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Abbreviations 10 

aaRS aminoacyl-tRNA synthetase 
ABCF1 ATP-binding cassette protein F1 
ACT Artemisinin-based combination therapy 
ATG Autophagy-related protein 
ATrxs Apicoplast thioredoxins 
Clp Caseinolytic protease 
DMT2 Divalent metal transporter 2 
EF-G Elongator factor G 
EF-Tu Elongator factor thermo unstable 
FASII Fatty acid synthesis type II 
GGPP Geranylgeranyl pyrophosphate 
IPP Isopentenyl pyrophosphate 
ISC Iron-Sulfur cluster biosynthesis 
MMV Medicines for Malaria Venture 
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Abstract 12 

Malaria continues to be one of the leading causes of human mortality in the world, and 13 

the therapies available are insufficient for eradication. Malaria is caused by the 14 

apicomplexan parasite Plasmodium. Apicomplexan parasites, including the 15 

Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess 16 

an essential plastid organelle, named the apicoplast. Since humans and animals have no 17 

plastids, the apicoplast is an attractive target for drug development. Indeed, after its 18 

discovery, the apicoplast was found to host the target pathways of some known 19 

antimalarial drugs, which motivated efforts for further research into its biological 20 

functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 21 

“delayed death”, whereby parasite killing is seen only at the end of one invasion-egress 22 

cycle. This slow action is not in line with the current standard for antimalarials, which 23 

seeded scepticism about the potential of compounds targeting apicoplast functions as 24 

good candidates for drug development. However, recent evidence that highlights 25 

apicoplast inhibitors that result in the rapid killing, put this organelle back in the 26 

spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, 27 

alongside recent findings in apicoplast biology that may provide new avenues for drug 28 

development.    29 

 30 

  31 



Introduction 32 

The Apicomplexa, a phylum of protozoan parasites, places a huge burden on global 33 

health and economy. Among these, the human malaria parasite Plasmodium falciparum 34 

is the most impactful. WHO reported that during 2016 there were 216 million malaria 35 

cases and 445,000 deaths globally[1]. Despite intense efforts over the past two centuries 36 

to eradicate malaria, it remains a severe threat to human life. Drug resistance poses one 37 

of the main limitations to the fight against malaria. For example, for decades 38 

chloroquine was the “gold standard” for the treatment of uncomplicated malaria, nearly 39 

halving the death rates among children in Africa[2]. However, drug resistance sabotaged 40 

this success, as shown by the strong link between the emergence of drug resistance and 41 

the resurgence of morbidity and mortality[3]. Nowadays, chloroquine is no longer 42 

appropriate for the treatment of malaria caused by P. falciparum in nearly all 43 

geographic areas. Artemisinin-based combination therapies (ACT) are currently the 44 

frontline antimalarials. Artemisinin is unique in being the only drug that can rapidly 45 

kill every asexual red blood cell stage[4]. However, an increasingly pronounced trend 46 

of delayed clearance time[5] and reports of treatment failure (e.g. [6] and [7]) raise 47 

concerns for the future efficacy of ACT[8]. The introduction of new drugs is a necessity, 48 

and criteria for their activity and specificity based on this history are outlined by leading 49 

programs such as the Medicines for Malaria Venture (MMV)[9]. These include 50 

prioritisation of compounds that result in the fast killing of the parasites. 51 

 52 

Most apicomplexan parasites, including P. falciparum, possess a plastid organelle 53 

called the apicoplast, which is a demonstrated source for drug targets[10–13]. The 54 

apicoplast originated from a secondary endosymbiosis of a red algal cell, and thus it 55 

features some of the essential metabolic pathways that drove that symbiosis[14,15], as 56 



well as a complex multi-compartment structure reflecting its multiple origins[16–18]. The 57 

metabolic roles of the apicoplast in P. falciparum include the biosynthesis of isoprenoid 58 

precursors (IPP), iron-sulfur clusters (ISC), fatty acids (FASII) and haem 59 

intermediates[15,19,20]. Genetics studies have found that these pathways are essential for 60 

different Plasmodium life stages. Specifically, IPP and ISC production are required 61 

during the asexual stages[21,22], while the genes encoding the FASII enzyme fabB and 62 

the haem biosynthesis enzyme ferrochelatase, are only essential during the parasite 63 

liver[23–25] and mosquito[24,25] development stages. The importance of these functions is 64 

further supported by their drug sensitivity (see Fig. 1 for a summary of drugs targeting 65 

apicoplast functions active during P. falciparum asexual development). As an example, 66 

