNA exposed 

to UV light. If necessary, DNA products of interest were excised from the gels for further 

purification. 

4.4.7. DNA sequencing 

DNA sequencing was performed by Eurofins MWG Operon (Germany). In general, 50-100 

ng of DNA products were provided along with suitable oligonucleotides. Sequencing 

results were analyzed using Vector NTI Advance™ 11 (Invitrogen, Germany) or 

DNASTAR Navigator. 

4.4.8. Transformation of cells 

The preparation of chemically competent E. coli cells: The overnight cultures of E. coli 

cells were diluted 1: 100 in 250mL LB medium. Cells were grown to an OD600 of 0.6-0.8 

and then incubated on ice for 10 min. Cells were then harvested at 4 °C, washed twice 

with ice cold TSS buffer. After centrifugation, the cells were resuspended in 8 ml of ice-

cold TSS buffer supplemented with 15% (v/v) glycerol. Aliquots of competent cells (100 µl 

each) were snap-frozen in liquid nitrogen and stored at -80 °C for further use. 

 

The transformation of chemically competent E. coli cells: The competent cells were 

mixed with ligation mixtures or plasmid DNA and incubated on ice for 30 min. A heat-shock 

was then applied for 2 minutes at 42 °C. Cells were then incubated again on ice for 5 min 

before mixing with 500 µl of LB or SOC medium. The cell suspension was then incubated 

at 37 °C for 1-2 hours with shaking and spread on LB agar plates supplemented with 

appropriate antibiotics. Plates were incubated at 37 °C until single colonies were visible. 



MATERIALS AND METHODS 

112 
 

The preparation of electrocompetent V. parahaemolyticus cells: A 5mL culture of the 

required strain was grown until dense. 1mL of this inoculum was then transferred to 200mL 

LB and incubated at 37°C until an OD of 1.0. Cells were incubated on ice for 10 min and 

the harvested at 4700rpm for 20 minutes at 4 °C, washed twice with 25mL ice cold 273 

mM sucrose solution (pH7.4, buffered with KOH). After centrifugation, the cells were 

resuspended in 400uL of same icecold 273 mM sucrose solution + 15% (v/v) glycerol. 

Aliquots of competent cells (100 µl each) were snap-frozen in liquid nitrogen and stored at 

-80 °C for further use. 

The transformation of electrocompetent V. parahaemolyticus cells:  2-5µL of the 

desired construct was mixed with a 50-100µL of electrocompetant V. parahaemolyticus 

cells,  transferred to a pre-cooled 0.2cm electroporation cuvette and incubated on ice for 

30 minutes. This was then electroporated at 2400V, 200Ω and 25µF in BioRad. The cells 

were then transferred to 1mL of LB and incubated at 37°C with shaking for 1 hour and 

plated in LB agar plates with required antibiotics. 

4.4.9. Generation of V. parahaemolyticus deletion strains 

Gene deletion was achieved by double homologous recombination. In general, plasmids 

for gene deletion were derived from the suicide vector pDM4 and used for transforming V. 

parahaemolyticus by conjugation. For this, the donor E.coli strain harboring the plasmid of 

interest and the recipient V. parahaemolyticus strain were grown to an OD of 0.5. 100µL 

of each were mixed together and 20µL of this was then spotted on LB agar plates. After 

incubating the plates for 4-6 hours or overnight, the spots were scrapped off and either 

resuspended in LB for dilution platting on LB+Amp+Cm plates or restreaked on 

LB+Amp+Cm agar plates and incubated overnight at 37°C. The colonies were restreaked 

on LB+Amp+Cm agar plates and incubated at 37°C. The single colonies thus obtained 

were the single crossovers of pDM4 in V. parahaemolyticus. The single crossovers were 

grown in LB+Amp+Cm broth for 5-6hours with shaking at 37°C. 50µL of this culture was 

then subcultured into LB with 10% sucrose and incubated with shaking at 20-24 hours. 

Dilution series (1-108) of this overnight culture were platted on freshly made 

LB+10%sucrose plates and incubated overnight at 30°C. The colonies thus obtained were 

patched onto LB+Amp and LB+Amp+Cm agar plates. Genomic DNA were extracted from 

those colonies sensitive to Cm were checked for deletion with PCR. The PCR positive 

colonies were restreaked on LB+Amp and incubated at 37°C. The single colonies were 

again checked for deletion using PCR. 

E. coli strains DH5αλpir and TOP10 were used for cloning. E. coli strain SM10λpir was 

used to transfer plasmid DNA by conjugation from E. coli to V. cholerae and V. 
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parahaemolyticus (Miller & Mekalanos, 1988). A comprehensive list of all strains used for 

this work can be found in Table 8. 

Table 8: Strains 

STRAINS DESCRIPTION/GENOTYPE REFERENCES 

E. coli DH5αλpir sup E44, ΔlacU169 (ΦlacZΔM15), recA1, 
endA1, hsdR17, thi-1, gyrA96, relA1, λpir 
phage lysogen 

 

E. coli SM10λpir KmR, thi-1, thr, leu, tonA, lacY, supE, 
recA::RP4-2-Tc::Mu, pir 

 

Saccharomyces 
cerevisiae AH109 

MATa, trp1-901, leu2-3, 112, ura3-52, 
his3-200, gal4∆, gal80Δ, LYS2 : : GAL1UAS-
GAL1TATA-HIS3, MEL1 GAL2UAS-GAL2TATA-
ADE2, URA3::MEL1UAS-MEL1TATA-lacZ 

Clontech 

Vibrio 
parahaemolyticus 
RIMD2210633 

Clinical isolate, wild-type (Makino et al., 2003) 

