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Abstract 

Fluvial dissolved and particulate organic carbon concentrations, [DOC] and [POC], 

were measured weekly in two contrasting catchments in east Iceland in June and July 2016. 

Sampling was carried out at ten sites in each catchment, including the outlets. [DOC] ranged 

from 2.1 to 6.6 mg L-1, and [POC] from 0.4 to 3.1 mg L-1. Mean TOC fluxes over the sampling 

period amounted to 0.46 µg m-2 s-1 from the West catchment and 0.42 µg m-2 s-1 from the East 

catchment. Concentration and flux data were used to analyse the relationship between organic 

carbon budgets and different land cover: heathland, wetland, sparse vegetation and dense 

Nootka lupin (Lupinus nootkatensis). Wetland area, associated with C-rich Histic Andosols, 

was found to have a significant positive influence on in-stream organic carbon concentrations 

and fluxes, and the opposite was found with sparsely vegetated areas, likely due to limited soil 

development. Areas with dense lupin cover were associated with relatively-low organic carbon 

fluxes in the East catchment, possibly because lupin stabilises its substrate, reducing 

mobilisation of DOC and POC. In the West catchment this influence was not clear, but this is 

likely due to the co-location of wetland, causing increased C exports. 

Keywords: Organic carbon; River; Soil; Lupinus; Iceland; Skálanes 

 

Highlights 

• This research addresses the data gaps in fluvial carbon export in Iceland. 

• Total organic carbon (TOC) concentrations ranged between 3.0 and 8.5 mg L-1.  

• Two streams export similar TOC (0.09–0.97 µg m⁻² s⁻¹) despite different vegetation. 

• Wetland areas are associated with higher organic carbon exports. 
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1. Introduction 

Fluvial networks are an important pathway for the transport of terrestrial carbon to the 

oceans (Drake et al., 2018; Pawson et al., 2012, Hope et al., 1994). It is estimated that 5.1 Pg 

C yr-1 are transferred globally from the terrestrial environment to inland waters (Drake et al., 

2018). The further export of C to the oceans has been estimated at 0.95 Pg C yr-1 (Regnier et 

al., 2013). The dissolved organic carbon (DOC) flux (0.25 Pg C yr-1) has been identified as the 

largest transfer of reduced carbon, followed by the particulate organic carbon (POC) flux (0.18 

Pg C yr-1), from the terrestrial environment into the world's oceans (Battin et al., 2008). Exports 

from 550 catchments worldwide were found to range between 1.2 and 56,946 kg C km-2 yr-1 

of DOC and between 0.4 and 73,979 kg C km-2 yr-1 of POC (Alvarez-Cobelas et al., 2012).  

The main sources of organic carbon in headwater streams are (allochthonous) terrestrial 

inputs of organic matter, such as plant litter, through soil leaching and erosion (Pawson et al., 

2012; Dawson and Smith, 2007) and (autochthonous) in-stream biological production (Hope 

et al., 1994). While some organic carbon is transported to the ocean where it can be sequestered 

in ocean sediments (Benner et al., 2005), most in-stream organic carbon is thought to be 

mineralised to CO2 through microbial respiration, thus forming a source of carbon to the 

atmosphere (Pawson et al., 2012; Tank et al., 2012). Quantifying these budgets can give us an 

indication of terrestrial carbon sources and sinks and allow further estimates of global carbon 

fluxes between the terrestrial, atmospheric and marine environments. 

Carbon exports are largely controlled by the dominant soil and vegetation types, 

hydrology and climate. By fixing atmospheric carbon within its biomass, vegetation regulates 

the soil organic carbon (SOC) pool, thereby forming a key influence on fluvial organic carbon 

fluxes (Tank et al., 2012). Soils with a larger SOC pool, such as the peaty Histosols and Histic 

Andosols found in Iceland's wetlands, generally lead to higher in-stream DOC concentrations 

(Tank et al., 2012; Ågren et al., 2007; Kardjilov et al., 2006). This relationship is particularly 

apparent in small catchments under 5 km2 (Dawson and Smith, 2007; Aitkenhead et al., 1999). 

In contrast, sparse vegetation cover, by producing little biomass, has been shown to limit SOC 

development and organic carbon export (Jantze et al., 2015).  

High latitude soils can store relatively high amounts of carbon due to low temperatures 

and low rates of degradation (Kardjilov et al., 2006). In Iceland, the dominant soil order, 

Andosols, store the second highest amount of carbon (31 kg C m-2), after Histosols (197.5 kg 

C m-2) (Óskarsson et al., 2004). The main characteristics of Andosols are low bulk density, 
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high porosity, large soil water retention and a lack of cohesion, making them highly susceptible 

to wind and water erosion (Óskarsson et al., 2004).  