IPP biosynthesis is inhibited by fosmidomycin, which demonstrated effective in vivo 67 

antimalarial activity when conjugated with clindamycin[26,27]. Additionally, ISC 68 

synthesis is affected by D-cycloserine[28], while FASII is inhibited by thiolactomycin, 69 

cerulenin, triclosan, and fops[29]. 70 

Due to these essential synthesis pathways being housed there, apicoplast maintenance 71 

and biogenesis are also essential for parasite survival. Studies describing the importance 72 

of proteins involved in ISC synthesis[22] and of apicoplast proteases[30,31] in Plasmodium 73 

provide examples for this principle. Similarly, studies in the related parasites 74 

Toxoplasma gondii, whose apicoplast shares the same metabolic pathways, highlight 75 

further examples[32–40]. Additionally, due to its complex evolution, different apicoplast 76 

biogenesis pathways are of different evolutionary origins. Thus, in addition to being 77 

essential, many housekeeping processes have their origin in the prokaryotic ancestry of 78 

the algal plastid or were uniquely evolved with the apicoplast acquisition, hence they 79 

have no parallels in humans. These essential and divergent apicoplast biogenesis 80 



pathways are already proven drug targets or have the potential to be exploited for drug 81 

development. We review here the advances made to understand this potential. 82 

Housekeeping pathways hosted in the apicoplast stroma  83 

Many housekeeping pathways hosted in the apicoplast stroma retain a prokaryotic 84 

origin from the algal plastid. Therefore, apicoplast biogenesis is susceptible to the 85 

action of a series of antibiotics. Fluoroquinolones and aminocoumarins typically 86 

interfere with prokaryotic gyrase activity during DNA replication and have proven 87 

antimalarial activity[41,42]. Rifampicin is a selective inhibitor of RNA polymerase and 88 

was also demonstrated to have antimalarial effects both in vitro and in rodent models[43]. 89 

The antiparasitic kinetics of these drugs have been termed “delayed death”[44] because 90 

parasites start dying only after the first round of egress and re-invasion following the 91 

introduction of the drug. 92 

Apicoplast translation provides a rich source for drug and antibiotic targets  93 

Like many Apicomplexa, Plasmodium spp. possess three translationally active 94 

compartments. The cytosol operates eukaryotic translation machinery while the 95 

apicoplast and the mitochondrion have translation systems of prokaryotic origin. Each 96 

system consists of a ribosome, tRNAs, aminoacyl tRNA synthetases (aaRS), initiation 97 

factors and elongation factors. The apicoplast genome encodes the 23S and 16S rRNA, 98 

35 tRNAs, 17 ribosomal proteins and the thermo-unstable translation elongation factor 99 

(EF-Tu)[45]. Other components are encoded in the nuclear genome and imported to the 100 

organelle post-translationally. 15 of the 36 nuclear-encoded aaRSs are exclusively 101 

apicoplast-targeted and four are shared with the cytosol[46,47]. Additionally, the 102 

apicoplast GluRS binds glutamate to both tRNAGlu and tRNAGln, with the latter being 103 

processed by an apicoplast amidotransferase to generate Gln-tRNAGln[48]. Together, 21 104 



aminoacylated tRNAs can form in the apicoplast. The apicoplast prokaryotic-derived 105 

aaRSs are attractive drug targets due to their structural divergence and weak cross-106 

recognition with eukaryotic aaRSs. Common aaRS inhibitors are the amino acid 107 

analogues, which compete with an amino acid in binding to the aaRS catalytic site, 108 

