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Abstract Water resources in many of the world’s arid mountain ranges are threatened by climate
change, and in parts of the South American Andes this is exacerbated by glacier recession and
population growth. Alternative sources of water, such as more resilient permafrost features (e.g.
rock glaciers), are expected to become increasingly important as current warming continues.
Assessments of current and future permafrost extent under climate change are not available for
the Southern Hemisphere, yet are required to inform decision making over future water supply and
climate change adaptation strategies. Here, downscaled model outputs were used to calculate the
projected changes in permafrost extent for a first-order assessment of an example region, the
Bolivian Andes. Using the 0 °C mean annual air temperature as a proxy for permafrost extent, these
projections show that permafiost areas will shrink from present day extent by up to 95 % under
warming projected for the 2050s and by 99 % for the 2080s (under the IPCC A 1B scenario, given
equilibrium conditions). Using active rock glaciers as a proxy for the lower limit of permafiost
extent, we also estimate that projected temperature changes would drive a near total loss of
currently active rock glaciers in this region by the end of the century. In conjunction with glacier
recession, a loss of permafrost extent of this magnitude represents a water security problem for the
latter part of the 21st century, and it is likely that this will have negative effects on one of South
America’s fastest growing cities (La Paz), with similar implications for other arid mountain regions.

1 Introduction

Water security in many arid mountain regions is under threat from climate change, glacier
recession and population growth (Viviroli et al. 2011; Buytaert and De Bievre 2012). With
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99 % of the world’s tropical glaciers, the South American Andes are experiencing widespread
and continuing glacier recession (Soruco et al. 2009; IPCC 2013). Components of the
mountain cryosphere such as snow, glaciers, permafrost and thawing permafrost are especially
sensitive to temperature changes because of their close proximity to melting and thawing
conditions (Haeberli and Beniston 1998; Kééb et al. 2007). Here, the cryosphere acts as an
important hydrological buffer, providing reliable stores of water for tens of millions of people,
yet future security of supply for regions reliant on these features cannot be guaranteed.

Permaftost is defined as ground which remains at or below 0 °C for at least two consecutive
years (Harris et al. 2003). Although the environmental conditions suitable for permafrost exist
in most mountainous regions of sufficient elevation (Travassos et al. 2008; Viviroli et al.
2011), present understanding of Andean permafrost distribution and resilience is limited
(Azocar and Brenning 2010). Most mountain regions have warmed faster than the global
average (Bradley et al. 2006); for instance, warming in the European Alps since the 1980s has
been reported as 0.5 °C per decade (EEA 2009). The Andes warmed at 0.11 °C per decade in
the latter part of the 20th century, which is 0.06 °C per decade above the global average (Vuille
et al. 2008). Continued warming is expected to cause further retreat and degradation of high-
elevation permafrost (Haeberli et al. 1993). However, although it is “virtually certain” that
Northern Hemisphere permafrost will continue to decline during the 21st century (IPCC 2013,
p.1032), similar predictions for Southern Hemisphere permafrost are not available. This
represents a substantial knowledge gap, particularly in regions where water security is already
at risk. Here, we address this gap by providing a first-order assessment of the impact of climate
change on mountain permafrost in the Bolivian Andes. We have used the Bolivian Andes as an
example of an arid high mountain system to explore the vulnerability of these water stores to
future climatic change, and to highlight the climate change adaptation issues that follow.

At local scales, the location of mountain permafrost is controlled by topographic and site-
specific variables, such as level of snow cover, the slope and aspect of the surface, and its
vegetation type and cover. However, at regional scales it is strongly correlated with the Mean
Annual Air Temperature (MAAT), with the 0 °C isotherm often used to mark the lower
elevational boundary (Del Barrio et al. 1990; Avian and Kellerer-Pirklbauer 2012). Although it
is expected that atmospheric warming will cause an upward shift in this lowest elevation
boundary (Haeberli et al. 1993; Janke 2005; Bonnaventure and Lewkowicz 2011), the coarse
spatial resolution of current Global Climate Models (GCMs) does not permit a precise
understanding of likely changes to future permafrost extent at the regional level, thereby
preventing water resource managers adapting their policies to climate change (Hijmans et al.
2005; Buytaert et al. 2010). Downscaling these climate projections to an appropriate spatial
resolution is therefore a necessary first step towards understanding climatic impacts of future
global warming on permafrost water stores at the regional scale (Marengo et al. 2010), after
which appropriate adaptation policies can be formulated.

