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Abstract 
 
Ageing is a process of decline in physiological function and capability over 
time. It is an anticipated major burden on societal health-care costs due to an 
increasingly aged global population. Accelerated biological ageing is a feature 
of age-related morbidities, which also appear to share common underpinning 
features, including low-grade persistent inflammation, phosphate toxicity, 
diminished Nrf2 activity, a depleted metabolic capability, depressed 
mitochondrial biogenesis and a low diversity gut microbiome.  
 
Social, psychological, life-style and nutritional risk factors can all influence the 
trajectory of age-related health, as part of an individual’s exposome, which 
reflects the interplay between the genome and the environment. This is 
manifest as allostatic (over)load  reflecting burden of lifestyle/disease at both 
a physiological and molecular level. In particular, age-related genomic 
methylation levels and inflammatory status reflect exposome differences. 
These features may be mediated by changes in microbial diversity. This can 
drive the generation of proinflammatory factors, such as TMAO, implicated in 
the ‘diseasome’ of ageing. Additionally, it can be influenced by the ‘foodome’, 
via nutritional differences affecting the availability of methyl donors required 
for maintenance of the epigenome and by provision of nutritionally derived 
Nrf2 agonists. Both these factors influence age related physiological resilience 
and health. This offers novel insights into possible interventions to improve 
health span, including a rage of emerging senotherapies and simple 
modifications of the nutritional and environmental exposome. In essence, the 
emerging strategy is to treat ageing processes common to the diseasome of 
ageing itself and thus preempt the development or progression of a range of 
age related morbidities.  
 
 
Perspective 

• Age related health is a growing global concern and an emerging view 
in the field is to treat ageing like a disease.  

• We have proposed that a  'diseasome of ageing' reflects allostatic 
(over)load as a burden of life style and that age related diseases share 
common underpinning features. This suggests that treating ageing via 
senotherapies, rather than an individual disease, may be of real 
benefit. 

• Nutritional and microbiome differences are emerging as key 
determinants of age related health and resilience. Novel senotherapies  
designed to modulate a 'Foodome' and thus the microbiome, hold great 
promise for improving health span 
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Introduction 
 

What is ageing? 
Ageing is a process, not simply a collection of morbidities during the final 

decades of our life. It has been described as an accumulation of deficits 

taking place in each individual in different ways with specific organ systems 

varying in the rate at which these deficits accumulate1. In essence, ageing 

leads to a segmental and progressive loss of physiological function and 

physical capability over time, resulting in relative physiological frailty and loss 

of resilience2 3 4 5 6. It is actively modulated by distinct biochemical pathways 

and has been characterised by a series of molecular and cellular hallmarks, 

which are common across taxa7. These hallmarks comprise genomic 

instability, telomere attrition, epigenetic dysregulation, loss of proteostasis, 

dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, 

stem cell exhaustion and altered intercellular communication. 

Human ageing is gradual, complex and highly heterogeneous. It starts at 

birth, with differing trajectories in relation to health across the life course for 

different individuals.  As such, there is no ‘gold standard’ for determining what 

constitutes normative ageing. In its latter stages in man, it is often 

characterized by a cluster of burden of life style diseases typified by low-grade 

persistent inflammation8. By 2020 people aged 60 years and older will 

outnumber children younger than 5 years, and by 2050, the over 60s are 

anticipated to outnumber those younger than 14 years and constitute 2 billion 

people worldwide (United Nations, Department of Economic and Social 

Affairs, Population Division (2015). World Population Ageing 2015 

(ST/ESA/SER.A/390)). As such, this changing demographic profile is an 

anticipated to generate a major global health problem, bringing with it 

significant associated societal health-care costs. The associated cost in non 

communicable diseases (NCDs) is expected to total $47 trillion in the decades 

spanning 2010-2030.9 Significantly, as human lifespans have been extended 

over the preceding centuries, extension in health span (years of healthy living) 

has not kept pace with this. An ability to understand and separate natural 
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ageing processes from the processes specific to individual diseases and to 

morbidities, is therefore required to understand the heterogeneity observed in 

the processes of age-related physiological dysfunction in individuals of the 

same chronological age. This also is apparent in the predisposition to and 

progression of, age-related morbidities. 

