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Abstract 21 

The existence of fine-grain climate heterogeneity has prompted suggestions that species may 22 

be able to survive future climate change in pockets of suitable microclimate, termed 23 

‘microrefugia’. However, evidence for microrefugia is hindered by lack of understanding of 24 

how rates of warming vary across a landscape. Here we present a model that is applied to 25 

provide fine-grained, multi-decadal estimates of temperature change based on the underlying 26 

physical processes that influence microclimate. Weather station and remotely-derived 27 

environmental data were used to construct physical variables that capture the effects of 28 

terrain, sea-surface temperatures, altitude and surface albedo on local temperatures, which 29 

were then calibrated statistically to derive gridded estimates of temperature. We apply the 30 

model to the Lizard Peninsula, United Kingdom to provide accurate (mean error = 1.21ºC; 31 

RMS error = 1.63ºC) hourly estimates of temperature at a resolution of 100 m for the period 32 

1977 to 2014. We show that rates of warming vary across a landscape primarily due to long-33 

term trends in weather conditions. Total warming varied from 0.87 to 1.16ºC, with the 34 

slowest rates of warming evident on north-east-facing slopes. This variation contributed to 35 

substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in 36 

the length of the frost-free season varied from +11 to -54 days and the increase annual 37 

growing degree-days from 51 to 267 ºC days.  Spatial variation in warming was caused 38 

primarily by a decrease in daytime cloud cover with a resulting increase in received solar 39 

radiation, and secondarily by a decrease in the strength of westerly winds, which has 40 

amplified the effects on temperature of solar radiation on west-facing slopes. We emphasise 41 

the importance of multi-decadal trends in weather conditions in determining spatial variation 42 

in rates of warming, suggesting that locations experiencing least warming may not remain 43 

consistent under future climate change. 44 

 45 
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Introduction 46 

Biodiversity conservation and environmental management increasingly depend on our ability 47 

to understand and predict the responses of species and ecological communities to climatic 48 

change. To date, however, most predictions for the effects of climatic change on biodiversity 49 

have been derived using grid cell resolutions that are three to four orders of magnitude 50 

coarser than the size of the focal species being studied (Potter et al., 2013). Wind patterns and 51 

landscape features such as local terrain, vegetation and soil properties interact with regional 52 

climate to create complex mosaics of temperature and water availability (Dobrowski, 2011, 53 

Hannah et al., 2014, Maclean et al., 2012, Suggitt et al., 2011). This fine-grained variation in 54 

climate strongly influences species’ distributions (Lassueur et al., 2006, Randin et al., 2009, 55 

Scherrer &  Körner, 2011, Sebastiá, 2004) and their predicted responses to future climatic 56 

change (Franklin et al., 2013, Gillingham et al., 2012). 57 

 58 

The existence of fine-grain heterogeneity has prompted suggestions that species may be able 59 

to survive future climatic change by exploiting pockets of suitable microclimate, often termed 60 

‘microrefugia’ (Hannah et al., 2014, Rull, 2009). The term ‘microrefugia’ is borrowed from 61 

paleoecology and is usually used to describe locations with unusual microclimate in which 62 

isolated populations survive unsuitable regional climate (Rull, 2009). After the Last Glacial 63 

Maximum, many species recolonized parts of their historic range at rates much faster than 64 

predicted from dispersal models (Clark et al., 1998). While long-distance dispersal may be 65 

important in explaining this phenomenon (Phillips et al., 2008), an alternative explanation is 66 

that species recolonized from localities with suitable microclimate much closer to their 67 

former range (Stewart &  Lister, 2001). Nonetheless, the possible existence of microrefugia is 68 

still widely debated (Hylander et al., 2015, Tzedakis et al., 2013) and empirical evidence for 69 
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the existence of microrefugia, particularly in the context of recent and ongoing climatic 70 

change, is still remarkably scarce (Suggitt et al., 2014).  71 

 72 

It is sometimes argued that the existence of fine-grained heterogeneity in itself will buffer 73 

species against the effects of climatic change (e.g. Willis & Bagwhat 2009). However, many 74 

species are already restricted to specific microclimates, and if warming microclimates at the 75 

trailing edge of species’ ranges are vacated at the same rate as sites become newly occupied 76 

at the leading edge, then the effects of microclimate variation will “average out” (Bennie et 77 

al., 2014). A further consideration of whether or not microclimates buffer the effects on 78 

species of regional climate warming is whether or not all parts of the landscape are 79 

undergoing climatic change at the same rate.  To date, however, the extent to which rates of 80 

change in local climate are decoupled from regional climate has received little attention from 81 

biologists, in spite of its importance as a mechanism for explaining how species are able to 82 

persist in microrefugia (though see Pepin et al. 2011 and Pike et al. 2013 for examples in the 83 

climate literature).  A possible reason for this is that it is difficult to quantify fine-grained 84 

variation in rates of climatic change, because this requires climate to be modelled or 85 

measured both: a) over a sufficiently long time period to encompass an appreciable level of 86 

global warming, and b) at a sufficiently fine resolution to quantify local variation in rates of 87 

change.  88 

 89 

While next-generation fine-grained climate models are emerging, our understanding of local 90 

variation in rates of change remains limited. Kearney et al. (2014) present a mechanistic 91 

model of gridded hourly estimates based on local modifiers of the solar radiation budget for 92 

the period 1961 to 1990, but the grid cell resolution of this model is a relatively coarse 15 km 93 

and local variation in rates of change is not explored. Dobrowski (2011) identifies terrain 94 
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features that are likely to be effectively decoupled from regional climatic patterns, but stops 95 

short of explicitly modelling the effects of these features over an extended time period. 96 

