
Citation: Wang, Yong, Ru, Zhi-Yang, Wang, Kezhi and Huang, Pei-Qiu (2019) Joint
Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV
Enabled Mobile Edge Computing. IEEE Transactions on Cybernetics. ISSN 2168-2267 (In
Press)

Published by: IEEE

URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/40323/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

http://nrl.northumbria.ac.uk/policies.html

1

Joint Deployment and Task Scheduling
Optimization for Large-Scale Mobile Users in
Multi-UAV Enabled Mobile Edge Computing

Yong Wang, Senior Member, IEEE, Zhi-Yang Ru, Kezhi Wang, Member, IEEE, and Pei-Qiu Huang

Abstract—This paper establishes a new multi-unmanned aerial
vehicle (multi-UAV) enabled mobile edge computing (MEC) sys-
tem, where a number of UAVs are deployed as flying edge clouds
for large-scale mobile users. In this system, we need to optimize
the deployment of UAVs, by considering their number and
locations. At the same time, to provide good services for all mobile
users, it is necessary to optimize task scheduling. Specifically,
for each mobile user, we need to determine whether its task is
executed locally or on a UAV (i.e., offloading decision), and how
many resources should be allocated (i.e., resource allocation).
This paper presents a two-layer optimization method for jointly
optimizing the deployment of UAVs and task scheduling, with the
aim of minimizing the system energy consumption. By analyzing
this system, we obtain the following property: the number of
UAVs should be as small as possible under the condition that all
tasks can be completed. Based on this property, in the upper layer,
we propose a differential evolution algorithm with an elimination
operator to optimize the deployment of UAVs, in which each
individual represents a UAV’s location and the whole population
represents an entire deployment of UAVs. During the evolution,
we first determine the maximum number of UAVs. Subsequently,
the elimination operator gradually reduces the number of UAVs
until at least one task cannot be executed under delay constraints.
This process achieves adaptive adjustment of the number of
UAVs. In the lower layer, based on the given deployment of UAVs,
we transform the task scheduling into a 0-1 integer programming
problem. Due to the large-scale characteristic of this 0-1 integer
programming problem, we propose an efficient greedy algorithm
to obtain the near-optimal solution with much less time. The
effectiveness of the proposed two-layer optimization method and
the established multi-UAV enabled MEC system is demonstrated
on ten instances with up to 1000 mobile users.

Index Terms—Multi-unmanned aerial vehicle, mobile edge
computing, deployment, task scheduling, two-layer optimization,
differential evolution.

I. INTRODUCTION

With the increasing popularity of mobile devices, more
and more new types of mobile applications have emerged,
such as mobile online gaming [1] and speech recognition [2].

This work was supported in part by the Innovation-Driven Plan in Central
South University under Grant 2018CX010, in part by the National Natural
Science Foundation of China under Grant 61673397, in part by the Hunan
Provincial Natural Science Fund for Distinguished Young Scholars (Grant
No. 2016JJ1018), and in part by the Beijing Advanced Innovation Center
for Intelligent Robots and Systems under Grant 2018IRS06. (Corresponding
author: Kezhi Wang).

Y. Wang, Z.-Y. Ru, and P.-Q. Huang are with the School of Au-
tomation, Central South University, Changsha 410083, China. (Email:
ywang@csu.edu.cn; zhiyang.ru@csu.edu.cn; pqhuang@csu.edu.cn)

K. Wang is with the Department of Computer and Informa-
tion Sciences, Northumbria University, Newcastle NE2 1XE, UK.
(kezhi.wang@northumbria.ac.uk)

However, these applications are sensitive to latency and re-
quire considerable computation resources. Due to the physical
limitations such as battery power and computation resources,
it poses a great challenge for mobile devices to execute these
applications [3].

Mobile edge computing (MEC), which deploys servers to
the network edge [4], [5], has been considered as a promising
technology to address this challenge. In MEC, mobile devices
can offload their tasks to the servers close to them. Compared
with mobile cloud computing, MEC consumes less transmis-
sion time and energy due to shorter transmission distance.
However, the locations of MEC servers are usually fixed and
cannot be flexibly changed according to the needs of mobile
users, which limits MEC’s capability.

In recent years, unmanned aerial vehicles (UAVs) have
received extensive attention in wireless communications [6]-
[8]. For example, UAVs have been used in areas with limited
communication infrastructures, such as in developing countries
or mountainous areas, as well as in earthquake response,
emergency rescue, and battlefield communication [9]. Very
recently, a UAV-enabled MEC wireless powered system has
been studied in [10], in which a MEC server is mounted on
a UAV (i.e., a flying edge cloud). This kind of system can
provide two advantages: 1) due to the higher altitude, the flying
edge cloud can provide better line-of-sight links to mobile
users with a higher probability, and 2) since the UAV can be
flexibly deployed, it can further shorten the transmission dis-
tance. Overall, this kind of system can provide better services
to mobile users. Therefore, the use of UAVs is expected to
play an important role in improving the performance of MEC.

However, the current study in [10] only considers one
UAV. A question which arises naturally is whether we can
deploy multiple UAVs simultaneously to serve mobile users.
Compared with a single UAV, multiple UAVs can support more
tasks within a shorter time, which can remarkably boost the
applications of MEC in emergency and complicated scenarios.
To this end, we make the first attempt to investigate a new
multi-UAV enabled MEC system, where multiple UAVs are
employed to serve large-scale mobile users on the ground in
a given area. To minimize this system’s energy consumption
while meeting the needs of all mobile users, there exist two
key issues to be addressed: the deployment of UAVs and task
scheduling. Specifically, the purpose of the deployment of
UAVs is to determine the number and locations of UAVs. In
addition, task scheduling includes two aspects: the offloading
decision and resource allocation. The former aims at deter-

2

mining whether a task is executed locally or is offloaded to
a UAV. Subsequently, the latter decides how many resources
should be allocated to this task.

Actually, the deployment of a single UAV/multiple UAVs
and the task scheduling in MEC have been extensively studied
individually in wireless communications. Next, we briefly
introduce them.

• Deployment of a single UAV/multiple UAVs: Fan
et al. [11] researched the node placement of a UAV
relaying system, with the aim of maximizing the system
throughput. Bor-Yaliniz et al. [12] optimized the place-
ment of a UAV to maximize the revenue of the network.
Mozaffari et al. [13] designed the efficient deployment
of multiple UAVs as wireless base stations, in which the
total coverage area and the coverage lifetime of UAVs are
maximized. Mozaffari et al. [14] investigated the place-
ment of UAVs for data collection from ground Internet of
Things devices. Lyu et al. [15] presented the placement
of UAVs to supply distributed ground terminals with
wireless coverage, ensuring that each ground terminal
can be served by at least one UAV. Sharma et al. [16]
introduced the assignment of UAVs over geographical
areas to meet high traffic demands. Mozaffari et al. [17]
deployed a UAV as a flying base station to provide
wireless communications to an area.

