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ABSTRACT
Gold ore processing typically generates large amounts of thiocyanate
(SCN-)-contaminated effluent. When this effluent is stored in unlined tailings dams,
contamination of the underlying aquifer can occur. The potential for bioremediation of
SCN--contaminated groundwater, either in situ or ex situ, remains largely unexplored.
This study aimed to enrich and characterise SCN--degrading microorganisms from
mining-contaminated groundwater under a range of culturing conditions. Mildly
acidic and suboxic groundwater, containing ∼135 mg L-1 SCN-, was collected from an
aquifer below an unlined tailings dam. An SCN--degrading consortium was enriched
from contaminated groundwater using combinatory amendments of air, glucose and
phosphate. Biodegradation occurred in all oxic cultures, except with the sole addition
of glucose, but was inhibited by NH4

+ and did not occur under anoxic conditions. The
SCN--degrading consortium was characterised using 16S and 18S rRNA gene
sequencing, identifying a variety of heterotrophic taxa in addition to sulphur-oxidising
bacteria. Interestingly, few recognised SCN--degrading taxa were identified in
significant abundance. These results provide both proof-of-concept and the required
conditions for biostimulation of SCN- degradation in groundwater by native
aquifer microorganisms.
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INTRODUCTION
Thiocyanate (SCN-) is a toxic contaminant in industrial wastewater streams associated
with gold mining (Stott et al., 2001; Akcil, 2003; Kenova, Kormienko & Drozdov, 2010),
steel production (Lay-Son & Drakides, 2008), photofinishing (Shukla et al., 2004),
electroplating (Aguirre et al., 2010), herbicide and insecticide production (Hughes, 1975)
and coal coking (Dash, Gaur & Balomajumder, 2009; Gould et al., 2012). In gold ore
processing, SCN- is generated through reaction of cyanide (CN-) with sulphide minerals
and other intermediate valence sulphur species (Akcil, 2003). Most mine operators
promote this reaction, as CN- is even more toxic than SCN- (Ingles & Scott, 1987).
However, SCN- remains an undesirable end-product that must be removed for safe storage
or disposal of waste water.

The waste products of gold ore processing are typically stored for indefinite time periods
within large tailings storage facilities (TSFs). Many TSFs were historically unlined, such
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that tailings-derived SCN--leachate flows directly into the underlying water table.
Although hydrologic recirculation of SCN--contaminated groundwater to the TSF has
been used to retard SCN- migration, this strategy is unsustainable both as an
environmental or an economical long-term solution for aquifer remediation.

Thiocyanate remediation technologies have drawn recent interest, due to the
environmental stability (Gould et al., 2012) and potential toxicity of SCN- to aquatic life,
with an LC50 for Daphnia magna of 0.55–33.47 mg L-1 (Watson & Maly, 1987).
Abiotic SCN- remediation techniques typically involve chemical oxidation (e.g. SO2/air,
peroxide and Caro’s acid) (Wilson & Harris, 1960; Breuer, Jeffrey & Meakin, 2011) or
adsorption/separation methods (Aguirre et al., 2010). These approaches are often
expensive to implement, and may produce sulphuric or nitric acid waste streams
(Akcil, 2003; Dash, Gaur & Balomajumder, 2009). Bioremediation of SCN- would present
a more cost-effective alternative (Akcil, 2003), either via (1) stimulation of SCN--degrading
microorganisms within extracted groundwater, prior to re-injection into the
contaminated aquifer; or (2) promotion of in situ biodegradation within the aquifer under
ambient conditions. The former approach, likely implemented in the form of a
bioreactor, has gained much attention for treating SCN- containing effluent streams
(Whitlock, 1990; Van Zyl, Harrison & Van Hille, 2011; Villemur et al., 2015), while
in situ approaches remain largely unexplored.