blocking prokaryotic translation. Examples include the isoleucine analogues, 109 

cispentacin and icofungipen; the phenylalanine analogue, ochratoxin A; and the 110 

tryptophan analogues, chaungxinmycin and indolmycin[49] (see Table 1). The inhibitory 111 

power and specificity of indolmycin for the apicoplast TrpRS was recently 112 

demonstrated[50]. Similarly, the isoleucine analogue mupirocin has antiplasmodial 113 

activity due to its inhibition of IleRS. Similarly to indolmycin, mupirocin activity 114 

causes delayed death, which suggests apicoplast inhibition[51].  Further confirmation to 115 

mupirocin specificity is provided by resistant parasites carrying mutations in the 116 

apicoplast IleRS gene[51]. Other inhibitors with antiparasitic activity include the proline 117 

analogue halofuginone[52] and the lysyl-tRNA synthetase inhibitors cladosporin[53], 118 

borrelidin and febrifugine[54]. However, the uncommon immediate, rather than delayed, 119 

effect of these compounds may infer the presence of non-apicoplast targets (see Table 120 

1 for a list of apicoplast-specific aaRS inhibitors). 121 

Apicoplast ribosome 122 

Many of the antibiotics active against Plasmodium inhibit the apicoplast ribosome (See 123 

the enlarged section in Fig. 1 and Table 1). While their mechanisms of action in bacteria 124 

are known, little mechanistic insight is currently available regarding the parasites. 125 

Pactamycin is a translation initiation inhibitor in bacteria that has in vitro 126 

antiplasmodial activity comparable to artemisinin[55]. However, pactamycin is not 127 

likely to be apicoplast-specific since it has a high affinity to P. falciparum cytosolic 128 

ribosome[56]. Tetracycline, macrolides, and lincosamides represent three classes of 129 



antibiotics that are approved for the treatment of several apicomplexan diseases[57] and 130 

that inhibit translation elongation. Tetracyclines bind to multiple sites of the 30S 131 

subunit of the prokaryotic ribosome and inhibit the delivery of aa-tRNAs to the 132 

ribosomal A-site. The insurgence of drug resistance promoted the development of 133 

second (doxycycline) and third (glycylcyclines) generations of compounds[58]. 134 

Doxycycline is an antibiotic commonly used for antimalarial prophylaxis and has a 135 

direct effect on the apicoplast[59]. The tetracycline tigecycline (a glycylcycline) is also 136 

an antiplasmodial. Tigecycline is more effective than its tetracycline predecessors and 137 

a strong candidate for combination with chloroquine[60]. The macrolide azithromycin 138 

and the lincosamide derivative clindamycin were the first antibiotics functionally 139 

characterised to have an antiplasmodial effect by targeting the apicoplast ribosome. 140 

Studies performed in both Toxoplasma[61,62] and Plasmodium[63] showed that resistant 141 

parasites have ribosome mutations mimicking those occurring in resistant bacteria. The 142 

power of macrolides and associated antibiotics for malaria treatment was recently 143 

reviewed in detail[64]. Chloramphenicol is a broad spectrum antibiotic affecting both 144 

Gram-positive and Gram-negative bacteria, docking to the A-site of the ribosome and 145 

stabilising the binding of tRNA to the P-site[65]. Chloramphenicol selectively targets 146 

P. falciparum apicoplast in vitro[66]. Among the few known antibiotics that affect 147 

termination and ribosome recycling in bacteria, fusidic acid was reported to have an in 148 

vitro inhibitory effect on P. falciparum and other Apicomplexa[67–69]. In bacteria, 149 

fusidic acid stabilises the bond between elongation factor-G (EF-G) and the ribosome, 150 

preventing ribosome recycling. Fusidic acid activity on P. falciparum was proposed to 151 

be specific for the apicoplast EF-G, because the mitochondrial EF-G contains a GVG 152 

motif that provids resistance to this drug[67]. Surprisingly, fusidic acid has an immediate 153 

death effect on P. falciparum[70,71], providing evidence for the existence of an off-154 