MZ01 ∆parC (Ringgaard et al., 2014) 
SM2 ∆parC ∆minCDE  This research 
SM3 ∆parB1 This research 
SM8 ∆minE This research 
SM9 ∆parB1 ∆slmA This research 
SM10 ∆parC ∆slmA This research 
SM11 ∆minCDE ∆slmA This research 
SM12 ∆minCDE ∆slmA ∆parC This research 
PM19 ∆minCDE This research 
PM27 ∆slmA This research 
PM29 ∆parA1 This research 
PM36 Ωvp3077-eyfp ( ParB1-eyfp) and 

Ωvpa1751-mcherry (ParB2-mcherry) in 
wildtype 

This research 

PM39 Ωvp3077-eyfp ( ParB1-eyfp) and 
Ωvpa1751-mcherry (ParB2-mcherry) in 
∆parA1 

This research 

AA1 parCG11V  A. Alvarado 
AA5 parCK15Q  A. Alvarado 
JH5 ∆lafK J. Heering 
CF31 PlafA::mCherry C. Freitas 
E. coli SM10λpir KmR, thi-1, thr, leu, tonA, lacY, supE, 

recA::RP4-2-Tc::Mu, pir 
 

E. coli DH5pir sup E44, ΔlacU169 (ΦlacZΔM15), recA1, 
endA1, hsdR17, thi-1, gyrA96, relA1, λpir 
phage lysogen 

 

E. coli BL21 
λDE3 

F- ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3) 
pLysS(cmR) 

 

 

4.4.10. Plasmids and plasmid construction  

The list of all plasmids and primers used in this study is given in Table 9 and Table 10 

respectively.   Relevant information is also provided.  



MATERIALS AND METHODS 

114 
 

Table 9: Plasmids 

PLASMIDS DESCRIPTION/GENOTYPE REFERENCES 

pBAD33 Cloning vector (Guzman et al., 1995) 
pDM4 Suicide vector for gene deletions and 

insertions 
(Donnenberg & Kaper, 
1991) 

pGAD424 GAL4(768-881) AD, LEU2 ampr Clontech 
pGBT9 GAL4(1-147) DNA-BD, TRP1, ampr Clontech 
pMF390 PBAD::yfp (Yamaichi et al., 2007b) 
pPM1 PBAD::yfp-vp0464 This research 
pPM6 PBAD::yfp-vp3077 This research 
pPM8 PBAD::yfp-vpa1751 This research 
pPM17 PT7::vp3077-6HIS This research 
pPM18 PT7::vpa1751-6HIS This research 
pPM34 Vector for replacing parC at its native 

site for parCK15Q  
This research 

pPM35 Vector for replacing parC at its native 
site for parCG11V  

This research 

pPM55 PBAD::yfp-vp0873 This research 
pPM56 Vector for deletion of minCDE 

(Δvp0872 Δvp0873 Δvp0874) 
This research 

pPM72 Vector for deletion of parA1 
(Δvp3078) 

This research 

pPM68 Vector for deletion of slmA 
(Δvp0810) 

This research 

pPM75 Vector for chromosomal integration of 
vp3077-eyfp and vpa1751-mCherry 

This research 

pSM8 PBAD::yfp-vp1105 This research 
pSM10 PBAD::cfp-vpa1751:yfp-vp3077 This research 
pSM52 Vector for deletion of parB1 

(Δvp3077) 
This research 

pSM57 pGAD424-vp0464 This research 
pSM58 pGBT9-vp0464 This research 
pSM59 pGAD424-vp2227 This research 
pSM60 pGBT9-vp2227 This research 
pCF048 Plasmid for integration of 

PlafA::mCherry on the chromosome 
This research 

pSR1035 PBAD::yfp-vp2227 (Ringgaard et al., 2011) 
pSR1084 PBAD::yfp-vp2227K15Q (Ringgaard et al., 2014) 
pSR1089 PBAD::yfp-vp2227G11V (Ringgaard et al., 2014) 
pSR1231 PBAD::PAmCherry-vp2227 This research 

 

Table 10: Primers 

PRIMER NAMES SEQUENCES 

VP0464-1-cw 
CCCCCTGTACAAGGTCCAGGGCCCATCTTTTGAACCGATGATGGA
AATGTCTGA 

VP0464-1-ccw CCCCCGCATGCTTAATCAGCCTGACGACGTAAAAATG 

VP3077-1-cw 
CCCCC TGTACA AG GTCCAGGGCCCATCT 
TCTAAGCGTGGTCTAGGAAAAGG 

VP3077-1-ccw CCCCC GCATGC CTAGGCCTCTAGCTTGGCAATTA 
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VPA1751-1-cw 
CCCCC TGTACA AG GTCCAGGGCCCATCT 
GCTTTGAAAACGTCTGAATTAAACGC 