In Iceland, soil erosion has been a widespread and long-term issue, as a result of 

widespread deforestation following the settlement of the island (Arnalds, 2015). Seeding of the 

Nootka lupin (Lupinus nootkatensis), a highly productive, nitrogen-fixing legume (Arnalds, 

2015), has been shown to significantly increase SOC in areas experiencing severe erosion 

(Tanner et al., 2015; Aradóttir et al., 2000). The Nootka lupin is a non-native species to Iceland 

and was introduced in 1885 (Hiltbrunner et al., 2014) to address erosion by rapidly revegetating 

eroded and nutrient poor lands (Arnalds, 2015). It has been cultivated for revegetation since 

the 1980s (Aradóttir et al., 2000). The Nootka lupin is renowned for its ability to germinate on 

barren ground (Benediktsson, 2015), with net primary productivity ranging between 400 and 

800 g C m-2 yr-1 during its thicket stage (Hiltbrunner et al., 2014).  

Iceland experiences relatively high runoff, estimated to average 1460 mm yr-1 based on 

the water years 1961–1990 (Jónsdóttir, 2008), compared with the global average of 299 mm 

yr-1 (Fekete and Vörösmarty, 2002). The combined effects of high runoff and extent of carbon-

rich Andic Histosols, could make Iceland a significant contributor of the global fluvial carbon 

flux. While many studies on fluvial carbon fluxes in temperate and sub-arctic regions in Europe 

have been published, limited research exists for this component of the carbon cycle for Iceland. 

Rather, most research concerning the terrestrial carbon cycle has focused on carbon 

sequestration potentials through revegetation, particularly with lupin (e.g. Bjarnadottir et al., 

2009; Ritter, 2007; Tanner et al., 2015), carbon storage in basalt (e.g. Matter et al., 2009; 

Snæbjörnsdóttir et al., 2014), and carbon losses through erosion (e.g. Óskarsson et al., 2004). 

DOC and POC fluxes from a drained peatland in west Iceland (Borgarfjörður region) were 

quantified at 11.65 (± 1.98) and 9.57 (± 6.21) g m-2 yr-1, making up 2.82 and 2.31% of the local 

carbon budget, respectively (Ólafsdóttir, 2015). In 13 proglacial streams in central and 

southwest Iceland DOC concentrations ranged from 0.11 to 0.94 (mean: 0.226) mg L-1 and 

POC concentrations ranged between 0.67 and 84.67 (mean: 0.37) mg L-1 (high POC 

concentrations were linked to high anthropogenic influences), resulting in an estimated DOC 

flux of 0.008 ± 0.002 Tg yr-1 from Icelandic glaciers (Chifflard et al., 2019). Kardjilov et al. 

(2006) quantified fluvial organic carbon fluxes from three large inland catchments in NE 

Iceland, where DOC (0.23–0.30 g C m-2 yr-1) and POC (0.23–0.44 g C m-2 yr-1) fluxes were 

relatively low and close to detection limits. Despite these low fluxes, an increase in DOC and 

POC between the catchments was linked to increases in net primary productivity with greater 

wetland cover and SOC development (Kardjilov et al., 2006). 
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Here, we investigate DOC and POC export in small, runoff-driven Icelandic stream 

catchments, and how this is influenced by land cover, including the Nootka lupin. Two stream 

catchments which flow into the Norwegian Sea were selected as this helps to understand the 

extent to which terrestrial C may be delivered to the ocean. These catchments were adjacent 

but differed in discharge and land cover. We had the following objectives: (1) to quantify 

summertime organic carbon concentrations and fluxes from these catchments and (2) to 

examine the influence of different vegetation covers on concentrations and fluxes of DOC and 

POC.  

2. Method 

2.1. Study area 

The Skálanes Nature & Heritage Centre (65.294257, –13.705330) is a 12.5 km2 nature 

reserve situated on a peninsula in the eastern region of Iceland. Weekly water sampling and 

discharge measurements were carried out on two adjacent catchments, referred to as the West 

catchment and the East catchment (Fig. 1), on the reserve between 10.06.2016 and 14.07.2016. 

The two catchments were chosen for their remote location and absence of sheep-grazing to 

minimise human disturbance to the catchments and their vegetation. Their adjacent position 

means relative homogeneity in terms of their underlying geology, rainfall and temperature. 

Sampling was undertaken during the summer season to ensure peak vegetation cover, and 

connectivity between subsurface waters and the upper soil horizon (e.g. Jantze et al., 2015). 

The two study catchments are situated on the northern side of the central peninsula 

ridge, draining northwards into the Seydisfjördur fjord and are, like most other valley 

catchments in eastern Iceland (Arnalds, 2015), driven by surface runoff. Elevation ranges 

between 0 m above sea level (a.s.l.) at the catchment outlets to 372 m a.s.l. at the West 

catchment and 655 m a.s.l. at the East catchment. The hydrological year 2016 had a mean 

temperature of 4.8 °C and total rainfall of 1794.6 mm, compared with the mean of 4.6 °C and 

1666.0 mm of the preceding ten hydrological years (2006–2015) (Dalatangi weather station, 

Icelandic Meteorological Office). The months June and July 2016, during which this study took 

place, exhibited mean monthly temperatures of 7.7 °C and 9.1 °C and total monthly rainfall of 

87.4 mm and 201.4 mm, respectively. They were thus slightly warmer and wetter than average 

June and July temperatures (7.0 °C and 8.7 °C) and rainfall (62.7 mm and 114.8 mm), based 

on mean temperatures from the preceding ten summers (2006–2015) (Dalatangi weather 
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station, Icelandic Meteorological Office). The runoff rate on our study area is estimated at 

1000–2000 mm yr-1 and at 100–400 mm over the summer period of June, July and August, 

with 100–200 mm at high altitudes and 200–400 mm in the lowlands (Jónsdóttir, 2008). 

