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The Tearing Instability of Resistive
Magnetohydrodynamics

David MacTaggart
School of Mathematics & Statistics, University of Glasgow, UK

Abstract In this Chapter we explore the linear onset of one of the
most important instabilities of resistive magnetohydrodynamics, the
tearing instability. In particular, we focus on two important aspects
of the onset of tearing: asymptotic (modal) stability and transient
(non-modal) stability. We discuss the theory required to under-
stand these two aspects of stability, both of which have undergone
significant development in recent years.

1 Introduction

The terms resistive and non-ideal magnetohydrodynamics (MHD) are often
used interchangedly. However, there is an important distinction. Consider
Ohm’s law

E+uxB=G, (1)

where E is the electric field, u is the velocity field, B is the magnetic in-
duction field (hereafter referred to as the magnetic field) and G represents
different possible terms that can be included in an “extended” Ohm’s law.
If G = 0, then equation (1) is Ohm’s law for ideal MHD. Ideal MHD has
many interesting topological properties, one of the most famous is known
as Alfvén’s frozen flux theorem.

Theorem 1.1. Let S be a material surface in a fluid governed by ideal
MHD. Then

d
where n is the normal of the surface S.

Corollary 1.2. If a magnetic field line and a material line coincide at any
instant in time, they must coincide for all time.



The proofs of these statements can be found in many MHD textbooks
(e.g. Biskamp, 1993; Schindler, 2006), so we do not reproduce them here.
Putting these results into words, however, in ideal MHD, the magnetic field
changes as if field lines were “frozen into the fluid”. This property means
that for any flow field, the topology (or connectivity) of the magnetic field
remains unchanged.

It can be shown that non-ideal forms of Ohm’s law (i.e. G # 0) can also
preserve the topology of magnetic field lines. The most general form of G
which achieves this is

G=H+u xB, VxH=)\B, (3)

for a “new” velocity field u’ and a scalar A (e.g. Newcomb, 1958; Priest
and Forbes, 1993; Birn and Priest, 2007; Schindler, 2006). Several physical
quantities that normally appear in an extended Ohm’s law take the form
of (3). For example, if we include the Hall term on the right-hand side of
equation (1), we have

E+uxB=g(VxB)xB, (4)

where  is a constant. By writing v = u — SV x B we return to the ideal
Ohm’s law (2) with the flow field u replaced by a new transport velocity v.
Many more details of the extended Ohm'’s law will be considered in Chapter
3.

If, instead, we choose G = nV x B, where 7 is called the magnetic
diffusivity, we have resistive MHD. This version of Ohm’s law is non-ideal
and does not preserve magnetic flux or field line topology except in very
special circumstances (e.g. Jette, 1970). Combining the resistive Ohm’s
law with Maxwell’s equations of electromagnetism leads to the resistive
induction equation

%—?:Vx(uxB)+nV2B, (5)
for constant n. When 1 > 1 it does not really make sense to speak of
magnetic topology as the field lines diffuse through the fluid on all scales.
When 1 < 1, as in almost all astrophysical applications, the magnetic field
will behave as if it followed ideal MHD except in (generally small) regions
where there is strong current density. Such locations are where magnetic
reconnection takes place, i.e. the changing of the topology of the magnetic
field.

Since current density in MHD is given by j = p~'V x B, where p is the
magnetic permeability of free space, high current density corresponds to



regions where the magnetic field has “high curl”. One situation where this
is produced is in regions where the magnetic field changes direction rapidly,
on a length scale much smaller than the global length scale of the system,
forming sheets of high current density known as current sheets. Current
sheets have often been defined as discontinuous surfaces in ideal MHD (see
Chapter 1). In this Chapter we consider current sheets with finite thickness,
which is physically more realistic and, as will be made clear, important for
stability analysis.

The rest of this Chapter will focus on the linear stability of current
sheets. When a current sheet is unstable, magnetic islands (or plasmoids
in three dimensions) form via reconnection. Due to this behaviour, the
instability is known as the tearing instability (TT). Our analysis of the onset
of the TT will be split in two. The first part will focus on asymptotic (or
modal) stability and is, by far, the most studied description of stability.
The second part will consider transient (or non-modal) growth, which has
been studied less than modal stability but can be of significant importance
for a complete description of the onset of the TI.

2 Asymptotic stability

2.1 The classical results

We will now present some classical results of the TI onset which stem
from the seminal work of Furth et al. (1963). Although this topic has been
treated in several textbooks (e.g. Priest and Forbes, 1993; Schindler, 2006;
Goedbloed et al., 2010) we include a brief description here for completeness
and to set the scene for later discussions related to both asymptotic stability
and transient growth.

To study the TI, we consider the two-dimensional (2D) incompressible
MHD equations

p(aal;—i—(u-V)u) = -Vp+p 1V xB) x B, (6)
38—]:’ =V x (ux B) +1nV?B, (7)
V-B=V-u=0, (8)

where B and u are as defined previously, p is the (constant) density, p is the
plasma pressure, 7 is the constant magnetic diffusivity and pu is the magnetic
permeability.



For our background (static) equilibrium,
po=po(r), Bo= Bo.(z)e., ug=0. 9)
where the subscript 0 corresponds to the equilibrium and

1
po(x) + ﬂBgz(x) = const. (10)

Before choosing a particular form for By, (z), let us linearize the MHD equa-
tions. Setting (u, B,p) = (ug, Bo, po)+(u1, B1, p1) leads to the linearization

0
p%:_wl +p 7 (V x B1) x Bo+ 4 H(V x Bo) x By, (11)
B
% =V x (w1 x By) + V2B, (12)

Note that we are assuming n < 1 which is typical in many solar and as-
trophysical applications. We therefore ignore the contribution of diffusion
on the background equilibrium in equation (12), expecting the dynamics of
the instability to to occur on a much shorter time scale than the diffusion
time. For a discussion on the influence of background diffusion, the reader
is directed to Dobrott et al. (1977).