apicoplast target. IPP supplementation studies (explant in the next section) provided 155 

further support to this hypothesis in P. falciparum[71]. Whether fusidic acid causes 156 

parasite death by targeting the mitochondrial EF-G, by synergically affecting both 157 

apicoplast and mitochondrial EF-G or by blocking the apicoplast EG-F and a yet 158 

unknown third target, remains to be discovered. The antibiotic thiostrepton also 159 

hampers EF-G activity by preventing the docking of this and other factors to the 160 

bacterial ribosome[65]. Thiostrepton is active against P. falciparum but may primarily 161 

target the proteasome with residual activity on apicoplast and mitochondrial 162 

translation[72,73]. 163 

 164 

Table 1 Apicoplast-specific inhibitors of aaRS and ribosome components with details on the parasite 165 
death effect 166 

aaRS inhibitors     
Target PDB GeneID Drug Effect Reference 
isoleucine--tRNA ligase, putative PF3D7_1225100 Mupirocin Delayed death 46,67 
lysine--tRNA ligase, putative PF3D7_1416800 M-33; M-37 Delayed death 68 
tryptophan--tRNA ligase PF3D7_1251700 Indolmycin Delayed death 45 
leucine--tRNA ligase, putative PF3D7_0828200 AN2729 Delayed death 69 
tyrosine--tRNA ligase PF3D7_1117500 TCMDC-141232 Unspecified 70 
glutamate--tRNA ligase PF3D7_1357200 Glu-SA Enzyme inhibition 43 
 
Apicoplast ribosome inhibitors     
Target PDB GeneID Drug Effect Reference 
Small subunit ribosomal RNA PF3D7_API05700 Tetracycline Delayed death Tetracycline 71, 

Doxycycline 54,72 
Tigecycline 55,73 

Large subunit ribosomal RNA PF3D7_API04900 Lincosamides Delayed death Clindamycin 37,57   
Macrolides Delayed death Azithromycin 37,58 

Erythromycin 74 
Clarithromycin 75   

Chloramphenicol Delayed death 61 
Elongation factor G PF3D7_0602400 Fusidic Acid Rapid death* 62 
Elongation factor Tu PF3D7_API02900 Kirromycin, 

GE2270A, 
Amythiamicin A 
Enacyloxin IIa 

Rapid death 62,76 

 

*IPP supplemented P. falciparum proved to be still susceptible to fusidic acid activity[71]. This provides evidence for the 
existence of a second target for this compound, which may putatively be the mitochondrial EF-G[70]. 

 167 

 168 

 169 

Novel apicoplast targets identified and drugs confirmed via IPP supplementation 170 



Yeh and DeRisi demonstrated that IPP biosynthesis is the only required apicoplast 171 

metabolic pathway for culturing P. falciparum asexual stages[21]. In this study, the 172 

authors succeeded to chemically ablate the apicoplast in P. falciparum cultures 173 

supplemented with IPP, obtaining viable IPP-dependant offspring with no plastid[21] 174 

(referred to from here onwards as API-minus). This procedure became a powerful tool 175 

to study apicoplast biogenesis and to characterise organelle-specific drug targets and 176 

compounds (summarised in Fig. 1). In one example, this method allowed the 177 

characterisation of the autophagy-related proteins (ATG) as regulators of apicoplast 178 

vesicle transport[74] and apicoplast segregation[75]. The proteins ATG8 and ATG18 179 

proved to be involved in apicoplast biogenesis in both P. falciparum and T. 180 

gondii[34,76,77], while a similar function for ATG4 was described in T. gondii[78]. These 181 

studies clarified the role of autophagy enzymes in light of the unclear nature of 182 

autophagy in Apicomplexa and highlighted this pathway as a possible target for novel 183 

antimalarials.  184 

IPP supplementation also helped to identify the apicoplast segregation role played by 185 

the caseinolytic proteases ClpC and ClpP[30]. Moreover, the analysis of P. falciparum 186 

dominant negative mutants for the sufC gene revealed apicoplast loss when parasites 187 