• Task scheduling: Some researchers have focused on either
the offloading decision or the resource allocation in task
scheduling of MEC. For example, Zhang et al. [18] pro-
posed an energy-efficient offloading decision mechanism
for MEC in 5G heterogeneous networks. Lyu et al. [19]
designed a selective offloading decision scheme in MEC
to minimize the energy consumption of Internet of Things
devices. Wang et al. [20] optimized the resource alloca-
tion in MEC by means of a unifying framework for the
power-performance tradeoff of a mobile service provider.
You et al. [21] investigated the resource allocation for a
multiuser MEC system based on time-division multiple
access and orthogonal frequency-division multiple access.
Recently, much attention has been paid to optimizing
the offloading decision and resource allocation in MEC
simultaneously. For instance, Mao et al. [22] presented
an effective computation offloading strategy for a green
MEC system with energy harvesting devices by optimiz-
ing the offloading decision and the resource allocation
simultaneously. Zhang et al. [23] suggested the simulta-
neous offloading decision and resource allocation opti-
mization in MEC to minimize the energy consumption
and monetary cost from the mobile terminals’ perspec-
tive. Kan et al. [24] introduced the offloading decision
and the resource allocation of the MEC server considering
the variety of tasks’ requirements.

From this introduction, it is clear that the joint optimization
of the deployment of UAVs and task scheduling remains scarce
in current studies. Moreover, in MEC, large-scale mobile users
have rarely been taken into consideration. Due to the fact that
the system developed in this paper involves both multi-UAV
enabled MEC and mobile users, we must jointly optimize the

mobile user 2

UAV 1

mobile user 4

mobile user 5

UAV 2

mobile user 3

mobile user 1

mobile user 8

mobile user 6

mobile user 7

mobile user 9

mobile user 10
mobile user M...

UAV N

...

candidate links

selected links

Fig. 1. A multi-UAV enabled MEC system consisting of M mobile users
and N UAVs. As shown in this figure, the tasks of mobile users 1, 2, and 4
are executed on UAV 1; the tasks of mobile users 5, 7, and 8 are executed
on UAV 2; and the rest of the tasks are executed locally.

deployment of UAVs and task scheduling. To the best of our
knowledge, this paper is the first attempt to investigate joint
deployment and task scheduling optimization for large-scale
mobile users in a multi-UAV enabled MEC system.

The main contributions of this paper are summarized as
follows:

• A new multi-UAV enabled MEC system is proposed,
where multiple UAVs are used as flying edge clouds
for large-scale mobile users. This system can further
develop the capability of traditional MEC systems by
using multiple UAVs.

• A two-layer optimization method named ToDeTaS is
proposed to jointly optimize the deployment of UAVs
and task scheduling, with the purpose of minimizing the
system energy consumption. Specifically, we optimize
four aspects: the number and locations of UAVs, the
offloading decision, and the resource allocation.

• In the upper layer, a differential evolution (DE) algorithm
with an elimination operator is presented to optimize
the deployment of UAVs. We encode a UAV’s location
into an individual and the whole population represents an
entire deployment of UAVs. After analyzing this system,
to achieve the minimum energy consumption, we should
give a priority to the number of UAVs under the condition
that all tasks can be completed. Based on this property,
we first determine the maximum number of UAVs, and
gradually reduce the number by the elimination operator
if all tasks can be completed. In principle, the number of
UAVs is adaptively adjusted by the elimination operator
and the locations of UAVs are optimized by DE.

• With respect to a given deployment of UAVs in the
upper layer, the task scheduling in the lower layer is
transformed into a 0-1 integer programming problem.
To reduce the computational time for the large-scale
0-1 integer programming problem, an efficient greedy
algorithm is proposed to obtain the near-optimal solution.

3

• Extensive experiments have been carried out on ten
instances with up to 1000 mobile users. The experimental
results demonstrate the effectiveness of ToDeTaS and the
multi-UAV enabled MEC system.

The rest of this paper is organized as follows. Section II
introduces the model and problem formulation of the proposed
system. Section III describes the details of our proposed
ToDeTaS. Section IV gives the experimental studies. Section V
discusses two issues. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a multi-UAV enabled
MEC system consisting of M mobile users denoted as M =
{1, 2, . . . ,M} and N UAVs denoted as N = {1, 2, . . . , N}.
In this system, (xi, yi, 0) is the three-dimensional coordinate
of mobile user i (i ∈ M). In addition, we assume that each
mobile user i has a task Ui to be executed. Specifically, Ui
can be described as Ui = (Ci, Di), where Ci describes the
total number of the CPU cycles for completing Ui, and Di

denotes the size of input data of mobile user i. Note that M ,
xi, yi, Ci, and Di can be known a priori. As for N UAVs,
we assume that they are equipped with directional antennas
of fixed beamwidth θ. These UAVs are flying at a constant
altitude H and the location of UAV j (j ∈ N) is represented
by (Xj , Yj , H). It is worth noting that N , Xj , and Yj cannot
be obtained in advance.

In this system, UAVs are used as flying edge clouds.
Therefore, each task can be executed on its own mobile
device or one of UAVs. As a result, each task has (N + 1)
execution patterns denoted as K = {0, 1, . . . , N}. Specifically,
k = 0 (k ∈ K) indicates that a task is executed on its own
mobile device and k > 0 indicates that a task is executed
on UAV k. Furthermore, we assume that N UAVs serve all
mobile users via frequency division multiple access with an
equal bandwidth allocation. In this paper, we define matrix a
to denote the offloading decision, where ai,k = 1 (i ∈ M
and k ∈ K) if Ui is executed in pattern k; otherwise,
ai,k = 0. For example, in Fig. 1, U1, U2, and U4 are
executed on UAV 1; U5, U7, and U8 are executed on UAV
2; and the rest of the tasks are executed locally. As a result,
a1,1, a2,1, a4,1, a5,2, a7,2, a8,2, a3,0, a6,0, a9,0, a10,0,
and aM,0 = 1, and the rest is equal to zero. In addition,
we define another matrix f to denote the resource allocation,
where fi,k (i ∈ M and k ∈ K) is the computation resources
allocated to Ui in pattern k.

In our system, there are three models: the local execution
model, the MEC execution model, and the UAV hover model.

A. Local Execution Model
When Ui is executed on its own mobile device, the time

spent to complete it is defined as [25]

TLi,0 =
Ci
fi,0

, ∀i ∈M. (1)

In addition, the energy used to complete Ui is given as [26]

ELi,0 = η1(fi,0)v−1Ci, ∀i ∈M, (2)

where η1 is the effective switched capacitance and v is a
positive constant.

B. MEC Execution Model

When a task is executed on a UAV, this task is first
transmitted to the UAV, and then it is executed by the MEC
server on the UAV. After execution, the result is returned to
the mobile user.