Gunton et al., (2015) model local ground temperatures across Europe, but do not provide 97 

long-term estimates of change. Likewise Bennie et al. (2008), using similar principles, 98 

modelled near-surface temperatures at resolutions of one metre, but again do not assess local 99 

variation in long-term change. Heterogeneity in long-term warming was assessed in a study 100 

by Ashcroft et al., (2009) in which rates of warming between 1972 and 2007 were modelled 101 

within a 10 km x 10 km region approximately 80 km south of Sydney, Australia. However, 102 

long-term estimates of temperature change in this study and determinants of local variation in 103 

change are estimated using a phenomenological approach based on statistical relationships 104 

established over a relatively short period. Models based on phenomenological descriptions 105 

can be unreliable when used to predict beyond the realm of existing data (e.g. Rice, 2004). 106 

While models based on the physical processes can be difficult to parameterise and necessitate 107 

assumptions to be made about model structure, they are often more likely to provide reliable 108 

predictions under novel conditions (Evans, 2012). 109 

 110 

Here we present a model that incorporates the important mechanistic processes that govern 111 

variation in climate to provide fine-grained (100 m) hourly estimates of temperature over 112 

decades at regional scales. The model is applied to assess spatial variation in rates of 113 

warming and changes in biologically meaningful derivatives of temperature between 1977 114 

and 2014 across a 20 x 30 km region located on the southwest coast of Britain (The Lizard 115 

Peninsula in Cornwall). While all parts of the landscape warmed during this period, rates of 116 

warming differed by a factor of 1.3, with significantly slower rates of mean warming evident 117 

on north-east-facing slopes and valley bottoms. This spatial variation in temperature change 118 

has led to even greater spatial variation in the rate at which bioclimatic variables have altered, 119 
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with the overall change in the length of the frost free growing season, for example, varying 120 

from a decrease of 11 days to an increase of 54 days. We provide insight into the mechanisms 121 

governing rates of warming, demonstrating how landscape features interact with changing 122 

weather patterns to decouple local changes in climate from regional averages.  123 

 124 

Materials and methods 125 

Overview of approach 126 

The study was conducted on the Lizard Peninsula (50º 2’N, 5º 10’W), a Special Area for 127 

Conservation (92/43/EEC) located on the most southerly point of Britain (Fig. 1). The 128 

climate has a strong maritime influence with mild winters and low annual temperature range. 129 

The site is surrounded on three sides by the sea, has an elevation range of 0 to 185 metres 130 

above sea level and comprises a mosaic of grassland, woodland and heath on a variety of 131 

slopes and aspects. We model hourly local temperature anomalies from a standard 132 

meteorological station as a function of landscape features that interact with physical 133 

determinants of local temperatures. Estimates are for one metre above the ground at a grid 134 

cell resolution of 100 m for the period 1st January 1977 to 31st December 2014.  135 

 136 

To drive the model, hourly weather data for the period 1st January 1977 to 31st December 137 

2014 were obtained for Culdrose weather station (Fig. 1). A small number (<0.01%) of 138 

observations were missing and were imputed by fitting a cubic spline using the Forsyth et al. 139 

(1977) method implemented by the spline function in R (R Development Core Team, 2013). 140 

Five groups of factors were considered to influence local temperatures, details of which are 141 

provided below: (i) coastal influences, as a function of sea surface temperatures, wind speed 142 

and direction and sea-exposure; (ii) the local radiation balance, as a function of weather 143 

conditions, surface albedo, slope and aspect; (iii) altitudinal effects, as function of elevation 144 
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and humidity; (iv) latent heat exchange, as function of evapotranspiration and condensation; 145 

and (v) cold air drainage into valley bottoms, as a function of flow accumulation potential 146 

and weather conditions that lead to katabatic flow.  147 

 148 

To calibrate the model, 35 iButton temperature dataloggers were deployed in open, 149 

unwooded areas across the Lizard Peninsula between 1st March 2010 and 14th December 150 

2011, and set to record temperatures at hourly intervals. Loggers were placed to capture 151 

spatial gradients in the main determinants of climate and provided 89,250 measurements of 152 

temperature for model calibration. Each logger recorded temperature with a specified 153 

accuracy of ± 0.5 ° C, and 0.0625 ° C resolution. Loggers were attached to a wooden pole 154 

one metre above the ground and orientated to face north and shielded from direct sunlight 155 

using a white plastic screen. To provide an independent validation of the model results, an 156 

additional 30 loggers were deployed between March and November 2014 at nearby, but not 157 

identical locations to those deployed in 2010-11 (mean distance between pairs of locations: 158 

381 m; Fig. 1).  159 

 160 

To improve readability, we omit mathematical details of our methods from the main text. 161 

Further details and functions for implementing individual components of the model, written 162 

using R statistical software (R Development Core Team, 2013), are provided in supporting 163 

information (Appendix S1 and S2). However, an overview of the underlying rationale and a 164 

synopsis of our approach are provided below. 165 

 166 

Coastal influences 167 

We obtained a one degree gridded dataset of monthly sea ice and sea surface temperatures 168 

from the Met Office Hadley Centre (Rayner et al., 2003) and extracted data for the four grid 169 
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cells corresponding to the region 49-51ºN and 4-6ºW. We resampled these datasets at 100m 170 

grid cell resolution using bilinear interpolation and projecting them onto the Ordnance Survey 171 

equal area grid (OSGB36). We then calculated the mean sea surface temperature for the 172 

marine portion of our entire study area. We obtained hourly values by simple linear 173 

interpolation, assuming that the mean value for each month corresponded to the mid-point of 174 

that month. Due to the high specific heat capacity of water, sea surface temperatures undergo 175 

only minor high frequency fluctuations (Stacey &  Davis, 1977), so simple interpolation was 176 

deemed a reasonable approximation.  177 

 178 

To capture the influence of sea temperatures on local temperatures, which is itself affected by 179 

wind direction (Haugen &  Brown, 1980), we calculated the proportion of 100 m x 100 m 180 

pixels that were land as opposed to sea upwind of each focal pixel in each of 36 different 181 

compass directions (0º, 10º…350º) using a 100 m resolution gridded dataset of land and sea. 182 