VPA1751-1-ccw CCCCC AAGCTT TTATTGCATTTTGCTTTGAACAAAAGTAA 

VP1105-cw 
CCCCC TCTAGA GTCCAGGGCCCATCT ATG TTC AAA GAG AAC 
GCA AAG AAA GTC 

VP1105-ccw CCCCC GCATGC TTA ATC TTT TGG TGG CGC TGG 

VP3077 del-a CCCCC TCTAGA GGA AAC CCC ATT TGA TCA AGT G 

VP3077 del-b ACC ACG CTT AGA CAT GGA TTG 

VP3077 del-c 
CAA TCC ATG TCT AAG CGT GGT ATG AGA TAA TTG ATT TAG 
GTC AAT TAA 

VP3077 del-d CCCCC TCTAGA TGG CGC AGC CAT AAC TCA TC 

Y2H ParC 
cw_pGAD 

CAAACCCAAAAAAAGAGATCGAAGCCGCGATGATCGTTTGGAGTG
TAGCT 

Y2H ParC 
ccw_pGAD ACGGATCCCCGGGAATTTTACTGCTCATCGAACGCTAAC 

Y2H ParC 
cw_pGBT9 

GTTGACTGTATCGCCGGAAGCCGCGATGATCGTTTGGAGTGTAGC
T 

Y2H FtsZ 
cw_pGAD 

CAAACCCAAAAAAAGAGATCGAAGCCGCGATGTTTGAACCGATGA
TGGAA 

Y2H FtsZ 
ccw_pGAD ACGGATCCCCGGGAATTTTAATCAGCCTGACGACGTAA 

Y2H FtsZ 
cw_pGBT9 

GTTGACTGTATCGCCGGAAGCCGCGATGTTTGAACCGATGATGGA
A 

Y2H FtsZ 
ccw_pGBT9 ACGGATCCCCGGGAATTTTAATCAGCCTGACGACGTAA 

vp0873-1-cw 
CCCCCTCTAGAGACATCCTCGAGCTCATGGCACGCATTATTGTAG
TAACG 

vp0873-1-ccw CCCCCGCATGCCTAGCCTCCGAACAGTCGTTTAA 

vp0872-74del-a CCCCCCTCGAGAGTGCTTTGGCTTGCTTTACTTTC 

vp0872-74del-b TTTAAGGTCTGGTGAATGGGTCAT 

vp0872-74del-c 
ATGACCCATTCACCAGACCTTAAAGTGAAACTGCCTGACGACGAG
A 

vp0872-74del-d CCCCCCTCGAGAGACGTTCACTACTTGTTGCCAC 

vp0872-74del-a CCCCCTCTAGATGAAGATATTGCACGTAACCGCG 

vp0872-74del-b TTGGTTAGCTACACTCCAAACGAT 

vp0872-74del-cc AGGTTAGCGTTCGATGAGCAGTAA 

vp0872-74del-d CCCCCTCTAGATCTTTGCCGTGCCTTC 

vp2227-PMins-cw ATGATCGTTTGGAGTGTAGCTAAC 

vp2227-PMins-ccw TTACTGCTCATCGAACGCTAACC 

del-vp0180-a CCCACTAGTGACGCGTACTATGCACTAGCAAACGCTGCC 

del-vp0180-b1 TAGTTACTTCCTTTCAAAATAC 

del-vp0180-c1 GTATTTTGAAAGGAAGTAACTAAGATTATGAGTAAAGACAAATAC 

del-vp0180-d CGATACCGTCGACCCTCGAGTTGTACAAGCGTCATCAATGG 
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VP3077-2-cw CCCCC CCATGG CA ATGTCTAAGCGTGGTCTAGGAAAAG 

VP3077-2-ccw CCCCC CTCGAG GGCCTCTAGCTTGGCAATTAGT 

VPA1751-2-cw CCCCC CCATGG CA ATGGCTTTGAAAACGTCTGAATTAAAC 

VPA1751-2-ccw CCCCC CTCGAG TTGCATTTTGCTTTGAACAAAAGTAAGG 

VPA1751-a-cw CCCCC TCTAGA ATGGCTTTGAAAACGTCTGAAT 

vpa 1751 to 
mcherry-ccw 

AT CCT CCT CGC CCT TGC TCA CCA T GACATCCTCGAGCTC 
TTGCATTTTGCTTTGAACAAAAGT 

mcherry-cw ATGGTGAGCAAGGGCGAGGA 

mcherry- ccw with 
STOP TCA CTTGTACAGCTCGTCCATGCCG 

mCherry to 
downstr. of 
vpa1751 

CGGCATGGACGAGCTGTACAAG TGA 
AATTAAGCTTTAACGATAACC 

ins-eyfp-C-term-
ParB2 ccw CCCCC TCTAGA GCG GTA AGT AAT ATA CGC AGT GG 

parS1-1-cw-Cy3 ACAACTCTTCAAACCGATCAACAC 

parS1-1-ccw TACTTTGATGCCTAAACGACAATC 

parS2-123-cw-Cy3 AACATTGAACTTTGTCGGTCATGAG 

parS2-123-ccw AATTTGGATTATCGGGAAGAAAGC 

nc-Vp-S-cw-Cy5 ATAAAGGCGTGTTGAGAGTAGG 

nc-Vp-S-ccw TTAGCAAGCTCGGTTGTGACATC 

VP0984-ins-Prom-
AQUA-cw-a AAGCTTGCATGCCTGCAGGTCGACTAGCCGTTTACCAGGTAAACC 

ins-Pvpa1548-
VP0984 ccw-b 

TTT TAG CGT TAG TTT CCG ATG TGC TAAA GGA GCC TTT TTA 
TTA ACT GC 

VP0985-mCherry-
STOP-cw-g 

TGGTGGTATGGACGAACTATACAAATAACATGGAGCCTTTGGCTTT
AAGG 

VP0985-ins-Prom-
AQUA-ccw-h AGCTCGGTACCCGGGGATCCTCTAGGATGGGCAACGTTCTGGCA 

VP0984-ins-
Pvpa1548-cw-c TGCAGTTAATAAAAAGGCTCCTTTAGCACATCGGAAACTAACGC 

Pvpa1548-
mCherry-Ccw-d AGTGATAAACTAAGGAGACTAAG 

mCherry cw-e ATGGTTTCTAAAGGTGAAGAAG 

mCherry-VP-
STOP-ccw-f TTATTTGTATAGTTCGTCCATA 

 

Plasmid pPM1 was constructed by PCR amplification of the vp0464 gene using primers 

VP0464-1-cw / VP0464-1-ccw and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. The PCR product was digested with BsrGI and SphI and 

ligated into the equivalent sites of plasmid pMF390 resulting in plasmid pPM1. 
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Plasmid pPM17 was constructed by PCR amplification of the vp3077 gene using primers 

VP3077-2-cw / VP3077-2-ccw and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. The PCR product was digested with NcoI and XhoI and ligated 

into the equivalent sites of plasmid pET28b+ resulting in plasmid pPM17. 