For mobile user i, its horizontal distance to UAV j is given
as

dMU
i,j =

√
(xi −Xj)2 + (yi − Yj)2,

∀i ∈M, j ∈ N .
(3)

Obviously, if Ui is executed on UAV j, mobile user i must
be within the coverage area of UAV j. That is, the following
constraint should be satisfied [27]:

C1 : ai,kd
MU
i,j ≤ R, ∀i ∈M, j ∈ N , k = j, (4)

where R is the coverage radius of each UAV and R = H tan θ.
The distance between two UAVs is expressed as

dUUj1,j2 =
√

(Xj1 −Xj2)2 + (Yj1 − Yj2)2,

∀j1, j2 ∈ N , j1 6= j2.
(5)

Note that any two UAVs must maintain a minimum distance
dUUmin to avoid collision; thus, another constraint holds [28]

C2 : dUUj1,j2 ≥ d
UU
min,∀j1, j2 ∈ N , j1 6= j2. (6)

Due to the computational capability limitations of a MEC
server, each UAV can only execute at most nmax tasks. That
is [29]

C3 :

M∑
i=1

ai,k ≤ nmax, ∀i ∈M, k ∈ K\{0}. (7)

The uplink data rate of Ui in pattern k is given as [30]

ri,k = Blog2

(
1 +

Pβ0G0

N0Bθ2((dMU
i,j)2 +H2)

)
,

∀i ∈M, j ∈ N , k = j,

(8)

where B is the channel bandwidth, P denotes the transmission
power of each mobile device, β0 is the channel power gain
at the reference distance, G0 is a positive constant, and N0 is
the noise power spectrum density.

Then, the total time for completing Ui includes the trans-
mission time and the computation time on UAV j [31]:

TMi,k =
Di

ri,k
+

Ci
fi,k

, ∀i ∈M, k = j. (9)

In addition, the total energy used to complete Ui includes
the transmission energy and the computation energy on UAV
j [32]

EMi,k = P
Di

ri,k
+ η2(fi,k)v−1Ci, ∀i ∈M, k = j, (10)

where η2 is the effective switched capacitance.
Similar to [29], we assume that the output of the task can

be returned to the mobile user with negligible transmission
delay.

4

C. UAV Hover Model

When a UAV hovers at its fixed location for some time, the
energy for it to hover is expressed as

EH = P0T, (11)

where P0 and T are the hover power and the hover time,
respectively.

Considering that this system contains both multi-UAV en-
abled MEC and mobile users, we need to jointly optimize
the deployment of UAVs and the task scheduling to minimize
the system energy consumption, which includes the energy to
complete all tasks in the local computation patten or the MEC
computation patten and the energy for UAVs’ hover. The joint
deployment and task scheduling optimization problem can be
formulated as

min
N,Xj ,Yj ,ai,k,fi,k

M∑
i=1

(
ai,0E

L
i,0 +

N∑
k=1

ai,kE
M
i,k

)
+ βNEH

(12)

s.t. C1 : ai,kd
MU
i,j ≤ R,

∀i ∈M, j ∈ N , k = j,

C2 : dUUj1,j2 ≥ d
UU
min,∀j1, j2 ∈ N , j1 6= j2,

C3 :

M∑
i=1

ai,k ≤ nmax,

∀i ∈M, k ∈ K\{0},

C4 :

N∑
k=0

ai,k = 1, ∀i ∈M, k ∈ K,

C5 : fi,k > 0, ∀ai,k = 1, i ∈M, k ∈ K,
C6 : fi,k = 0, ∀ai,k = 0, i ∈M, k ∈ K,
C7 : ai,0T

L
i,0 ≤ T, ∀i ∈M,

C8 : ai,kT
M
i,k ≤ T, ∀i ∈M, k ∈ K\{0}.

where C4 ensures that all tasks are executed and each task
can only be executed in one pattern; C5 and C6 denote that if
Ui is executed in pattern k, fi,k is greater than 0; otherwise, it
is equal to 0; C7 and C8 are delay constraints for each task;
and β is a weight coefficient and set to 1 in this paper.

III. PROPOSED APPROACH

A. Motivation

From the introduction in Section II, it is clear that (12)
is a non-convex nonlinear optimization problem. Therefore,
traditional optimization methods cannot solve it. Evolutionary
algorithms (EAs) have the potential to address it since they
are a kind of population-based heuristic search methods that
does not need the gradient information. However, EAs will
face the following three issues when solving (12):
• In (12), we need to optimize the number of UAVs (N),

the location of UAV j (Xj and Yj), and the offloading de-
cision (ai,k) and the resource allocation (fi,k) for mobile
user i. Therefore, (2(N+M)+1) decision variables must
be optimized. It is evident that the number of decision
variables increases with the increase of M and/or N .

Due to the fact that we consider a large number of
mobile users in this paper, obviously, this is a large-scale
optimization problem for EAs [33], [34]. For example,
if we consider 1000 mobile users and 100 UAVs, the
number of decision variables is 2201.

• (12) includes an integer decision variable (N), continuous
decision variables (Xj , Yj , and fi,k), and binary decision
variables (ai,k). Thus, it is an optimization problem with
mixed decision variables. In the evolutionary computation
community, it is a challenging task to solve optimization
problems with mixed decision variables [35].

• The deployment of UAVs and task scheduling are closely
coupled. On the one hand, the available execution patterns
of a task depend on the deployment of UAVs. This is
because a task should be located in the coverage area
of a UAV if it is expected to be executed on this UAV.
On the other hand, for a given deployment of UAVs,
its performance cannot be accurately assessed unless the
corresponding task scheduling is optimal.

Therefore, it is inefficient to optimize (12) directly by EAs.
In this paper, we propose a two-layer optimization method
called ToDeTaS, which decomposes (12) into a two-layer
optimization problem. To be specific, the upper layer optimizes
the deployment of UAVs and the lower layer optimizes the
task scheduling, respectively. ToDeTaS provides the following
technical advantages:

• In the upper layer, the deployment of UAVs original-
ly involves (2N + 1) decision variables. We propose
a new encoding mechanism, by which there are only
two decision variables in the deployment of UAVs. In
addition, in the lower layer, there are originally 2M
decision variables. For a given deployment of UAVs, the
resource allocation in the task scheduling can be obtained
through simple derivations. As a result, there are indeed
M decision variables in the lower layer. Therefore, the
original large-scale optimization problem is decomposed
into two optimization problems that can be solved much
easier than the original one because they have fewer
decision variables.

• In the upper layer, the optimization problem includes
an integer decision variable (N in (12)) and continuous
decision variables (Xj and Yj in (12)). As analyzed later,
the integer decision variable can be removed by our
new encoding mechanism. In addition, the optimization
problem in the lower layer includes binary decision
variables (ai,k in (12)) and continuous decision variables
(fi,k in (12)). Note that the optimal fi,k in (12) can
be easily obtained without any optimization. Therefore,
the original optimization problem with mixed decision
variables is divided into an optimization problem with
continuous decision variables (Xj and Yj in (12)) in
the upper layer and an optimization problem with binary
decision variables (ai,k in (12)) in the lower layer. Thus,
there do not exist any mixed decision variables in the
two-layer optimization problem.

• In ToDeTaS, we first generate a deployment in the upper
layer. Based on the given deployment, it is easy to

5

An individual =

The location of a UAV

The population =

A deployment of UAVs

UAV 1

(X1 , Y1)

UAV 2

(X2 , Y2)

UAV N

(XN , YN)

Fig. 2. Encoding mechanism in this paper for the deployment of UAVs.

determine feasible execution patterns of each task; thus,
we can obtain the feasible offloading decision with a
higher probability. By optimizing task scheduling in the
lower layer, we can accurately assess the performance
of the deployment of UAVs. Therefore, the upper layer
promotes the feasibility of the lower layer, and the
lower layer enhances the accuracy of the performance
evaluation of the upper layer. As a result, we achieve the
joint deployment and task scheduling optimization.