Our study also examines the likely effect of climate change on active rock glaciers, which are
a useful indicator of the lower boundary of mountain permafrost (Barsch 1996). These features
consist of frozen rock debris and 40-60 % ice, and typically occur in high mountainous terrain
(Barsch 1996; Brenning 2005). They are already considered to be important sources of water in
montane, arid environments like the Chilean and Argentinean Andes (Croce and Milana 2002;
Brenning 2005; Azdcar and Brenning 2010), and may become more so as glaciers recede (Millar
and Westfall 2008; Esper Angillieri 2009). While work modelling the implications of climate
change on rock glaciers is limited, active rock glaciers have been used for modelling permafrost
extents and changes in the North American Rocky Mountains (Janke 2005).
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Here, we assess the impact of future warming on rock glaciers and permafrost extent in the
arid Bolivian Andes by estimating changes in the distributions of land falling below thresholds
for permafrost suitability (close to the frequently cited 0 °C isotherm). We adopt two
approaches: first, we first use present day climate data (Hijmans et al. 2005) and statistically
downscaled climate projections (Mitchell and Osborn 2005) to model present and future
climates, enabling a first-order assessment of the effect of 21st century projected warming
on permafrost extent. Second, we apply these climate data to a recent rock glacier inventory for
the Bolivian Andes (Rangecroft et al. 2014), to model potential changes in activity over this
period. Both our approaches suggest a marked decline in the area suitable for permafrost (and
thus permafrost features) under climate change, potentially exacerbating the existing water
scarcity problems in the Bolivian Andes. Other arid mountain regions dependent on
cryospheric water supplies are likely to face similar problems this century.

2 Study region

The study region covers the two Cordillera mountain ranges of Bolivia between 15° S and
22° S (Fig. 1), divided into three climatically and topographically distinct regions: 1)
‘Cordillera Real’ (15° - 16° S), this glaciated mountain region close to La Paz contains the
highest density of glaciers in the country and has the wettest climate of the Bolivian Andes
(~700 mm annually); ii) ‘Sajama’ (17° - 18° S), this region contains the isolated ice capped
volcanic mountains in the Sajama National Park close to the Bolivia-Chile border; and iii)
“Western Cordillera’ (18° - 22° S), this region is comprised of the dry, barren mountain range of
the Cordillera Occidental (south of Sajama, see Rangecroft et al. 2014). Aridity increases
towards the south, with the Western Cordillera receiving on average less than 200 mm annually
(Jeschke 2009), resulting in no ice glaciers in the south (Jordan 1998). Overall, Bolivia has a
distinctive climate consisting of a dry season (May — August) and a wet season (December —
February). Temperatures and incident solar radiation are almost homogenous throughout the
year, with temperatures 1 or 2 °C higher during the wet summer (Rabatel et al. 2013).

In the Bolivian Andes, nearly 50 % of glacier ice cover has been lost since 1960 (Soruco
et al. 2009) and small and low-lying glaciers are projected to disappear within the next 20 years
(Bradley et al. 2006; Vuille et al. 2008). Water supply deficiencies are particularly acute in the
dry season, when the region is reliant on meltwater for domestic use, agriculture and energy
generation. It is estimated that glacial melt water provides 12—40 % of the potable water for the
Bolivian capital city, La Paz (Rangecroft et al. 2013). Despite this vulnerability in Bolivia, and
across South America as a whole, there has been no previous research examining the
implications of projected warming for the continent’s mountain permafrost.

3 Methods

3.1 Present day MAAT

Present day (1950-2000) MAAT estimates for the Bolivian Andes were derived from the
“Worldclim’ monthly mean temperature data at 30 arc sec (~ 1 km) horizontal resolution
(Hijmans et al. 2005, Fig. 1). The Worldclim data were gathered from global weather stations

(Hijmans et al. 2005) and interpolated using a thin plated smoothing algorithm in ANUSPLIN
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Fig. 1 Present and future Mean Annual Air Temperatures (MAATS) for the study region. Present day (1950—
2000) MAATs using WorldClim data (left panel). Multimodel ensemble mean projected MAAT from 7 down-
scaled GCMs for the IPCC A1B scenario for South America, generated from 2050s (middle) and 2080s (right)
warming data. Figure was generated in ArcGIS 10.1, data with permission from ClimGen

(Hijmans et al. 2005). These data have been used extensively (Hole et al. 2009; Loarie et al.
2009) in the climate impacts literature due to their fine spatial resolution. The Bolivian Andes
were defined as land above 3500 m above sea level within the political boundary of Bolivia.
This successfully isolated the mountain areas, yet exclude the Bolivian tropics where perma-
frost is not found.