Thiocyanate-degrading microorganisms occupy a diverse range of environments,
including activated sludge (Van Zyl, Harrison & Van Hille, 2011), soils (Vu, Mu &
Moreau, 2013) and soda lakes (Sorokin et al., 2004, 2014). SCN--degraders can use SCN- as
a source of sulphur, carbon, nitrogen and energy (Sorokin et al., 2001; Ebbs, 2004;
Grigor’eva et al., 2006), producing sulphate and ammonia, the latter of which can be
reduced via denitrification to nitrogen gas. These microorganisms exhibit both
heterotrophic (Vu, Mu & Moreau, 2013) and autotrophic metabolisms (Sorokin et al.,
2001, 2004; Bezsudnova et al., 2007; Huddy et al., 2015, Watts et al., 2017), with the
former typically using SCN- as a nitrogen source and the latter oxidizing sulphur
as an energy source. Much work has been done to understand the complex community
interactions in engineered systems treating wastewater (Lee et al., 2008; Kantor et al., 2015,
2017). Most commercial SCN- bioremediation systems use organic carbon amendments to
treat contaminated slurry waste streams, while no previous studies have focussed
on groundwater as inoculum and simple inorganic amendments.

In this study, we hypothesised that SCN--contaminated groundwater could be enriched
for microorganisms capable of biodegrading SCN- if supplemented with a primary
limiting nutrient: bioavailable phosphate. We experimentally determined the potential for
SCN- biodegradation by the groundwater microbiome, and characterised its diversity
and phylogeny. Our approach involved (1) enrichment of SCN--degrading
microorganisms from contaminated groundwater, (2) culturing experiments involving
amendments of dissolved organic carbon (DOC) (glucose), PO4

3- and NH4
+; and

(3) Illumina MiSeq sequencing of 16S and 18S rRNA genes from the SCN--degrading
microbial consortium. As SCN- potentially provides carbon and nitrogen to
microorganisms, we quantified the extent to which external amendments of NH4

+ or
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DOC to groundwater impacted SCN- biodegradation rates (Paruchuri, Shivaraman &
Kumaran, 1990). We also measured the impact of a bioavailable PO4

3- amendment to
groundwater-derived mixed cultures on SCN--biodegradation rates, expanding on similar
experiments in mine tailings water (Watts et al., 2017). The motivation for using
groundwater-derived microbial communities was to explore the potential for
bioremediating SCN- in mining-impacted aquifers or extracted bore waters. Our results
present new information and insights to increase efficiency and reduce costs for SCN-

treatment by the mining industry worldwide.

MATERIALS AND METHODS
Groundwater sampling and storage
Mining-contaminated groundwater was extracted from a monitoring well located
adjacent to a TSF at an operational gold mine in central Victoria, using a low flow pump.
The well was screened in weathered granodiorite and schist, at a depth of 55 m below the
surface. A sample of approximately 15 L was extracted, sealed and stored on ice until
it was returned to the lab the next day, where it was refrigerated at 4 �C until use.
The groundwater was used for enrichments within 3 days of sampling, while the remaining
groundwater (with no trace metals or vitamins added) was used as a filter-sterilised
medium for further culturing transfers, having been stored for up to 10 weeks in the dark
at 4 �C by the end of the experiments. The chemistry of the groundwater is monitored
frequently at the site and is typically moderately saline (TDS 11,425 ± 457), has a
temperature of 15.2 �C ± 1.6, pH of 6.6–6.8, SCN- concentrations of 500–1,000 mg L-1 and
free CN- concentrations of <0.03 mg L-1 (Table A1). We thank Stawell Gold Mine
for access to the field site and historical monitoring data (no permit number issued).

Groundwater geochemical analyses
At the time of sampling, a flow cell was used to determine the pH, EH and DO
measurements taken with a YSI Professional PlusTM multi-parameter meter with calibrated
probes. The groundwater was also analysed by colorimetry for SCN- Sörbo (1957) and
NH4

+ upon return to the laboratory, using the ferric-nitrate method (Eaton & Franson,
2005) and the salicylate-nitroprusside method (Baethgen & Alley, 1989), respectively.
During laboratory-based experiments, pH was measured using a Thermo Orion 5 Star
PlusTM Electrolyte Analyser and calibrated probes. Growth of the culture was monitored
by tracking optical density at 600 nm (OD600). All colorimetric analyses were
conducted using a Hach DR2800TM Portable Spectrophotometer with standard solutions.