In summary, ToDeTaS is able to address the three afore-
mentioned issues and provides a promising way to use EAs
to solve (12).

B. ToDeTaS

When traditional EAs optimize the deployment of UAVs
in the upper layer, each individual is usually an entire de-
ployment. As introduced in Section II, UAV j (j ∈ N)
is represented by (Xj , Yj , H), and Xj and Yj should be
optimized. In addition, the number of UAVs is N . Thus, the
length of each individual in traditional EAs is 2N . Due to
the fact that the number of UAVs should be optimized during
the evolution, N may change from one generation to another
generation. Therefore, in traditional EAs, each individual has a
variable length. Under this condition, the deployment of UAVs
is a variable-length optimization problem. Currently, it is very
challenging for EAs to cope with variable-length optimization
problems [36].

We find an interesting phenomenon in the deployment of
UAVs: each UAV has two decision variables (i.e., Xj and
Yj (j ∈ N) in the x-axis and y-axis), and all elements in
{X1, . . . , XN} have the same upper and lower bounds, as
well as all elements in {Y1, . . . , YN}. Based on this obser-
vation and inspired by Wang et al. [37], we propose a new
encoding mechanism: the location of each UAV is encoded
into an individual and the whole population denotes an entire
deployment, as shown in Fig. 2. This encoding mechanism has
the following advantages: 1) each individual has a fixed length
during the evolution, rather than a variable length, and 2) the
length of each individual is equal to two, which means the
deployment of UAVs is optimized in a very low-dimensional
search space, that is, two.

The general framework of ToDeTaS is presented in Algo-
rithm 1. First, we generate an initial population P with N
individuals (i.e., an initial deployment of UAVs) by Algorithm

Algorithm 1 General Framework of ToDeTaS
1: N = Nmax; // N denotes the number of UAVs and Nmax denotes the

maximum number of UAVs;
2: Generate an initial population P with N individuals (i.e., an initial

deployment of UAVs) by Algorithm 2;
3: Calculate the offloading decision a and the resource allocation f according

to P through Algorithm 5;
4: Evaluate the system energy consumption of {N,P,a, f};
5: FEs = 1; // FEs denotes the number of fitness evaluations
6: flag = 0 and num inf = 0; // flag is the optimization status and
num inf denotes the consecutive infeasible number of {N,P,a, f}

7: while FEs < FEsmax do
8: while flag = 0 and {N,P,a, f} is feasible do
9: {Ntemp,Ptemp,atemp, ftemp} = {N,P,a, f};

10: Perform the elimination operator by Algorithm 3;
11: end while
12: Implement the mutation and crossover operators of DE to produce an

offspring population Q;
13: for i = 1, . . . , N do
14: Utilize the ith individual in Q to update {N,P,a, f} via the

updating operator in Algorithm 4;
15: if {N,P,a, f} is infeasible then
16: num inf = num inf + 1;
17: if num inf = 1000 then
18: flag = 1;
19: Return {N,P,a, f} to its last feasible status, i.e.,

{N,P,a, f} = {Ntemp,Ptemp,atemp, ftemp};
20: Break;
21: end if
22: end if
23: if flag = 0 and {N,P,a, f} is feasible then
24: num inf = 0;
25: Break;
26: end if
27: end for
28: end while
29: return {N,P,a, f}

2. Afterward, we calculate the offloading decision a and
the resource allocation f according to P by Algorithm 5.
Subsequently, we evaluate the system energy consumption
of {N,P,a, f}. During the evolution, if {N,P,a, f} is fea-
sible, which means that all tasks can be executed under
delay constraints, the elimination operator is implemented
in Algorithm 3 to consistently delete one individual until
{N,P,a, f} is infeasible. Then, we apply DE to produce an
offspring population Q. Each individual in Q is used to update
{N,P,a, f} via Algorithm 4. On the one hand, if the updated
{N,P,a, f} is infeasible, we will check num inf , which
denotes the consecutive infeasible number of {N,P,a, f}. If
num inf reaches a predefined threshold value (i.e., 1000 in
this paper), which indicates that N cannot be reduced any
more, {N,P,a, f} will return to its last feasible status and
we will optimize {P,a, f} by DE. On the other hand, if
the updated {N,P,a, f} is feasible, we will implement the
elimination operator on it. The above process continues until
the maximum number of fitness evaluations (FEsmax) is met.

In principle, this paper achieves the joint deployment and
task scheduling optimization through optimizing a 4-tuple:
{N,P,a, f}. Moreover, once num inf = 1000, the optimal
value of N is obtained. Under this condition, both Steps
8-11 (i.e., the elimination operator) and Steps 15-26 are
unnecessary, and we only concentrate on the optimization of
{P,a, f} by DE (i.e., Steps 12-14 and Step 27).

It is noteworthy that the deployment of UAVs in the upper

6

Algorithm 2 Initialization
1: num vio = 0;
2: Generate a location for the first UAV randomly and put it into P;
3: for j = 2 to N do
4: Generate a location for the jth UAV randomly;
5: if the jth UAV satisfies C2 in (12) then
6: Put it into P;
7: num vio = 0;
8: else
9: num vio = num vio+ 1;

10: if num vio > 200 then
11: Clear P and go to Step 1;
12: end if
13: Go to Step 4;
14: end if
15: end for
16: return P

Algorithm 3 Elimination Operator
1: Choose two individuals with the minimum Euclidean distance from P ,

then calculate their second minimum Euclidean distances and delete the
one with smaller second minimum Euclidean distance from P . If they
have the same second minimum Euclidean distance, then we calculate
their third minimum Euclidean distances and so forth;

2: N = N − 1;
3: Calculate a and f according to P based on Algorithm 5;
4: Evaluate the system energy consumption of {N,P,a, f};
5: FEs = FEs+ 1;
6: return {N,P,a, f} and FEs

layer depends on Algorithm 3 and Algorithm 4, and the task
scheduling in the lower layer depends on Algorithm 5.

C. Initialization

Algorithm 2 introduces the initialization of P , which
contains the locations of N UAVs. First, we randomly generate
a location for the first UAV and put it into P . After that, we
generate a location for the second UAV. If this UAV satisfies
C2 in (12), which suggests that the distance between the first
and second UAVs is not smaller than dUUmin and they will not
collide, then we put it into P . Otherwise, the generation of
the location of the second UAV is unsuccessful. Under this
condition, if the consecutive unsuccessful number is bigger
than 200, we restart the initialization; otherwise, the location
of the second UAV is regenerated by Step 4. Subsequently,
we execute the above process on the third UAV and so forth.
Finally, all UAVs’ locations are successfully generated and an
initial deployment of UAVs is obtained (i.e., P).

D. Upper Layer Optimization

The aim of the upper layer optimization is to determine
the optimal deployment of UAVs, in other words, the optimal
number and locations of UAVs. In ToDeTaS, the number of
UAVs is equal to the population size of P (i.e., N). Therefore,
the optimization of the number of UAVs is equivalent to
the adjustment of N . By analyzing the multi-UAV enabled
MEC system proposed in this paper, the following property is
obtained.

Property 1: The number of UAVs should be as small as
possible under the condition that all tasks can be executed
under delay constraints.