We now look for solutions of the form

w = [u(z,),0,u.(z,1)] "™, By = [b(x,1),0,b(x, )] ™, (14)

where k is the wavenumber of disturbances in the z-direction. Taking the
curl of equation (11), we eliminate p;. Using the solenoidal constraints in
equation (13), we can eliminate u, and b,. This leaves equations

o (0*u ikBo. (0% ikBy."
ai (o ) = (G )~ et )
2
% = ikBo.,u+n (gxg — k2b> ) (16)

Primes denote differentiation with respect to = in the equilibrium magnetic
field.



Equilibrium We choose a classic form for the background magnetic field
known as the Harris sheet (Harris, 1962). The magnetic field of the Harris
sheet is given by

By

_bPo_ 2 it
a? cosh?(z/a)

By (z) = Bp tanh (g) . Bo."(z) = tanh ( ) ,  (17)

a

where By is the maximal field strength and a measures the thickness of the
current sheet. The equilibrium pressure then comes from (10) but is not
important for our calculations.

Nondimensionalization To non-dimensionalize the equations, consider

u=uou*, b= Bgb*, t=tot", z=ax". (18)

Further, if we take

tO - i =Ta, Ug = =UA, (19)

By
Uo v P
where the latter is the Alfvén speed, the linearized MHD equations become
(after dropping the *s)

5 2
o (gxu . m) _ ikB, (gxb - k%) —ikBob, (20)
b 1 /0%
a = ik‘BOzU + E (6.172 - kzb) 5 (21)
where au
5, )

is the non-dimensional constant known as the Lundquist number. Note that
in order not to introduce unnecessary new notation, By, now represents the
non-dimensionalized quantity in (17);.

Assuming a time dependence of exp(ot), the equations describing the
classical linear onset of the TI are

Pu , ?b 5 ,

g <8(52 —k u> :Zk’BOZ <6Qj2 —k b) — Zk’BOZ”b7 (23)
, 1/0%

ob :ZkBOZU + g (8.’)32 —k b> . (24)



d 5 10 15 20 25
o | 0.01059 | 0.01307 | 0.01309 | 0.01309 | 0.01309

Table 1. Tearing mode growth rate, for £ = 0.5 and S = 1000, as a function
of the domain size d.

The assumption of a time dependence of exp(ot) is a standard step in linear
stability theory and has been made in many linear stability studies through-
out the past century. However, this simple step has a profound influence
on the description of the linear onset of an instability. Indeed, it is the
reason why this section is entitled “Asymptotic stability”. We will discuss
this point in more detail in Section 3.

As mentioned earlier, resistive effects are often only important in small
regions, especially when S > 1. Outside of these regions, the behaviour
of the fluid can be described by ideal MHD. The classical approach of de-
termining the growth rate ¢ in equations (23) and (24) is based on the
identification of a (thin) resistive region (current sheet) and an ideal region
(far from the current sheet). Using the method of matched asymptotic ex-
pansions (e.g. Eckhaus, 1973; Van Dyke, 1975), the solution behaviour in
both regions can be matched, allowing for a dispersion relation to be found.
This approach has been reproduced, in excellent detail, in many textbooks
(e.g. Schindler, 2006; Goedbloed et al., 2010) and so here we will only high-
light the most important details of the dispersion relation needed for later
in the Chapter.

We solve equations (23) and (24) numerically (MacTaggart and Stewart,
2017; MacTaggart, 2018) with no-slip and perfectly conducting boundary
conditions,

u=b=0 atz==d, (25)

where d is a non-dimensional distance. Since the tearing instability grows
in a thin boundary layer at = 0, the choice of boundary conditions does
not have a large effect on the initial development of the instability if d is
sufficiently large. As evidence of this, Table 1 displays how the growth rate
of the tearing mode changes as a function of d for S = 1000 and k£ = 0.5.
From the numerical solution of equations (23) and (24) with boundary
conditions (25), we can determine how the tearing mode growth rate varies
in the (S, k) parameter space. Figure 1 displays the tearing mode dispersion
relation (o against k) for various values of S. It is noted that the eigenvalue
corresponding to the growth rate of the tearing mode is purely real.
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Figure 1. The dispersion relation of the tearing mode for various S.

From inspection of the numerical results, some of which are displayed in
Figure 1, or from asymptotic analysis (e.g. Furth et al., 1963; Paris, 1984,
Schindler, 2006; Goedbloed et al., 2010), the maximum growth rate of the
tearing mode scales as

o=0(S"?), k=0(S"*). (26)

For larger k£ < 1, the growth rate scales as
o =0(573/%). (27)
Figure 2 displays numerically determined growth rates and how they follow,

linearly, the scalings given in (26) and (27).

2.2 The plasmoid instability

In the previous section we demonstrated that the growth rate of the TI
is a negative power of the Lundquist number S. This fact was originally
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Figure 2. The tearing mode growth rate scale dependence. (a) shows the
maximum value of the growth rate scaling as S~/2. (b) shows the growth
rate for k = 0.8, scaling as S—3/%. The dashed lines are lines of best fit.

perceived as a stumbling block for the application of the TI to explain
examples of “fast” reconnection, such as solar flares (e.g. Priest, 1983),
where S > 1. A definition of “fast” in this context corresponds to a rate
greater than the Sweet-Parker rate, which we will introduce shortly.

Fast growth is, however, possible for the TI and is often referred to as
the plasmoid instability (PI). In the linear phase of the PI, “fast” implies
a growth rate that is either independent of S or is a positive power of
S. Before describing the PI, we will introduce some nomenclature that is
common in the TT and PI literature.