Aerobic and anaerobic enrichment culturing experiments
Groundwater was incubated under oxic and anoxic conditions, with various nutrient
amendments, to enrich an SCN--degrading culture. The oxic replicates were made by
decanting groundwater (100 mL) under sterile conditions into triplicate autoclaved
250 mL conical flasks, sealed with a cotton wool bung and foil. Anoxic cultures were
prepared by adding 30 mL of groundwater to 50 mL serum bottles sealed with
rubber stoppers and aluminium crimps, and degassed using pressurised nitrogen gas.
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Both the oxic and anoxic cultures were further amended with additions of either 5 g L-1

DOC (as glucose) or 50 mg L-1 PO4
3- (as NaH2PO4), or both, alongside no-addition

controls. All incubations were maintained in the dark on a rotary shaker at 30 �C
and 120 rpm. The SCN- concentration was monitored to determine if degradation was
occurring; in cases where complete or near complete SCN- removal was noted, this
enrichment provided inoculum for further culturing using filter sterilised (0.22 mm filter)
groundwater as the medium. The amendments that produced a stable SCN- degrading
culture upon further culturing were selected for further study.

Oxic cultures were sampled by extracting two mL with a sterile syringe in a biosafety
hood to ensure sterility. Anoxic cultures were sampled by extracting two mL of the
culture with a N2-degassed sterile syringe and needle, sampled through the rubber
stopper. Half of the sample was passed through a 0.22 mm filter, while the other half
was used for OD600 measurement prior to freezing at -20 �C. Samples for DNA
sequencing were removed at late-log phase growth from microbial cultures stably
degrading SCN- after five transfers, and immediately frozen at -80 �C until thawing
for DNA extraction.

Culturing of a SCN--degrading microbial consortium from
groundwater
Amendments that resulted in a groundwater culture capable of SCN- degradation after
repeated culturing were further tested. All culturing after the initial enrichment phase was
performed in sterilised 250 mL conical flasks, containing 100 mL of filter-sterilised
ground water, stoppered using a cotton wool bung and foil, and with previously
used nutrient amendments. For transfer to fresh medium, 10% v/v of the inoculum culture
was sampled in late log phase of growth and incubated on a rotary shaker (or in a static
incubator, in the case of anoxic cultures) at 30 �C and 120 rpm in the dark. Before
subsequent testing, the culture was routinely re-cultured a minimum of five times to
ensure a stable microbial community had developed. To determine the behaviour of the
end-product, NH4

+, an identical culturing experiment to those previously described was
set-up and samples removed to monitor SCN-, OD600 and NH4

+.

Biodegradation of SCN- in the presence of ammonium
A further experiment was set up to determine the impact of NH4

+ on SCN- biodegradation.
This experiment used the re-cultured SCN--degrading microbial community and was again
performed using filter-sterilised (0.22 mm filter) groundwater from the same well.
As with previous experiments, this was performed in triplicate 250 mL conical flasks,
containing 100 mL of filter-sterilised groundwater, stoppered using a cotton wool bung and
foil. The flasks were amended to low (no addition), moderate (10 mg L-1) and high
(40 mg L-1) concentrations of NH4

+ using a filter-sterilised (0.22 mm) concentrated
(NH4)2SO4 solution, in addition to five g L-1 glucose and 50 mg L-1 PO4

3-. An inoculum of
the late log-phase culture was then added at 10% v/v concentration and incubated on a
rotary shaker at 30 �C and 120 rpm in the dark.
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Whole community microbial DNA extraction and Illumina MiSeq 16S
and 18S rRNA gene sequencing
The triplicate samples for microbial ecology analysis were firstly removed from the -80 �C
freezer and thawed. The genomic DNA was then extracted with the PowerSoil DNA
Isolation Kit (Mo Bio Laboratories, Inc. Carlsbad, CA, USA). The primers used for 16S
and 18S rRNA gene sequencing consist of partial Illumina adapter at the 5′ end.
The incorporation of the second-half of the Illumina adapter and dual-index barcode was
performed in another round of PCR reaction (Illumina 16S Sequencing Protocol). The 16S
and 18S rRNA gene amplicon sequencing (Caporaso et al., 2012) was performed using on
Illumina MiSeq platform (Illumina, San Diego, CA, USA) located at the Monash
University Malaysia Genomics Facility (2 � 250 bp run configuration).