We then weighted these proportions by the inverse of the distance to the coast, to ensure that 183 

coastal grid cells were attributed a higher coastal exposure influence (function inv.ls in 184 

Appendix S1). Coastal effects on local temperatures are also influenced strongly by wind 185 

speed (Haugen &  Brown, 1980). However, surface friction tends to reduce airflow, and wind 186 

speeds at one metre height differ from those measured at the height of the Culdrose 187 

anemometer (33 m above the ground). To adjust for height, and derive estimates for one 188 

metre above the ground, a logarithmic wind speed profile was assumed (Allen et al., 1998; 189 

function wind.hgt in Appendix S1). The sheltering effect of local topography was accounted 190 

for by computing the shelter coefficient described by Ryan (1977; function windcoef in 191 

Appendix S1).  192 

 193 

Solar radiation 194 
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Local temperature anomalies due to variation in solar radiation approximate a linear function 195 

of the net radiation flux at a location, with the slope of this relationship determined by local 196 

wind speed (Bennie et al., 2008). Net radiation is determined by the balance of short- and 197 

long-wave radiation and surface albedo. We estimated surface albedo from 25 cm resolution 198 

visual and 50 cm colour-infrared aerial photographs obtained from Bluesky (Bluesky 199 

International Ltd, Coalville, UK). We weighted the reflectance value in each band by the 200 

expected proportion of total solar energy contributed by each band by assuming that the 201 

relationship between energy and wave-length approximates the 5250ºC blackbody spectrum 202 

described by Planck’s law (function albedo in Appendix S1). This ignores temporally 203 

variable, but relatively minor discrepancies caused by atmospheric absorption of specific 204 

wavelengths. The mean value in each 100 m grid cell was calculated.  205 

 206 

Satellite-derived estimates of direct and diffuse shortwave radiation are available at hourly 207 

intervals at a horizontal grid cell resolution of 0.03º from the Satellite Application Facility on 208 

Climate Monitoring (Posselt et al., 2011). However, as they do not span the duration of our 209 

study, we developed a model for predicting solar radiation from meteorological station 210 

estimates of cloud cover (recorded in oktas). First we obtained satellite-derived estimates of 211 

radiation for the grid cell corresponding to the location of Culdrose weather station for every 212 

hour in 2005 (the year with fewest missing weather station observations). Then, because solar 213 

irradiance is affected by solar azimuth and zenith, we computed the proportion of potential 214 

direct irradiance intercepted by a flat surface located at Culdrose (hereafter referred to as the 215 

solar coefficient) for every hour using the methods outlined in Hofierka & Ŝúri (2002; 216 

function solarindex in Appendix S1). Second, because solar energy is attenuated more by 217 

clouds when the sun is low above the horizon, we calculated the airmass coefficient for every 218 

hour in 2005. The airmass coefficient is the direct optical path length of a solar beam through 219 
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the Earth’s atmosphere, expressed as a ratio relative to the path length vertically upwards. To 220 

account for the earth’s curvature, we used the method by Kaston and Young (1989) in which 221 

the air mass coefficient can be derived from the solar zenith (function airmasscoef in 222 

Appendix S1). Next, to estimate the effects of cloud cover on full beam solar irradiance, we 223 

divided each satellite-derived estimate of direct and diffuse solar irradiance by the solar 224 

coefficient. As direct irradiance is affected both by cloud cover and the airmass coefficient, 225 

we fitted a linear model with the full beam estimates of direct irradiance as a dependent 226 

variable, and airmass coefficient, cloud cover and an interaction between cloud cover and the 227 

airmass coefficient as predictor variables. To reduce heteroscedasticity, we performed square-228 

root transforms on cloud cover and full-beam irradiance and a logarithmic transform on the 229 

airmass coefficient. As diffuse irradiance is highest with intermediate levels of cloud cover, 230 

we fitted a linear model with diffuse radiation as the dependent variable and just cloud cover 231 

and the square of cloud cover as predictor variables. Again to reduce heteroscedascity, we 232 

square-root transformed scaled solar irradiance. Coefficient estimates of these models were 233 

used to derive hourly estimates of full beam solar irradiance and diffuse radiation for the 234 

entire duration of our study. 235 

 236 

Slope, aspect and topographic shading influence strongly the amount of radiation intercepted 237 

by a surface and act as one of the dominant influences on local temperatures (Bennie et al. 238 

2008). To account for the effects of local terrain on direct radiation, we calculated the solar 239 

coefficient for an inclined surface using the method detailed in Bennie et al. (2008; function 240 

solarindex in Appendix S1) and multiplied our coarse-grained cloud-cover derived estimates 241 

of full beam radiation by this coefficient. Topographic shading is also accounted for when 242 

implementing this method by assuming that a surface receives no direct radiation when the 243 

sun is below the local horizon. Slope, aspect and horizon angles were derived from a 5 m 244 
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resolution digital terrain model obtained from Bluesky (Bluesky International Ltd, Coalville, 245 

UK) coarsened to 100 m resolution by computing mean values within each grid cell. Local 246 

topographic effects on diffuse radiation were calculated by scaling our cloud-cover derived 247 

estimates of diffuse radiation by the proportion of sky in view, using methods described in 248 