Sweet-Parker current sheet Much of the theory of magnetic recon-
nection is described in terms of Sweet-Parker reconnection. This model
describes steady-state magnetic reconnection and contains a current sheet
with inflow perpendicular to the sheet and parallel outflow (Parker, 1957a,b;
Sweet, 1958). This model has been treated in many textbooks, so we will
only provide a very brief description here. Consider the magnetic field of a
null point which has been compressed into a current sheet of a particular
aspect ratio with thickness a and length L. This deformation is illustrated



in Figure 3.

Figure 3. A schematic representation of a null point and its deformed state
as a current sheet. Separatrices are dashed lines and the current sheet is
represented by a crinkled line.

Assume that after the deformation, the system reconnects in a steady-
state manner. If u; is the inflow speed and u, is the outflow speed, the
Sweet-Parker model predicts

Yi _o(%) = ~1/2

- _O(L) = 0(871/?). (28)
Therefore, the steady-state reconnection rate scales as the aspect ratio of
the current sheet which scales as S~1/2. Just like the tearing mode growth
rate, the steady-state rate is slow for many astrophysical problems. Al-
though other steady-state models can produce faster reconnection rates (e.g.
Petschek, 1964; Kulsrud, 2001) we will not consider them here. Instead, for
our purposes, a Sweet-Parker (SP) current sheet will refer to one with the
aspect ratio given in (28).

Approaches to “fast” reconnection One way to obtain faster recon-
nection rates is to include more physics (beyond resistive MHD) in the TI
description, e.g. the Hall term (Terasawa, 1983). The Geospace Environ-
ment Challenge, or GEM Challenge, (Birn et al., 2001; Birn and Hesse,
2001) compares a variety of different codes containing different dissipation
models (resistive MHD, Hall MHD, hybrid and kinetic), all applied to the
same problem - a perturbed Harris sheet. The perturbation used, however,
is of the same thickness as the initial current sheet, so this study does not
capture the linear phase of the TI and starts in a nonlinear phase. The



result of this study is that the reconnection rate of all models is comparable
except resistive MHD, which is much smaller than the rest. A similar study,
known as the Newton Challenge, was carried out in order to include the for-
mation of the thin current sheet in the simulations, rather than inserting it
as an initial condition. Again, fast reconnection is found to be essentially
independent of the dissipation mechanism.

Another path to producing faster dynamics is to create many small
length scales (i.e. current sheets within current sheets) in which recon-
nection can occur and become more efficient. One way of achieving this is
to include the effects of turbulence in current sheets to generate these small
length scales (e.g. Lazarian and Vishniac, 1999; Shibata and Tanuma, 2001;
Loureiro et al., 2009; Lazarian et al., 2015). This topic will be considered in
Chapter 6. Here, we will focus on the linear phase of the PI, which can lead
to the formation of small scales through the creation of many plasmoids.

Plasmoid instability The classical TI of resistive MHD, without extra
physics, does posses fast dynamics, both in the linear and non-linear phases.
Hints of this fast behaviour (the PI) can be found in early simulations of the
TT (e.g. Forbes and Priest, 1983; Steinolfson and van Hoven, 1984; Biskamp,
1986). These simulations found that thin (SP) current sheets would always
(in particular parameter regimes) become subject to the TI. However, it was
not until recently that the full potential of the PI began to be uncovered.
Loureiro et al. (2007) performed a linear stability analysis, similar to that
of the previous section, for a thinning current sheet, i.e. a current sheet
compressed by a background stagnation point flow. In their analysis, they
find that the growth rate of tearing is O(S'/*) with S > 1 in a current
sheet with the SP scaling. This result has been reproduced in simulations
(e.g. Bhattacharjee et al., 2009; Samtaney et al., 2009; Huang et al., 2017)
which also reveal the formation of many plasmoids.

The PI is thus the TT in current sheets of a large aspect ratio and is fast
since the linear growth rate is a positive power of S rather than a negative
power as in the classical analysis. These results imply that once current
sheets are compressed to a certain aspect ratio, they succumb to the PI and
break up in the chaotic formation of plasmoids. The theory of the plasmoid
instability is described in detail in Uzdensky and Loureiro (2016). Pucci
and Velli (2014) argue that the SP scaling may never be reached as the
onset of the PI can occur in much thicker current sheets. We now follow
their argument by making use of the results for the classical onset of the
TT.

First, let us assume that the aspect ratio of the current sheet follows the
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scaling

+=0(5.), (29)
L
where « € R and S;, = Luy /7, that is the Lundquist number based on the
macroscopic scale L rather than the sheet thickness a. As mentioned in the
analysis of the classical TI, we are only interested in behaviour on a time
scale much shorter than the global magnetic diffusion time scale. For the
above aspect ratio, this time scale is

T =0(5}72). (30)
Hence, we have have the constraint of considering o < 1/2. Note that
a = 1/2 is the SP scaling that appears throughout the TT literature and
can be thought of as an upper bound for . Now, if we perform the non-
dimensionalization of equations (15) and (16) where the only scaling that we
change is the time scale tg = L/u4 (i.e. the time scale is now based on the
macroscopic length) and convert the equations to an eigenvalue problem,
we can derive the non-dimensional equations

_(OPu ) b 2 .

g <81‘2 —k 'LL> = ZkBOZ <8x2 —k b) - ZkBOZNb, (3].)
&b = ik Bosu + — o _ k*b (32)
ob=ikBozu+ 5 | 5.2 ,

where & = S; %0 and Q = S}~*. Notice that equations (31) and (32) are
identical to equations (23) and (24) with the substitutions of & for ¢ and
Q for S. This means that we can use the solutions of equations (23) and
(24) for equations (31) and (32). It should be noted that these equations
are not strictly in the SP framework, i.e. they are one-dimensional and
there is no length scale L arising naturally from the geometry of the current
sheet (although Janicke (1980) shows that weak two-dimensionality does
not strongly affect the classical analysis). Here we will assume that L is
much larger than a, following the scaling in (29).