The 16S rRNA gene was amplified by PCR using primers targeting the V3-V4 region of
the 16S gene: Forward 5′-CCTACGGGNGGCWGCAG-3′ and Reverse 5′-GACT
ACHVGGGTATCTAATCC-3′ (Klindworth et al., 2013). High-fidelity PCR was performed
on one mL of each DNA sample using 0.5 mL of Illumina-compatible universal primers, under
the following thermal cycler conditions: initial denaturation step (98 �C for 30 s), followed
by 25 cycles of denaturation (98 �C for 10 s), annealing (60 �C for 30 s) and extension (65 �C
for 60 s), followed by a final extension step (65 �C for 120 s). The product was further
purified with 20 mL of Ampure 0.8�, and washed with 200 mL of 80% ethanol and eluted
in 50 mL for subsequent index ligation using Nextera XT Index primers i7 forward and i5
reverse Illumina adapters. The subsequent product was purified with 12 mL of Ampure 0.8�,
washed with 200 mL of 80% ethanol, and eluted in 30 mL for sequencing.

The 18S rRNA gene from the genomic DNA samples was amplified using the
forward primer 1391f 5′-GTACACACCGCCCGTC-3′, and the reverse primer EukBr
5′-AGACAGTGATCCTTCTGCAGGTTCACCTAC-3′ (Amaral-Zettler et al., 2009).
PCR was performed with one mL of the DNA extract in the presence of 10 mM
Illumina-compatible primer, under the following thermal cycler conditions; initial
denaturation (98 �C for 30 s), followed by 25 repetitions of denaturation (98 �C for 10 s),
annealing (65 �C for 60 s) and extension (65 �C for 120 s) and a final extension (65 �C for
120 s). This PCR product was purified with 25 mL of Ampure 1� and washed with
200 mL of 80% ethanol, then eluted in 40 mL in preparation for index ligation, using
Nextera XT Index i7 forward primer Nextera XT Index i5 reverse primer. The product was
purified with 10 mL of Ampure 1, washed with 200 mL of 80% ethanol and eluted in 30 mL
for 18S sequencing.

16S and 18S rRNA gene sequence analysis
Prior to any bioinformatic processing, the raw 18S and 16S rRNA gene sequences were
uploaded to the National Centre for Biotechnology Information’s (NCBI’s) sequence read
archive, with the BioProject accession number PRJNA356784. Analysis of the 18S
and 16S rRNA gene sequencing data was performed using the QIIME software package in
order to determine the phylogenetic structure of the microbial community (Caporaso et al.,
2010a). Bases with a phred quality score of <20, and reads that retained less than 75% of
their original sequence length, were discarded. Forward and reverse reads of the 16S and 18S

Spurr et al. (2019), PeerJ, DOI 10.7717/peerj.6498 5/17

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA356784
http://dx.doi.org/10.7717/peerj.6498
https://peerj.com/


rRNA genes were joined at paired ends and aligned. The sequences were demultiplexed,
filtered and processed through the QIIME software package (Caporaso et al., 2010a).