 

Fig. 1. The West catchment and the East catchment, with sampling sites, stream networks and 

vegetation distributions of heathland, wetland, sparse vegetation and dense lupin. 

 

The underlying geology is predominantly composed of tertiary basalt with some 

andesites, known as the Tertiary Formation (Arnalds, 2015). The main soil classes found here 

are Histic Andosols (HA), Brown Andosols (BA), Gleyic Andosols (WA) and Vitrisols (V) 

(Arnalds and Grétarsson, 2001). Across both catchment areas, land cover was classified into 

four categories: (1) heathland, (2) wetland, (3) sparse vegetation and (4) dense lupin. Heathland 

was dominated by dwarf heathland vegetation, such as Betula nata (dwarf birch) and Calluna 

vulgaris (common heather). Wetland areas contained various species of Carex (sedges) and 

Juncus (rushes), most notably Juncus arcticus (arctic rush), and species Agrostis capillaris 

(common bent grass), Deschampsia caespitosa (tussock grass) and Eriophorum angustifolium 

(common cotton grass). Sparsely-vegetated areas were characterised by scattered vegetation 

among rock outcrops and steep scree slopes, where willow and heath species formed small 

isolated patches. Large expanses of the study area, particularly the East catchment, were 

densely vegetated by lupin (Fig. 1).  
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The sub-catchment basin areas of the West catchment and the East catchment were 

mapped and calculated using a digital elevation model (DEM) provided by the National Land 

Survey of Iceland (http://www.lmi.is/en/) and the Hydrology toolset in ArcGIS. The spatial 

distributions of heathland, wetland, sparse vegetation and dense lupin were mapped using GPS 

on site and matched with satellite imagery of the study area (provided as supplementary 

material with this paper). Most notably, the West catchment drains larger proportions of 

wetland and heathland area and smaller proportions of sparsely vegetated areas than the East 

catchment. Both catchments drained similar proportions of dense lupin (Table 1). Within the 

study area, wetlands and dense lupin were found at up to 150 m a.s.l., while heathlands 

extended further up to 260 m a.s.l. Sparsely vegetated areas covered the upland regions down 

to 100 m a.s.l. (Fig. 1).  

 
Table 1 

Spatial characteristics of the West catchment and East catchment. 

 West catchment East catchment 

Catchment area, km² 0.43 2.01 

Average elevation, m a.s.l. 127 274 

Maximum elevation, m a.s.l. 344 660 

Minimum elevation, m. a.s.l. 0 0 

Land cover, km² (% catchment area)   

Heathland 0.18 (42.2) 0.62 (30.6) 

Wetland 0.06 (12.9) 0.03 (1.6) 

Dense lupin 0.04 (8.5) 0.20 (10.1) 

Sparse vegetation 0.16 (36.4) 1.16 (57.7) 

 

2.2. Water sampling and discharge measurements 

Ten sampling sites were selected each on the West catchment and the East catchment 

using the following rationale, used by many others (e.g. Hope et al., 1997; Jantze et al., 2015). 

Sampling sites were situated near the catchment outlets, to determine total discharge and 

carbon exports from the entire catchments. Sites were also placed on tributaries near junctions 

to the main stream, to allow discharge and carbon export data for individual tributaries to be 

estimated. Sampling sites were also situated higher up on the main stream and tributaries, to 

quantify downstream changes in discharge, carbon concentrations and exports. All sites on both 

catchments were sampled on a weekly basis over the six-week period. The two catchments 

were sampled on different days within a week due to time constraints, but sites on one 

catchment were all sampled on the same day to reduce variations in hydrological conditions. 

Sampling days within a week could not be fixed, as site access was weather dependent. 

http://www.lmi.is/en/
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At each sampling site, 250 ml of water were collected and filtered using an ashed 0.7 

m glass-fibre filter paper and a hand-pump. 50 ml polypropylene vials were rinsed three times 

with filtrate before use for sample storage. The filter papers were stored in low-density 

polyethylene petri-dishes for later POC analysis. A source of error, especially for [POC], can 

be vertical and horizontal variations in concentrations within the river profile (Hope et al., 

1994). To minimise this, water samples were collected consistently from the vertical and 

horizontal centre of the stream. After sampling, instantaneous stream discharge was calculated 

from cross-channel area profiling and cross-channel changes in flow velocity. A Geopacks 

Stream Flowmeter was used – a device commonly used to measure discharge in small streams 

(Jantze et al., 2015). Over the study period, 53 samples were collected from the East catchment 

and 60 samples were taken from the West catchment.  

2.3. Laboratory analysis 

Samples were stored in a fridge at 4 °C until DOC analysis for up to 17 weeks. This 

storage time is not considered to affect filtered DOC samples (Gulliver et al., 2010). Prior to 

analysis, the filtrate was acidified to pH 3.9 using a Mettler Toledo G20 Compact Titrator, to 

remove any inorganic carbon present in the samples. [DOC] was quantified as non-purgeable 

organic carbon (NPOC) using a Thermalox TOC Analyser, which utilises high-temperature 

catalytic-oxidation to convert DOC to CO2, which is subsequently detected using an infra-red 

analyser. A primary calibration using four potassium hydrogen phthalate (KHP) standards of 

known concentration, spaced at 5 mg L-1, accompanied each sample run. 