3.2 Projected changes in MAAT and the proportion of land area suitable
for permafrost

Projected future changes in temperature were derived from a downscaled multi-model ensem-
ble of seven IPCC GCMs driven by the SRES A1B emissions scenario (Mitchell and Osborn
2005). This A1B scenario represents a future world of rapid economic and population growth,
peaking mid-century (IPCC 2000). The multi-model ensemble dataset was constructed from
seven GCMs by the ClimGen project (Mitchell and Osborn 2005). The ClimGen project
downscaled the GCM data at 5° horizontal resolution to 0.5° resolution (~50 km in the
Tropics) using the ‘pattern scaling’ approach. The projected changes in temperature were
‘draped’ over the present day data to generate estimates of projected future MAAT, for each
GCM in the ensemble (n = 7 GCMs). We assessed the warming data associated with two
‘epochs’, or time periods: the 2050s (representing the time period 2040-2069) and 2080s
(representing 2070-2099).

The projected future MAAT surfaces were used to assess the change in permafrost extent
under equilibrium conditions. We classified land area as being suitable for permafrost if the
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temperature remained below specific MAAT thresholds. Because upper thresholds for perma-
frost suitability are reported to vary in different regions of the globe, we tested the sensitivity of
our estimates to a range of seven thresholds (MAAT of —4 to +2 °C). Although the
extent of permafrost is often marked by the 0 °C isotherm (Avian and Kellerer-
Pirklbauer 2012), conservative thresholds of +1 and +2 °C were also used, to
accommodate for any local topographic and microclimatic effects (Payne 1998). Colder
thresholds for MAAT (closer to those reported in the Northern Hemisphere, e.g. Brenning
2005) were also tested.

3.3 Projected changes to rock glacier activity

We adopted a Bolivian rock glacier inventory derived from a hybrid satellite and field mapping
approach (cf. Rangecroft et al. 2014), using the criteria of Baroni et al. (2004). A total of 54
active rock glaciers in Bolivia were identified. The MAAT at the centroid of each active rock
glacier was calculated for present day and future (2050s, 2080s) temperatures, using
the data derived from each GCM (n = 7), and the ensemble mean. The number of
active rock glaciers under 2050s and 2080s warming was estimated using seven upper
thresholds (—4 to +2 °C) for activity.

4 Results
4.1 Projected temperature increase

Across South America, MAATSs are projected to increase by a range of 0.8-3.4 °C by the
2050s and a range of 1.4-5.1 °C by the 2080s, relative to present day conditions (Fig. 1).
Levels of warming projected for the Bolivian Andes were at the higher end of these ranges,
with projections suggesting a 2.7-3.2 °C increase by the 2050s and 4.2-4.9 °C by the 2080s
(Fig. 1b,c).

4.2 Current and projected permafrost extent

We used the 0 °C MAAT threshold to illustrate the extent of conditions suitable for permafrost
under present day conditions (1950-2000), and the likely changes to this extent arising from
21st century projected warming (Fig. 2). Even under current climate conditions, permafrost is
seen to occupy a fragmented “island” distribution across the Bolivian Andes (Fig. 2a). The
area of suitable permafrost (under 0 °C MAAT) was projected to decrease by approximately
95 % under 2050s warming and 99 % under 2080s warming (Fig. 2b, Table 1). The size of
these reductions was largely insensitive to the choice of MAAT threshold; projected reductions
in extent based on alternative plausible thresholds (—4 to +2 °C) differed by less than 3 % for
2050s warming and less than 1 % for 2080s warming (Table 1).

4.3 Current and projected rock glacier temperatures
Active rock glacier sites have a present day average MAAT of +0.1 °C (95 % CI of 0.4 °C)
with a range of —2.8 to +2.9 °C across the 7 models used. Active rock glaciers were mostly

clustered around the 0 °C threshold (Fig. 3), however differences were observed across the
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Fig. 2 Climate change will reduce the area of land suitable for permafrost. Maps illustrate areas of present day
and future projected Mean Annual Air Temperature (MAAT) below a suitability threshold of 0 °C, as a proxy for
permafrost extent. a) Present day land area below a suitability threshold of 0 °C (blue coloration). b) Shrinkage of
land area below a threshold MAAT of 0 °C in four example landscapes where rock glaciers are present in the
Bolivian Andes. Figures were generated in ArcGIS 10.1

three different regions, with higher MAATs in the Cordillera Real than the other two
regions (Fig. 3).