The 16S rRNA gene sequences were compared to those in the GreenGenes Bacterial and
Archaeal 16S rRNA gene database (DeSantis et al., 2006) using BLAST (Altschul et al., 1990),
picking operational taxonomic units (OTUs) at a 97% similarity cut-off. Representative
sequences from each OTUwere aligned using the PyNAST tool (Caporaso et al., 2010b), and
chimeric sequences were identified and removed using ChimeraSlayer (Haas et al., 2011).
The 18S rRNA gene sequences were assigned to OTUs via a de novo approach using
USEARCH v5.2.236 (Edgar, 2010). Representative sequences from each OTU were checked
for chimeric sequences, and these were removed using UCHIME v6.1.544 (Edgar et al.,
2011). The resulting OTUs were assigned taxonomy by comparison to the SILVA 16S/18S
rRNA gene database (SILVA 119, Quast et al., 2013) using Blastall v2.2.22. All OTUs that
were assigned to prokaryotic taxa were then removed from the 18S rRNA gene dataset.

Operational taxonomic units representing >1% abundance were processed
through the NCBI BLAST program and assigned taxonomies according to highest
sequence similarity. The resulting BLAST assigned identities were compared to the
taxonomic identities assigned by the GreenGenes and SILVA databases for the
16S rRNA (Table A2) and 18S rRNA sequencing (Table A3), respectively.

RESULTS
Groundwater chemistry
The geochemical conditions of the groundwater at the time of sampling are presented in
Table 1. The groundwater pH was slightly acidic and contained SCN- in addition to a
small concentration of NH4

+. The prevailing redox conditions in the groundwater
were reducing, with low oxygen levels.

Groundwater enrichment culturing experiments
During the initial enrichment experiment, no SCN- removal was noted in the absence of
oxygen, regardless of nutrient amendment (see Table 2 for initial and final SCN-

concentrations). In the oxic enrichment experiments, SCN- removal was observed in the
absence of any nutrient amendment; however, upon inoculation of this culture into
filter-sterilised groundwater, no SCN- removal was observed. The sole addition of DOC or
PO4

3- also resulted in SCN- biodegradation in the initial enrichment, but when transferred into
filter-sterilised groundwater, SCN- degradation did not occur. The only condition to result in
a SCN- degrading culture, which was culturable in filter-sterilised groundwater, was the
addition of DOC and PO4

3- in the presence of air. Initially, complete removal of SCN- (from
approximately 130 mg L-1) was achieved within 4 days, through combined addition of DOC
and PO4

3-. This culture was used for subsequent experiments.

SCN- and NH4
+ biodegradation by a consortium of groundwater

microorganisms
The enriched microbial consortium, amended with DOC and PO4

3-, was further
investigated to determine the fate of the NH4

+ released by SCN- degradation.
The consortium completely degraded SCN- in the filter-sterilised groundwater within a
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period of 50 h (Fig. 1). The initial NH4
+ present in the groundwater was consumed prior to

any SCN- removal. After this, an increase in OD600 was noted, in tandem with the
consumption of SCN- and formation of NH4

+. The concentration of NH4
+ decreased to

below detection after all SCN- had been consumed.

Inhibition of SCN- biodegradation by NH4
+ addition

Further experimentation was conducted to determine the effect NH4
+ had upon

SCN- biodegradation. This work revealed that low to moderate concentrations of NH4
+ did

not inhibit biodegradation of SCN- (Fig. 2). The highest NH4
+ concentration however,

completely inhibited SCN- biodegradation. SCN- degradation occurring at lower NH4
+

concentrations only proceeded after complete NH4
+ removal (Fig. 3). Potentially,

SCN- biodegradation could have occurred more efficiently after repeated transfers to NH4
+-

containing media, but this adaptation hypothesis was not tested in this study.

Microbial community characterisation by 16S rRNA gene sequencing
The taxonomic assignments for the 16S rRNA gene sequences, from the enriched
groundwater community are given in Fig. 4A. At the phylum level, the microbial community
enriched through DOC and PO4

3- addition and exposure to air in the groundwater

Table 1 Basic groundwater chemistry data.

Groundwater chemistry

SCN- (mg L-1) 135 ± 1.73

NH4
+ (mg L-1) 8.9 ± 1.9

pH 6.5 ± 0.03

Dissolved O2 (%) 2.0 ± 0.5

EH (mV) -21.6 ± 2.0

Conductivity (mS cm-1) 17.64 ± 0.1

T �C 16.3 ± 0.1

Notes:
Groundwater chemistry at the time of sampling. Errors are equal to 1 standard deviation within triplicate samples of the
groundwater. Full groundwater chemistry (quarterly reports) is presented in Table A1.