[POC] was quantified using the loss on ignition technique (e.g. Dawson et al., 2002). 

The filter papers were exposed to 105 °C for 4 h to evaporate any water, then weighed and 

subjected to 375 °C for 16 h for dry combustion of organic matter, after which they were again 

weighed. The loss of dry weight of organic matter was corrected using the van Bemmelen 

factor 0.58, following the procedure from Pallasser et al. (2013).  

2.4. Summertime DOC and POC fluxes 

For each (sub-) catchment, instantaneous DOC and POC fluxes per unit area (µg m-2 s-

1) were quantified by multiplying concentrations of DOC or POC (µg L-1) by their associated 

discharge (m3 s-1) and dividing by the (sub-) catchment area (m2). Instantaneous fluxes at each 

sampling site were averaged over the study period to obtain mean fluxes for each site. The 

resulting mean flux estimates were used for correlation analysis with land cover categories (%). 
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Mean fluxes were also extrapolated to daily fluxes and multiplied by 94 (days in June, July and 

August) to estimate summer fluxes (g m-2). 

2.5. Statistical analysis 

A p-value < 0.05 was considered statistically significant, as this is generally applied 

with geographical data (Ebdon, 1985). As land cover data was non-normally distributed, the 

non-parametric Spearman's rank correlation test (Spearman's rho) was used to determine 

correlations between different land covers and mean organic carbon concentrations and fluxes. 

The validity of these correlations was tested in two ways: (1) by adjusting for multiple 

comparisons using the False Discover Rates (FDR)-based analysis, following the procedure by 

Pike (2011) and (2) by examining potential correlations between different land covers (where 

likewise p-values were tested using FDR-based analysis), as such a correlation could lead to 

an indirect, secondary correlation between a land cover and mean C concentrations and fluxes. 

A 2-sample t-test was applied to test for significant differences in concentrations and fluxes 

between the West catchment and East catchment.  

3. Results 

3.1. Summer organic carbon concentrations and fluxes 

Sampling site characteristics and DOC, POC and TOC concentrations and fluxes are 

summarised in Table 2. The East catchment had more variable and significantly higher mean 

discharge (p < 0.001) across sampling sites than the West catchment (Fig. 2). [DOC] and [POC] 

ranged from 2.1 to 6.6 mg L-1 and from 0.4 to 3.1 mg L-1 respectively in the West catchment, 

and between 2.1 and 6.3 mg L-1 and 0.6 and 2.3 mg L-1 respectively in the East catchment. 

DOC and POC fluxes near the West catchment outlet (site W01) averaged at 0.34 and 0.12 (µg 

m⁻² s⁻¹) respectively, and near the East catchment outlet (site E01) at 0.31 and 0.11 (µg m⁻² 

s⁻¹) respectively, over the study period. A two-sample t-test, including all data from both 

catchments, showed significantly higher [DOC]s in the West catchment (mean = 4.4 mg L-1, σ 

= 0.9) than across the East catchment (mean = 3.5 mg L-1, σ = 0.9) (p < 0.001) (Fig. 3). Similarly 

at the catchment outlets, W01 (mean = 4.7 mg L-1, σ = 1.0) had significantly higher [DOC]s 

than E01 (mean = 3.3 mg L-1, σ = 0.9), over the study period (p < 0.05). [POC] as well as DOC, 

POC and TOC fluxes did not differ significantly between the two catchments (p > 0.05). 

However, mean DOC fluxes in the West catchment were more responsive to a peak in discharge 
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on 21.06.2016 whereas mean fluxes in the East catchment remained relatively stable 

throughout the study period (Fig. 4).  

Across all sampling sites, TOC concentrations and fluxes were made up mostly of DOC 

(56.0–89.2 %). A two-sample t-test showed that in the West catchment, TOC concentrations 

and fluxes consisted of proportionally significantly more DOC than in the East catchment (p < 

0.01). At the catchment outlet sites, DOC made up 73.7% (σ = 8.1) of TOC at W01 and 72.1% 

(σ = 8.9) of TOC at E01.  

 
Fig. 2. Mean discharge (m3 s-1) measured across sampling sites in the West catchment and the East 

catchment over the sampling period.  
 

 
Fig. 3. Mean [DOC] and [POC] (mg L-1) across sampling sites in the West catchment and East 

catchment over the sampling period.  
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Fig. 4. Mean DOC and POC fluxes (µg m-2 s-1) across sampling sites in the West catchment and East 

catchment over the sampling period. 

