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a b s t r a c t

Foot-and-mouth disease (FMD) vaccines must be carefully selected and their application closely moni-
tored to optimise their effectiveness. This review covers serological techniques for FMD vaccine quality
control, including potency testing, vaccine matching and post-vaccination monitoring. It also discusses
alternative laboratory procedures, such as antigen quantification and nucleotide sequencing, and briefly
compares the approaches for FMD with those for measuring protection against influenza virus, where
humoral immunity is also important. Serology is widely used to predict the protection afforded by vac-
cines and has great practical utility but also limitations. Animals differ in their responses to vaccines and
in the protective mechanisms that they develop. Antibodies have a variety of properties and tests differ in
what they measure. Antibody-virus interactions may vary between virus serotypes and strains and pro-
tection may be affected by the vaccination regime and the nature and timing of field virus challenge.
Finally, tests employing biological reagents are difficult to standardise, whilst cross-protection data
needed for test calibration and validation are scarce. All of this is difficult to reconcile with the desire
for simple and universal criteria and thresholds for evaluating vaccines and vaccination responses and
means that oversimplification of test procedures and their interpretation can lead to poor predictions.
A holistic approach is therefore recommended, considering multiple sources of field, experimental and
laboratory data. New antibody avidity and isotype tests seem promising alternatives to evaluate cross-
protective, post-vaccination serological responses, taking account of vaccine potency as well as match.
After choosing appropriate serological tests or test combinations and cut-offs, results should be inter-
preted cautiously and in context. Since opportunities for experimental challenge studies of cross-
protection are limited and the approaches incompletely reflect real life, more field studies are needed
to quantify cross-protection and its correlation to in vitro measurements.

� 2019 Published by Elsevier Ltd.
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1. Introduction

Foot-and-mouth disease (FMD) is caused by a highly contagious
virus (FMDV) eradicated from parts of the world but still common
in Africa and Asia [1]. FMDV infects cloven-hoofed, domestic and
wildlife species, can be disseminated by a variety of means and
causes widespread illness and economic loss due to the disease,
costs of control and trade losses. The virus is in the genus Aph-
thovirus, family Picornaviridae and exists as multiple serotypes that
do not cross-protect, with incomplete intra-serotype cross-
protection between some strains [2–5]. Particular serotypes and
strains predominate in different parts of the world, with seven glo-
bal pools recognised. The epidemiology of the disease is charac-
terised by cyclical patterns of increased incidence and spread,
reflecting the waxing and waning of population immunity, virus
evolution and transmission opportunities [6].

Vaccines are extensively used for prophylaxis and emergency
response and can be highly effective in limiting disease and the
spread of the infection [7]. However, many factors that can influ-
ence the success of vaccination must be carefully controlled [8,9].
The changing patterns of FMD occurrence and viral antigenic phe-
notypes necessitate ongoing surveillance and review of the protec-
tion afforded by vaccines, facilitated by an international network of
reference laboratories (https://www.foot-and-mouth.org/Ref-Lab-
Network) and leading to regional and in some cases national
vaccine strain recommendations [10,11]. Methods, especially
laboratory techniques, to measure and predict vaccine induced
protection are the subject of this review, complementing publica-
tions focussing on vaccine strain selection [12,13].

2. FMD diversity and protective immunity

There are seven serotypes of FMDV: one unrecorded since 2004
(serotype C), three largely restricted to Africa (Southern African
Territory serotypes 1, 2 and 3) and one to Asia (serotype Asia 1).
In contrast, serotypes O and A are widely distributed; serotype O
being the most common (�70% of recorded outbreaks) whilst ser-
otype A exhibits greater antigenic diversity. There is continuous
evolutionary diversification of the pool of circulating viruses with
periodic emergence of new strains and replacement of old ones
[14,15,3].