Table 2 Enrichment experiment results showing changes in SCN- concentration.

Oxygen
amendment

Nutrient
amendment

SCN- initial
(mg L-1)

SCN-
final

(18 days) (mg L-1)

Anoxic None 131 ± 2.3 132 ± 6.0

DOC 125 ± 8.8 132 ± 2.0

PO4
3- 129 ± 3.6 130 ± 9.3

DOC, PO4
3- 129 ± 5.3 135 ± 2.4

Oxic None 128 ± 3.1 0.67 ± 1.2

DOC 126 ± 2.5 5.00 ± 7.8

PO4
3- 131 ± 3.0 0.00 ± 0.0

DOC, PO4
3- 123 ± 3.1 0.33 ± 0.6

Note:
Errors are shown as 1 standard deviation within triplicate samples of each culture.
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was dominated by Proteobacteria (72.8%) and Bacteroidetes (25.8%), with a minor
proportion of Actinobacteria (1.3%). The dominant families within the Proteobacteria were
Phyllobacteriaceae (27.8%), Rhodobacteriaceae (12.8%) and Sphingomonadaceae (12.5%).
The latter was entirely assigned to the Novosphingobium genus, and the dominant
OTU found to be most closely related to Novosphingobium panipatense strain UMTKB-4
(99%), by comparison to NCBI and Greengenes databases (Tables A4 and A5).
The Phyllobacteriaceae family was dominated by a single unclassified OTU (27.8%), most

Figure 1 Concentration profiles of SCN- (red) and NH4
+ (green) in SCN- metabolising culturing

experiments. The profiles are shown alongside OD600measurement (blue) during SCN- removal from
filter sterilised groundwater, inoculated with the groundwater culture enriched by addition of DOC and
PO4

3-. Error bars are equal to 1 standard deviation within each triplicate.
Full-size DOI: 10.7717/peerj.6498/fig-1

Figure 2 Concentration profile of SCN- and NH4
+ in groundwater SCN- biodegradation culturing

experiments. Profiles represent the inoculated (with the DOC and PO4
3- enriched community) filter

sterilised groundwater, in the presence of increasing NH4
+ concentrations. Error bars are equal to 1

standard deviation within triplicates of each experiment. Full-size DOI: 10.7717/peerj.6498/fig-2
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closely related to an uncultured Mesorhizobium sp. clone S3_F08 (99% similarity). The two
dominant OTUs for the Rhodobacteraceae family were most closely related to an
uncultured bacterium clone MAL_E01 (12.8% abundance, 99% similarity), the higher
abundance of the two OTUs had equal sequence similarity to an environmental sample,
Thioclava pacifica (98% similarity) known to be capable of sulphur oxidation and
consumption of simple organics (Sorokin et al., 2005). In addition to these high abundance
members, sequences assigned to the genera Martelella sp. (4.0%) and Xanthobacter (5.4%)
made up significant minority taxa.

The Bacteroidetes phylum was largely dominated by a single OTU unassigned using the
Greengenes database below family level, but most closely related to an uncultured

Figure 3 SCN-—degradation profiles with increasing NH4
+ concentrations by the enriched microbial

consortium. (A) With unamended NH4
+ levels, (B) with moderate NH4

+ levels, and (C) with high NH4
+

levels. Full-size DOI: 10.7717/peerj.6498/fig-3
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Owenweeksia sp. Clone (99% similarity). Other Bacteroidetes sequences assigned to the
Flammeovirgaceae family belong to the Roseivirga genus.