were rescued with IPP[22]. The observed apicoplast loss suggests that ISC synthesis 188 

plays a role in organelle biogenesis. This observation calls for a re-evaluation of the 189 

previously suggested exclusive role of ISC synthesis in sustaining the IPP biosynthesis 190 

pathway itself. 191 

Recently, several uncharacterised proteins were assigned apicoplast localization via 192 

proximity-tagging proteomics in P. falciparum and through genetic screens in 193 

P. berghei[79,80]. Among these, the ATP-binding cassette protein ABCF1 and the 194 

membrane transporter DMT2 were described as essential components of P. falciparum 195 



apicoplast, as confirmed by conditional knockdown and IPP rescue of the mutants[79,80]. 196 

These studies provided new important entries to the limited list of currently known 197 

apicoplast proteins and especially apicoplast transporters. 198 

IPP rescue also provided an efficient tool to analyse apicoplast functions in response to 199 

drug exposure. An interesting example is provided by the study of artemisinin-induced 200 

dormancy in P. falciparum[81]. Recrudescence from this dormant stage to complete 201 

recovery occurs only in parasites with a functional apicoplast. Parasites exposed to 202 

fosmidomycin followed by induction of dormancy can also be rescued but only upon 203 

supplementation with either IPP or its derivative geranylgeranyl pyrophosphate 204 

(GGPP). While GGPP can be used to temporarily maintain an API-minus culture, the 205 

recrudescence of dormant API-minus parasites is only achievable by IPP 206 

supplementation[81]. These observations, indicate the possible involvement of IPP in the 207 

recovery mechanism, possibly through influencing mitochondrion activity[81,82]. 208 

In another study, an IPP rescue-based drug screen confirmed that the compound 209 

MMV008138 shows similar kinetics of parasite killing to fosmidomycin and that the 210 

effect is reversible by IPP rescue[83,84]. Further studies identified the enzyme IspD as 211 

the target of MMV008138[85], encouraging the development of new analogues for both 212 

this compound[86] and for the benzoisothiazolones[87]. Although both fosmidomycin and 213 

MMV008138 do not seem to have an effect on gametocytes, parasites lacking an 214 

apicoplast are unable to reach gametocyte maturity unless IPP was supplemented prior 215 

to stage III-IV[88]. This may suggest that while a functional apicoplast is required for 216 

gametocyte survival, these drugs show different pharmacokinetics at this stage. This 217 

limitation was overcome by the development of the MEPicide RCB-185, which affects 218 

both gametocyte and asexual P. falciparum, as confirmed by IPP rescue[89]. Another 219 

IPP based drug-screen identified the membrane metalloprotease, FtsH1, as the target of 220 



the apicoplast biogenesis inhibitor actinonin. Interestingly, as opposed to most other 221 

apicoplast targeting drugs, actinonin has a rapid-death effect on the parasites[31]. A 222 

recent screen, testing the apicoplast-specific effect of multiple antibiotics on API-minus 223 

parasites, provided more support for the immediate death effect of actinonin on 224 

P. falciparum when compared with the effect of other antibiotics[71]. Both studies raise 225 

the possibility that the inhibition of specific apicoplast proteins could generate 226 

apicoplast-defect-dependent rapid parasite death. This hypothesis brings the apicoplast 227 

back to the focus of antimalarial development as a powerful source for targets causing 228 

immediate parasite death. 229 

Sabotaging redox regulation in the apicoplast as a new strategy for drug 230 

development 231 

Redox is the name given to the sum of reducing and oxidizing powers in a compartment. 232 

The carefully maintained balance between oxidising and reducing agents provides a 233 

suitable environment for all cellular functions and is essential for the survival of all 234 

cells. Plasmodium parasites are constantly exposed to signals and molecules causing 235 

changes to their cellular redox balance. For example, during the intraerythrocytic cycle, 236 

the parasites experience oxidative stresses generated exogenously by the host immune 237 

system, and endogenously by the activity of their own mitochondrial metabolism and 238 

from haemoglobin degradation[90,91]. The ability to maintain redox balance is thus a 239 

potential ‘Achilles heel’ for Plasmodium and other Apicomplexa. In support of this, 240 

tipping the parasite redox balance by elevation of exogenous oxidative stress in vitro 241 

results in parasite death for both asexual stages[92] and sexual gametocyte stages[93]. 242 