The immune response to FMDV infection involves innate and
adaptive immunity [16], mostly studied in cattle, which develop
a serotype-specific protection against disease that can be long-
lasting [17]. Antibodies transferred through colostrum or passive
immunization can prevent FMD [18]. Current commercial vaccines
produced from inactivated, cell culture grown virus capsids pro-
vide serotype-specific and antibody-mediated protection, but the
immune response is qualitatively and quantitatively different to
that induced by infection [19]. Immunity and detectable antibodies
decline after primary vaccination and must be boosted to sustain
protection [20,21]. Anamnestic responses to emergency vaccina-
tion can rapidly induce protective immunity, even in animals with
low levels of circulating antibody [8]. Long-lasting immunity may
develop after multiple rounds of vaccination [22].

Protective antibodies are directed against the surface of the
icosahedral FMDV capsid formed of hierarchically arranged and
repeating viral subunits (see Fig. 1 and [23]). The target epitopes
are often conformational, involving a three-dimensional interac-
tion between different viral proteins, protomers or pentamers.
The virus capsid attaches to target cells via a conserved receptor
binding site, but other exposed amino acids are highly variable
and act as immune decoys [24]. Antibody binding is focussed on
antigenic sites, where amino acid changes are frequent and can
substantially affect cross-protection between viruses [13].

3. Vaccine induced protection against FMD

Protection induced by vaccination can be measured by potency
tests in which vaccinated animals are inoculated with a fixed, high
dose of virulent virus by a defined route given at specified times
after immunisation. Potency tests in cattle have two international
standards [25] but tests in pigs are also used, for example, in China
[26]. The ability of vaccination to prevent the virus from dissemi-
nating, to cause foot lesions, after intradermolingual (cattle) or
intramuscular (pig) inoculation, is taken as the measure of protec-
tion with comparison to unvaccinated but challenged, control ani-
mals. A design in which all animals receive the dose of vaccine that
will be used in the field (PGP design; protection against generalised
podal infection) provides a probability of protection where 75% is
the pass mark (12 out of 16 animals protected). Subdividing the
vaccinated animals into smaller groups, given different vaccine
doses (PD50 design; 50% protective dose) provides a quantitative
measure of vaccine potency and the minimum pass mark is
3PD50. If all vaccinated animals are protected, then the limit of pro-
tection is not established, reducing discrimination between high
potency vaccines as an indicator of cross-protection. The findings
have high confidence intervals due to variation in the responses
of individual animals and the limitation on numbers of animals
used per test. The power of PD50 tests can be improved by optimis-
ing the relationship between the vaccine doses tested and the
desired protection threshold [27].

The protection afforded by vaccination depends upon the anti-
gen dose and integrity, the formulation of the adjuvant, the anti-
genic match between the vaccine and challenge viruses and the
route, weight and timing of the challenge [28,29,30]. Vaccination
schedule, herd immunity and complementary control measures
will also have a major impact on protection in the field [8,20,31]
(Fig. 2).

While potency tests occur under well-defined and controlled
conditions, the circumstances of field vaccination and challenge
will be diverse. For example, vaccine antigen integrity (affected
by expiry date and cold chain) and proficiency of administration
will influence the effective antigen dose, whilst species, breed,
prior immunity (including maternal immunity) and vaccination,
as well as general nutritional and health status may affect the abil-
ity to respond to vaccination [32,33]. Additionally, field vaccines
are often multivalent, containing antigens of different serotypes,
and/or different strains of a given serotype. Potency tests have
the advantage of being standardised but may not mimic the most
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common routes of natural infection, namely inhalation (in the case
of ruminants) or ingestion (in the case of pigs) of lower challenge
doses of field virus. The tests measure protection from disease,
whereas blocking transmission may be a key objective of some
vaccination programmes. Studies to determine the protective
effect of FMD vaccines in the field are rare and published accounts
have been limited by being retrospective rather than prospective
[34,35].

The amount of anti-capsid antibody present at the point of chal-
lenge is correlated to clinical protection [28,36]. However, individ-
ual animals vary in both the level of antibody induced by
vaccination and that required for protection. Pay (1984) [8] reported
a standard deviation of 0.4 for the log virus neutralisation test (VNT)
antibody response to primary vaccination of cattle, equating to 95%
of responses beingbetween1:20–1:720 for ameanof 1:120. There is
also a grey area, in which low levels of antibody may or may not be

protective, whilst some animals may be protected without detect-
able antibodies [37]. Animals with low levels of total antibodies
but high IgG1 or strong interferon gamma responses to in vitro anti-
gen restimulation could be protected [38,39].