Hofierka & Ŝúri (2002; function skyview in Appendix S1).  249 

 250 

Net long-wave radiation was calculated from temperature and relative humidity data using 251 

the method described in Allen et al. (1998; functions netlong in Appendix S1). Using this 252 

approach, the effects of cloudiness are accounted for by estimating the ratio of net shortwave 253 

to clear sky shortwave radiation, which in our model was estimated directly from cloud 254 

cover. Longwave radiation was assumed to be uniform across the landscape and hence the 255 

meteorological station temperature was used.  256 

 257 

Altitudinal effects  258 

We assumed a simple dry adiabatic lapse rate such that temperature declines with altitude at a 259 

standard dry adiabatic lapse rate of 9.8ºC per 1000 m, but accounted for shallower 260 

temperature-altitude gradients under saturated conditions by explicitly calculating latent heat 261 

exchange (see below), resulting in typical adiabatic lapse rates of 4 to 6ºC per 1000 m. 262 

Differences in altitude between the standard meteorological station and each location were 263 

calculated from digital elevation data. 264 

 265 

Latent heat exchange 266 

Condensation releases latent heat energy warming local air temperatures by as much as 2ºC 267 

(Geiger, 1965). Conversely, evapotranspiration uses latent heat energy, cooling local 268 

temperatures. Localised variation in these can result in small, but important variations in 269 
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temperature. As calculation of condensation and evapotranspiration relies on knowledge of 270 

local temperatures, but in this instance is also used to derive local temperatures, we used the 271 

local temperature anomaly (i.e. the difference between modelled local temperature and that at 272 

the meteorological station) in the previous time step, to derive estimates of local differences 273 

in latent heat exchange from our reference meteorological station. We assume condensation 274 

occurs when drops in temperature result in relative humidity exceeding 100%. First, from 275 

Allen et al. (1998) we calculate the local relative humidity as a function of the relative 276 

humidity measured at the met station, saturated vapour pressure and absolute humidity, which 277 

is assumed to remain constant, thus allowing local relative humidity to exceed 100% 278 

(function rh.change in Appendix S1). Where local relative humidity is less than 100%, 279 

condensation is assumed not to occur, but where relative humidity would exceed 100% as a 280 

result of temperature decreases, the surplus water is assumed to condense (function 281 

water.conden in Appendix S1). Following Allen et al. (1998) potential evapotranspiration 282 

was calculated as a function of net radiation, local temperatures (estimated from anomalies in 283 

the previous time step), relative humidity, atmospheric pressure and wind speed using the 284 

Penman-Monteith equation (function CRE in Appendix S1). 285 

 286 

Cold-air drainage 287 

Under clear sky conditions with low wind speed, katabatic flow occurs, such that cold air 288 

drains into valley bottoms (Dobrowski, 2011). Two components of cold air drainage were 289 

considered. First we modelled the potential for different parts of the land surface to receive 290 

cold air by calculating accumulated flow to each cell, as determined by accumulating the 291 

weight for all cells that flow into each downslope cell, using the hydrological tools in ArcGIS 292 

10.2 (ESRI, Redlands). We then identified the synoptic weather conditions under which cold 293 

air drainage is likely. Following McGregor & Bamzelis (1995), we first collated and/or 294 
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calculated the following meteorological variables from the meteorological station data, 295 

aggregating data into 24-hour averages: (i) cloud cover (oktas), (ii) mean temperature (ºC), 296 

(iii) diurnal temperature range (ºC), (iv) surface atmospheric pressure (hPA), (v) relative 297 

humidity (%), (vi) wet bulb temperature (ºC), (vii) the dew point temperature (ºC), (viii) 298 

visibility (km), (ix) net radiation (MJ m-2 hr-1), (x) the westerly wind component (m s-1) and 299 

(xi) the southerly wind component (m s-1). Visibility data were log-transformed to reduce 300 

heteroscedasticity and all variables were z-score standardised.  Meteorological variables were 301 

also de-seasoned by applying a 15 day running mean filter. Second, as the resulting variables 302 

were highly correlated with one another, we performed principal components analysis (PCA). 303 

To determine how many components to retain, we produced a scree plot, retaining four 304 

components which together explained 85% of the variance in the original data. Finally we 305 

performed Bayesian model-based clustering on these data using the R package mclust 306 

(Fritsch &  Ickstadt, 2009), to group our data into distinct synoptic weather types. Using this 307 

approach, prior cluster partitions are identified using hierarchical agglomeration, and then 308 

Bayesian expectation-maximization is performed to automatically identify the final cluster 309 

number and membership thereof. Seven was considered the most likely number of distinct 310 

synoptic weather types using this method (see results). The synoptic weather type 311 

characterised by clear sky, high pressure, a high diurnal temperature range, good visibility 312 

and low relative humidity was considered to be the conditions under which temperature 313 

inversions occur (see e.g. Barr &  Orgill, 1989). Temperature inversions were set to occur at 314 

night only as daytime cold air drainage into valleys is highly unusual in maritime climates 315 

(Gustavsson et al., 1998). 316 

 317 

Model calibration 318 
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Temperature anomalies were modelled using standard linear regression as a function of the 319 

following sets of terms: 320 

 321 

Radiation effects:  
netnet RuuR 11        322 

Coastal influences: si LTLuLu  1   323 

Altitudinal effects:  
aT         324 

Latent heat exchange: WCE       325 

Cold air drainage:  FIC
         326 

 327 

Where Rnet is net radiation, u1 is wind speed one metre above the ground, ui is the inverse of 328 

wind speed given by 1/(u1
0.5+1), L is the inverse distance-weighted measure upwind land-to-329 

sea ratio at Culdrose minus that at the site, Ts is sea-surface temperature minus that at 330 