Moreover, recent evidence suggests that elevation of redox stress in vivo is also 243 

detrimental to the parasites[94]. In this study, which was aimed to evaluate the effect of 244 

animal diet on susceptibility to malaria, elevated oxidation in the liver was identified 245 



as a cause of impaired liver infection[94]. Sabotaging the parasites’ ability to maintain 246 

redox balance is, therefore, emerging as a killing mechanism that could be exploited 247 

for drug development[32]. 248 

In eukaryotic cells, each compartment has its unique redox state, suitable for the 249 

pathways it hosts. Compartmental redox regulatory networks have two arms: (1) 250 

pathways responsible to maintain a redox state that is suited to the biochemical 251 

conditions required in the organelle, e.g. via the action of antioxidants; (2) pathways 252 

that modulate the function of proteins in response to changes in the redox state in a 253 

specific compartment. For example, thioredoxins mediate protein folding, which in turn 254 

affects both their trafficking through compartments and translocation complexes, as 255 

well as their catalytic function. The thioredoxin potential to induce folding is directly 256 

controlled by the redox environment in its corresponding compartment. Due to its 257 

multi-compartmental structure and complex evolutionary origin, the apicoplast is 258 

expected to rely on an elaborate network of redox regulatory pathways[95,96]. This 259 

prediction is based on the different redox conditions found in the origins of the different 260 

apicoplast compartments (e.g. the outermost compartment is likely to be highly 261 

reducing, like the ER; while the PPC is likely less reducing, like the cytosol). This 262 

prediction is further based on the expectation that some apicoplast proteins must be 263 

kept in a state of folding that is suitable for traversing several compartments, and that 264 

all proteins should fold to their catalytic form in their resident compartment. While the 265 

information about these pathways is sparse, evidence points to apicoplast redox 266 

regulation as a promising target for drug development. For example, our recent work 267 

characterized the function of Toxoplasma apicoplast thioredoxins (ATrxs) and 268 

demonstrated their role in apicoplast protein folding and sorting[32]. This study showed 269 

that the deletion of a single redox regulation component is sufficient to cause parasite 270 



death. It further identified ATrx2 as a parasite- and algal-specific protein and generated 271 

an in vitro activity assay that can now be used to screen for inhibitors. Two different 272 

genetic screens[97,98] and our own unpublished data points to the essentiality of ATrx2 273 

also in P. falciparum. ATrx2 is localised in one of the outer apicoplast compartments 274 

(the periplastid compartment[32,99], see Fig 1 for representation). Because of its 275 

localization, inhibitors of ATrx2 need to cross two membranes fewer than inhibitors of 276 

targets in the apicoplast stroma. Likewise, due to its role in organelle biogenesis, ATrx2 277 

inhibitors also have the potential to provide fast killing like actinonin[31] and like a 278 

recently reported putative inhibitor of apicoplast protein translocation[102]. Together 279 

these features highlight ATrx2 as an attractive target for drug development. A 280 

proximity-tagging based analysis[79] has expanded the number of apicoplast proteins 281 

predicted with high-confident in P. falciparum. This allows an evaluation of the number 282 

of potential ATrx substrates and their predicted functions (Table 2). The catalytic 283 

activity of thioredoxins, including ATrxs[32], consists of disulfide exchange with their 284 

substrate, which takes place via a typical double cysteine (CXXC) motif. While target 285 

cysteines on the substrate could be found anywhere, they are commonly located in 286 

CXXC motifs, which can provide a predictive tool in the search for putative substrates. 287 

Table 2 summarizes the proteins found in the proximity tagging screen that also possess 288 