As described in the previous section, the maximum growth rate v for
the classical T1I, as S > 1, is given by

v =0(8712). (33)
Therefore, the corresponding relation for equations (31) and (32) is

7=0Q ') (34)

11



With 7 = S;%v and the definition of @ given above, we have after simple
rearrangement,

y=0(sgr. (35)

From the expression in (35), to find a growth rate that is independent of
S, we take o = 1/3. For a > 1/3, the growth rate diverges with increasing

Sr. Note that for the SP current sheet (o = 1/2), v = O(SI{/AL) which is
the scaling found by Loureiro et al. (2007). Therefore, when current sheets
reach the critical aspect ratio of 0(551/3)7 Pucci and Velli (2014) argue that
the background equilibrium cannot support further laminar motion (further
current sheet thinning) and the chaotic phase of the PI ensues. Pucci and
Velli (2014) refer to the fastest growing mode in this scenario as the “ideal”
tearing mode since the growth rate becomes independent of S and is fast in
the sense that motion acts on an “ideal MHD” time scale rather than the
slow (resistive) time scale of the classical TL

The result in (35) moves the onset of the PI away from the SP scaling
to a much smaller aspect ratio for Sy > 1. For example, in the solar
corona with Sz, = O(10'?), the PI could set in on a current sheet of aspect
ratio O(10%) rather than a (much thinner) SP current sheet with aspect
ratio O(10%). The result in (35) has been generalized to other situations,
such as including viscosity (Tenerani et al., 2015), changing the background
equilibrium (Pucci et al., 2018) and considering a weakly collisional plasma
(Del Sarto et al., 2016).

This completes our overview of the linear onset of the TI according to
asymptotic stability theory (eigenvalue analysis). Asymptotic stability says
nothing about how the spatial distribution of the initial conditions affects the
development of subsequent growth. Nor does it describe transient growth,
which could become very large in a finite time but decay to zero on a
long time scale. We now move beyond asymptotic stability to give a more
complete picture of the linear onset of the TI.

3 Transient growth

Until now, the focus of the onset of the TI has been on asymptotic stability.
We introduced this term without a detailed explanation of its meaning. In
this section we will provide the meaning which relates to another aspect of
the linear onset of the T1I - transient behaviour.

12



3.1 A toy model

In order to introduce the mathematical tools required to understand the
transient phase of the TT (which we discuss in detail in Section 3.2), we will
present new concepts with the help of a very simple toy model. This toy
model can be considered as a translation of that in Trefethen et al. (1993)
and Schmid and Henningson (2001) to MHD. In a setup suitable for the T1,
suppose that b resembles a component of the magnetic field and j resembles
a component of the current density. Consider the linear evolution equation

als)-(F %)) 59

where S represents the Lundquist number. Clearly, equation (36) is not
meant to be considered as a serious model for MHD. However, its simplicity
will allow us to make analytical progress and introduce new concepts.

Looking for solutions proportional to exp(ot), the eigenvalues and cor-
responding eigenvectors are

U=

75w (5) o
2 qzz((l’). (39)

Therefore, the complete solution expanded in an eigenvector basis can be
written as

(5)=tarsm (s Jovcusen () )ewas. @

where Ag and By are constants to be determined from the initial conditions.
Notice immediately from equation (39) that both b and j decay to zero in
the limit of large t. Hence, we find that the system is asymptotically stable.
This is the result we would obtain by applying the asymptotic stability
theory of the previous section.

Although the behaviour of equation (39) is clear for large times, it is
not immediately obvious how the solution behaves at earlier times. Writing
equation (36) as

09 =

%v = Av, (40)

where v = (b,j)7 and A is the matrix given in the right-hand side of
equation (36), the formal solution to the initial value problem can be written
as

v = exp(tA)vo, (41)

13



where vg = v(0) is the initial condition. In order to measure the maximum
possible growth, we define a growth function G(t) using the square of the
Lo-norm of the disturbance, i.e. |[v]|3 = b + j2. Hence, the maximum
growth function has the form

t)[|3 tA)vo3
010 — sup VOIS _ ) Tesp(tol
Vo HVOHQ Vo ||V0||2

= llexp(tA)]3,  (42)

where use has been made of equation (41) and the last relation holds by
the definition of an induced matrix norm. The matrix exponential takes the
form

B exp(—t/S) 0
exp(tA) = ( (exp(—1/8) - exp(~24/S))S exp(~2¢/S) > .

and Figure 4 displays its Lo-norm (squared) versus time for different values
of S.
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Figure 4. The growth function G(t) versus ¢ for a range of S.

What is clear from Figure 4 is that significant growth is possible at early
times before the solution decays. This transient growth also increases with

14



increasing S, resulting in a possible amplification, for S > 40, of two orders
of magnitude. We can make some further progress by considering the formal
solution given in equations (41) and (43). If vo = (b, jo)*, we have

b = exp(—t/S)bo, (44)
and so no transient growth is possible for b. The equation for j is
j = (exp(—/S) — exp(~21/8))Sho + exp(~2/S)jo.  (45)

Transient growth is possible from the first term on the right-hand side of
equation (45). Performing a Taylor series expansion of this term for ¢ <

0(9),

(exp(—t/5) — exp(—2t/S5))Sbo

t t? 2t 4t? 3bo
(S+5,2++SS2+>SZJQ = botfﬁt 4 ... (46)

Hence, for small ¢, j can experience transient growth.