Plasmid pPM18 was constructed by PCR amplification of the vpa1751 gene using primers 

VPA1751-2-cw / VPA1751-2-ccw and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. The PCR product was digested with NcoI and XhoI and ligated 

into the equivalent sites of plasmid pET28b+ resulting in plasmid pPM18. 

Plasmid pPM55 was constructed by PCR amplification of the vp0873 gene using primers 

VP0873-1-cw / VP0873-1-ccw and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. The PCR product was digested with XbaI and SphI and ligated 

into the equivalent sites of plasmid pMF390 resulting in plasmid pPM55. 

Plasmid pPM75 was constructed by PCR amplification of the vpa1751-linker using primers 

VPA1751-a-cw / vpa 1751 to mCherry-ccw and chromosomal DNA, amplification of 

mCherry+STOP codon using primers mcherry-cw / mcherry- ccw with STOP and pJH037 

as template and amplification of downstream region of vpa1751 using primers mcherry to 

downstr. of vpa1751 / ins-eyfp-C-term-ParB2 ccw and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template . The three PCR products were then fused 

in a fourth PCR reaction using primers VPA1751-a-cw / ins-eyfp-C-term-ParB2 ccw and 

the products of the previous PCR reactions as templates. The resulted product was 

digested with XbaI and ligated into the equivalent sites of plasmid pDM4 resulting in 

plasmid pPM75. 

Plasmid pSM008 was constructed by PCR amplification of the vp1105 gene using primers 

VP1105-cw / VP1105-ccw and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. The PCR product was digested with XbaI and SphI and ligated 

into the equivalent sites of plasmid pMF390 resulting in plasmid pSM008. 

Plasmid pSM57 was constructed by PCR amplification of the vp0464 gene using primers 

Y2H FtsZ cw_pGAD / Y2H FtsZ ccw_pGAD and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 

pGAD424 digested by EcoR1 in the presence of SLiCE extract (Zhang et al., 2012) 

resulting in plasmid pSM57 through Gibson assembly. 

Plasmid pSM58 was constructed by PCR amplification of the vp0464 gene using primers 

Y2H FtsZ cw_pGBT9/ Y2H FtsZ ccw_pGBT9 and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 
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pGBT9 digested by EcoR1 in the presence of SLiCE extract resulting in plasmid pSM58 

through Gibson assembly. 

Plasmid pSM59 was constructed by PCR amplification of the vp2227 gene using primers 

Y2H ParC cw_pGAD / Y2H ParC ccw_pGAD and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 

pGAD424 digested by EcoR1 in the presence of SLiCE extract resulting in plasmid pSM59 

through Gibson assembly. 

Plasmid pSM60 was constructed by PCR amplification of the vp2227 gene using primers 

Y2H ParC cw_pGBT9/ Y2H ParC ccw_pGAD and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 

pGAD424 digested by EcoR1 in the presence of SLiCE extract resulting in plasmid pSM60 

through Gibson assembly. 

Plasmid pSM61 was constructed by PCR amplification of the vp1105 gene using primers 

Y2H FtsK cw_pGAD / Y2H FtsK ccw_pGAD and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 

pGAD424 digested by EcoR1 in the presence of SLICE extract resulting in plasmid pSM61 

through Gibson assembly. 

Plasmid pSM62 was constructed by PCR amplification of the vp1105 gene using primers 

Y2H FtsK cw_pGBT9/ Y2H FtsK ccw_pGAD and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. The PCR product was mixed with plasmid 

pGAD424 digested by EcoR1 in the presence of SLiCE extract resulting in plasmid pSM62 

through Gibson assembly. 

Plasmid pPM56 was constructed by PCR amplification of the flanking regions of vp0872-

vp0874 operon using primers vp0872-74del-a / vp0872-74del-b and vp0872-74del-c / 

vp0872-74del-d and chromosomal DNA from V. parahaemolyticus RIMD2210633 as 

template. The PCR product was digested with XhoI and ligated into the equivalent sites of 

plasmid pDM4 resulting in plasmid pPM56. 

Plasmid pPM34 was constructed by PCR amplification of the flanking regions of 

vp2227gene using primers vp2227-del-a / vp2227-del-b and vp2227-del-cc / vp2227-del-

d , with chromosomal DNA from V. parahaemolyticus RIMD2210633 as template and 

primers vp2227-PM-ins-cw / vp2227-PM-ins-ccw with pSR1084 (plasmid with 

vp2227K15Q point mutation) as template . The final PCR product was digested with XbaI 

and ligated into the equivalent sites of plasmid pDM4 resulting in plasmid pPM34. 
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Plasmid pPM35 was constructed by PCR amplification of the flanking regions of 

vp2227gene using primers vp2227-del-a / vp2227-del-b and vp2227-del-cc / vp2227-del-

d, with chromosomal DNA from V. parahaemolyticus RIMD2210633 as template and 

primers vp2227-PM-ins-cw / vp2227-PM-ins-ccw with pSR1089 (plasmid with 

vp2227G11V point mutation) as template. The final PCR product was digested with XbaI 

and ligated into the equivalent sites of plasmid pDM4 resulting in plasmid pPM35. 