Culdrose, ΔTa is the expected difference in temperature due to altitude, E is 331 

evapotranspiration at Culdrose minus that at the site, C is condensation at Culdrose minus that 332 

at the site,  W is the change in lapse rate due to water condensation, F is accumulated flow 333 

and Ic is a categorical variable set at one when temperature inversions exist, and 0 when 334 

temperature inversion conditions do not exist. The terms are listed in anticipated descending 335 

order of importance.  336 

 337 

To fit the model, we sequentially added each set of terms to linear models and assessed 338 

whether their inclusion improved model parsimony by computing the Akaike Information 339 

Criterion (AIC). To reduce the effects of temporal autocorrelation, we randomly selected 340 

2000 of the 89,250 logger-derived local temperature data and repeated the analyses 9999 341 

times, computing AICs and coefficient estimates for each model run. To test the effects of 342 

sample size on the retention of model terms, we repeated analyses varying the number of 343 
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randomly selected data points. To assess the sensitivity of our model selection to the 344 

sequential adding of terms, we also fitted models with all possible combinations of terms, but 345 

due to computational constraints, did this for 999 model runs only. 346 

 347 

Running and testing the model 348 

To run the model, median model coefficient estimates were used. The model was run in 349 

hourly time steps for the period 1st January 1977 to 31st December 2014, deriving temperature 350 

estimates for each 100 m grid cell of our study area. To test the model, model predictions 351 

were compared with the observed data obtained through the deployment of temperature 352 

loggers in 2014. To assess the relative contribution of individual components of the model, 353 

we re-ran the model with only the set of coefficients with each effect included, holding other 354 

coefficients at their mean. The model was coded and deployed in R statistical software (R 355 

Development Core Team 2015) using a 2032 CPU Core Beowulf cluster.  356 

 357 

Spatial variation in climatic change 358 

To examine spatial variation in rates of warming, we calculated the overall degree of 359 

temperature change in each grid cell using linear regression on hourly values over (a) the 360 

entire duration of our study and (b) for 2010 to 2014, a period in which land temperature rose 361 

much faster than sea temperatures. To examine how spatial variation in temperature change 362 

manifests itself in changes to bioclimatic variables, we calculated the overall 1977-2014 363 

change in (i) exposure to high temperatures, (ii) the number of growing degree-days, (iii) the 364 

length of the frost-free season, (iv) diurnal temperature ranges, (v) isothermality, (vi) 365 

temperature seasonality, (vii) maximum annual temperatures, (viii) minimum annual 366 

temperatures, (ix) annual variations in temperature and (x-xiii) mean temperatures in the 367 

warmest, coldest, driest and wettest quarter of each year. Exposure to high temperatures was 368 
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expressed as the number of hours in which temperatures equalled or exceeded 20ºC, growing 369 

degree-days were calculated as the difference between mean daily temperatures and a base 370 

temperature of 10ºC, with temperatures capped at 30ºC and values summed for each year, and 371 

the frost free season is the number of days between the last day in spring in which air 372 

temperatures drop below zero and the first such day in autumn, with spring frost set at 1st of 373 

Jan and autumn frost at 31st Dec in instances when temperatures did not drop below zero. The 374 

diurnal temperature range was calculated as the difference between the maximum and 375 

minimum hourly temperature in any given 24-hour period, the annual temperature range as 376 

the difference between the maximum and minimum temperatures in any given year and 377 

isothermality as the mean diurnal range divided by the annual temperature range. The 378 

temperature seasonality was expressed as the standard deviation of temperatures expressed as 379 

a percentage of the mean of those temperatures, with temperatures expressed in Kelvin 380 

(Hijmans et al., 2005). A quarter is here defined as any 90 day period. Temperature data from 381 

the Culdrose weather station were used to calculate the warmest and coldest periods, and 5km 382 

grid daily rainfall data available from the UK Met Office used to calculate the wettest and 383 

driest periods. In each case, values were calculated separately for each year and linear-384 

regression on yearly values used to calculate the overall change. To gain insight into the 385 

factors affecting warming, we reran the model calculating the separate contribution of each of 386 

the five groups of factors to produce hourly temperatures. This was achieved by fitting the 387 

model using only coefficients associated with to each group of terms, holding all other terms 388 

constant at their mean value. Long-term trend in selected weather variables (wind speed and 389 

direction, cloud cover and the prevalence of each synoptic weather type) were also calculated 390 

using linear-regression. 391 

 392 

Results 393 
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Model performance 394 

Our cloud-cover derived model provided good approximations of direct (Mean error = 34.9 395 

Wm-2; RMS error = 71.8 Wm-2), diffuse (mean error = 21.1 Wm-2; RMS error = 39.5 Wm-2) 396 

and total solar irradiance (Mean error = 38.6 Wm-2; RMS error = 74.6 Wm-2). Full results are 397 

presented in supporting information (Appendix S3).  398 

 399 

Our cluster analysis of weather variables identified seven synoptic weather types, one of 400 

which represents conditions where no clear pattern could be discerned (Table S1 in Appendix 401 

S3). Box and whisker plots indicating the median and range in meteorological variables 402 

associated with each weather type and UK Met Office synoptic charts for dates conforming to 403 

each synoptic weather type are shown in Appendix S3.  404 

 405 

The most parsimonious model was that which included all terms. This model explained on 406 

average 78% of the variation in local temperature anomalies (r2 = 0.711 to 0.831), with a 407 

mean error of 1.21 ºC and RMS error of 1.63ºC. Parameter estimates, their standard deviation 408 

and partial r-squared values are shown in Table 1. Comparisons between modelled hourly 409 

predictions of temperature and recorded temperatures at two sites with divergent local 410 

climatic conditions are shown in Figure 2. Further details of model performance are shown in 411 