This transient growth is also known as non-modal or algebraic growth.
These terms signify a departure from the standard normal mode analysis
which is concerned with asymptotic stability. As we saw in the toy model,
assuming a time dependence of the form exp(ot) pushes the solution to a
later time when the ezponential growth or decay, controlled by the eigenval-
ues, dominates. Normal mode analysis does not say anything about tran-
sient growth that occurs on a shorter time scale and grows algebraically.
Therefore, in order to determine a complete picture of the linear onset of
an instability, we must consider the full initial value problem rather than
just the eigenvalue problem. We can naturally ask, therefore, why is there
so much focus on normal mode analysis which does not consider non-modal
growth? A related, but more practical, question is, how can we tell if tran-
sient growth is important in a dynamical system? In order to answer this
question, we will introduce some mathematical structures that will help us
to determine how important transient growth can be for a particular system.

Non-normal operators In normal mode analysis, the superposition of
orthogonal eigenfunctions leads to the linear onset of an instability be-
ing dominated by the most unstable mode determined from the associated
eigenvalue problem. For the toy model, consider the normalized eigenvec-
tors, q; and qs. If @ is the angle between these two vectors, then

cosf = ——. (47)

15



It is clear that as S — 00, # — 0. That is, these non-orthogonal eigenvectors
tend to overlap as S increases and the eigenvector expansion becomes in-
creasingly ill-conditioned. Since the solution depends on the superposition
of non-orthogonal eigenvectors, even though the solution eventually decays
in time, the solution can grow before it decays.

For the toy model, our eigenfunctions are just eigenvectors and the oper-
ator A is just a 2x2 matrix. Operators with non-orthogonal eigenfunctions
(or eigenvectors for matrices) are known as non-normal operators. Normal
operators have orthogonal eigenfunctions, so if a dynamical system only has
normal operators then normal mode analysis will provide a full description
of the linear onset of instability.

It is simple enough to determine the eigenvalues and eigenvectors of the
toy model but what about more complicated systems where only a numerical
solution is, perhaps, possible? In other words, how can we determine if
the operator of a dynamical system is non-normal and, thus, can lead to
transient growth?

e-pseudospectra For problems with normal operators, as mentioned above,
the eigenvalues and eigenfunctions will give all the required information
about the linear stability. The spectrum of an operator A, o(A), is the
set of eigenvalues in the complex plane C. Suppose we are seeking solu-
tions proportional to exp(ct). If 0(A) does not protrude into the half-plane
R(z) > 0 then the system is asymptotically stable. This is the case for the
toy model but, as we have seen, there is significant transient growth that
eigenvalue analysis cannot directly reveal. In order to show that an operator
is non-normal we can use a generalization of the eigenvalue spectrum called
the e-pseudospectrum, or pseudospectrum for short (Trefethen and Embree,
2005).

Definition 1. Let A be an operator and let ¢ > 0 be arbitrary. The e-
pseudospectrum o.(A) of A is the set of z € C such that

(I = A) M > e, (48)
where T is the identity operator and || - || is a suitable norm.

The quantity (2 — A)~! is known as the resolvent of A. Clearly, when
z € 0(A), the resolvent is not defined. It may, at first, seem that Definition
1 is not particularly useful since the norm of the resolvent is large when z is
close to an eigenvalue. This is true for normal operators, with || - || = || - ||2.
For non-normal operators, however, ||(2I — A)~!|| can be large even when z
is far from the spectrum. The resolvent for the toy model has the analytical
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expression
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Figure 5. The spectrum and pseudospectra of A for S = 10. The solid
dots represent the eigenvalues and the contours show the pseudospectra for
e = 107, with different values of 3 displayed in the colour bar. The vertical
dashed line indicates $(z) = 0.

Figure 5 displays contours of the Ly-norm of the resolvent in (49) for
several values of e. The contours in Figure 5 extend far from the eigenvalues.
This fact tells us that transient growth could be important in this system.
We can, however, use the information in Figure 5 to dig a little deeper. In
normal mode analysis, we would look for
a(A) = sup R(2), (50)

z€o(A)
which is known as the spectral abscissa of A (e.g. Trefethen and Embree,
2005). Clearly, a(A) is negative, indicating asymptotic stability. The pseu-
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dospectrum contour corresponding to € = 10715 passes into the R(z) > 0
half of the plane and this fact gives useful information on the size of possible
transient growth. To see how, consider the pseudospectral abscissa

ac(A) = sup R(z), (51)
z€0(A)

which is analogous to the definition of the spectral abscissa. The envelope
of transient growth is || exp(tA)||2 for ¢ > 0, as displayed in Figure 4. It can
be shown (Trefethen and Embree, 2005) that the largest possible transient
growth has a lower bound given by

O‘GEA), Ve > 0. (52)

sup || exp(tA)]l2 >
t>0

Using the information from Figure 5, for € = 1071% a.(A) = 3.78 1072 and
a lower bound for the maximum transient growth is sup,~g || exp(tA4)|l2 >
1.196. In short, the spectral abscissa reveals whether or not a linear system
has exponential growth and the pseudospectral abscissa does the same but
for transient growth.

There are several algorithms to calculate pseudospectra, with a compre-
hensive account given in Trefethen and Embree (2005). An excellent tool
for investigating pseudospectra is eigtool (Wright, 2002). This software
has been used to calculate the pseudospectra in this Chapter.

Eigenvalue sensitivity Another useful interpretation of pseudospectra
is a definition based on the sensitivity of eigenvalues.

Definition 2. o.(A) is the set of z € C such that
z€0(A+E), (53)
for some E with | E|| < e.

The proof that definitions 1 and 2 are equivalent is given in Trefethen and
Embree (2005). In this new definition we consider perturbing the eigenvalue
problem, that is a perturbation operator of O(e) is added to the system
operator and the spectrum of the combined operators is calculated. If this
were done for all such operators F, the region mapped out on the complex
plane by all of these spectra is the pseudospectrum, i.e.

o(A)= |J o(4+E). (54)

1Bl <e
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In practice, we cannot calculate (54) exactly. However, it normally takes
only a few different F to give a good indication whether or not an operator
is non-normal. Figure 6 shows how the eigenvalues of the toy model, for S =
1000, jump to distances greater than O(e) (i.e. the size of the perturbation)
when the operator A is perturbed. The eigenvalues for fifty different E with
|E|l2 = O(107°) are displayed. The eigenvalues of the perturbed operator

%107

& ¢

R(z) %1073

Figure 6. The eigenvalues of A (black dots) and the eigenvalues of 50
iterations of A + E where ||E|2 = O(107%) (red dots). In this example,
S = 1000.

jump three orders of magnitude greater than the size of the perturbation.
This approach gives a quick indication of the non-normality of an operator.
If A were normal, the perturbed eigenvalues would sit O(€) away from the
eigenvalues in the complex plane.