Algorithm 4 Updating Operator
1: Utilize the ith individual in Q to replace a randomly selected individual

in P and obtain a new population R;
2: if R satisfies C2 in (12) then
3: Calculate the offloading decision a′ and the resource allocation f ′

according to R based on Algorithm 5;
4: Evaluate the system energy consumption of {N,R,a′, f ′};
5: FEs = FEs+ 1;
6: Denote the numbers of completed tasks of {N,R,a′, f ′} and

{N,P,a, f} as NC R and NC P , respectively, and denote the
energy consumption of {N,R,a′, f ′} and {N,P,a, f} as EC R
and EC P , respectively;

7: if NC R > NC P then
8: {N,P,a, f} = {N,R,a′, f ′};
9: else if NC R == NC P == M and EC R < EC P then

10: {N,P,a, f} = {N,R,a′, f ′};
11: end if
12: end if
13: return {N,P,a, f} and FEs

We analyze the rationality of this property in the Appendix.
Based on this property, the population size of P is adjusted as
follows: we first set the initial N as the maximum number of
UAVs (Nmax = M/nmax), and then N is gradually decreased
by the elimination operator in Algorithm 3 until at least one
task cannot be executed under delay constraints. As shown in
Algorithm 3, in each time, we only delete one individual from
P . A question is which individual should be deleted. In this
paper, we consider that the most crowded individual should be
deleted. It is because the UAV corresponding to this individual
may be redundant, thus adding system energy consumption.

The second issue in the upper layer optimization is to
determine the optimal locations of UAVs, which is achieved
by making use of DE. In this paper, the classical DE ver-
sion, DE/rand/1/bin [38], is adopted. For the ith individual
~xi = (xi,1, xi,2) (i ∈ {1, . . . , N}) in P , the mutation and
crossover operators of DE/rand/1/bin are introduced in (13)
and (14), respectively:

~vi = ~xr1 + F ∗ (~xr2 − ~xr3), (13)

ui,j =

{
vi,j , if randj(0, 1) ≤ CR or j = jrand

xi,j , otherwise
,

(14)
where i ∈ {1, . . . , N}; j ∈ {1, 2}; ~xr1, ~xr2, and ~xr3 are
three mutually distinct individuals randomly selected from P;
~vi = (vi,1, vi,2) and ~ui = (ui,1, ui,2) are the mutant vector
and the trial vector, respectively; ui,j , vi,j , and xi,j are the
jth dimension of ~ui, ~vi, and ~xi, respectively; F is the scaling
factor; jrand is an integer randomly selected between 1 and D
to ensure that ~ui is different from ~xi in at least one dimension;
randj(0, 1) denotes a uniformly distributed random number
between 0 and 1 for each j, and CR is the crossover control
parameter.

During the evolution, DE is implemented on P to produce
an offspring population Q. Thereafter, each individual in Q
is utilized to replace a randomly selected individual in P;
thus, P is updated, denoted as R. For R, if it satisfies C2 in
(12), we compute the offloading decision a′ and the resource
allocation f ′. If {N,R,a′, f ′} can execute more tasks under
delay constraints than {N,P,a, f}, or if both of them can
execute all tasks under delay constraints and the system energy

7

consumption of {N,R,a′, f ′} is less than that of {N,P,a, f},
then {N,P,a, f} is replaced with {N,R,a′, f ′}. The updating
operator is given in Algorithm 4.

Regarding Steps 15-22 and Steps 23-26 in Algorithm 1, we
would like to give the following remarks:

• Steps 15-22: flag represents the optimization status.
Specifically, flag = 0 denotes that the elimination
operator can be implemented; instead, flag = 1 denotes
that the elimination operator will not be used any more.
If {N,P,a, f} is still infeasible after 1000 consecutive
updates, we consider that N cannot be reduced and the
optimal number of UAVs has been found (i.e., N + 1).
Thus, we let flag = 1. Under this condition, the fol-
lowings steps will be applied: {N,P,a, f} returns to its
last feasible status, the elimination operator is no longer
used, and we continue to take advantage of the updating
operator to optimize P , that is, the locations of UAVs.

• Steps 23-26: If flag = 0 and {N,P,a, f} is feasible, the
updating operator breaks and the elimination operator is
implemented on {N,P,a, f} to further reduce N .

Overall, in the upper layer optimization, the number of
UAVs is optimized by the elimination operator and the lo-
cations of UAVs are optimized by the updating operator.
Moreover, Steps 15-22 and Steps 23-26 control the switch
between the elimination operator and the updating operator.

E. Lower Layer Optimization

The lower layer optimization aims to optimize the task
scheduling under a given deployment of UAVs, including the
offloading decision and the resource allocation. For a given
deployment of UAVs, N , Xj , Yj (j ∈ N), and EH are fixed
in (12). In addition, this deployment must satisfy C2 in (12)
since if it does not satisfy C2, it cannot enter the population
as shown in Step 2 of Algorithm 4. Therefore, we only need
to focus on ai,k and fi,k (i ∈ M and k ∈ K) in (12). By
substituting (2) and (10), which are related to fi,k, to (12),
the lower layer optimization problem can be expressed as:

min
ai,k,fi,k

M∑
i=1

(
ai,0η1(fi,0)

v−1Ci +
N∑
k=1

ai,k

(
P
Di

ri,k
+ η2(fi,k)

v−1Ci

))
(15)

s.t. C1, C3, C4, C5, C6, C7, and C8.

It can be seen from (15) that the more the computation
resources consumed to complete a task under a certain pattern
(i.e., fi,k), the greater the energy consumption (the objective
function in (15)). It is because the energy consumption in-
creases monotonously with the increase of fi,k. Therefore, to
minimize the energy consumption, fi,k should be as small as
possible. However, when Ui is executed in pattern k, to ensure
that delay constraints C7 and C8 are satisfied, fi,k must not
be smaller than a minimum value, which can be calculated
based on C7 and C8.

Substituting (1) and (9) to C7 and C8, respectively, one can
obtain that

• when Ui is executed in pattern 0:

fi,0 ≥
Ci
T
, ∀i ∈M; (16)

• when Ui is executed in pattern k:

fi,k ≥
Ci

T − Di

ri,k

, ∀i ∈M, k ∈ K\{0}. (17)

From (16) and (17), the minimum computation resources are
Ci

T and Ci

T− Di
ri,k

, respectively, when Ui is executed in pattern

0 and the other patterns. Thus, each element of the optimal
resource allocation f can be given as

f?i,k =

Ci

T , if ai,k = 1, k = 0
Ci

T− Di
ri,k

, if ai,k = 1, k > 0

0, otherwise

, ∀i ∈M, k ∈ K.

(18)
After obtaining the optimal resource allocation, C5, C6,

C7, and C8 are satisfied, and then we can rewrite the lower
layer optimization problem again by substituting (18) to (15):

min
ai,k

M∑
i=1

(
ai,0η1(f

?
i,0)

v−1Ci +

N∑
k=1

ai,k

(
P
Di

ri,k
+ η2(f

?
i,k)

v−1Ci

))
(19)

s.t. C1, C3, and C4.