3.2. The influence of land cover on organic carbon budgets 

Spearman rho correlation coefficient between DOC, POC and TOC concentrations and 

fluxes and catchment characteristics, with associated significance, as well as FDR-adjusted 

significance, for the West catchment, East catchment and both catchments combined are shown 

in Table 3. In the West catchment, DOC, POC and TOC concentrations and fluxes increased 

significantly with wetland cover (Spearman rho, p < 0.05) (Fig. 5). The correlations between 

wetland cover and [POC], [TOC] and DOC, POC and TOC fluxes remained significant after 

FDR-adjusted p-values (Table 3). In addition, [POC] in the West catchment increased 

significantly with lupin cover and decreased significantly with larger areas of sparse vegetation 

(Spearman rho, p < 0.01) (Fig. 5) – both of these correlations remained significant (p < 0.05) 

after p-values were adjusted using FDR analysis (Table 3). DOC and POC fluxes also increased 

significantly with lupin cover in the West catchment (Spearman rho, p < 0.05) (Fig. 5), though 

this correlation didn't remain significant after FDR-adjusted p-values. In the East catchment, 

DOC and POC fluxes increased significantly with discharge (Spearman rho, p < 0.05) and 

reduced significantly with greater lupin cover (Spearman rho, p < 0.05) (Fig. 5), though neither 

of these correlations remained significant after FDR-adjusted p-values. Significant correlations 

and their coefficients between different land cover categories (Table 4) were examined to 

account for third factor causation, where a significant correlation between two land cover 

categories could lead to a misinterpretation of correlations between organic carbon exports and 

land cover. A significant positive correlation (a rise in one vegetation cover coinciding with a 
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rise in another vegetation cover) was found between wetland and lupin cover in the West 

catchment (p < 0.05) (although this correlation was no longer deemed truly significant after 

FDR analysis). Significant negative correlations existed between sparse vegetation and 

heathland in the East catchment (p < 0.001), and between sparse vegetation and lupin in the 

West catchment (p < 0.001), both of which remained significant when p-values were adjusted 

using FDR analysis.  

 
Fig. 5. Significant correlations (p < 0.05) between organic carbon concentrations (mg L-1) or fluxes 

(µg m-2 s-1) and vegetation cover (%). 
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Table 2 

Sub-catchment characteristics and mean DOC, POC and TOC concentrations and fluxes (±standard deviation) at sampling sites in the East catchment and 

West catchment.  

Site 

Number 

of 

samples 

Area 

(km2) 

Mean  

discharge 

(m3 s-1) 

Land cover (%) Concentration (mg C L-1) Flux (μg C m-2 s-1) 

H L SV W DOC POC TOC DOC POC TOC 

East catchment           

E01 6 2.00 0.184 30.3 10.1 58.0 1.6 3.3 (±0.9) 1.2 (±0.4) 4.5 (±0.7) 0.31 (±0.17) 0.11 (±0.06) 0.42 (±0.21) 

E02 6 0.31 0.009 28.2 6.5 60.4 4.9 3.9 (±0.5) 1.2 (±0.4) 5.1 (±0.5) 0.11 (±0.05) 0.04 (±0.02) 0.15 (±0.07) 

E03 6 0.34 0.014 40.0 6.2 53.8 0.0 3.5 (±0.9) 1.4 (±0.4) 4.9 (±0.9) 0.14 (±0.06) 0.06 (±0.04) 0.20 (±0.10) 

E04 6 1.02 0.151 20.2 1.1 77.6 1.1 2.8 (±0.5) 1.4 (±0.5) 4.2 (±0.5) 0.39 (±0.14) 0.02 (±0.01) 0.41 (±0.15) 

E05 6 0.07 0.006 79.8 0.9 7.5 11.8 3.9 (±1.0) 1.3 (±0.3) 5.3 (±0.9) 0.34 (±0.17) 0.11 (±0.04) 0.45 (±0.19) 

E06 5 0.06 0.007 80.3 0.3 9.6 9.9 3.3 (±0.5) 1.4 (±0.3) 4.6 (±0.5) 0.43 (±0.21) 0.18 (±0.07) 0.60 (±0.27) 

E07 6 0.90 0.154 12.8 0.1 87.1 0.0 3.5 (±0.9) 1.5 (±0.6) 4.3 (±1.4) 0.60 (±0.34) 0.25 (±0.18) 0.86 (±0.49) 

E08 4 0.32 0.006 38.9 3.2 57.9 0.0 3.9 (±0.6) 1.4 (±0.3) 5.2 (±1.4) 0.08 (±0.05) 0.03 (±0.01) 0.10 (±0.05) 

E09 5 0.12 0.002 61.7 38.3 0.0 0.0 3.5 (±0.6) 1.6 (±0.4) 5.1 (±0.8) 0.06 (±0.04) 0.03 (±0.02) 0.08 (±0.06) 

E10 3 0.26 0.005 24.8 4.3 70.6 0.3 3.3 (±0.7) 1.5 (±0.6) 4.7 (±1.1) 0.06 (±0.01) 0.03 (±0.01) 0.08 (±0.02) 

West catchment           

W01 6 0.43 0.032 42.1 8.0 36.8 13.1 4.7 (±1.0) 1.6 (±0.5) 6.3 (±0.8) 0.34 (±0.22) 0.12 (±0.07) 0.46 (±0.27) 

W02 6 0.35 0.025 41.2 2.3 45.7 10.8 4.8 (±0.3) 1.6 (±0.5) 6.4 (±0.3) 0.34 (±0.28) 0.11 (±0.08) 0.46 (±0.35) 