Choice of norm Before moving onto studying transient growth in the
TT onset, it is important to point out that this analysis is dependent on
the choice of norm. The general rule is to choose a norm that has a clear
physical meaning. For the toy model, we have used the Ls-norm, which
can be thought of as the “root mean square” of the perturbed quantities.
Not only is this norm simple to use with a clear physical interpretation
but many mathematical results are available for the Lo-norm concerning
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psuedospectra. Changing the norm, however, can change the shape of pseu-
dospectra (Trefethen, 1999; Trefethen and Embree, 2005) so norm selection
must be treated with care. Another obvious choice is the energy norm (e.g.
Reddy and Henningson, 1993; Schmid and Henningson, 1994; MacTaggart
and Stewart, 2017; MacTaggart, 2018). Sometimes a suitable norm is evi-
dent from the analysis but for other applications, normally involving more
detailed models, care must be taken in order to produce a “physically useful”
norm (e.g. Hanifi et al., 1996).

Optimal perturbations Although large transient growth can occur in
systems with non-normal operators, the size of the transient growth is de-
pendent on the initial conditions. For the toy model, the envelopes of mazi-
mum transient growth are shown in Figure 4. But what initial perturbations
give rise to the maximum transient growth? Suppose we wish to find the
initial condition that gives rise to the maximum transient growth at time
tm for the toy model. If qg represents this initial condition, we can write

Bqo = pq,, , (55)

where q;,, denotes the evolved perturbation after a time t,,, B = exp(t,, A)
and p = || exp(tmA)||2. Since p is the largest singular value of B, we can
solve for the optimal initial condition qo (and the resulting perturbation
q:,,) by decomposing B into

BV =UY, (56)

where U and V are unitary matrices and ¥ is a diagonal matrix containing
the singular values ordered by size.

If we focus on the columns u; and vy, of U and V respectively, corre-
sponding to the largest singular value, we have

Bvy = piuy, (57)

where 11 represents the largest singular value. What equation (57) states
is that an input vector vy is mapped by B onto u; stretched by a factor u;
(Schmid and Henningson, 2001).

For the toy model, the optimal initial conditions are just individual val-
ues as the system is based on a 2x2 matrix. For example, using the singular
value decomposition (SVD) described above in equations (56) and (57), the
optimal initial conditions giving rise to the maximum possible transient
growth at ¢t = 40 for S = 60 are b = —0.9998 and j = —0.0176.
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3.2 Transient growth of the TI

The study of transient growth in the linear onset of instability has been
well-developed for viscous shear flows (see Schmid and Henningson, 2001,
and references therein). In order to link up with this previous catalogue of
work, we extend the MHD model considered so far to include Newtonian
viscosity. That is, the (non-dimensional) model equations are now

ou i

e . - _ 2

Fr + (u-Vu Vp—i—(VxB)xB—i—ReV u, (58)
B 1

%t =V x (u><B)+§V2B, (59)

V-B=V.-u=0, (60)

where Re is the Reynolds number and all other variables have their standard
definitions. As well as an equilibrium magnetic field Bg = By, (z)e,, we now
consider, in general, an equilibrium flow ug = Up.(z)e.. The equilibrium
equations become

1
0 = —Vpo+(VxBg) xBo+ EVZuO, (61)
0 = V x(uyxBy). (62)

Clearly, for the assumed forms of the equilibrium magnetic and velocity
fields, equation (62) is satisfied. Once ugy and By are chosen, the background
pressure pg is determined from equation (61). Again, we ignore the effect
of magnetic diffusion on the equilibrium magnetic field.

Linearizing equations (58) to (60) and seeking solutions of the form (14),
leads to

9 1
a(D2 —k*)u = Lpb— Lyu+ E(D2 — k?)%u, (63)
o _ ik(Bo,u + Up:b) + l(D2 — k)b (64)
at — 0z 0z S )
where
Ly = ik[Uo.(D*~k*)~U,."], Lp = ik|Bo.(D*~k*)—By."], D =0/0x,
(65)

and the prime refers to differentiation with respect to = in the background
equilibrium fields.
As before, we consider no-slip and perfectly conducting boundary con-
ditions,
u=Du=0b=0at z = +d, (66)

where the extra condition Du = 0 enters since equation (63) is fourth order.
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General approach We will now describe an approach for investigating
transient growth in the system (63) and (64) which is an extension of that
described for the toy model. First, we rewrite equations (63) and (64) in
the form

QMV =Lv

ot ’ (67)

where v = (u,b)T,

= (PR (68)

1 2 2\2
L= ( © kB iU, + L(p2—32) ) (69

and [ represents the identity operator.

From the toy model, we found that transient growth is related to the
non-orthogonality of the eigenfunctions. Therefore, we will make use of this
fact and build our solution using eigenfunctions that contribute transient
growth. To do this, we must first convert the initial value problem (67) into
an eigenvalue problem. Consider the form

v = vexp(ot), (70)

where v is an eigenfunction and o the corresponding eigenvalue. The gen-
eralized eigenvalue problem is, therefore,

oMV = L¥. (71)

One often overlooked property related to the eigenfunction expansions con-
cerning the TT is the completeness of the eigenfunctions. We pick up on
this point in the Appendix.