Remark 1: As mentioned in the Appendix, E?i,k represents
the minimum energy to complete Ui (i ∈ M) in pattern
k (k ∈ K). Actually, E?i,0 = η1(f?i,0)v−1Ci, and E?i,k =

P Di

ri,k
+ η2(f?i,k)v−1Ci, k ∈ K\{0}.

As can be seen, we only need to optimize ai,k; thus, (19)
is a 0-1 integer programming problem since ai,k = 0 or
1. Although classical mathematical programming methods,
such as the branch and bound algorithm [39], can be used
to solve (19), they are time-consuming due to the large-scale
characteristic in this paper. To this end, we propose a greedy
algorithm to efficiently obtain the near-optimal solution of
(19).

First, we define a candidate pattern set for each task:

• This task can be executed in each candidate pattern under
delay constraints;

• If pattern 0 is one of the candidate patterns, then the
energy consumption of any other candidate pattern is less
than that of pattern 0.

Subsequently, all tasks are divided into three categories:

• The tasks’ candidate pattern sets only contain pattern 0;
• The tasks’ candidate pattern sets do not contain pattern

0;
• The tasks’ candidate pattern sets contain both pattern 0

and other patterns.

Suppose that there are M1, M2, and M3 tasks in the first,
second, and third categories, respectively. Then, offloading
decision a is expressed in the following, each element of which
is initialized to be zero:

8

Algorithm 5 Task Scheduling
1: Calculate f based on the given P;
2: Divide the tasks into three categories. Suppose that the first, second, and

third categories have M1, M2, and M3 tasks, respectively;
3: Initialize a = 0 in (20);
4: For the tasks in the first category, a1,0 = · · · = aM1,0 = 1;
5: A = {1, . . . ,M2};
6: while A 6= ∅ do
7: Choose the task with the minimum number of candidate patterns in

the second category (denoted as the sth task);
8: Suppose that this task has ns candidate patterns and the corresponding

minimum energy consumption of these ns candidate patterns is:
E?s,1, . . . , E

?
s,ns

;
9: The candidate pattern with min(E?s,1, . . . , E

?
s,ns

) is selected, denot-
ed as cs.

10: aM1+s,cs = 1 in a and A = A\{s};
11: The number of tasks that the csth UAV can serve is reduced by one,

and the candidate pattern sets of the rest of the tasks in A are updated;

12: if the candidate pattern sets of all the tasks in A are empty then
13: Break;
14: end if
15: end while
16: B = {1, . . . ,M3};
17: while B 6= ∅ do
18: Suppose that Ui (i = 1, . . . , |B|) in the third category has ni candi-

date patterns, and the corresponding minimum energy consumption of
these ni candidate patterns is: E?i,1, . . . , E

?
i,ni

;
19: Normalize ni and (E?i,1, . . . , E

?
i,ni

) of Ui (i = 1, . . . , |B|): nor(ni)
and (nor(E?i,1), . . . , nor(E

?
i,ni

));
20: Compute nor(ni) ∗ nor(E?i,1), . . . , nor(ni) ∗ nor(E?i,ni

) for

Ui (i = 1, . . . , |B|). Thus, we can obtain
|B|∑
i=1

ni values. By selecting

the minimum value, we can determine the corresponding task (denoted
as the sth task in the third category) and pattern (denoted as cs);

21: aM1+M2+s,cs = 1 in a and B = B\{s};
22: if Us is executed on a UAV then
23: The number of tasks that this UAV can serve is reduced by one, and

the candidate pattern sets of the rest of the tasks in B are updated;
24: end if
25: end while
26: return {a, f}

a =

a1,0 a1,1 · · · a1,N

...
...

...
...

aM1,0 aM1,1 · · · aM1,N

aM1+1,0 aM1+1,1 · · · aM1+1,N

...
...

...
...

aM1+M2,0 aM1+M2,1 · · · aM1+M2,N

aM1+M2+1,0 aM1+M2+1,1 · · · aM1+M2+1,N

...
...

...
...

aM1+M2+M3,0 aM1+M2+M3,1 · · · aM1+M2+M3,N

(20)

We give the priorities of these three categories in descending
order. The tasks in the first category have the highest priority.
This is because they are executed locally (i.e., a1,0 = · · · =
aM1,0 = 1) and do not consume any computation resources
from MEC servers on UAVs. Since the tasks in the second
category can only be executed on UAVs, we need to give
them the second highest priority, with the aim of completing
as many tasks as possible. In addition, the tasks in the third
category can be executed locally in the worst case. Therefore,
they have the lowest priority.

Next, we determine the offloading decision for the tasks in

TABLE I
PARAMETER SETTINGS IN THE MULTI-UAV ENABLED MEC SYSTEM

PROPOSED IN THIS PAPER.

Parameter Value Parameter Value
Ci, i ∈M [16, 1600]MCycles dUUmin 10m
Di, i ∈M [10, 1000]KB nmax 10

H 100m B 1MHz
θ π

4
P 1W

fi,0, i ∈M [0, 0.8]GHz β0 1.42× 10−4

fi,k, i ∈M, k ∈ K\{0} [0, 10]GHz G0 2.2846
η1 10−27 N0 10−20W/Hz
η2 10−28 P0 1000W
v 3 T 1s

TABLE II
SIDE LENGTHS OF SQUARE AREAS WITH DIFFERENT NUMBERS OF

MOBILE USERS.

M 100 200 300 400 500
Side Length (m) 320 450 550 640 710

M 600 700 800 900 1000
Side Length (m) 780 840 900 950 1000

the second and third categories.

• The offloading decision for the tasks in the second
category is given in Steps 5-15 in Algorithm 5. When
determining which task to execute, we first select the task
with the minimum number of candidate patterns, the aim
of which is to complete all tasks with a higher probability.
Afterward, we choose one of the candidate patterns of this
task by considering their minimum energy consumption.

• The offloading decision for the tasks in the third cat-
egory is given in Steps 16-25 in Algorithm 5. When
determining which task to execute, we consider the
number of candidate patterns and the energy consumption
simultaneously. We prefer the tasks with fewer candidate
patterns and less energy consumption; thus, all tasks can
be completed with the system energy consumption being
as little as possible.

Remark 2: Only in the second category, some tasks may
not be executed under delay constraints. For the other two
categories, all tasks can be definitely completed.

Remark 3: In Algorithm 4, it is necessary to compute
the number of completed tasks. Note that the number of
uncompleted tasks is equal to the number of the remaining
tasks in A when Algorithm 5 terminates, that is, the number
of rows in a, in which all the elements are zero.

F. Discussion

The proposed ToDeTaS has the following characteristics:

• This paper optimizes a 4-tuple: {N,P,a, f} to minimize
the energy consumption of the proposed multi-UAV en-
abled MEC system;

• By mining the specific-knowledge of this system, we
propose a new encoding mechanism and adaptively adjust
population size N (i.e., the number of UAVs);

• DE serves as the search engine to optimize P , that is, the
locations of UAVs;

• By exploiting the correlation between the upper layer and
the lower layer, for a given deployment of UAVs in the

9

TABLE III
EXPERIMENTAL RESULTS OF DE-VND AND TODE-VND IN TERMS OF MEAN NC AND SR.