W03 6 0.04 0.007 38.2 28.3 0.0 33.5 4.6 (±0.8) 1.9 (±0.6) 6.5 (±0.9) 0.76 (±0.50) 0.27 (±0.09) 1.03 (±0.57) 

W04 6 0.03 0.003 30.7 29.2 0.0 40.1 4.9 (±0.8) 1.9 (±0.7) 6.8 (±1.3) 0.44 (±0.29) 0.16 (±0.09) 0.60 (±0.37) 

W05 6 0.33 0.011 41.1 2.1 47.2 9.6 3.6 (±0.9) 1.4 (±0.7) 5.0 (±1.4) 0.12 (±0.06) 0.05 (±0.04) 0.17 (±0.09) 

W06 6 0.21 0.010 51.0 2.8 40.3 6.0 4.3 (±0.6) 1.3 (±0.3) 5.6 (±0.7) 0.19 (±0.12) 0.06 (±0.04) 0.25 (±0.15) 

W07 6 0.11 0.009 22.9 0.0 63.2 14.0 4.3 (±0.7) 1.4 (±0.2) 5.7 (±0.8) 0.33 (±0.08) 0.11 (±0.03) 0.44 (±0.11) 

W08 6 0.20 0.008 53.0 1.2 42.5 3.4 4.1 (±1.5) 1.2 (±0.3) 5.3 (±1.6) 0.18 (±0.14) 0.05 (±0.02) 0.22 (±0.16) 

W09 6 0.17 0.007 49.6 0.0 50.4 0.0 3.9 (±0.7) 1.0 (±0.3) 4.9 (±0.9) 0.17 (±0.17) 0.05 (±0.05) 0.22 (±0.21) 

W10 6 0.09 0.006 20.0 0.0 78.4 1.6 4.6 (±1.4) 0.9 (±0.1) 5.5 (±1.4) 0.26 (±0.12) 0.06 (±0.03) 0.32 (±0.15) 

H = heathland; L = lupin; SV = sparse vegetation; W = wetland 
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Table 3 

Spearman Rho correlation coefficients between vegetation cover (%) and DOC, POC and TOC. 

Concentrations are in mg C L-1 and fluxes are in µg C m-2 s-1. Area is in m² and discharge is in m3 s-1. 

* = p ≤ 0.05, ** = p ≤ 0.01, and *** = p ≤ 0.001. † signifies truly significant correlations after FDR-

adjusted p-values, following the method by Pike (2011).  

  Area Discharge H L SV W 

Concentration       

DOC East -0.273 -0.297 0.236 0.152 -0.358 0.019 

  West -0.188 -0.115 -0.382 0.607 -0.486 * 0.661 

  Both -0.389 -0.185 0.084 0.092 -0.393 **† 0.627 

        

POC East -0.115 -0.297 -0.188 -0.188 0.091 -0.557 

  West -0.055 0.103 -0.188 ***† 0.865 **† -0.778 ***† 0.915 

  Both 0.012 -0.006 -0.033 * 0.505 -0.39 0.348 

        

TOC East -0.442 -0.491 0.552 0.236 -0.624 0.119 

  West -0.273 -0.115 -0.37 * 0.755 * -0.657 ***† 0.867 

  Both -0.430 -0.245 0.164 0.23 * -0.511 ***† 0.691 

        

Flux       

DOC East 0.188  * 0.685 -0.067 * -0.721 0.236 0.319 

 West -0.345 -0.200 -0.418 * 0.644 -0.571 **† 0.782 

 Both -0.152 0.284 -0.12 -0.154 -0.188 * 0.552 

        

POC East 0.236  * 0.697 -0.224 * -0.745 0.394 0.313 

 West -0.273 -0.103 -0.503 * 0.718 -0.596 ***† 0.867 

 Both -0.003 0.406 -0.177 -0.092 -0.116 * 0.495 

        

TOC East 0.285 * 0.721 -0.164 * -0.697 0.309 0.281 

  West -0.345 -0.200 -0.418 * 0.644 -0.571 **† 0.782 

  Both -0.078 0.349 -0.143 -0.175 -0.137 * 0.514 

 

Table 4 

Spearman Rho correlations between different vegetation covers. * = p ≤ 0.05, ** = p ≤ 0.01, and *** 

= p ≤ 0.001. † signifies truly significant correlations after FDR-adjusted p-values, following the 

method by Pike (2011).  
  Lupin Sparse vegetation Wetland 

Heathland Both 0.108 †***-0.774 0.142 
 East 0.091 †***-0.952 0.331 
 West 0.067 -0.267 -0.418 

     

Lupin Both  *-0.481 0.132 
 East  -0.285 -0.200 
 West  †***-0.948 *0.706 

     

Sparse vegetation Both   *-0.499 
 East   -0.169 
 West   -0.620 
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4. Discussion 

4.1. Organic carbon concentrations and fluxes 

Across the study site, [DOC] and [POC] ranged between 2.1 and 6.6 mg L-1 and from 