We found that the thermal conditions necessary for the persistence of active rock glaciers
will deteriorate under future warming (Fig. 2b). Using future temperature projections at the
rock glacier sites, we estimated that all currently active rock glaciers in Bolivia are projected to
have an MAAT of more than 0 °C under warming levels projected for the 2050s. It must be
emphasised that any change in the activity of a rock glacier as a result of this warming may lag
behind the modelled temperature shift; this estimate therefore represents the final, equilibrium
change in activity that could result. At present, some 93 % (50 of 54) active rock glaciers in the
inventory lie within the more conservative, +2 °C activity threshold. However, under 2050s
warming, the MAAT for 34 % (n =17, range 10 to 19) of rock glaciers would remain under the
+2 °C threshold, and under 2080s warming, the MAAT at just one rock glacier (range 0 to 3) is
projected to remain under +2 °C (Table 1). The relation between MAAT and elevation did not
differ substantially between present, 2050s and 2080s climates (estimated lapse rate of ~1 °C/
150 m from the WorldClim data, Fig. 3).

5 Discussion

We mapped the current and likely future distribution of mountain permafrost across the
Bolivian Andes (Fig. 2; Table 1). The sparse and isolated nature of Bolivian permafrost is
clear (Fig. 2a), especially when compared to the spatially extensive permafrost along the

Chilean/Argentinean Andes between 27° and 35° S (Gruber 2012). This supports our previous
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work (Rangecroft et al. 2015), which established that Bolivian rock glaciers are less abundant
than those of the Chilean Andes (Azdcar and Brenning 2010) and the Argentinean
Andes (Perucca and Esper Angillieri 2011). The limited distribution of areas with MAATSs
below 0 °C in the Bolivian Andes likely contributes towards the low frequency of rock glaciers
in this region.

Permafrost extent is known to be associated with MAAT thresholds (Gruber 2012), but
other local factors can also be important, such as topography, aspect, insolation, vegetation,
and snow cover (Gruber 2012). These can be difficult to model without fine resolution data.
Although permafrost modelling by Bolch et al. (2011) used MAAT and solar radiation to
develop a permafrost model for the Tian Shan region, small-scale variability remained very
difficult to capture (Buchroithner and Bolch 2014). Furthermore, other variables, including
changes in the spatial and temporal distribution of precipitation, influence permafrost extent
and could affect rock glacier development and persistence (Haeberli et al. 1993). Precipitation
projections were not included in this analysis due to large uncertainties surrounding the
direction and magnitude of future change, unlike the consensus between models regarding
the direction (and sometimes magnitude) of temperature change (IPCC 2013). To test the
sensitivity of our conclusions to other potential controls of permafrost extent, we conducted a
brief comparison between our results and Gruber’s (2012) Permafrost Zonation Index (PZI)
(Fig. 4). Despite our relatively simple approach to mapping MAATs, we found strong
agreement between the two approaches (Fig. 4). We thus have confidence that our estimates
of spatial extent are realistic for the areas we have modelled.

Rock glaciers were found to be strongly associated with the 0 °C isotherm along the
Cordillera Occidental in Bolivia. This, along with the relatively homogenous temperature
conditions throughout the year in Bolivia (Rabatel et al. 2013), justifies the use of the 0 °C
isotherm as a proxy for permafrost extents in this region. It is these similar summer and winter
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Zonation Index (pink coloration) with our MAAT 0 °C isotherm mapping (blue), highlighting the high level of
agreement (purple). Figure was generated in ArcGIS 10.1

conditions in the tropical Andes which make it very different from the majority of existing
mountain permafrost literature. In the European Alps for example, it is thought that active rock
glaciers require a MAAT of less than —1 or —2 °C (Brenning 2005), whereas the average
MAAT at rock glacier locations in the Bolivian Andes was found to be +0.1 °C. Relatively
high rock glacier MAATs were found in the Cordillera Real, with an average MAAT of
+1.7 °C and range of +0.4 to +3 °C (Fig. 3). Similar (above zero) rock glacier temperatures
have also been observed in the Chilean and Argentinean Andes (e.g. Trombotto et al. 1997,
Brenning 2005). Warmer MAATS that remain suitable for permafrost is likely a consequence
of local topographic and/or microclimatic factors combining to preserve ice in otherwise
climatically unfavourable locations (Bonnaventure and Lewkowicz 2011). This can lead to
persistent areas of snow and ice cover despite warmer temperatures in the wider atmosphere.
To confirm this effect, direct, in situ field measurements will be required, to confirm this
‘thermostatic’ effect.