M
DE-VND ToDE-VND

Mean NC (Std Dev) SR Mean NC (Std Dev) SR
100 43.07 (1.39) 0.00% 100.00 (0.00) 100.00%
200 81.07 (3.41) 0.00% 200.00 (0.00) 100.00%
300 105.37 (8.86) 0.00% 300.00 (0.00) 100.00%
400 129.13 (12.53) 0.00% 399.97 (0.18) 96.67%
500 145.20 (19.00) 0.00% 499.63 (0.48) 63.33%
600 163.23 (22.38) 0.00% 598.67 (0.75) 6.67%
700 182.90 (31.13) 0.00% 698.47 (0.88) 13.33%
800 199.87 (37.86) 0.00% 797.33 (1.01) 0.00%
900 228.13 (44.69) 0.00% 897.03 (0.84) 0.00%

1000 247.87 (53.49) 0.00% 997.17 (1.07) 0.00%

upper layer, we directly derive the optimal f and propose
a greedy algorithm to efficiently optimize a.

• ToDeTaS includes few parameters: the scaling factor F
and the crossover control parameter CR in DE. Moreover,
due to the low-dimensional search space, F and CR are
not sensitive.

The novelties of this paper can be summarized as follows:
• This paper is the first attempt to establish a multi-UAV

enabled MEC system to serve large-scale mobile users.
• An optimization problem is formulated to jointly optimize

the deployment of UAVs and the task scheduling. The
main challenges of this optimization problem are twofold:
large-scale mixed decision variables and strong coupling
between the deployment of UAVs and the task scheduling.

• We propose a new two-layer optimization method called
ToDeTaS. The two-layer structure is able to deal with
large-scale decision variables and strong coupling be-
tween the deployment of UAVs and the task scheduling.
Moreover, in the upper layer, an integer decision variable
(i.e., the number of UAVs) and continuous decision vari-
ables (i.e., the locations of UAVs) are handled by a new
encoding mechanism and an elimination operator, and in
the lower layer, binary decision variables (i.e., offloading
decision of each mobile user) and continuous decision
variables (i.e., resource allocation of each mobile user)
are tackled by an efficient greedy algorithm. Therefore,
ToDeTaS can also address the challenge caused by mixed
decision variables.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

The parameter settings of the proposed multi-UAV enabled
MEC system are given in Table I [30], [40], [41]. In ad-
dition, we applied ten instances with different numbers of
mobile users to study the performance of ToDeTaS: M =
100, 200, . . . , 1000. We assumed that all mobile users were
distributed in square areas with different side lengths, as shown
in Table II.

The proposed ToDeTaS includes two parameters, which
were set as follows: F = 0.9 and CR = 0.9. The maximum
number of fitness evaluations (FEsmax) was set to 10,000
and 30 independent runs were implemented on ToDeTaS.

In order to compare the performance of different algorithms,
three performance indicators were employed:

• The first performance indicator was the average number
of completed tasks and the standard deviation over 30
independent runs (denoted as ‘Mean NC’ and ‘Std Dev’).

• The second performance indicator was the success rate
(denoted as SR), which means the percentage of success-
ful runs over 30 independent runs. A run is successful if
all tasks can be completed when an algorithm ends.

• If SR of an algorithm is equal to 100%, then we compute
the system energy consumption via (12) (denoted as EC).
Thus, the third performance indicator was the average

system energy consumption (i.e., 1
30

30∑
i=1

ECi, where ECi

represents the system energy consumption of the ith
independent run) and the standard deviation over 30
independent runs (denoted as ‘Mean EC’ and ‘Std Dev’).

B. Effectiveness of Two-Layer Optimization

We handle the joint deployment and task scheduling opti-
mization by two-layer optimization. Moreover, we optimize
the deployment of UAVs and task scheduling in the upper
and lower layers, respectively. To verify the effectiveness of
the two-layer optimization, we solved (12) by a single-layer
optimization method proposed in [42]. The method in [42]
is designed to solve optimization problems with a variable
number of dimensions, in which different individuals in the
population have different lengths, and the length of each
individual is updated according to a probability-based way.
As pointed out in Section III-B, the deployment of UAVs is a
variable-length optimization problem due to the fact that the
optimal number of UAVs is unknown. Therefore, the method
in [42] was chosen to solve (12) as a single-layer optimization
method in this paper. Note that we made a simple revision
to this method by replacing particle swarm optimization with
DE as the search engine. The resultant method was named
DE-VND. In DE-VND, each initial individual included a
deployment of UAVs as well as task scheduling, both of them
were randomly generated. In addition, we designed a two-layer
version of DE-VND, named ToDE-VND. In ToDE-VND, the
deployment of UAVs in the upper layer was the same with DE-
VND; however, the task scheduling in the lower layer was the
same with ToDeTaS.

The performance of DE-VND was compared with that of
ToDE-VND on the ten instances. In the experiments, DE-
VND and ToDE-VND had the same parameter settings: the

10

TABLE IV
EXPERIMENTAL RESULTS OF TODE-VND AND TODETAS IN TERMS OF MEAN NC, SR, AND MEAN EC (J).

M
ToDE-VND ToDeTaS

Mean NC (Std Dev) SR Mean EC (Std Dev) Mean NC (Std Dev) SR Mean EC (Std Dev)
100 100.00 (0.00) 100.00% 7568.24 (498.52) 100.00 (0.00) 100.00% 6435.16 (489.34)
200 200.00 (0.00) 100.00% 17361.06 (640.21) 200.00 (0.00) 100.00% 11761.12 (861.58)
300 300.00 (0.00) 100.00% 27821.53 (1030.27) 300.00 (0.00) 100.00% 18654.89 (1144.66)
400 399.97 (0.18) 96.67% / 400.00 (0.00) 100.00% 25252.44 (1498.72)
500 499.63 (0.48) 63.33% / 500.00 (0.00) 100.00% 31657.92 (1585.73)
600 598.67 (0.75) 6.67% / 600.00 (0.00) 100.00% 38360.55 (1713.31)
700 698.47 (0.88) 13.33% / 700.00 (0.00) 100.00% 44710.19 (1687.06)
800 797.33 (1.01) 0.00% / 800.00 (0.00) 100.00% 51811.82 (2523.99)
900 897.03 (0.84) 0.00% / 900.00 (0.00) 100.00% 54858.37 (1817.12)
1000 997.17 (1.07) 0.00% / 1000.00 (0.00) 100.00% 62516.68 (2471.07)

0 2000 4000 6000 8000 10000
FEs

5000

6000

7000

8000

9000

10000

11000

M
ea

n
E

C
 (

J)

0

2

4

6

M
ea

n
N

U

EC
NU

(a) M = 100

0 2000 4000 6000 8000 10000
FEs

1

1.2

1.4

1.6

1.8

2

2.2

M
ea

n
E

C
 (

J)

104

0

2

4

6

8

10

M
ea

n
N

U

EC
NU

(b) M = 200

0 2000 4000 6000 8000 10000
FEs

1.5

2

2.5

3

3.5

M
ea

n
E

C
 (

J)

104

0

5

10

15

M
ea

n
N

U

EC
NU

(c) M = 300

0 2000 4000 6000 8000 10000
FEs

2

2.5

3

3.5

4

4.5

M
ea

n
E

C
 (

J)