4. FMD cross-protection

Potency tests required for registration and batch release testing
of vaccines [25] are usually based on homologous challenge, in
which vaccinated animals are inoculated with a virulent version
of the same virus incorporated into the vaccine. In contrast,
heterologous challenge tests are uncommon and carried out for
research or commissioned on an ad hoc basis to verify in-vitro anti-
genic matching test results, usually to predict the protection
afforded against an emerging threat.

Cross-protection between strains of serotype A and its correla-
tion with serology was studied in [40]. As expected, the pre-
challenge antibody titres to the challenge virus, measured by
VNT, were a better predictor of protection (up to 70% sensitivity
at 87% specificity) than those against the homologous vaccine
strain. The study also illustrated the inter-relationship between
vaccine potency and antigenic match, in that high potency vaccines
(some �32 PD50) eliciting strong homologous antibody responses
could provide cross-protection against heterologous challenge
strains despite a poor antigenic match (Fig. 2). Re-vaccination
and combining multiple vaccine strains can also broaden the anti-
body response, improving the likelihood of cross-protective immu-
nity [41–43].

5. Applications of serological tests in evaluating FMD vaccines
and vaccination

Serological tests that measure anti-virus capsid antibodies (SP
tests for structural protein antibodies) can be used to assess

Vaccine 
match

Vaccination 
schedule

Vaccine 
potency*

Fig. 2. Efficacy triad of potency, match and schedule. *Potency = strength of elicited
protective immunity, principally determined by antigen dose and properties
(intrinsic immunogenicity and integrity) and adjuvant.

A) PROTOMER

B) PENTAMER

C) CAPSID

D) ANTIBODY

Fig. 1. Schematic for relationships between protomer, pentamer, capsid and antibody. (A) Protomer surface-exposed amino acids coloured to show variability (based on 150
Serotype O FMDV capsids) from blue (most variable) to red (least variable). (B) & (C) Protomer/pentamer surface-exposed amino acids coloured according to protein of origin
(VP1, blue; VP2, green; VP3, red). (D). Antibody immunoglobulin (IgG) to scale with the virus, coloured pink (light chains) and purple (heavy chains). Images compiled from
Borley D (2012) [23] with permission. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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protection afforded by vaccines (or prior infection). Other antibod-
ies, produced after infection and directed against viral non-
structural proteins (NSP tests), can be used to quantify infection
in vaccinated populations as an indicator of vaccination impact
[44] but are not considered in this review.

SP tests are used as indirect measures of vaccine potency and
match in order to address a number of practical questions about
vaccines and vaccination ([9,25]; Table 1).

One-way antigenic relationship tests (r1 or matching tests) are
used by international reference laboratories and vaccine manufac-
turers to assess the cross-reactive potential of viruses in existing or
candidate vaccines against identified virus threats [12,25]. An
advantage is that the testing laboratory does not need access to
virus or antiserum from a particular vaccine batch, because it is
the antigenic suitability of the vaccine strain that is being mea-
sured. However, the test does not take account of vaccine potency
or vaccination schedule that will also have a major influence on the
protection afforded (Fig. 2). Once a batch of vaccine, dose and
schedule has been provisionally selected, a better predictor of pro-
tection is the strength of the antibody reactivity induced against
the field virus for which protection is sought [40], an approach
so far mainly used to assess population immunity after
vaccination.

6. Traditional serological tests

The two main tests that have been used to measure SP FMD
antibodies, as indicators of immunity, are ELISA, principally the liq-
uid phase blocking ELISA (LPBE), and the VNT (Table 2).

Extensive studies have correlated potency test outcomes with
pre-challenge antibody titres measured using the VNT and LPBE
[45–47]. The threshold for protection is higher in LPBE than VNT
and with either test, the threshold can differ between virus sero-
types and strains. The correlation between VNT titres and protec-
tion may be laboratory dependent, due to a lack of inter-
laboratory reproducibility [45,48].