Appendix S3. 412 

 413 

Changes in weather variables 414 

Linear regression of hourly temperatures recorded at Culdrose weather station revealed an 415 

increase of 0.94 ºC between 1977 and 2014 (95% CI = 0.89 to 0.99, n = 333096; Fig. 3a). 416 

Over the same period, linear regression of monthly sea-surface temperatures showed an 417 

overall increase of 0.89 ºC (95% CI = 0.21 to 1.57, n = 649; Fig. 3b). Among other weather 418 
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variables, there were two notable trends. First, linear regression on hourly estimates reveals 419 

that although cloud cover has changed little (<0.2%) over the duration of the study (95% CI = 420 

-0.49% to 0.15%, n = 333096), daytime cloud cover decreased by 4.0% (95% CI = -5.1% to -421 

2.9%, n = 166602; Fig. 3c), whereas night-time cloud cover increased by 1.2% (95% CI = 422 

0.7% to 1.7%, n = 166602; Fig. 3d). Changes in cloud cover appear to have manifested 423 

themselves in moderate increases in received solar radiation: direct radiation was estimated to 424 

have increased by 11.9 Wm-2 over the period of the study (95% CI = 5.2 to 18.7, n =333096; 425 

Fig. 3e). However, diffuse radiation has changed little (95% CI = -2.8 to 7.0 Wm-2, n 426 

=333096; Fig. 3f).  427 

 428 

Second, there appears to have been a shift in wind vectors. Linear regression of hourly values 429 

reveals a decrease in zonal (west to east) wind velocity of 0.66 ms-1 over the duration of the 430 

study (n =333096, 95% CI = -0.71 to -0.60; Fig. 3g) and a decrease in meridional wind 431 

velocity (the northerly wind component) of 0.44 ms-1 (n =333096, 95% CI = -0.49 to -0.39; 432 

Fig. 3h). Somewhat paradoxically, however, the synoptic weather type associated with 433 

easterly winds, weather type 1, also indicative of weakly anticyclonic conditions, high 434 

pressure and high relative humidity, decreased by 2.2% from 10.1% to 8.0% (n=38, 95% CI 435 

= -4.3 to -1.3%) and was the only type for which a trend was evident (Fig S6). The most 436 

likely explanation of this is that while the mean zonal component of the wind vector in any 437 

given year remained relatively constant over time during periods in which synoptic weather 438 

type 1 prevailed (95% CI = -0.93 to 1.01 ms-1, n=38), the zonal component in any given year 439 

during periods in which synoptic weather types other than type 1 prevailed, decreased 440 

substantially (-1.75 ms-1  over the duration of the study; 95% CI = -1.41 to -2.09 ms-1, n=38). 441 

 442 

 443 



19 
 

Spatial variation in climatic change 444 

Linear regression of hourly temperatures in each grid cell demonstrated that grid cells have 445 

warmed, but rates of warming between 1977 and 2014 varied from 0.87ºC to 1.16ºC, with 446 

two dominant patterns evident (Fig. 4a). First, grid cells receiving high solar radiation have, 447 

on average warmed by more than those receiving low radiation. Second, east-facing slopes, 448 

particularly those exposed to the sea have warmed the least. The period 2010 to 2014, in 449 

which temperatures recorded at Culdrose rose by 2.30 ºC in comparison to sea-surface 450 

temperatures rising by 1.34 ºC (Fig. 3a,b), reveals broadly similar patterns, although an east-451 

west gradient is more evident, with the highest temperature increases occurring towards the 452 

west of our study area (Fig. 4b). 453 

 454 

Temperature increases were higher in the cold-season (22nd Dec-21st Mar) than in the warm- 455 

(18th Jun-15th Sep) and dry-season (14th Mar to 12th Jun), but were least marked in the wet-456 

season (5th Oct-2nd Jan), implying that it is late-winter temperatures that have risen the most 457 

(Appendix S4g-j). Spatial patterns of change in bioclimatic variables (e.g. Appendix S4a-f) 458 

highlight that even moderate variations in temperature increase can lead to marked variation 459 

in biologically meaningful climate variables. The overall change in the number of hours of 460 

exposure to high temperatures (>20ºC) varied from a decrease of 15 hours to an increase of 461 

256 hours, with the greatest increases occurring in areas with the greatest temperature 462 

increase, such as on southwest-facing slopes (Fig. 5a). The total increase in growing degree-463 

days varied by more than a factor of 5, ranging from 51 ºC days on north-east facing slopes at 464 

higher altitudes, to 267 ºC days on steep southwest-facing slopes (Fig. 5b). Changes in the 465 

length of the frost-free season also varied substantially, with marginal decreases of up to 11 466 

days along sheltered river valleys subject to cold-air drainage, but substantial increases of up 467 

to 54 days along eastern coastal regions of our study area (Fig. 5c). Here, the strong east-west 468 
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gradient is driven primarily by the overall likelihood of frost, which is markedly lower in 469 

western coastal areas.  470 

 471 

Closer inspection of the individual components of our model that most contribute to the 472 

spatial variation in warming suggests that the effects of solar radiation are most important 473 