Plasmid pPM068 was constructed by amplification of the flanking regions of gene vp0180 

(slmA) using primers del-vp0180-a / del-vp0180-b1 and del-vp0180-c1 / del-vp0180-d and 

chromosomal DNA from V. parahaemolyticus RIMD2210633 as template. In a third PCR 

reaction the two products were fused using primers del-vp0180-a / del-vp0180-d and 

products of the first two PCR reactions as template. The final PCR product was inserted 

into plasmid pDM4 resulting in plasmid pPM068. 

Plasmid pPM75 was constructed by PCR amplification of the vpa1751-linker using primers 

VPA1751-a-cw / vpa 1751 to mCherry-ccw and chromosomal DNA, amplification of 

mCherry+STOP codon using primers mcherry-cw / mcherry- ccw with STOP and pJH037 

as template and amplification of downstream region of vpa1751 using primers mcherry to 

downstr. of vpa1751 / ins-eyfp-C-term-ParB2 ccw and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template . The three PCR products were then fused 

in a fourth PCR reaction using primers VPA1751-a-cw / ins-eyfp-C-term-ParB2 ccw and 

the products of the previous PCR reactions as templates. The resulted product was 

digested with XbaI and ligated into the equivalent sites of plasmid pDM4 resulting in 

plasmid pPM75. 

Plasmid pCF048 was constructed by amplification of the intergenic region of gene vp0984 

and vp0985, amplification of the promotor region of vpa1548 (lafA) and amplification of 

mCherry V. parahaemolyticus codon optimized sequence. Amplification of the intergenic 

region of gene vp0984 and vp0985 was performed using the pair of primers VP0984-ins-

Prom-AQUA-cw-a/ ins-Pvpa1548-VP0984 ccw-b and VP0985-mCherry-STOP-cw-g/ 

VP0985-ins-Prom-AQUA-ccw-h, respectively, and chromosomal DNA from V. 

parahaemolyticus RIMD2210633 as template. Amplification of the promotor region of 

vpa1548 (lafA) was obtained using the pair of primers VP0984-ins-Pvpa1548-cw-c / 

Pvpa1548-mCherry-Ccw-d and chromosomal DNA from V. parahaemolyticus 

RIMD2210633 as template. Amplification of mCherry V. parahaemolyticus codon 

optimized sequence was performed using primers mCherry cw-e / mCherry-VP-STOP-

ccw-f. In a fifth PCR reaction the first product from intergenic region of vp0984/vp0985 was 

fused to the promotor of vpa1548, using primers VP0984-ins-Prom AQUA cw-a / 
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Pvpa1548-mCherry-Ccw-d and the products of the PCR reactions as template. In a sixth 

PCR reaction the mCherry product was fused to the second product from intergenic region 

of vp0984/vp0985, using primers mCherry cw-e / VP0985-ins-Prom-AQUA-ccw-h and the 

products of the PCR reactions as template. In a final PCR reaction the products of both 

fifth and sixth PCR reactions were fused using primers VP0984-ins-Prom AQUA cw-a 

VP0985-ins-Prom-AQUA-ccw-h and the products of the fifth and sixth PCR reactions as 

template. The final PCR product was inserted into plasmid pJH081 (pDM4 derivative) 

resulting in plasmid pCF041. 

4.5. Microscopic methods 

4.5.1. Nucleoid staining 

100µL V. parahaemolyticus swimmer cells grown to required OD were incubated with 0.5 

µg/ml 4', 6-diamidino-2-phenylindole (DAPI) for 5 min in the dark with shaking at 37 °C. 

The swarmer cells grown on HI agar plates were cut out and imprinted on microscopy 

agarose pad spotted with 10µL of 0.05 µg/ml DAPI and incubated for 2 minutes. Stained 

samples were then processed for further imaging. 

4.5.2. Fluorescent Microscopy 

For imaging of swimmer cells five milliliters culture of V. parahaemolyticus swimmer cells 

harboring the relevant plasmid was grown in LB medium to OD600 ≈ 0.1 at which 

expression of fluorescent fusion proteins was induced by addition of L-arabinose to a final 

concentration of 0.2% w/v. The cultures were incubated for an additional 2 hours. Cells 

were then mounted on 1% agarose in PBS buffer (containing 10% LB medium) on 

microscope slides, and microscopy was performed. Same conditions were used for time-

lapse microscopy. 

For imaging of swarmer cells, a culture of swimmer cells was grown in LB to an OD600 ≈ 

0.1 and subsequently spotted on swarm agar additionally supplemented with 0.5% w/v L-

arabinose. The plates were then incubated overnight at 24oC. The edge of the swarm 

colony was excised from the swarm agar, imprinted on 1 % agarose in PBS on microscopy 

slide and mounted with cover slip. 

All the microscopy was performed using Nikon eclipse Ti inverted Andor spinning-disc 

confocal microscope equipped with a 100x lens and an Andor Zyla sCMOS cooled camera 

and an Andor FRAPPA system. Microscopy images were analyzed using ImageJ imaging 

software (http://rsbweb.nih.gov/ij) and Metamorph Offline (version 7.7.5.0, Molecular 

Devices). 
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FRAP and photoactivation were performed using the Andor FRAPPA system. Cells were 

treated and mounted on agarose pads as described for time-lapse fluorescence 

microscopy. For FRAP experiments, areas of interest were bleached with five pulses using 

a 515-nm laser at 7% intensity. For photoactivation, a point of interest was activated with 

a 9 second pulse using a 405-nm laser at 9 % intensity. 