Commercially available, solid phase competition ELISAs (SPCE)
have become alternatives to the LPBE for SP serology. However,
for use in vaccine evaluation, their correlation with protection
has to be validated by either cross-calibration to gold standard
methods, or ideally by testing sera from potency tests where the
vaccinated animals have known protection test outcomes. There
is, as yet, little data on their power to predict protection [49].
Another limitation, is that whereas the test reagents (viruses in
the case of VNT and virus antigens and detecting antibodies in
the case of LPBE) can be matched to the vaccine or field viruses
for VNT and LPBE, the antigens and blocking antibodies are fixed
and usually of unknown antigenic relevance (beyond serotype) in
commercial assays.

7. Measuring antigenic relationships

When used for vaccine matching, one-way antigenic relation-
ship (r1) tests employing VNT must be repeated to verify the con-
sistency of the result [50] whereas ELISA can be more consistent
[51]. For both tests, use of pooled, medium to high titre sera
reduces the inter-animal and inter-assay variation [52]. VNT r1
results do not correlate consistently with those determined by

Table 2
Comparison between serological tests.

Feature VNT LPBE SPCE Avidity and isotype ELISAs

Status Currently used Currently used Not validated for predicting protection Novel methods
Measures Virus neutralising

antibodies
Virus binding antibodies Virus binding antibodies Quality of virus binding

antibodies
Biohazard Use of live virus Inactivated or live virus Inactivated or live virus Inactivated virus
Reproducibility Lower Higher Higher Higher
Easy to change test virus Yes Needs specific reagents Not possible in commercial assays. Moderate. Virus needs to be

purified
Volume of vaccine serum

required
Large Small Small Small

Correlation to protection Better Worse Not established Better, more assessments
required

Speed Slow Fast Fast Fast
Availability In house method Limited commercial

availability
Widely used commercial and in-house
methods

In house method

NB: VNT, virus neutralisation test; LPBE, liquid phase blocking ELISA; SPCE, solid phase competition ELISA.

Table 1
Use of serological tests to evaluate vaccine match or efficacy.

Vaccine match Indirect potency

Test One-way antigenic relationship (r1) test (VNT or LPBE) Homologous or heterologous SP serology (VNT, LPBE, Avidity ELISA,
Isotype ELISA)

What is measured How cross-reactive are vaccine strain antibodies with other viruses Amount of antibody to homologous or heterologous virus (different
tests measure different antibodies)

Uses Conditional selection of a vaccine strain, with final efficacy
dependent upon formulation and vaccination schedule

Indirect potency of a vaccine (e.g. for batch release) or population
immunity for post-vaccination monitoring

Advantages Speed and simplicity compared to in vivo tests. Batch independence. Speed and simplicity compared to in vivo tests. Heterologous tests
take account of match.

Issues Poor reproducibility (worse for VNT); vaccine strain and BVS
availability; poorly predicts protection on its own (re-vaccination,
higher dose or multiple strains in a vaccine can broaden antibody
specificities).

Reproducibility; brand and batch specific (unless batches are
consistent); only post-purchase monitoring unless batch release sera
available; field virus antigen preparation (for avidity/isotyping)

Definitive alternatives Combined results of homologous and heterologous potency based on
the same vaccine batch

Respective homologous and heterologous potency tests

NB: VNT, virus neutralisation test; LPBE, liquid phase blocking ELISA; BVS, bovine vaccinal serum.
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ELISA [53]. Furthermore, the amino acid changes in the capsid that
have been identified as altering seroreactivity also differ in some
cases for the two tests [53]. Variability may also be observed
between r1 values obtained when different virus isolates from
related outbreaks are matched to the same vaccine(s) (e.g. O Egypt
2016 viruses matched against O Manisa vaccine; http://www.
wrlfmd.org/country-reports/country-reports-2016). Finally, anti-
genic relationship tests are notoriously difficult to validate. The
gold standard against which they can be judged is the combined
result of a homologous and heterologous potency test, both using
the same vaccine batch, but such data sets are rarely available.
Low potency test precision due to constraints on the numbers of
animals used [54] may be mitigated by using individual animal
results to get a clearer picture, before combining them into the
PD50 result. However, this cannot be used comparatively, as the
individual animals cannot be challenged with both the homolo-
gous and heterologous strains.