CXXC motifs, and are thus candidate ATrx substrates. CXXC motifs in known 289 

thioredoxin substrates could be found anywhere in the protein sequence where their 290 

reduction or oxidation could affect folding. We would predict that in the case of 291 

apicoplast proteins, CXXC found in the targeting signal are not likely to affect protein 292 

folding once in the organelle and thus those proteins are not included. Further analysis 293 

of these new apicoplast proteins may present new target candidates for drugs inhibiting 294 

apicoplast redox regulation. 295 



  296 



Table 2. Apicoplast-targeted proteins predicted by Boucher et al. (2018)[79] that contain double 297 
cysteines that may serve as ATrx regulation domains  298 

Putative apicoplast proteins containing potential dicysteine domains 
Reference Annotation CxxC domain(s) Essentiality* 
PF3D7_0107700 conserved membrane protein, unknown function CilC Dispensable 
PF3D7_0313800 conserved protein, unknown function CrdC, CpqC Essential 
PF3D7_0313900 conserved protein, unknown function CriC Dispensable 
PF3D7_0414100 conserved membrane protein, unknown function CvkC Dispensable 
PF3D7_0529000 conserved protein, unknown function CnyCC Essential 
PF3D7_0619100 conserved protein, unknown function CilC Essential 
PF3D7_0715200 conserved protein, unknown function CglCC Dispensable 
PF3D7_0721100 conserved protein, unknown function CnlC Essential 
PF3D7_0820600 conserved membrane protein, unknown function CneC, ChtC, CirC Dispensable 
PF3D7_0916200 conserved protein, unknown function CknC Essential 
PF3D7_0918400 conserved protein, unknown function CinC Dispensable 
PF3D7_1023300 conserved protein, unknown function CgtCtaC, CaaC, CtaC Essential 
PF3D7_1242000 conserved protein, unknown function CpaC, CqnC, CknC Essential 
PF3D7_1351800 conserved protein, unknown function CalC, CqyC Essential 
PF3D7_1352000 conserved protein, unknown function CvgC, CkrC Dispensable 
PF3D7_1436100 conserved membrane protein, unknown function CekC Essential 
PF3D7_1437100 conserved protein, unknown function CakC, CpnC Essential 
PF3D7_1457300 conserved protein, unknown function CplC Essential 
Apicoplast proteins with potential redox functions 
Reference Annotation Function Essentiality* 
PF3D7_0529100 thioredoxin-like protein, putative (ATrx2) Redox Essential 
PF3D7_0604700 glyoxalase I (GILP) Glyoxalase System Essential 
PF3D7_0623200 ferredoxin--NADP reductase Redox Essential 
PF3D7_0623500 superoxide dismutase [Fe] (SOD2) Redox Essential 
PF3D7_0716600 cysteine desulfurase Fe-S cluster Essential 
PF3D7_0723700 metallo-hydrolase/oxidoreductase, putative Unknown Essential 
PF3D7_0729200 1-cys peroxiredoxin (AOP) Redox Dispensable 
PF3D7_0815900 dihydrolipoyl dehydrogenase, apicoplast PDC component Dispensable 
PF3D7_0823600 lipoate-protein ligase B Lipoic acid synthesis Dispensable 
PF3D7_0914300 met-10+ like protein, putative Unknown Dispensable 
PF3D7_1020800 dihydrolipoamide acyltransferase component E2 PDC component Essential 
PF3D7_1114800 glycerol-3-phosphate dehydrogenase, putative Carbon metabolism Essential 
PF3D7_1124500 pyruvate dehydrogenase E1 component subunit α PDC component Essential 
PF3D7_1205700 targeted glyoxalase II Glyoxalase system Dispensable 
PF3D7_1212000 glutathione peroxidase-like thioredoxin peroxidase Redox Essential 
PF3D7_1318100 ferredoxin, putative Redox Essential 
PF3D7_1364600 aldehyde reductase, putative reducing enzyme Unknown Essential 
PF3D7_1409100 aldo-keto reductase, putative Unknown Essential 
PF3D7_1419200 thioredoxin-like protein, putative (ATrx1) Redox Dispensable 
PF3D7_1419800 glutathione reductase Redox Essential 
PF3D7_1430700 NADP-specific glutamate dehydrogenase Carbon metabolism Essential 
PF3D7_1437200 ribonucleoside-diphosphate reductase large 

subunit, putative 
DNA replication Essential 

PF3D7_1446400 pyruvate dehydrogenase E1 component subunit β PDC component Dispensable 
PF3D7_1455900 polyprenol reductase, putative Unknown Essential 
 