Once (71) is solved, we must select a subset of eigenfunctions to con-
sider. We can use pseudospectra to help us select the eigenfunctions that
will contribute to large transient growth. For the moment, however, let us
assume that the selection of N eigenfunctions has been made and that we
restrict ourselves to a subspace spanned by these eigenfunctions,

SN ={¥1,...,Vn} (72)
We expand vector functions v € SV in terms of the basis {v1,...,Vn},

v="> ki(t)Vi. (73)
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Notice that the coefficients k; are functions of ¢ since we will solve the full
problem (67) rather than just the eigenvalue problem (71).
Using equation (73), we can restate equation (67) in the form

dk

E :AK,, AE(CNXN7 KIE(CN7 (74)
with

k= [k1,...,6n)", A =diag[oy,...,on]. (75)
The operator A represents the linear evolution operator M 'L projected

onto the subspace SY.
For our disturbance measure, let us consider the disturbance kinetic and

magnetic energies, i.e.

By = %/V (Jul? + [b[2) aV. (76)

By making use of the solenoidal constraints (8); and (8)s, it can be shown
(e.g. MacTaggart and Stewart, 2017) that, for a given k, the energy density
can be written as

1

= @ (|Du\2+k2|u|2+ |Db|2 +k’2|b|2) d:C, (77)
—d

which represents the energy disturbance measure for a given k. Hence, we
define the energy norm as

1 d
VI = 5 [ (Dul + K2l + [DbP + B2pR) o (79)
—d

For any vi, vo € SV, the inner product associated with the above energy
norm can be written as

1 d
(vi,ve)E = 2—k2/ vfl Ovs dr, (79)
—d
where 12 )
— D 0

The superscript H denotes the complex-conjugate transpose.

For calculations, it will be convenient to work with the Ls-norm rather
than the energy norm so we can make use of the SVD approach described
above. First, let us rewrite equation (79) as

(vi,ve)E = K Qka, (81)
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where the matrix ) has components

U 1 4,
Qij = (Vi,Vj)g = z—kz/ vZHij dz. (82)
—d

Since @ is both Hermitian and positive-definite, we can write Q = F7F.
Using this factorization, we can write

(V17V2)E = K1QKa,
= K{{FHFRQ,
= (FK/l,FKQ)Q. (83)

The associated vector norm is
IVllz = |Fx]2, v esY. (84)
We are now in a position to determine the optimal transient growth
envelope for the TT onset as we did for the toy model in equation (42). The
formal solution of the initial value problem (67) can be written as
v(t) = exp(M~ Lt)vo, Vo = v(0), (85)
in the primitive variables and as

Kk(t) = exp(At)kg, ko = K(0), (86)

in the new variables introduced in this section. Using these expressions, the
optimal energy growth envelope is found to be

o) — s YOI
vt Tvoll%
N 101

o0 ||Fkol[3
o [Pl
ko0 ||F"50||3
|F exp(At)F~ ' Froll3
K020 [ F'koll3
= [[Fexp(At)F~13. (87)
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Building SV Before discussing the behaviour of transient growth at the
onset of the TT, we must first consider which eigenfunctions to include in the
subspace SV. To answer this, we must consider the shape of the eigenvalue
spectrum. In what follows, the equilibrium magnetic field will be the Harris
sheet (17), i.e. By, (z) = tanh(x), and the equilibrium velocity field will be
zero, i.e. Up.(x) = 0. Taking the parameters d = 15, k = 0.5, S = 10% and
Re = 105, the eigenvalue spectrum is displayed in Figure 7 for eigenvalues
with ®(c) > —k. The eigenvalues in Figure 7 have been determined by
solving (71) with a pseudospectral discretization of the differential equations
(MacTaggart, 2018).

0.5

03r

0.2

01 -

-0.2

-04 71

-0.5 .
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

R(z)

Figure 7. The eigenvalue spectrum for the projection keeping eigenvalues
with R(o) > —k.

There are several elements to notice in this spectrum. The first is that
there is one eigenvalue satisfying f(o) > 0. This eigenvalue is associated
with the tearing mode, the unique unstable eigenfunction of the TI onset
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problem. All the other eigenvalues satisfy $(o) < 0 (i.e. asymptotic damp-
ing) and exhibit a branching structure. Beyond R(z) = —k, in the negative
direction, the central branch of eigenvalues continues and no new branches
are created.

The branching of eigenvalues is usually an indicator of non-normality
in the underlying operators (e.g. Reddy et al., 1993). It can be shown
that if SV contains eigenfunctions associated with the eigenvalues at the
branch points, much higher transient growth is possible than if they were
not included (MacTaggart, 2018). Such behaviour is indicated from the
pseudospectra in Figure 8. The strongest deviation of the contours is at
the connecting branches. The green contour is deflected by ~ 0.1 but has
€ = 1078. For a normal operator, the resulting deflection would be O(10~%)
but here the deflection is seven orders of magnitude greater thanks to non-
normality.

A contour is also displayed entering the half plane R(z) > 0, as for the
toy model. Although the eigenvalue of the tearing mode has been included
in Figure 8, its removal does not change this result. Therefore, based on
the bound in (52), we can expect transient growth. In short, when building
SN, it is vital to include the eigenfunctions corresponding to the eigenvalues
at the branch points in the spectrum since these will contribute the largest
transient growth.