8. Measuring other properties of antibodies

Alternative serological ELISA tests have been developed in
Argentina [38,55] that measure FMD antibody avidity and IgG iso-
types (Table 2). The tests react vaccine antisera with purified anti-
gens prepared from each field virus against which protection is to
be measured. In the avidity test, the amount of bound antibody is
compared with and without urea treatment, whilst in the isotype
test, the amount of bound IgG1 and IgG2 is measured, with total
IgG1 or IgG1:IgG2 ratio as the indicator of protection. As no com-
parison is made to the reaction of the antisera against the vaccine
antigen, there is no requirement to hold stocks of vaccine virus,
which have restricted availability due to their proprietary nature.
It appears that IgG class and avidity correlate better with protec-
tion than total FMDV antibody (LPBE) or in vitro neutralising anti-
body (VNT) [56]. As ELISAs, these tests also have a good
repeatability and can utilise inactivated virus antigen. A practical
complication is the requirement to prepare purified antigens for
each test virus from high titre virus stocks, although alternative
easier purification methods are being developed, for example using
size exclusion chromatography (see below). The tests are yet to
become routine in international reference laboratories but are in
the process of being transferred and evaluated in different parts

of the world and against different serotypes and strains to verify
and agree thresholds indicative of protection.

9. Difficulties with antigenic relationship tests

The lack of reproducibility of serological tests could be partly
addressed by repetition, if time and cost were not issues, but over-
coming the uncertainty of r1 matching test results, as predictors of
vaccine induced protection, requires additional information on
vaccine potency and schedule.

Problems of reproducibility have multiple origins, some already
discussed. The reagents used to undertake the tests are very diffi-
cult to standardise and different cell culture systems may be used.
Vaccine antisera are fundamental to one-way relationship, avidity
and isotype tests but contain antibodies which may differ qualita-
tively and quantitatively according to the vaccine used to raise
them, the conditions of vaccination, the timing of blood collection
and both between and within species differences in the immune
response of immunised animals. Cell culture amplification of the
field virus stocks required for testing may select for in vitro replica-
tion leading to fixation of mutations in capsid surface amino acids
that can alter the antigenic signatures of the viruses [57].

Different tests measure different aspects of antibody-virus
interaction. The VNT measures antibodies that block virus replica-
tion in cell cultures but, in vivo, other arms of the immune system
may have a synergistic effect, such as antibody dependent phago-
cytosis and cytotoxicity. In contrast, the LPBE measures total anti-
body binding, whichmay include cross-reactive but non-protective
antibodies to dissociated (internal) capsid components, especially
if degraded vaccines or test antigens are used. The avidity and iso-
typing ELISAs provide specificity for the strength of reaction or the
type of antibody involved, reactive to the whole 146S viral particle.

Finally, although a well-matched vaccine will be superior to a
poorly matched one, if all other factors are the same (Fig. 3),
because of the importance of potency and vaccination schedule,
poorly matched vaccines can sometimes protect in the field, and
well-matched ones fail to do so.

In practice, the difficulties of vaccine matching can be mitigated
by testing multiple field isolates repeatedly to reliably discern pat-
terns of reactivity and by considering other indicators from the lab-
oratory, the field and experimental challenges [12]. An example is

Fig. 3. Protection windows conferred by homologous and heterologous FMD vaccines. Arrows show vaccination time points. Schematic representation, from Pay (1984) [8],
based on a figure compiled by Tim Doel, redrawn by Antonello Di Nardo. The profiles of the antibody responses will be affected by vaccine potency.