4.5.3. Image analysis 

Images generated using Nikon NIS-Elements AR were first separated into single channels 

using Fiji/ImageJ 1.49j10 and saved as tiff images. DIC and the corresponding fluorescent 

channel were loaded in MetaMorph Offline (version 7.7.5.0, Molecular Devices) for 

analysis. An overlay of both channels was generated and the cells were marked using the 

Multi-line tool. The regions were then transferred to the fluorescent channel image. 

Distances of foci from the cell poles in V. parahaemolyticus cells were enumerated by 

hand. These measurements were then plotted in Microsoft Excel.  

In generation of demographs the fluorescence intensity profiles of cells were measured in 

Fiji/ImageJ, version 1.49j10. The generated data was then processed in R (version 3.0.1; 

(R Development Core Team, 2008)) with a script (Cameron et al., 2014a) that sorts cells 

by length and normalizes the generated intensity profiles as an average of each cell’s 

fluorescence. The ggplot2 package (version 1.0.0; (Wickham, 2009)) was used to produce 

the demographs. For demographic analysis three independent experiments were 

performed and for each experiment the localization pattern of YFP-FtsZ or YFP-ParC was 

determined in a total of 200-300 cells. The data for each experiment was pooled in 

generation of the demograph, resulting in the fluorescence profile of a total of 600-900 

cells displayed in each demograph. 

The distance of division sites to the cell pole was enumerated by hand; the distance of 

visible invaginations transverse to the cell length in the DIC channel was measured and 

plotted as a function of cell length. 

For calculation of the percentage of cells with distinct FtsZ localization patterns, three 

independent experiments were performed and for each experiment the localization pattern 

of FtsZ was determined in a total of 200-300 cells. The average percentage of the three 

experiments was then calculated for each FtsZ localization pattern and plotted as stacked 

bar-graphs including error bars depicting the SEM. The percentage of mini-cells in a 

population was determined the same way. 
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Swarm colonies for stereomicroscopy was prepared as described above. 

Stereomicoscopy was carried out using a Leica M205 FA stereomicroscope equipped with 

a Hamamatsu ORCA-Flash 4.0 digital camera C11440. 

In order to measure expression of mCherry from the lafA promoter (PlafA), the gene 

encoding mCherry was translationally fused to PlafA. The fusion construct was then 

integrated into the intergenic region between vp0984 and vp0985 on the V. 

parahaemolyticus chromosome, resulting in strain CF31 (PlafA::mCherry). CF31 cells from 

swarm-colony flares or planktonic cells from liquid culture (grown in LB to OD600 ~ 0.5) 

were then analyzed by fluorescence microscopy to test for expression of mCherry protein. 

The average fluorescence intensity of swarmer and planktonic cells was then measured 

and correlated with cell length. The average intensity was plotted with error bars indicating 

the standard-error-mean (SEM).   

For the analysis of localization of ParB1 and ParB2, images generated using Nikon NIS-

Elements AR and Zeiss Axio Imager were first separated into single channels using 

Fiji/ImageJ 1.49j10 and saved as tiff images. DIC and the corresponding fluorescent 

channel were loaded in MetaMorph Offline (version 7.7.5.0, Molecular Devices) for 

analysis. An overlay of both channels was generated and the cells were marked using 

the Multi-line tool. The regions were then transferred to the fluorescent channel image. 

Distances of foci from the cell poles in V. parahaemolyticus cells were enumerated by 

hand. These measurements were sorted on increasing cell lengths. The average position 

of each foci for every 0.5µm of the cell lengths were calculated and the distance of foci 

from the cell pole were plotted as a function of cell length in Microsoft Excel. 

To plot the number of ParB1 and ParB2 foci as a function of cell length, the total number 

of foci in each cell were counted and plotted against corresponding cell lengths in 

Microsoft Excel. 

4.5.4. Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was performed to check the mini-cell formation 

in V. parahaemolyticus deletion strains in comparison to wildtype. The cells of interest 

were mounted on an electron microscopy (EM) grid, fixed and stained using the negative 

stain method with uranyl acetate. In brief, uranyl acetate stock solution was prepared by 

solving 4 % (w/v) uranyl acetate in ddH2O. This solution was diluted to 2 % with ddH2O. 

2 % uranyl acetate solution was spun down prior to usage for 10 min at 20000 g at room 

temperature. Uranyl acetate solution was stored at room temperature in the dark for 

several months. For fixation and negative staining of the cells, 10µL of the culture was 
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mounted on a charged EM grid and incubated for 3 minutes. The excess liquid was blotted 

out from the grid by touching the grid vertically on a Whatman paper. Grid was washed 

twice with ddH2O and once with 1 % Uranyl acetate solution with the same technique. 

Then 10µL of 1% uranyl acetate was applied on the grid for 1 minutes and dried by blotting. 

This was then followed by washing with ddH2O and subsequent drying. The finished grids 

were stored in a grid holder for several months at room temperature. Electron microscopy 

was performed with a JEM-1400 Plus (Jeol).  

4.6. Biochemical methods 

4.6.1. Protein detection 

SDS-PAGE (SDS-Polyacrylamide gel electrophoresis) was used for the separation of 

proteins (Laemmli, 1970). Protein samples of cell lysates were obtained as follows: V. 

parahaemolyticus cells were harvested at 9000 rpm and 4 °C for 10 min. The cells were 

then resuspended in 2× SDS (sodium dodecyl sulphate) sample buffer. The suspension 

was then heated at 95 °C for 10 minutes. Protein samples from biochemical assays were 

diluted with SDS sample buffer and heated at 95 °C for 10 min. Protein samples were then 

loaded to an SDS gel consisting of a 5% stacking gel and 11% resolving gel (Table 11), 

along with a molecular mass marker (Color Prestained Protein Standard Broad Range, 

NewEngland BioLabs). Proteins were separated at 150-165V in SDS running buffer (TGS 

buffer from Bio-Rad), using a Bio-Rad MiniPROTEAN 3 Cell or MiniPROTEAN TetraCell. 