Microbial community characterisation by 18S rRNA gene sequencing
The 18S rRNA gene analysis showed a simple eukaryotic distribution (Fig. 4B), with only
two unique OTUs identified: Tremella indecorata (98.5%), a fungus of the Basidiomycota

Figure 4 The relative abundance of 16S rRNA gene sequence assignments from the Greengenes
database (A) and 18S rRNA gene sequence assignments from the SILVA database (B). Relative
abundances are shown for the re-cultured groundwater community amended with DOC and PO4

3-. 16S
rRNA gene Taxonomic assignments are defined at the phylum (inner circle), family (middle) and genus
(outer) levels, while 18S rRNA gene taxonomic assignments are classified at the phylum (inner), class
(middle) and species (outer) levels. Classified taxa comprising�1% total abundance are labelled, and grey
areas represent unclassified taxa. Full-size DOI: 10.7717/peerj.6498/fig-4
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phylum and Jakoba libera (1.5%), a trophic flagellate from the Loukozoa phylum. The
SILVA assigned taxonomies for these OTUs were compared to the identities assigned by
the NCBI database by BLAST (Table A5). The dominant OTU, Tremella indecorata was
most closely related as Tremellales sp. LM630 (99% similarity), while the less abundant
OTU was most closely related to J. libera at 99% gene sequence similarity, which is
consistent with the SILVA identity.

DISCUSSION
The microbial consortium enriched from SCN- contaminated groundwater was able to
consume SCN- aerobically in the presence of all nutrient amendments; however, under anoxic
conditions, no SCN- degradation was observed. This dependence on oxygen (present as air)
supports the interpretation that SCN- degradation progressed via aerobic respiration. In fact,
anoxic pathways have not been observed, with a notable exception through coupling to
nitrate or nitrite reduction (Sorokin et al., 2004). Significantly, only the culture amended with
both DOC and PO4

3- resulted in a microbial consortium capable of consistently performing
SCN- degradation. This suggests that in situ SCN- degradation in groundwater by native
SCN- degrading microorganisms requires addition of both of these nutrients for sustained
contaminant removal. We acknowledge, however, that the composition and performance of
groundwater-derived SCN- degrading microbial consortia may vary significantly with
temperature. If so, heating of the groundwater to 20–30 �C, either in situ or ex situ, may also be
required to achieve results similar to those presented here for incubated culturing experiments.

Both autotrophic and heterotrophic SCN--degrading organisms are known to
assimilate the NH4

+ released from SCN- degradation as their sole source of nitrogen
(Stafford & Callely, 1969). The presence of NH4

+ likely represented a preferential source of
nitrogen, in comparison to SCN-, thereby potentially inhibiting degradation (Stafford &
Callely, 1969). In the absence of added NH4

+, SCN- -derived NH4
+ was removed,

potentially as a N requirement for SCN--degraders or other microbial community
members. The amount of N released during SCN- metabolism was on the order of one
mM. Typically, pure cultures of known SCN- oxidisers that derive their N solely from
SCN- are grown on ∼1.5 mM N (e.g. DSMZ Thiobacillus medium). So the amount
of N provided by SCN- metabolism in our experiments was roughly 66% that provided
in pure culture media, which seems sufficient to stimulate cell growth. In the
NH4

+—amended cultures, we provided ∼160 mM, 500 mM and two mM N for low,
moderate and high NH4

+ amendments, respectively. Significantly, the consumption of
NH4

+ indicated that the consortium was able to circumvent complete inhibition of
SCN- biodegradation at higher NH4

+ concentrations. Although NH4
+ removal through

oxidation is also a possibility, no known autotrophic bacteria or archaea widely responsible
for this metabolic trait were identified in this microbial community.

As the consortium may have utilised SCN- as a source of energy, sulphur, nitrogen or
carbon (Gould et al., 2012), a number of metabolic niches might be associated
with its degradation and the cycling of the released nutrients. A limitation of our study is
the lack of data for the biodegradation products of SCN- or glucose that might have
allowed for a better understanding of SCN- metabolism. Certain intermediate metabolites
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that are diagnostic of which pathway is utilised in SCN- metabolism may also have been
lost to volatilisation, for example, carbonyl sulphide. The 16S rRNA gene sequencing
identified few taxa associated with SCN--degradation, the most abundant being an OTU
(∼4.0%) assigned to the Sphingomonadaceae family, specifically the Sphingopyxis and
Sphingomonas genera (Du Plessis et al., 2001; Felföldi et al., 2010).