0.4 to 3.1 mg L-1, respectively. [DOC]s from our catchments were higher than average 

concentrations (1.2 ± 0.8 mg L-1) from 32 sites in the 576 km2 subarctic Abiskojokka catchment 

in northern Sweden (Jantze et al., 2015), but resembled mean summer [DOC]s in three 

headwater streams, HP3A (3.6 ± 0.8 mg L-1), HP4 (7.0 ± 1.0 mg L-1) and PC1-08 (2.0 ± 0.3 

mg L-1) from the Harp Lake and Plastic Lake catchments in central Ontario, Canada (Eimers 

et al., 2008). These three stream catchments contained similar proportions of % peatland cover 

(3%, 8% and <2%, respectively) to the % wetland cover of the West catchment, at W01, and 

East catchment, at E01 (Table 2). However, estimated summer DOC fluxes (June, July, 

August) from the West catchment (2.7 ± 1.7 g m-2) and the East catchment (2.5 ± 1.3 g m-2) 

were relatively higher than summer DOC fluxes from these three headwater streams, HP3A 

(0.18 ± 0.20 g m-2), HP4 (0.36 ± 0.26 g m-2) and PC1-08 (0.029 ± 0.021 g m-2) (Eimers et al., 

2008), which could have been due to differences in catchment characteristics, runoff and 

climate. 

If our summer DOC and POC fluxes were extrapolated over the length of the snow-free 

season, annual TOC fluxes would be 14.4 g m-2 yr-1 (DOC 10.6 g m-2 yr-1; POC 3.8 g m-2 yr-1) 

for the West catchment and 13.3 g m-2 yr-1 (DOC 9.8 g m-2 yr-1; POC 3.5 g m-2 yr-1) for the East 

catchment. Organic carbon fluxes in subarctic and boreal catchments tend to be highest during 

the spring snowmelt, leading to flushing of DOC-rich organic soils (Jantze et al., 2015, Ågren 

et al., 2007), and during the summer snow-free season, when vegetation cover is at its 

maximum and high temperatures lead to greater degradation of plant litter (Köhler et al., 2009; 

Ågren et al., 2007). In addition, surface runoff rivers, such as ours, in Iceland are known to 

have extremely fluctuating flow, being generally low in winter and during dry conditions, but 

having the potential to increase to more than ten times the average flow during spring floods 

and sudden thaw events in winter (Arnalds, 2015). These fluxes are therefore very likely to be 

overestimates of annual exports and should therefore be taken purely as very rough estimates.  

These rough estimates are, nevertheless, considerably higher than those from three 

larger river catchments, Jökulsá á Fjöllum (0.48 g C m-2 yr-1), Jökulsá á Dal (0.74 g C m-2 yr-1) 

and Fellsá (0.48 g C m-2 yr-1), situated in northeast Iceland, of which the first two catchments 

drain northwards from the Vatnajökull glacier (Kardjilov et al., 2006). The three catchments 
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were considerably larger, at 5179 km2, 3338 km2 and 124 km2, with higher mean annual 

discharges of 164 m3 s-1, 130 m3 s-1 and 6 m3 s-1 (data from 1998), respectively, compared with 

our catchments (Table 2). However, similarly as with our study, these larger river budgets were 

quantified using a small sample size of 10 samples per year between 1998 and 2003 and their 

estimates may similarly lack resolution and have led to underestimates. Smaller catchments, 

such as the West catchment and East catchment can be more variable in C exports than larger 

catchments (Alvarez-Cobelas et al., 2012). Firstly, organic carbon concentrations and fluxes, 

particularly of DOC, tend to show a stronger connectivity to the SOC pool within smaller 

catchments (Dawson and Smith, 2007; Aitkenhead et al., 1999). Secondly, in-stream DOC 

concentrations tend to be higher in lowlands (<700 m) than in uplands due to changes in SOC 

production associated with land cover and slope (Parry et al., 2015; Aitkenhead et al., 1999). 

In Iceland, both wetlands and heathlands are predominantly found in lowland areas, with 87% 

of heathlands and 95% of wetlands occurring between 0 and 600 m a.s.l. (Arnalds, 2015). The 

West catchment and East catchment had mean elevations of 127 m and 274 m, while the 

Jökulsá á Fjöllum, Jökulsá á Dal and Fellsá had higher mean elevations of 883 m, 897 m and 

703 m, respectively (Kardjilov et al., 2006), and considerably less vegetation cover than the 

West catchment and East catchment. Compared with our study catchments, the three 

catchments in NE Iceland contained lower proportions of vegetated land (heath, grassland, 

cultivated land, wetland and moss heath) and larger expanses of little to no vegetation cover 

(sparsely vegetated land, rivers, lakes and glaciers). The Jökulsá á Dal catchment, with 11% 

wetland cover, resembled our West catchment, where site W01 contained 13.1% wetland cover 

(Table 2). The two catchments differed however in their proportions of total vegetated cover, 

with only 32% of the Jökulsá á Dal catchment covered in wetland, heath, grassland and 

cultivated land, while our site W01 was made up of 63.2% vegetated area (heathland, dense 

lupin and wetland) (Table 2).  