Proteins separated by SDS-PAGE were stained with Instant BlueTM (Expedeon, UK) for 10 

minutes. The composition for the buffers used for SDS-PAGE are listed in Table 12. 

Table 11: Composition of SDS-PAGE gels. 

Reagents 11% Resolving gel (10mL) 5% Stacking gel (5mL) 

Resolving gel buffer 3.8mL - 

Stacking gel buffer - 2.8mL 

30% Acrylamide 2.5mL 1.25mL 

ddH2O 3.7mL 825µL 

TEMED 80µL 50µL 

10% APS 6µL 3.75µL 

 

Table 12: Composition of SDS-PAGE buffers. 

Buffer Composition 

Resolving gel buffer 1.5M Tris-HCl pH 8.8 

0.4% (w/v) SDS 

Stacking gel buffer 1.5M Tris-HCl pH 6.8 
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0.4% (w/v) SDS 

2× SDS sample buffer 120mM Tris pH 6.8 

20% (w/v) glycerol 

4% (w/v) SDS 

0.02% bromophenol blue 

 

4.6.2. Immunoblot analysis 

Immunoblot analysis was performed to detect proteins of interest with specific antibodies. 

First proteins from cell lysates or samples from biochemical assays were separated by 

SDS-PAGE as described earlier. Proteins were transferred to a methanol-activated 0.2 µm 

PVDF membrane (GE healthcare Europe GmbH) using the semi-dry Trans-Blot TurboTM 

Transfer System (BioRad, München) with a buffer containing 300 mM glycine and 300 mM 

Tris base with a pH around 9-10. Transfer was performed using 1.3 A, 25 V for 7 minutes.  

Membranes were transferred into a clean plastic container and blocked for 1 hour shaking 

at room temperature in 5 % dried non-fat milk powder (w/v) in 1×TBST (50 mM Tris-HCl 

pH 7.5; 150 mM NaCl, 0.1% (v/v) Tween20). After blocking the membrane, primary 

antibody was added to the blot in 1 % dried non-fat milk powder (w/v) prepared in 1 x TBS 

at the corresponding dilution (Table 13) and incubated overnight, shaking at 4 °C. After 

washing 3 times with 1× TBST (50 mM Tris-HCl pH 7.5; 150 mM NaCl; 0.1 % (v/v) 

Tween20) the horseradish peroxidase-coupled α-rabbit/ α-mouse immunoglobulin G 

secondary antibody was applied to the blot at a given dilution in 1% dried non-fat milk 

powder (w/v) in 1× TBS for 1 hour at room-temperature shaking. The membrane was 

washed again thrice with 1× TBST.  

The blot was then developed with the LuminataTM Forte Western HRP Substrate (Millipore 

Merck, Schwalbach) and visualized with the luminescent image analyzer LAS-4000 

(Fujifilm, Düsseldorf). FtsZ specific primary antibodies was produced by Eurogentec 

(Seraing, Belgium), using rabbits as production host and YFP specific antibody was from 

Clotech. 

Table 13: Antibodies used for immunoblot analysis 

Antibodies Dilution 

α-FtsZ 1:25,000 

α-YFP (JL-8) 1:4,000 

Goat α-rabbit IgG 1:15,000 

Sheep α-mouse IgG 1:10,000 
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4.6.3. Protein purification of ParB1 and ParB2 

C-terminal 6HIS tagged ParB1 and ParB2 were purified from pPM17 and pPM18 

respectively. Both ParB1 and ParB2 were expressed individually in BL21 λDE3-RIL cells 

grown in 100mL LB with 50 µg/mL Kanamycin and 34 µg/mL Chloramphinicol at 37oC and 

incubated to an OD of 0.5. Expression was induced by adding IPTG to 0.5mM and growing 

the cells at 37oC for 2hours. The harvested cells were pelleted and resuspended in 30mL 

lysis buffer (300mM KCl, 50mM KH2PO4, 5mM imidazol, 3mM DTT, pH=7.5) and lysed by 

French press. The resulting extract was centrifuged to pellet cell debris and membranes. 

The clarified supernatant was then loaded onto 1mL Bio-scale Mini Profinity IMAC 

cartridge (Biorad) in PROFINIA-system (Biorad). The column was washed with 6mL wash 

buffer (300mM KCl, 50mM KH2PO4, 10mM imidazol, 3mM DTT, pH=7.5) and eluted in 

4mL elution buffer (300mM KCl, 50mM KH2PO4, 250mM imidazol, 3mM DTT, pH=7.5). 

The elute was then dialyzed into 100mM Tris, 250mM NaCl, 1mM MgCl2, 10% Glycerol, 

250mM KCl, 3mM DTT, pH=7.5 at 4oC.  