 

Accelerated biological ageing (i.e. ‘miles on the clock’), is also a feature of 

age-related morbidities, where disease-specific processes are layered upon 

dysregulated ageing processes. This thesis has been extensively exemplified 

for the renal system, where chronic kidney disease (CKD), has been classified 

as a clinical model of accelerated ageing10. Typically, it manifests with an 

increased frequency of associated age-related complications, such as 

vascular stiffening, osteoporosis, muscle wasting, depression, cognitive 

dysfunction and frailty 10,11.  

 

A growing body of evidence has revealed that social, psychological life-style 

and nutritional risk factors can all influence the trajectory of age-related health 

and age-related morbidities, such as CKD, by acting either independently, 

cumulatively, or synergistically with an individual’s genetics, and in particular 

epigenetics, thus determining health span12,13. Recently, evidence has 

emerged indicating that epigenetic regulation of nutrient sensing pathways 

and nutritional differences tied to socioeconomic position (SEP), can 

differentially affect the ageing process; in particular age-related genomic 

hypomethylation and inflammatory status 12,12.   

 

Ageing in humans is associated with chronic inflammation (also known as 

‘inflammageing’), which is itself a proven risk factor for morbidity and mortality 

in the aged, along with phosphate toxicity, depressed Nrf2 activity14,37, and 

acquisition of a low diversity gut microbiome with depleted metabolic 

capability and depressed mitochondrial biogenesis. A study in 9 different  

diseases, isolated from 11 rodent disease model tissues, not only suggests 

that inflammation is a key driver in a cluster of different diseases, but also 

pinpoints potential targets for intervention in various common diseases15 . 
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The aetiology of inflammageing remains undetermined. However, the loss of 

anti-inflammatory taxa within the gut microbiome has also been associated 

with inflammageing15. Intuitively, the burden of aged (senescent cells) 

contributes to a pro-inflammatory environment via a senescence associated 

secretory phenotype (SASP). However, when assessed in epidemiological 

cohorts, less than 15% of the level of inflammation in the circulation can be 

explained on the basis of cellular ageing16,13. As the gut microbiome changes 

with both chronological and biological age 17, one novel hypothesis that has 

gained much traction is that the microbial metabolite trimethylamine N-oxide 

(TMAO) is central to the inter-relationship between inflammageing, health 

span and the age-related epigenome. This pro-atherogenic and pro-

inflammatory compound is derived from microbial metabolism of 

phosphatidylcholine, L-carnitine and lecithin, which are found in red meat, fish 

and eggs, so providing a mechanistic link between nutrition and ageing and 

the epigenome2. Production of TMA (the precursor to TMAO) has been 

reported as greater in frail older people that consumed a restricted diet than 

healthy older people, in a manner that could be linked to differences in their 

microbiome coding capacity18. It has recently been demonstrated that the gut 

microbiome serves as an important mediator of arterial dysfunction related to 

ageing and oxidative stress18. TMAO has also been linked to endothelial cell 

senescence, vascular and brain ageing and cognitive impairment. There is 

also a further emerging role for the microbiome in epigenetics through 

production of butyrate, a short chain fatty acid produced in the intestinal 

lumen by bacterial fermentation, which inhibits histone deacetylases19 and so 

influences chromatin regulation. Intuitively, this will impact on physiological 

frailty as a direct consequence. Such a hypothesis is supported by the 

observations in murine models that indicate some benefits of caloric 

restriction are mediated by the gut microbiome, including mitigation of muscle 

atrophy 20,21.   