D.J. Paton et al. / Vaccine 37 (2019) 5515–5524 5519

http://www.wrlfmd.org/country-reports/country-reports-2016
http://www.wrlfmd.org/country-reports/country-reports-2016


provided by the characterisation of emerging genotype A/VII
viruses from central Asia where concerns over poor matches
against vaccines, licensed for use in Europe, were backed up by
identification of amino acid changes at critical antigenic sites
[58] and were sufficient to justify cross-challenge tests of the
cross-protection deficit [59]. In selecting vaccines for antigen
banks, matching data can be combined with information on threat
prioritisation (http://www.ipcinfo.org/fileadmin/user_upload/
eufmd/Open_Session2016/Pragmatist_McLaws.pdf).

10. Establishing antibody thresholds for measuring protection

As discussed, the correlations between serology and protection
differ between tests, vaccine seed strains, adjuvants and outbreak
viruses and are affected by antigenic relationships, as well as
animal-to-animal variation and assay variability. Additionally, ani-
mals with weak immunity may still be primed to respond rapidly
to boosting by emergency vaccination [8]. This creates difficulties
in setting meaningful threshold levels of antibody for protection
for vaccine batch acceptance and for surveys of population immu-
nity in the field. Ideally, a relevant potency test will have been con-
ducted so that the relationship between serology and protection
can be empirically established, even if the timing and strength of
challenge may not be the same as that to be predicted in the field.
A degree of compromise and uncertainty will, therefore, always
remain. If the vaccine virus is antigenically close to the field virus
against which protection is sought, then a homologous potency
test can provide the necessary sera and associated protection data
for establishing this relationship and choosing a cut-off. If the only
available vaccines have an incomplete antigenic match, then a
heterologous potency test is more appropriate for calibration of
the serology.

As sera from homologous potency tests are not always available
for test calibration, whilst heterologous potency tests are rarely
performed, alternative compromises are often required:

1. In the absence of any specific potency test reagents or informa-
tion, test thresholds can be set based on averages determined
previously from homologous potency tests for the serotype
and test in question [e.g. 45, 47] However, due to the above-
mentioned variables, the accuracy of these estimates may vary.
If the test to be used is different from the one for which the
threshold has been published, then some form of cross-
calibration will be required.

2. If only a relevant homologous test has been done when a
heterologous one would have been indicated, then the thresh-
old established from homologous potency testing can be used
with the field virus substituted for the vaccine strain in the SP
test.

3. Instead of monitoring population immunity in terms of protec-
tion, checks that the vaccination has been done properly can
use, as threshold, the level of antibody in animals known to
have been correctly vaccinated at the appropriate time prior
to sampling. Any SP test can be used for this approach. A
small-scale field study of vaccinated animals can provide the
necessary sera [9]. It may be impractical to collect samples over
multiple vaccination cycles to determine appropriate cut-offs
for older animals, but checking population immunity in young
animals that have received fewer vaccinations is usually more
important.

11. Estimating vaccine potency from antigen content

The efficacy of inactivated vaccines is strongly influenced by the
quantity of intact FMDV particles (‘‘capsids” or ‘‘virions”) and up to

a certain threshold, increases will strengthen the immune response
and the elicited protection. For the linear part of the relationship, a
tenfold increase in antigen content results in an approximately
threefold increase in VNT titre [60]. Therefore, manufacturers stan-
dardise the amounts of antigen to help achieve consistent potency
of different production batches of vaccine. The optimum antigen
payload differs between serotypes. Traditionally, the particle con-
tent has been determined spectrophotometrically after size sepa-
ration by sucrose density gradient (SDG) centrifugation [61].
However, SDG is cumbersome and difficult to standardise, so sim-
pler alternatives have been developed based on size exclusion
chromatography [62], double antibody sandwich ELISAs using con-
formation dependent antibodies [63] and the thermofluor release
assay [64]. Nevertheless, like other indirect approaches to estimate
potency, the measured dose of each vaccine must be correlated to
protection derived from live virus challenge tests [65]. Methods to
measure the content of intact antigen in formulated vaccine would
be extremely useful.