Rough estimates of annual TOC fluxes from the West catchment and East catchment 

were of similar magnitude to annual fluxes measured at temperate peat moorland catchments 

of comparable size and discharge in the UK and Sweden. The Brocky Burn in NE Scotland, 

with a catchment area of 1.3 km2 and mean discharge of 0.036 m3 s-1, drains an area largely 

composed of heather moorland with rushes and grasses, and exported 18.8 g TOC m-2 yr-1 

(Dawson et al., 2002). The Upper Hafren in mid-Wales, with a catchment area of 0.93 km2 and 

mean discharge of 0.062 m3 s-1, exported 11.1 g TOC m-2 yr-1 from an area of acid moorland 

with acidic grassland and peaty mires (Dawson et al., 2002). Similarly, in southern Sweden, a 

catchment (0.57 km2), dominated by approximately 40% open minerotrophic fen, exported 
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18.8 g C m-2 yr-1 of DOC, while an adjacent catchment (0.48 km2), consisting of over 90% 

forest, exported 11.9 g C m-2 yr-1 of DOC, based on 115 and 97 samples taken between April 

and December (2012 and 2013), respectively (Wallin et al., 2015). This, again, suggests the 

strong dependency of organic carbon exports on high percentage vegetation cover and greater 

soil connectivity in small catchments.  

4.2. The influence of land cover on organic carbon budgets 

The West catchment had significantly higher mean [DOC]s (mg L-1) at 4.4 ± 0.9 mg L-

1, than the East catchment (3.5 ± 0.9 mg L-1) (p < 0.001) (Fig. 3), and DOC fluxes were 

generally more variable over time across the West catchment sampling sites (Fig. 4). The 

significant positive correlation between [DOC] and wetland area, as found in the West 

catchment, has been observed elsewhere (Jantze et al., 2015, Monteith et al., 2015 and Ågren 

et al., 2007). In Iceland, wetlands, including those in our study area (Arnalds and Grétarsson, 

2001), are largely associated with SOC-rich Histic Andosols (Arnalds 2015). Wetlands are 

highly productive ecosystems, where waterlogged conditions ensure constant connectivity for 

the leaching of humic components from the SOC pool to exporting waters (Jantze et al., 2015; 

Aitkenhead et al., 1999). In addition, eroding C-rich wetland soils can be significant 

contributors to the export of POC (Pawson et al., 2012), which could explain the significant 

positive correlation between wetland area and POC concentration and fluxes in the West 

catchment. Sparsely vegetated areas occurred mainly on steep scree slopes, associated with 

SOC-poor Leptosols (Arnalds, 2015). Differences in vegetation cover (Table 1) and soil, due 

to elevation, were likely drivers of higher estimated fluxes in the West catchment compared 

with the East catchment. 

The Nootka lupin has been shown to be highly effective in increasing SOC content 

(Tanner et al., 2015; Aradóttir et al., 2000) and stabilising the soil (Tanner et al., 2015; 

Hiltbrunner et al., 2014). In the East catchment, DOC, POC and TOC fluxes decreased 

significantly with greater lupin cover (Table 3). This is consistent with the stabilising effect of 

dense lupin cover on the soil which could lead to reduced mobilisation of DOC and POC. 

However, in the West catchment, [POC] increased significantly with lupin cover, and so did 

DOC, POC and TOC fluxes (Table 3). This could be due to the greater amounts of litter 

associated with the plant's size, in contrast to smaller wetland and heathland vegetation. Lupin 

grew mainly in the higher, south-eastern areas of the West catchment and near the outlet site 

W01 (Fig. 1). Areas covered with dense lupin formed significant parts of the sub-catchments 
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of sites W03 and W04, which also contained relatively high wetland cover (Table 2). A 

Spearman's rank correlation test showed this correlation between wetland and lupin cover in 

the West catchment to be significant (p < 0.05) (Table 4). The positive correlation between 

lupin and organic carbon fluxes in the West catchment could therefore have been an artefact of 

the correlation between lupin and wetland cover.  

5. Conclusions 

This research reports new data on DOC and POC concentrations and exports from 

stream catchments in Iceland, an area lacking in C flux data. Wetland cover, associated with 

SOC-rich Histic Andosols, was found to be a driving force in enhancing DOC, POC and TOC 

fluxes. The role of Nootka lupin in influencing C fluxes seemed inconsistent between the two 

catchments, but this may be because the West catchment wetland cover exerted a positive 

control on increased flux and was co-located with Nootka lupin. 

The West catchment and East catchment differed in discharge and vegetation cover, 

which may have led to the significant difference in their [DOC]s, although they did not differ 

significantly in flux. The significantly higher [TOC]s in the West catchment were likely driven 

by its larger wetland area, while [TOC]s in the East catchment were limited by proportionately 

larger areas of SOC-poor sparse vegetation.  

Jónsdóttir (2008) predicts a 2.8 °C rise in temperature and a 6% increase in precipitation 

by the period 2071–2100, estimated to lead to a 25% increase in runoff on average across 

Iceland, with unknown implications for soil erosion, biomass production and organic carbon 

exports. With limited data on fluvial C export from Iceland, this research provides better 

understanding of the magnitude and controls on organic carbon budgets in Icelandic stream 

catchments, and thus the drivers of terrestrial C export. It thereby contributes to global 

estimates of organic carbon exports and provides a baseline for further study of organic carbon 

budgets in Iceland. 

Supplementary data to this article can be found online at 

https://doi.org/10.1016/j.catena.2019.104245. 
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