 
Measuring wear and tear and the burden of lifestyle. 
Allostatic load was a term first coined by McEwen and Stellar to describe the 

‘wear and tear’ on the body as a result of exposure to chronic stress. In its 

original formulation, this was ascribed to activation of the Hypothalmic 
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Pituitary Adrenal (HPA) axis via increased levels of Corticotropin-Releasing 

Factor (CRH) and altered cortisol production, leading to impaired immune cell 

activity, elevated inflammatory responses, activation of the sympathetic 

nervous system and increased blood sugar levels 22.  

 

In more recent times, this concept has been extended to implicate allostatic 

(over)load as a contributory factor  in diseases associated with ageing and, or 

lifestyle factors 3,8,24, such as cardiovascular disease, diabetes, cancer and 

CKD 6,8,9,25. These can be regarded as constituting a ‘diseaseome’ of ageing, 

underpinned by a range of common features, typified by dampened  

Nuclear factor erythroid 2-related factor 2 (Nrf2) expression 6,26,37. 

 

Nrf2 regulates a battery of over 350 cellular stress defence genes  and has a 

role in stress resistance which may be directly linked to species longevity and 

health span. Indeed, rodents typically show decreasing Nrf 2 activity with 

increasing age.23 Furthermore, differences in rodent longevity correlate with 

higher levels of Nrf 2 activity, linked directly to species differences in Kelch-

like ECH-Associated Protein 1 (Keap1) and β-transducin repeat-containing 

protein (βTrCP) regulation of Nrf2 activity, which are lower in long lived 

species.24 

 

However, Nrf2 has been regarded as a double-edged sword 25and elevated 

Nrf2 expression have been detected in cancer tumours 26  and over-activation 

has been reported to promote oncogenesis 27. Consequently, a “sweet-spot” 

for Nrf2 activation  currently needs identification. 

 

 

Inherent in the concept of allostasis, is the interplay between the genome and 

the environment. The latter constitutes an ‘exposome’ (Figure 1) for the 

individual, comprising psychosocial factors, nutrition, lifestyle and physical 

environment28-29. How such interactions lead to DNA damage or physiological 

dysfunction is not well understood. The epigenome, however, may provide a 

means for dynamic response to environmental changes.  Recent research on 



 7 

a number of different fronts has provided insight into how this may be 

achieved. 

 

A slew of evidence has indicated that SEP is one such factor that can 

influence ageing trajectories within humans16,28,30,31,32. Those at lower SEP 

exhibit features of accelerated ageing, including shorter mean telomere 

length, genomic hypomethylation and elevated levels of circulating pro-

inflammatory cytokines. While the latter is in keeping with the presence of 

more senescent cells and an associated SASP, inter-individual variation in 

biological age explains less than 15% of this inflammatory burden16. 

Epigenetic differences, namely differences in genomic DNA methylation 

content explain only 11% of this inflammatory burden13 .   Consistent with this 

scenario, longitudinal analyses have indicated that inflammation and not 

biological age determined by measurement of telomere length, explains 

successful ageing in supercentinarians33.  

 

 

Recent observations have indicated that a transcriptomic signature for age-

related allostatic load may also be an informative approach to assess health 

span. This also can provide a means of measuring physiological resilience 38, 

based around IFN gamma signaling networks and the repression of dsRNA 

viruses (e,g. LINEs) 34. Use of renal allografts to provide a source of healthy 

tissue whose function can be tracked longitudinally has proven to be a rich 

source of information on the molecular and cellular requisites of healthy age-

related physiological function. Ostensibly healthy organs, which fail to work 

immediately following transplant (described as exhibiting Delayed Graft 

Function (DGF), as opposed to immediate graft function (IGF) appear to 

exhibit molecular features consistent with allostatic overload. Significantly, 

organs exhibiting poorer function display elevated levels of CDKN2A/p16ink4a 

and elevated expression of LINE related transcripts, consistent with 

accelerated biological age35,36.  As such, they show a change in 

transcriptional amplitude in response to stress for genes involved in IFN 

gamma signaling networks an order of magnitude greater than organs 
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exhibiting IGF. Additionally, these genes are hypomethylated in comparison to 

their state in organs that work immediately. Notably, the signature gene set 

involved shows similar properties in a range of other renal pathologies, 

consistent with allostatic load also being an underpinning feature in these 

dysfunctions. 