4.6.4. Electron Mobility Shift Assay 

Cy3- and Cy5-endlabelled PCR fragments were used throughout and were obtained by 

using either a 5’-Cy3 or 5’Cy5 end labelled oligonucleotide in a PCR reaction with 

additional oligonucleotide designed to obtain the construct of interest. The reaction mixture 

containing water, salmon sperm DNA, reaction buffer (100mM Tris, 250mM NaCl, 1mM 

MgCl2, 10% Glycerol, 250mM KCl, 3mM DTT, pH=7.5), purified DNA and varying 

concentrations of proteins (0μM to 5.6 μM) were incubated for 15 minutes at room 

temperature. After incubation, glycerol was added to a concentration of 5% and reactions 

were analyzed by electrophoresis on a 0.5X TBE, 5% polyacrylamide gel in 1X TBE buffer 

(0.89M Tris-base, 0.89M boric acid, 0.02 M EDTA, pH 8.3) at 125V for 2 hours. A 

concentration of 5nM DNA fragments were used throughout. The gel was scanned on a 

Typhoon Trio instrument. 

4.6.5. Co-Immunoprecipitation 

V. parahaemolyticus cells harboring the required plasmids for expression of YFP, YFP-

FtsZ, and YFP-ParC respectively, were grown to an OD600 of 1.0 at 37oC in 200mL LB 

containing Choramphenicol at 5 µg/mL and 0.2 % w/v L-arabinose. Subsequently, 2% 

formaldehyde was added to the cultures, which were incubated additional 50 minutes at 

30oC. This was followed by an addition of Glycine to a final concentration of 0.2M (Glycine 

stock solution of 2 M) and the cultures were incubated additional 15 minutes. One milliliter 

of each was then collected to check for induction of tagged proteins. The rest of the 
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cultures were harvested, washed twice with cold PBS and subsequently resuspended in 

10mL lysis buffer (50mM Tris-HCl, 50mM KCl, pH = 8.0). The cells were disrupted by bead 

beating. The lysed samples were further centrifuged at 8000 rpm for 20 minutes and the 

supernatant was collected. Subsequently, 100 µL of GFP-Trap beads (Chromotek), 

equilibrated in lysis buffer was added to the supernatant of each sample, which were then 

incubated at 4oC overnight. Beads were collected by centrifugation at 8000 rpm for 15 

minutes at 4oC, washed twice with 1 mL cold lysis buffer and resuspended in 50 µL of lysis 

buffer and 50 µL of 2× SDS sample loading buffer. The samples were boiled at 95oC for 

10minutes and centrifuged. The supernatants were used for SDS-PAGE and subsequent 

western blotting. 

4.6.6. Liquid Chromatography-Mass Spectrometry (LC-MS) 

Sample preparation for LC-MS 

Planktonic cells were grown in 20 mL LB to an OD600 of 0.6. To perform aztreonam 

treatment, planktonic cells were grown to an OD600 of 0.5 and aztreonam was added to 

a final concentration of 60 µg/mL and cell were incubated for an additional hour at 37 oC. 

Cells were then harvested. The swarmer cells from swarm flares were collected by flushing 

the periphery of the swarm colony with water. Subsequently the liquid was collected and 

swarmer cells harvested by centrifugation. The cell pellets from all samples were washed 

with water. The final pellet was then resuspended in lysis buffer (1 % Sodium lauryl 

sulphate in 0.1 M NH4HCO3) and boiled for 5 minutes. Following ultrasonification (2x20 

seconds) and a short centrifugation spin, the samples were incubated at 90 oC and shaking 

for 15 minutes. A 40X dilution of Tris carboxyethyl phosphine (TCEP) was added to the 

sample and incubated again at 90 oC and shaking for 15 minutes. After cooling down, a 

40X dilution of 0.1M Iodoacetamide were added to the sample followed at incubation in 

dark for 40 minutes. The protein concentration of the samples were then determined by 

performing a BCA assay. Samples equivalent to 50 µg of protein were digested with trypsin 

in presence of 1 % SLS overnight at 30 oC. Following digestion, the SLS was precipitated 

out adding TFA (Trifluroacetic acid) to a final concentration of 1.5 % and C-18 purification 

of peptides was performed to concentrate and desalt the samples. The C18 columns were 

equilibrated in 300 µl 100 % Acetonitrile, followed by 300 µl 0.1 % TFA. The samples were 

then loaded and bound to these columns. Following two washes with wash buffer (5 % 

acetonitrile (v/v), 0.1% TFA (v/v)), the peptides were eluted in 300 µL elution buffer 4 (50 

% acetonitrile (v/v), 0.1 % TFA (v/v)) and concentrated in a vacuum press. Finally, the 

peptides were dissolved in 100 µL 0.1 % TFA. These peptide samples were then analyzed 

by LC-MS. 
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Quantification of protein level using liquid chromatography-mass spectrometry 

(LC-MS) 

LC-MS and data analysis was carried out as described previously (Glatter et al., 2015; 

Yuan et al., 2017), with the following modifications. For each strain three or four biological 

samples were analyzed. Purified peptides were analyzed using liquid-chromatography-

mass spectrometry (LC-MS)  carried out on a Q-Exactive Plus instrument connected to an 

Ultimate 3000 RSLC nano and a nanospray flex ion source (all Thermo Scientific). Peptide 

separation was performed on a reverse phase HPLC column (75 μm x 42 cm) packed in-

house with C18 resin (2.4 μm; Dr. Maisch). The following separating gradient was used: 

98% solvent A (0.15% formic acid) and 2% solvent B (99.85% acetonitrile, 0.15% formic 

acid) to 32% solvent B over 60 minutes at a flow rate of 300 nl/min. For label-free 

quantification (LFQ) the raw data was loaded into Progenesis (Version 2.0, Nonlinear 

Dynamics) and exported mgf files searched by MASCOT (Version 2.5, Matrix Science) 

using the uniprot database for V. parahaemolyticus. Progenesis peptide measurement 

exports were then further evaluated using SafeQuant (SQ) and LFQ values from the SQ 

output were used to determine protein abundance changes.   
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