*The indication of gene essentiality is according to the high-throughput piggyBac transposon mutagenesis screen 
performed by Zhang et al. (2018) on P. falciparum[97]. In this study, libraries of parasite genomes containing a 
single piggyBac insertion were used to identify essential genes by Illumina-based sequencing. This approach 
identified 2042 genes that are dispensable for P. falciparum intraerythrocytic development. 



 299 

Figure 1 Schematic representation of the apicoplast with confirmed and potential drug targets.  300 

The figure represents the various apicoplast compartments delimited by four green membranes. The most 301 
relevant apicoplast functions sustaining Plasmodium spp. intraerythrocytic development are represented. 302 
Antibiotics having a specific effect on the organelle are indicated by names in red. Apicoplast potential drug 303 
targets that have been confirmed by IPP supplementation are depicted in red circles and are placed in their 304 
hypothetical organelle position. The big variety of antibiotics active against the translation machinery are 305 
listed on the right panel, representing an enlargement of the ribosome including the elongation factors EF-G, 306 
EF-Tu and a circle representing the apicoplast tRNA synthetases. 307 

Abbreviations: aaRS: aminacyl-tRNA synthetase; ABCF1: ATP-binding cassette protein F1; ATG8/18: 308 
autophagy related protein 8/18; ATrx1/2: apicoplast-thioredoxin 1/2; ClpC/P: caseinolytic protease C/P; 309 
DMAP: dimethylallyl-pyrophosphate; DMT2: divalent metal transporter 2; DXS: 1-deoxy-D-xylulose 5-310 
phosphate synthase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; EF-G: elongation factor-G; EF-311 
Tu: elongation factor thermo unstable; GA3P: glyceraldehyde 3-phosphate; IMC: innermost compartment; 312 
IPP: isopentenyl pyrophosphate; IspD, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; IspE, 4-313 
diphosphocytidyl-2-C-methyl-D-erythritol kinase; IspF, 2C-methyl-D-erythritol 2,4-cyclodiphosphate 314 
synthase; IspG, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; IspH, 4-hydroxy-3-methylbut-2-315 
enyl diphosphate reductase; PPC: periplastid compartment; OMC: outermost compartment. 316 

 317 
Perspectives  318 

• Malaria continues to be one of the major global killers. Upon its discovery, the 319 

apicoplast was proposed as a prime target for antimalarials. However, the 320 

“delayed death” phenotype, characterized by parasite killing only in the second 321 

generation after the introduction of drugs inhibiting apicoplast targets, does not 322 

align with the killing dynamics proposed for the new generation of 323 

antimalarials. This resulted in scepticism about apicoplast functions providing 324 

good targets for new drugs within the malaria drug research and development 325 

community.  326 



• Several recent studies highlight that there are apicoplast functions whose 327 

inhibition could result in the rapid killing of Plasmodium spp.[31,72,102] and the 328 

related Toxoplasma gondii[100]. Likewise, studies started pointing to potential 329 

apicoplast essential functions in vivo. For example, while IPP complementation 330 

suggests IPP synthesis as the only essential apicoplast function in asexual 331 

stages, experiments point to other crucial apicoplast functions that sustain 332 

parasite growth when fever response is simulated in culture[101]. The same may 333 

well be true for growth under the pressure of oxidative stress generated by the 334 

immune system.  335 

• These observations should provide motivation to deepen our understanding of 336 

apicoplast biology, and our knowledge of the proteins that take part in its 337 

functions. In the context of drug development, it is a high priority to improve 338 

our appreciation of the role of the apicoplast in different parasites life stages in 339 

vivo.   340 
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