 

The response of these organs to their exposome is complex to analyse. Both 

IGF and DGF organs exhibit a similar transcriptional response to 

transplantation stresses, yet respond differently to the stress of encountering 

a new immune system within the recipient. Organs with high biological age 

show both decreased physiological function and less resilience in this context. 

As the latter appears to be mediated by IFN gamma signaling, it indicates how 

both immune related stress and age related biological resilience are 

interlinked. Notably, restoration of physiological and transcriptional 

homeostasis takes longer in organs exhibiting DGF and may thus constitute a 

direct indication of a pre-existing lack of resilience. Understanding resilience 

and how this interplays with inflammatory processes and ageing is not 

straightforward and requires a deeper understanding of how our exposomes 

interplay with the epigenome of ageing. 

 

Food and ageing 

All disease begins in the gut — Hippocrates. 

 

One key feature of our exposome that has shown consistent prevalence is 

nutrition. A link between nutrition (i.e. the “foodome” including the individual 

diet, its ingredients and their chemical structure), particularly dietary 

restriction, and both age-related health and longevity has been consistently 

described across taxa,37, since the early 1900s, although its mechanistic 

basis is still not fully understood. What is also becoming more apparent is that 

genetic heterogeneity appears to play a major role in the responsiveness of 

individuals to a particular dietary intervention. That is, a specific dietary 

intervention that may improve health outcomes for one individual (or genetic 
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background) may not generate the same magnitude of effect in another 

individual (or genetic background)38.  

  

While dysregulated nutrient sensing is postulated as a key component of the 

hallmarks of ageing, in mammals there may be additional, related features, 

such as hyperphosphataemic generation of calciprotein particles, (CPPs) and 

changes in microbiota6,10. Hyperphosphataemia appears to be a fundamental 

component of age-related health in mammals. The negative correlation 

between nutritionally derived serum phosphate levels and mammalian 

lifespan is exceptionally strong6. Indeed, diseases of accelerated ageing, such 

as CKD and progeroid syndromes, like Hutchinson’s Guilford’s, are 

characterised by elevated levels of serum phosphate2,6. The mechanistic 

basis of this correlation derives from the generation of CPPs. These 

nanocrystaline particles are the product of Fetuin A, a circulating inhibitor of 

vascular calcification and calcium phosphate. CPPs enable phosphate 

homeostasis in the circulation however in excess they are endocytosed and 

the calcium released intracellularly, causing cytotoxic effects and 

mitochondrial dysfunction. In population studies, nutritionally derived 

phosphate correlates with accelerated ageing, lower SEP and an imbalanced 

diet, namely over frequent consumption of red meat. Significantly, red meat 

consumption provides a mechanistic basis for affecting the microbiota and 

their contribution to age related health. Red meat is not only a source of 

phosphate, but contains carnitine, which acts as a substrate for TMA 

production by gut microbes6. TMA is a precursor for TMAO production by the 

liver, which is a potent inflammatory agent. TMAO has been implicated in the 

diseasome of ageing and mortality 6,10, including CVD, CKD  and neurological 

disorders39,39. How TMAO levels changes with normative ageing and differing 

exposome features, such as SEP remains to be determined.  

 

Those at low SEP typically have imbalanced diets and low intake of fruit and 

vegetables. This is pertinent to recent observations indicating that diets 

lacking sufficient fruit and vegetable intake lack sufficient phenolic acids that 

can be converted by key gut microbes to alkyl catechols 8,40,40 . The latter are 

potent Nrf2 agonists and thus are important mediators of cellular stress 
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defenses, in particular against oxidative damage8. Significantly, alkyl 

catechols, such as fisetin and quercetin, have been identified as potent 

senolytic agents, able to induce apoptosis in senescent cells41. Elimination of 

senescent cells by a range of senolytic agents has already been 

demonstrated to increase lifespan and health span in mice 42. 