Energy growth behaviour In order to demonstrate how the optimal en-
ergy growth is affected by the inclusion of asymptotically damped eigenfunc-
tions, we perform the optimization problem and compare the cases where S
includes (a) the tearing mode and other damped eigenfunctions, and (b) the
tearing mode alone. For the parameters S = 103, Re = oo (i.e. an inviscid
fluid) and k& = 0.2, Figure 9 shows the optimal energy growth envelopes for
the two cases. Focussing on the dashed curve in Figure 9, this corresponds
to the optimal energy growth due to the tearing mode alone. The tearing
mode grows exponentially in the linear problem and since log G(¢) is plotted
on the y-axis, this curve is a straight line. The solid line shows the optimal
growth envelope calculated with eigenfunctions whose eigenvalues satisfy
R(o) > —0.6. What is clear is that the maximum possible energy growth at
small times is significantly larger than what would be predicted using the
tearing mode alone. At later times, the solid curve becomes parallel to the
dashed curve. This is because the transient behaviour has decayed and the
tearing mode dominates the linear growth. Even at later times, however,
the effect of the transient growth can still be felt. At ¢ = 100, for this
set of parameters, asymptotic stability analysis would predict a maximum
possible energy amplification of ~ 30. Including damped eigenfunctions in
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Figure 8. The spectrum from Figure 7 with pseudospectrum contours in-
cluded. Each contour has ¢ = 10", where the range of n is displayed in the
colour bar.

the calculation, the maximum possible energy amplification is ~ 400.

In the toy model, we found that the maximum possible growth depended
heavily on S. The same is true for the TI onset. Figure 10 displays the
optimal energy growth envelopes for different S and parameters k£ = 0.5 and
R(c) > —k. Time has been scaled by S'/2 as the tearing mode begins to
dominate the linear growth at t ~ O(S/2) (Borba et al., 1994). Therefore,
after t/S'/2 ~ 1, the exponential growth of the tearing mode becomes more
visible.

This scaling of time also reveals that as S increases, the maximum
possible energy growth due to transients (i.e. the growth at early times)
also increases. This result appears to be robust for both tearing-unstable
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Figure 9. Optimal energy growth envelopes for R(c) > —0.6 (solid line)

and R(o) > 0 (dashed line).
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Figure 10. Optimal energy growth envelopes for various S with k£ = 0.5

and R(o) > —k.
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(0 < k < 1) and tearing-stable (k > 1) wavenumbers (MacTaggart and
Stewart, 2017; MacTaggart, 2018). Also, this result is true in other distur-
bance measures. For example, MacTaggart (2018) finds that, optimizing
with respect to the La-norm (as we did for the toy model) whilst exclud-
ing the tearing mode from the calculation, the maximum possible transient
growth scales as O(S'/%) in a time of O(S'/*) for 0 < k < 1. Again, this
result indicates the possibility of significant growth long before the tearing
mode dominates the linear behaviour.

Optimal initial conditions In the above descriptions of transient growth,
we have been careful to describe the maximum possible transient growth.
This qualification is important as transient growth is dependent on the ini-
tial condition. This behaviour differs from asymptotic stability, which does
not read the form of the (infinitesimal) initial condition.

Applying the SVD, as described earlier for the toy model, Figure 11
displays the optimal initial conditions for u and b when S = 10* and ¢ = 50
and optimization is performed with respect to the Lo-norm (MacTaggart,
2018). Notice that the initial conditions in Figure 11 take the form of wave
packets in the current sheet. Such forms can be related to the theory of
pseudomodes (Trefethen and Embree, 2005) which are a generalization of
eigenfunctions in the similar way as pseudospectra are a generalization of
spectra. What is important to notice, however, is that the optimal initial
conditions can be represented as noise in the current sheet - something likely
to be present in high-S applications of the TI.

A Completeness

Since the completeness of eigenfunctions is a vital property for the stability
analysis we have discussed, we now say a few words about it here. In
the fluid dynamics literature, one popular reference related to proving the
completeness of the eigenfunctions of non-self-adjoint eigenvalue problems
is DiPrima and Habetler (1969). In the theorem of DiPrima and Habetler
(1969), the operators of the eigenvalue problem are written as

oMv = Lv = (Ls; + B)v. (88)

Ly is a self-adjoint operator and B is a ‘perturbation’ (that is, whatever
remains). The order of the derivatives in B must be lower than those in
L, since B is a perturbation. If we can express the eigenvalue problem for
the onset of the TT in the form of equation (88), we can use the theorem of
DiPrima and Habetler (1969) to prove that the eigenfunctions are complete.
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Figure 11. The initial conditions that produce optimal transient growth
at t = 50 for S = 10%.

As they stand, equations (63) and (64) are not in a suitable form for this
Ls + B split. In order to achieve a suitable split, we must reconsider how
we linearize the MHD equations. Until now, we have linearized the curl
of the momentum equation (in order to eliminate the pressure) but have
linearized the induction equation directly. If, instead, we also take the curl
of the induction equation and linearize this, we find

%(DQ — k)b = ik[Bo(D? — k?) + BYJu — ik[Ug(D? — k*) + UJ]b
1
+2ik(ByDu — U, Db) + g(D2 — k?)?b. (89)

After some algebraic manipulation, we achieve an eigenvalue problem suit-
able for the theorem of DiPrima and Habetler (1969):

AMMv =Lv = (Ls+ B)v, (90)
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where A\ = —0, v = (u,b)7,

—D? 4+ k2 0
= (TR0 ). o
1 2 22
_ 2o (=D* + k%) 0

Ls ( 0 %(71)2 4 k2)2 ’ (92)

and N N

_ L —Ly
B= ( —L5+ 2ikBy,'D Ly — 2ikUy,' D ) ’ (93)

where

LE = ik[Up,(—D?* +k*) £ U}] and LE =ik[Bo.(—D*+k*) £ By]. (94)

Now the operators in B are of lower order compared to those L, and this
representation is suitable for the application of the theorem of DiPrima and
Habetler (1969), proving completeness of the eigenfunctions.

Since we have increased the order of the induction equation, we need to
add extra boundary conditions to complete the mathematical description of
the problem. The suitable extra boundary conditions in this case are

Db=0 at x==+d. (95)

These conditions derive from the solenoidal constraint (60); in the same
way that the Du = 0 conditions derive from the incompressibility condition
(60)2.
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