12. Sequence-based approaches to vaccine strain selection

Nowadays, it is easier to sequence the RNA genome of FMD
viruses than to develop and employ serological techniques. There-
fore, in principle, it should be possible to study the deduced amino
acid sequence differences of antibody binding sites on FMD virus
capsid surfaces and thereby predict antigenic relatedness and
cross-protection between FMD viruses. The former has been done
(initially in [66]), but correlations with cross-protection are com-
plicated by the aforementioned shortage of cross-protection chal-
lenge studies. Moreover, variable dominance of antigenic sites
may complicate efforts to predict cross-protection from capsid
gene sequences [67], requiring more complex models that can pre-
dict changing immunodominance as well as identifying the direct
effects of identified epitope changes.

Multiple studies have correlated surface changes on FMD viri-
ons to altered antigenic phenotypes as measured by serology,
starting with monoclonal antibody escape mutants and later, mak-
ing comparisons between vaccines and panels of field viruses
(reviewed by [13]). This has identifiedmany epitopes and antigenic
sites, with similarities and differences found between serotypes
(e.g. [68]). In some cases, the impact on antigenic phenotype of
substitutions in predicted sites has been validated using reverse
genetics [69,53]. To identify antigenic relationships and their pre-
dictors, linear mixed effects models, and more recently, more
sophisticated Bayesian models [70], were developed to account
for variation in pairwise cross-neutralization titres using only viral
sequences and structural data. Identifying substitutions in surface-
exposed structural proteins that correlate with loss of cross-
reactivity is a basis for predicting both the best vaccine match
for any single virus and the breadth of coverage of new vaccine
candidates from their capsid sequences, where it was found to cor-
relate strongly with gold-standard VNT r1 values [66]. However,
predictive power for cross-protection is impossible to compare
given the shortage of challenge studies. More resources dedicated
to post-vaccination outbreak monitoring and serosurveillance in
endemic countries, where natural challenge experiments regularly
occur, would make such comparisons more feasible.

13. Serology as a measure of protection for influenza

Antibody mediated protection is a significant component of
other viral diseases. For influenza, in particular, there are many
similarities to FMD in the approaches and challenges for defining
vaccine induced protection.
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An inactivated vaccine is used for human seasonal influenza, the
efficacy of which can be reduced if the incorporated vaccine strain
is mismatched to the field virus against which protection is
needed. As for FMDV, propagating the influenza virus can alter
antigenicity, in this case through egg-adaptive changes in the influ-
enza virus haemagglutinin protein [71]. For influenza vaccines,
antigenic distance is determined using the haemagglutination
inhibition (HI) assay or various neutralisation assays, where the
titre of antisera to the vaccine candidate is compared between
the field and vaccine strain (equivalent to the r1 value used for
FMDV vaccine matching). A 4-fold drop in titre between vaccine
and field strains is considered to be a substantial antigenic differ-
ence that may indicate a new vaccine seed strain is needed [72].
However, the raw heterologous titre is taken into account in this
process, with lower titres increasing the importance of drop, as
we have discussed above with respect to high potency FMDV vac-
cines. As for FMDV, the serological assays used to assess the anti-
body responses to influenza vaccines are hard to standardise
[73]. Like FMDV’s LPBE, the HI assay is quicker and more repro-
ducible than neutralisation assays, but most current H3N2 field
viruses do not agglutinate red blood cells. To improve matters,
more optimal use of and better understanding of the data produced
by neutralization assays has been recommended, along with
increased standardization of the tests themselves to make them
more comparable between centres [71]. However, neutralization
assays are time consuming to carry out, reducing throughput,
and so they are mainly used where they are the only option – for
H3N2 viruses.

The data obtained from the antigenic characterization of viruses
using HI and neutralization assays, as well as the serological reac-
tivity of pre- and post-vaccination human sera and epidemiological
and clinical information, are combined with extensive genetic
sequencing data to select vaccines. These sequence data are used
alongside much more extensive records of known epitopes on
the haemagglutinin glycoproteins than are available for FMDV, to
identify substitutions of particular concern. Similar computational