 
Considerations for Interventions  
“If we could give every individual the right amount of nourishment and 

exercise, not too little and not too much, we would have found the safest way 

to health.” — Hippocrates. 

 

Interventional strategies designed to improve health span are extremely 

exciting and hold great promise for alleviating the effects of the diseasome of 

ageing (Figure 2). As allostatic load is cumulative and systemic, focal 

interventions, such as the use of senolytics, may not always be appropriate. 

Non-senolytic or combinatorial senotherapies may thus be merited, especially 

outwith the setting of a tightly controlled clinical environment and in the 

complexity of a human exposome. Senolytic agents appear exceptionally 

effective in pre-clinical models of ageing42. A number of immediate questions 

remain be considered, though their address, it must be stated, would not 

preclude the clinical translation of these agents. How for example, will 

senolytics combat the effects of hyperphosphataemic toxicity? How will they 

address the effects or allostatic overload? How, will they affect the 

microbiome? How will they function in a multimorbid milieu? Will they function 

equivalently across the life course? Should they be given alone or in 

combinations? 

 

Human cells have finite replicative lifespans. Indeed, even stem cells can be 

exhausted both in terms of replicative potential and number over the life 

course. Will senolytics accelerate this process and leave older organs with 

tissue or cellular insufficiency, despite removing senescent cells? If so, will 

this exacerbate physiological decline? 43.  Murine studies argue against this, 

but life course treatment with a drug in mice is not wholly equivalent to 
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intervention in an aged human displaying multi-morbidity, where repair 

potential may be limited. Thus, when and where in the life-course to 

administer any intervention will be a critical factor. The same considerations 

are likely to apply to the composition of any nutritional interventions over the 

life span. Low protein intake during middle age, followed by moderate to high 

protein consumption in old adults may be optimal for health span and 

longevity. It has already been demonstrated that low protein intake during 

middle age followed by moderate to high protein consumption in old adults 

may optimize longevity44. It is notable that recent comparisons of senescent 

cell accumulation in the skin and immune system of aged individuals did not 

show a strong correlation, indicating that there limited evidence for a link 

between skin- and immune-senescence within individuals45. 

 
Other interventions to address lack of physiological resilience, in addition to 

removal of senescent cells by senolytics, fall under the aegis of 

senotherapies. These include modification of elements of the exposome, such 

as enhancement/maintenance of the epigenome via nutrition44, or via live 

therapeutics to restore optimal diversity to the microbiome17, and more 

intuitive salutorial interventions ( i.e interventions designed  to improve health 

through manipulation of physical environments) to enable a lifespan in a more 

benign environment27,30, as well as more traditional  enhancement of stress 

defenses,  such as via Nrf 2 agonists37 . 

 

Development and implementation of any such strategies is not as 

straightforward as it seems. Typically, translation outside a specific clinical 

context is not easily achievable by a single discipline and may require multiple 

cross-disciplinary interactions to develop, administer and track effects. 

Critically, it will require compliance from any patient or public groups. 

However, given the major problems ageing brings to society and the exciting 

developments in Geroscience, a more holistic approach to tackle age-related 

health looks to promising. 
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Figure 1: The Exposome 
 
Legend: interactions between an individual’s exposome and their 
genome/epigenome results in differential accumulation of allostatic load and 
thus healthspan. Factors key to this include socioeconomic position (SEP), 
lifestyle and behaviour, psychosocial and physical environments and nutrition, 
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Figure 2: How the Foodome impacts age related health 
 
 
Legend: An imbalanced or suboptimal Foodome results in loss of microbial 
diversity, phosphate toxicity and facilitates development of the diseasome of 
ageing. An optimal foodome is a key component in developing and enhancing 
senotherapeutic efficacy,  
 