Whilst we argue that rising temperatures will reduce the area suitable for rock glaciers
(Fig. 2) and result in permafrost degradation (Kellerer-Pirklbauer et al. 2011), other factors
could play a role in rock glacier formation. For instance, it is possible that debris fluxes which
supply rock glaciers could increase in a warmer climate. Frost shattering is controlled by
freeze-thaw cycles, with an elevation range termed the ‘talus window’ (Hales & Roering
2007), and an increase in talus production could increase the debris supply to existing rock
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glaciers and produce new ones at sites where ice is available. Conversely, rock glaciers are
normally located in the upper part of the talus window, and with the talus window expected to
move towards higher elevations with a changing climate, a reduction in the area available for
talus production and rock glacier supply is to be expected. Just as importantly, rock glaciers are
known to respond slowly to changes in temperature (Janke 2005), and so a time lag between
observed temperature increase and rock glacier response is expected. However, there is little
information on such lag times, and due to the complexity of the energy balance at glacier and
permafrost surfaces, potential future changes can only be roughly estimated (Haeberli and
Beniston 1998). Future research should target these knowledge gaps and focus on permafrost
and rock glacier ice response to climate change.

There is often a complex relation between modelled temperature increase and the response
of cryospheric features and landforms, including permafrost and rock glaciers. Yet, the
direction of the change projected clearly demonstrates a future reduction in permafrost extents
and loss of currently active rock glaciers and suitable areas for rock glacier development
(Table 1; Fig. 2). The hydrological significance of rock glaciers in the region and their
recession is currently uncertain or unknown, and existing work only begins to address these
gaps (e.g. Rangecroft et al. 2015). It will be critical to establish the impact of permafrost and
rock glacier recession on water supply for large urban centres such as El Alto and La Paz,
especially as they lie in a region already suffering acute water scarcity (Rangecroft et al. 2013).
As one of South America’s fastest growing cities, water stresses are expected to be amplified in
La Paz by glacier recession, population increase, and projected increases in rural-to-urban
migration driven by climate change and westernization of lifestyles (Vanham and Rauch 2010;
Buytaert and De Bievre 2012; Rangecroft et al. 2013). These projected changes in demand
combined with changes to water supplies are expected to have critical negative impacts on
water security, affecting environmental, economic and social systems (Bradley et al. 2006;
Rangecroft et al. 2013).

Furthermore, the implications of these projected changes extend beyond water resources;
permafrost changes also affect natural hazards such as slope instability, rockfalls, and glacial
lake outburst floods (GLOFs) (Haeberli and Beniston 1998; IPCC 2007). On slopes steeper
than 25° to 30°, decreased stability can develop in freshly exposed or thawing nonconsolidated
sediments (Haeberli and Beniston 1998). As a result, there is a growing need to integrate
climate change adaptation with disaster risk reduction, particularly in glaciated mountain
regions, especially as glacial hazards threaten societies in these regions (e.g. GLOFs in Peru,
Carey et al. 2012).

6 Conclusion

There is a clear need to address the important gaps in knowledge and literature on the Southern
Hemisphere’s cryosphere. Given the sensitivity and vulnerability of countries such as Bolivia
to climate change, this work highlights the susceptibility of water supply strategies to climate
change in such regions. The results here suggest a dramatic loss of permafrost extent in
response to projected 21st century warming, representing a reduction of high mountain water
storage. With an expected increasing demand for water supplies in Andean cities such as La
Paz and surrounding regions, further research on the impacts of projected climatic change on
the cryosphere and water resources is essential for future planning and mitigation. Specifically,
further research on the Andean permafrost dynamics is required, combined with a better
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understanding of the relation between permafrost and climate change to improve the antici-
pation of water supply shortages in the future and natural hazards.
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