The consortium was found to include dominant genera that share significant
sequence similarity to a known sulphur-oxidising genus, Thioclava sp., which has
demonstrated chemoautotrophic growth on intermediate sulphur compounds including
thiosulphate, and heterotrophic growth on simple organics including glucose
(Sorokin et al., 2005). We note that certain Thioclava species may consume NH4

+ as a
source of nitrogen (Sorokin et al., 2005). Furthermore, nitrogen-fixing bacteria were also
represented in the community: Novosphingobium (Kaneko et al., 2000), potentially
having a role in nitrogen supply when NH4

+ was absent.
The cultured microbial consortium was dominated by heterotrophs that likely played an

important role in the cycling of carbon and possibly nitrogen.Martelella sp., Thioclava sp.,
Novosphingobium sp., Roseivirga sp. and Basidiomycota are all known to consume
various forms of organic carbon, including glucose (Chung et al., 2016; Sorokin et al.,
2005; Chen et al., 2015; Nedashkovskaya et al., 2008; Prillinger & Lopandic, 2015). The
dominance of heterotrophs in this consortium suggests that the SCN- may mostly have
been degraded by heterotrophs as a source of nitrogen (via the released NH4

+), rather than
by autotrophs utilising sulphur oxidation as an energy source. This interpretation can
be compared against previously documented communities dominated by autotrophic
SCN--degraders often belonging to the Thiobacillus genus (Felföldi et al., 2010; Huddy
et al., 2015; Kantor et al., 2015, 2017; Watts et al., 2017). We acknowledge, however, that
because neither background DOC nor amended glucose were measured before or during
our experiments, we can only speculate on the relationship among SCN- degradation,
glucose consumption and nitrogen assimilation.

The importance of heterotrophs in the SCN--degrading consortium is not well
understood, with only Sphingomonadaceae family associated with bacterial SCN--
degradation. Their ability to prevent the accumulation of the inhibitor NH4

+, likely through
assimilation, may be significant when considering the implementation of a bioremediation
strategy. Previous SCN--degrading communities have also been shown to be incapable of
preventing NH4

+ accumulation from SCN- degradation (Shoji et al., 2014), while other
approaches have coupled SCN--biodegradation to nitrification/denitrification (Villemur
et al., 2015) or assimilation to biomass by algae (Ryu et al., 2014). We note that, to date,
only the Acremonium and Fusarium genera contain species known to degrade SCN-

(Kwon, Woo & Park, 2002; Medina et al., 2012). Regardless, the coupling of SCN--
biodegradation with microbial NH4

+-removal is an important requirement to perform the
complete bioremediation of SCN- and its potential intermediate degradation products.

CONCLUSION
The results presented here demonstrate that naturally occurring SCN--degrading
microbial consortia could be enriched and directly stimulated from SCN- contaminated
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groundwater. The promotion of this extant microbial community, already adapted to the
presence of SCN- and the prevailing groundwater chemistry, would preclude the need to
bio-engineer externally a mixed community or pure culture, which may be illsuited to
these conditions. Interestingly, unlike other reported SCN--degrading bioreactor
communities (Huddy et al., 2015, Ryu et al., 2015, Kantor et al., 2015; Watts et al., 2017),
our consortium did not contain significant populations of Thiobacilli, previously
implicated as the principle SCN--degraders.

When considering in situ SCN- bioremediation solutions, the lack of oxygen in the
groundwater appears to be the most important inhibitor of SCN- biodegradation. Exposing
contaminated groundwater to air may therefore stimulate SCN- biodegradation, a significant
finding considering that most TSFs are unlined and therefore result in seepage of SCN-

through to poorly-oxygenated groundwater. This fact suggests in situ natural attenuation
may be an oxygen-limited process, with implications for the design of a bioremediation
strategy involving both nutrient and air amendments in a controlled bioreactor containing
SCN--degrading microorganisms sourced from locally contaminated groundwater.
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