(Fig. S9 in Appendix S3). This appears to have manifested itself in two ways. First, 474 

reductions in daytime cloud cover (Fig. 3c) have resulted in a general increase in direct 475 

radiation received at each cell, which in turn means that grid cells receiving high radiation 476 

have warmed by more than those receiving less radiation (Fig S9a). Second, reductions in the 477 

westerly wind vector (Fig. 3g), and the concomitant increase in easterly winds, appears to 478 

have had the dual effects of decreasing the effects of radiation on these slopes (Fig S9c) and 479 

increasing coastal effects towards the east of our study area, particularly during periods of 480 

slow rises in sea temperature (Fig 3b). 481 

 482 

Discussion 483 

Model performance 484 

Our model provides reliable estimates of local temperatures, and demonstrates the potential 485 

advantage of modelling the physical processes that drive climatic variation, albeit that 486 

assumptions must be made about the functional relationships between temperature and the 487 

features that influence this. It also provides finer-grained and more accurate estimates than 488 

previous physical-based models (Gunton et al., 2015, Kearney et al., 2014). Nonetheless, it is 489 

not surprising that our model provides more accurate estimates than attempts to model 490 

continent-wide local temperatures, as the geographical characteristics and weather patterns 491 

that influence local temperature anomalies are likely to vary by region. Attempts to model 492 
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local ground temperatures based on local radiation budgets and weather station data situated 493 

within a few hundred metres of a study area, such that meso-climatic variation is implicitly 494 

accounted for, have resulted in models capable of estimating in excess of 90% of local 495 

variation in temperature (Bennie et al., 2008), emphasising that it is the influence of regional 496 

air flows on temperature rather than the effects of local radiation that are more difficult to 497 

model reliably. At fine scales, in the order of millimetres to metres, it is local radiation that 498 

dominates the earth’s energy budget, whereas at scales of metres to kilometres, the horizontal 499 

and vertical transfer of energy by moving air-masses becomes increasingly important 500 

(Geiger, 1965).  501 

 502 

Nonetheless, over the extent of our study area, local variation in net solar radiation appears to 503 

be the dominant driver of variation in temperature, and it is thus worth highlighting that there 504 

are at least three limitations associated with our ability to capture the effects of this variation. 505 

First, because we have attempted to model long term changes in temperature, our estimates of 506 

incoming short-wave radiation are based on crude estimates of cloud cover at a single point 507 

location. Incoming radiation, as well as being affected by spatial variation in cloud clover, is 508 

also affected by cloud thickness and atmospheric conditions, notably by the concentration of 509 

aerosols and atmospheric gases (Kasten, 1996, Twomey, 1991). Spatial and temporal 510 

variation in these is unaccounted for by our model, and is likely to account for much of the 511 

unexplained variance in local temperatures. Second, our model makes no attempt to account 512 

for the effects of vegetation. Vegetation is known to have strong influence on local 513 

temperatures, and although these differences are greatest closest to the ground (Suggitt et al., 514 

2011), canopy cover and leaf area density affect solar radiation budgets (Kuuluvainen &  515 

Pukkala, 1989). Our temperature loggers were all located in areas with minimal canopy cover 516 

and our model is intended to be of temperatures in habitat types in which temperatures a 517 
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metre above the ground are not strongly affected by vegetative shading. Lastly, for the 518 

purposes of efficiently modelling hourly temperatures, we use a simple linear relationship 519 

between net radiation and temperature, thus making the assumption that soil heat flux is 520 

relatively small and temperatures rapidly achieve equilibrium with environmental conditions 521 

(see also Bennie et al., 2008). While it is likely that heat exchange may cause time-lags 522 

between radiation and temperature, perhaps a greater consideration is the scale-dependency 523 

of effects of topographic variation on the radiation budget. Estimates of slope and aspect for a 524 

100 m grid cell essentially average the fine-scale variation in these measures. However, the 525 

aggregated effects on radiation of this variation may scale non-linearly with coarse-scale 526 

estimates of radiation, perhaps explaining why our model fails to capture perfectly the local 527 

temperature extremes. Future efforts to model local temperatures might benefit from 528 

exploring these non-linearities. Further improvements in modelling are also likely to be 529 

obtained by explicitly accounting for the effects of land-sea temperature gradients on coastal 530 

wind processes (e.g. Savijärvi, 2004), and by more sophisticated modelling of katabatic flows 531 

(e.g. Manins &  Sawford, 1979). Our existing model provides poor representation of the 532 

effects of slope steepness on pooling and the cumulative time over which pooling occurs. 533 

 534 

Overall, however, our study demonstrates the possibility of predicting temperatures at high 535 

spatial resolution and frequency using readily available data. We believe that the process of 536 

statistically calibrating variables that capture underlying physical processes ensures that a 537 

good combination of utility, analytical tractability and robustness, particularly to novel 538 

conditions, is achieved.  539 

 540 

Spatial variation in climatic change 541 
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The results of this study provide evidence that there is at least some fine-scale variation in 542 

rates of warming, with rates of warming typically higher on southwest-facing slopes and in 543 

this respect, are similar to those of Ashcroft et al., (2009) who also demonstrate fine scale 544 

variation in rates of warming, with higher warming on equatorward-facing slopes.  While our 545 

results suggest that the variation in rates of warming is relatively moderate, being only ~20% 546 

higher on southwest-facing slopes, it is important to note that even moderate variation in 547 

temperature change manifests itself in substantial variation in the rate of change in 548 

biologically-meaningful climate variables. Overall increases in growing-degree days varied 549 

by more than a factor of five, and changes in exposure to high temperatures varied from a 550 

decrease to a marked increase. The greatest variation was, however, observed in the length of 551 

the frost free-season. Sheltered valleys subject to cold-air drainage have experienced a 552 

shortening in the frost-free season, likely due to the increase in clear-sky conditions, whereas 553 

coastal fringes in the east of our study area have experienced an increase of over a month.  554 