techniques to FMDV have been applied to influenza [74]: antigenic
cartography was the first computational technique developed to
help to predict vaccine match (originally for influenza, [75], and
then later for FMDV, [76]) by reducing the ‘‘noise” caused by vari-
able serum quality and potency; the FMDV sequence-based predic-
tors described above have also been translated to influenza, and
have been refined to identify epitope changes and predict vaccine
match from sequence and serology data very efficiently for the
much larger datasets influenza provides [77,78]. Models can also
be used to combine haemagglutinin serological and mutation data
[79]. A qualitatively different class of model has emerged recently
for influenza, however, which directly predicts clade ‘‘fitness”, or
likely future survivorship, given the current prevalence and
immunological history (inferred from past prevalence, [80]). This
model is now being used to predict effectiveness of candidate vac-
cines in the next flu season, based on the clades predicted to be cir-
culating. Indeed, all three of these classes of models (cartographic,
epitope-change and fitness-based) are now being used in reports to
formal vaccine composition meetings (VCMs) as an aid to decision
making, though the primary focus remains on the unmodeled
serology and sequence data. Indeed, the only non-serologic test
that has been accepted by regulatory authorities as a surrogate
for a vaccine preventable disease is also lab-based – the IFNg Eli-
Spot that was used to support licensure of the live-attenuated
influenza vaccine (FluMistTM) [73].

In contrast to FMDV, seasonal influenza vaccine selection hap-
pens formally at 6-monthly VCMs coordinated by theWorld Health
Organization that determine the vaccine for one whole hemisphere
at a time (https://www.who.int/influenza/vaccines/virus/en/). As
with FMDV, other factors are taken into consideration when mak-
ing recommendations regarding influenza vaccine composition
including the immunogenicity of a selected strain to develop ade-
quate humoral immunity, and its growth potential for use in vac-
cine production.

Serology is also used to predict the strength and duration of
protection induced by inactivated rabies virus vaccines, with some

Candidate vaccine with demonstrated homologous potency of seed 
by in vivo challenge and batch verified by in vitro serology

Matching of vaccine an�sera to field viruses by one way 
rela�onship serological tests

Good match Doub�ul or poor match

Select vaccine
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batch release 
an�sera to set 
threshold for 

protec�on in the 
field

Reject 
vaccine
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Fig. 4. Use of challenge tests and serology for FMD vaccine selection and monitoring. Arrows represent decisions, and triangles represent decision alternatives.
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similar challenges for test standardisation and for use and inter-
pretation of in vivo tests [81–84].

14. Conclusions

Serology is widely used to assess FMD vaccines and vaccination.
Antigenic suitability of vaccines makes use of matching tests that
assess the serological response to the vaccine strain against field
isolates. At product registration, full potency tests with homolo-
gous live virus challenge are required, but serology can be used
for subsequent potency checks of batch-to-batch vaccine consis-
tency. Finally, vaccinated populations are screened using serology
to find out if vaccination has been done properly, whether enough
animals have been protected and how long immunity has per-
sisted. A combination of different serological techniques that mea-
sure heterologous titres as well as matching may be needed in
vaccine selection and post vaccination monitoring and more vali-
dation is required for new commercial assays and especially for
the promising avidity and isotype specific assays that have mostly
been evaluated in South America, where the range of FMD virus
strains is limited.

The challenge with all of these procedures is that the results can
be influenced by many situation-specific variables, not all of which
are easy to control. A systematic approach is therefore required
that analyses the evidence for the assumptions made at each step.
Moreover, confidence in the results is only possible if the appropri-
ate test combinations and calibrations are performed (Fig. 4) with
analysis of a sufficient number of animals, field viruses and tests.
Many similar issues are confronted with use of serology for moni-
toring influenza and rabies vaccines and vaccination.

Ultimately, it is impossible to validate measures of cross-
protection without actual cross-protection data. Experimental
challenge studies with dangerous pathogens in large animals are
not easy to perform, but as more countries with endemic FMD
move towards control using vaccination, we should take advantage
of the opportunities afforded to study the effectiveness of FMD
vaccination in the field, where vaccinated animals are invariably
challenged by heterologous field viruses, by funding suitable stud-
ies to better understand existing and new in vitro correlates of
cross-protection alongside vaccination campaigns.
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