Our results emphasise that in frost-rare environments even minor temperature changes can 555 

lead to a large change in the likelihood of frost and spatial variation in the prevalence of frost 556 

is amplified substantially.  557 

 558 

These variations in bioclimatic variables imply that organisms occupying different parts of 559 

the landscape will experience variable rates of change. We emphasise that it is not the 560 

existence of cool microclimate per se that leads to the potential existence of microrefugia, but 561 

it is the extent to which changes in weather conditions lead to thermal decoupling of local 562 

trends in temperature change from those occurring regionally.  563 

 564 

Across our study area and over the duration for which our model provides estimates of 565 

temperature, there appear to be two dominant trends in weather conditions that account for 566 
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the variation in temperature increase. First, daytime cloud cover has generally declined, with 567 

a particularly substantial decline over the period between the early 1990s and 2010. As a 568 

consequence net solar radiation has increased, with the overriding effect that the temperature 569 

rise is amplified in areas receiving more radiation. In consequence, cooler microclimates are 570 

also those that have experienced the least change. Second, there has been a decline in 571 

westerly airflow, and west-facing slopes have thus become less exposed to wind, which has 572 

the effect of reducing the degree of thermal coupling of the surface to the atmosphere (Bennie 573 

et al., 2008, Geiger, 1965). The overriding influence of this on temperature change is that the 574 

effects of increasing radiation are amplified on west-facing slopes. A secondary effect is, 575 

however, evident during periods in which sea-surface temperatures increased more slowly 576 

than land temperatures, such as between 2010 and 2014. In these circumstances, the 577 

attenuating effect of sea temperatures on coastal land temperatures appears to be counteracted 578 

on westerly seaboards, by the reduction in coastal influences caused by reductions in westerly 579 

winds. On eastern seaboards, however, the attenuating effects of the sea are magnified, 580 

resulting in a strong east-west gradient in temperature increase. 581 

 582 

In common with other studies (e.g. Ashcroft et al., 2009, Dobrowski, 2011, Hylander et al., 583 

2015), our results emphasise the importance of changes in weather patterns in driving local 584 

variation in temperature change, but also provide additional mechanistic insight into the 585 

factors responsible. Our findings are also supported by research on the long-term trends in the 586 

prevalence of different weather types in the North Atlantic, particularly those associated with 587 

weather patterns in Spring and Summer (Philipp et al., 2007). Conditions associated with 588 

blocking highs over Great Britain, characterised by high pressure and clear skies have 589 

increased sharply, particularly in Spring, likely accounting for the reduction in cloud cover 590 

and potentially also the reduction in westerly airflow. It is important to emphasise, however, 591 
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that there is little evidence for uninterrupted long-term trends in the prevalence of synoptic 592 

weather conditions, and the majority undergo multi-decadal variation (Philipp et al., 2007). In 593 

consequence, the localities least vulnerable to warming are prone to change, and microrefugia 594 

should be best viewed as temporary holdouts (see Hannah et al., 2014 for further details of 595 

this concept). In the context of future climatic change, however, one likely effect is the 596 

slower rise in sea-surface temperatures relative to those on land (IPCC 2014). While in our 597 

study, the impacts of this are masked by trends in weather patterns, and the strong maritime 598 

influence across our entire study area, in most parts of the world coastal regions have 599 

undergone less temperature change. The effects of coastal buffering are evident in coarser-600 

scale climatic variation across the UK (Jenkins, 2007), but are also likely to occur at finer 601 

scales. Overall, the influence of changes in weather conditions is unlikely to be unique to our 602 

study area and our findings thus provide insight into how trends in weather conditions may 603 

influence local variation in temperature change.  604 

Ecological implications 605 

Understanding spatial variation in rates of warming could act as a foundation for addressing 606 

the discrepancy between the scales at which organisms experience climatic changes and those 607 

at which climatic effects are typically measured and modelled (Potter et al., 2013) and may 608 

serve to identify locations where species are less vulnerable to climate change or where 609 

management could be targeted to offset the effects of climate change (Greenwood et al., 610 

2016). For example, the wall brown butterfly (Lasiommata megera) has undergone 611 

widespread population extinctions due to warming temperatures in Northern Europe, but rates 612 

of decline are lower in areas experiencing less warming (Van Dyck et al., 2015).  613 

 614 

The results of our study also help to elucidate the physical processes that define and create 615 

microrefugia. Our study suggests that the locations of microrefugia are likely to be influenced 616 
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strongly by long-term trends in weather patterns, but in common with previous work 617 

(Ashcroft et al., 2009), the places experiencing the least warming under recent conditions are 618 

also those with coolest microclimates. The premise that ecological communities in such 619 

locations may be buffered against the effects of climatic change is also supported by the 620 

evidence that, within our study area, 30-year temperature-driven changes in plant 621 

communities are lower on north-east facing slopes (Maclean et al., 2015). 622 

 623 

Our study provides strong evidence that trends in synoptic weather patterns result in spatially 624 

variable rates of warming across a landscapes, leading to substantial spatial heterogeneity in 625 

biologically relevant climate variables. Most significant is the variation in the length of the 626 

frost-free season, which has slightly decreased at higher altitude inland, but has increased by 627 

over a month in south-east facing coastal regions. It is important to emphasise, however, that 628 

the long-term consistency in the locations least vulnerable to climatic changes are likely to be 629 

linked to long-term weather trends and may thus be ephemeral. Nonetheless, much of the 630 

ecology of long-term climatic change is likely to be occurring at finer scales than is currently 631 

appreciated. Methods that allow these changes to be quantified are much needed if these 632 

remaining uncertainties are to be resolved. 633 
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