104

0

5

10

15

20

M
ea

n
N

U

EC
NU

(d) M = 400

0 2000 4000 6000 8000 10000
FEs

3

3.5

4

4.5

5

5.5

M
ea

n
E

C
 (

J)

104

0

5

10

15

20

M
ea

n
N

U

EC
NU

(e) M = 500

0 2000 4000 6000 8000 10000
FEs

3.5

4

4.5

5

5.5

6

6.5

M
ea

n
E

C
 (

J)

104

0

5

10

15

20

25

M
ea

n
N

U

EC
NU

(f) M = 600

0 2000 4000 6000 8000 10000
FEs

4

5

6

7

8

M
ea

n
E

C
 (

J)

104

0

5

10

15

20

25

M
ea

n
N

U

EC
NU

(g) M = 700

0 2000 4000 6000 8000 10000
FEs

5

6

7

8

9

M
ea

n
E

C
 (

J)

104

0

10

20

30

M
ea

n
N

U

EC
NU

(h) M = 800

0 2000 4000 6000 8000 10000
FEs

5

6

7

8

9

10

M
ea

n
E

C
 (

J)

104

0

10

20

30

M
ea

n
N

U

EC
NU

(i) M = 900

0 2000 4000 6000 8000 10000
FEs

6

7

8

9

10

11

M
ea

n
E

C
 (

J)

104

0

10

20

30

M
ea

n
N

U

EC
NU

(j) M = 1000

Fig. 3. Evolution of the mean EC (J) and the mean NU provided by ToDeTaS on the ten instances.

population size was set to 100, the probabilities p1 to ~xi, p2
to ~xr1, p3 to ~xr2, and p4 to ~xr3 were set to 0.25, 0.25, 0.25 and
0.25, respectively, F = 0.9, CR = 0.9, FEsmax = 10, 000,
and 30 independent runs were implemented. The experimental
results in terms of mean NC and SR are summarized in Table
III.

From Table III, as far as the mean NC is concerned, ToDE-
VND is significantly better than DE-VND on all instances.
In addition, ToDE-VDE provides higher SR than DE-VND
from M = 100 to 700. Moreover, when M = 100, 200,
and 300, ToDE-VND achieves 100% SR. The superiority of
ToDE-VND against DE-VND can be attributed to two aspects:
1) by the two-layer optimization, (12) is decomposed into
two optimization problems in the upper and lower layers with

fewer numbers of decision variables, and 2) in ToDE-VND,
the lower layer is generated based on the upper layer, which
in turn enhances the accuracy of the evaluation of the upper
layer; thus, the correlation between the upper and lower layers
has been considered. However, in DE-VND, the deployment
of UAVs and task scheduling are optimized independently.
In this case, on the one hand, for a given deployment of
UAVs, the probability that all tasks can be completed in the
task scheduling remarkably decreases. On the other hand,
we cannot provide an accurate evaluation of the deployment
of UAVs based on the corresponding task scheduling. The
aforementioned discussion verifies the effectiveness of the
two-layer optimization, which is the main motivation of this
paper.

11

TABLE V
EXPERIMENTAL RESULTS OF TODETAS-BB AND TODETAS IN TERMS OF MEAN EC (J) AND MEAN RUNTIME (S).

M
Mean EC (Std Dev) Mean Runtime

ToDeTaS-BB ToDeTaS ToDeTaS-BB ToDeTaS
100 6536.17 (499.98) 6435.16 (489.34) 93.60 4.56
200 11763.66 (862.13) 11761.12 (861.58) 141.87 9.52
300 18326.72 (1054.57) 18654.89 (1144.66) 250.86 21.05
400 24093.02 (1224.23) 25252.44 (1498.72) 435.97 42.42
500 30298.00 (1383.99) 31657.92 (1585.73) 726.57 67.30
600 36501.72 (1715.53) 38360.55 (1713.31) 1166.16 106.31
700 41486.40 (1610.91) 44710.19 (1687.06) 1741.31 150.84
800 48690.46 (2906.08) 51811.82 (2523.99) 2603.06 213.90
900 52204.68 (1913.62) 54858.37 (1817.12) 3562.85 251.45

1000 58499.03 (2587.03) 62516.68 (2471.07) 4915.91 329.12
/ / / MAR 13.22

C. Effectiveness of Upper Layer Optimization

The difference between ToDE-VND and ToDeTaS is the
upper layer optimization. To be specific, ToDE-VND and
ToDeTaS have different encoding mechanisms and different
ways to deal with the variable-length optimization problem
in (12). Hence, by comparing ToDE-VND with ToDeTaS, we
can study the effectiveness of the upper layer optimization. It
can be seen from Section IV-B that ToDE-VND and ToDeTaS
have the same parameter settings.

Table IV reports the experimental results derived from
ToDE-VND and ToDeTaS in terms of mean NC, SR, and
mean EC. When M = 100, 200, and 300, both ToDE-
VND and ToDeTaS can complete all tasks and provide 100%
SR. Under this condition, we compared their mean EC. It is
clear that the mean EC values resulting from ToDeTaS are
significantly smaller than those of ToDE-VND. In addition,
for the remaining instances, ToDeTaS succeeds in completing
all tasks consistently. In contrast, ToDE-VND’s SR is smaller
than 100% on each instance. More importantly, ToDE-VND
fails to complete all tasks in each run for the instances
with a larger number of mobile users, i.e., M = 800, 900,
and 1000. The reason why ToDeTaS performs better than
ToDE-VND is straightforward: the former searches for the
optimal deployment of UAVs in the search space with a
much lower dimension compared with the latter. Moreover,
ToDeTaS encodes the location of a UAV into an individual,
thus transforming a variable-length optimization problem into
a fixed-length one. It is noteworthy that ToDeTaS adopts an
elimination operator to adaptively adjust the population size.
As a result, an important parameter, i.e., the population size,
has been eliminated.

Fig. 3 plots the evolution of the mean EC and the mean num-
ber of uncompleted tasks (denoted as ‘mean NU’) provided by
ToDeTaS over 30 independent runs on the ten instances. As
shown in Fig. 3, ToDeTaS can consistently complete all tasks
and converge after 5000 fitness evaluations.

D. Effectiveness of Lower Layer Optimization

The lower layer optimization involves the offloading de-
cision and resource allocation. Although in ToDeTaS, the
resource allocation can be determined by simple mathematical
derivations, the offloading decision is still a large-scale 0-
1 integer programming problem due to a large number of

mobile users in this paper. To reduce the computational time
complexity, we propose a greedy algorithm to solve this
problem. One may be interested in the performance difference
between our greedy algorithm and other classical mathematical
programming methods. To this end, we designed a variant
of ToDeTaS, named ToDeTaS-BB, in which the offloading
decision was solved by the branch and bound algorithm [39].
We implemented the branch and bound algorithm via the
Matlab toolbox.

The experimental results of ToDeTaS and ToDeTaS-BB
are presented in Table V in terms of mean EC and mean
runtime. We can observe from Table V that from M = 300
to 1000, overall, ToDeTaS-BB provides slightly less mean EC
than ToDeTaS. It is largely because the branch and bound
algorithm can generate a better offloading decision than the
greedy algorithm and improve the accuracy of evaluation for
the upper layer. It is interesting to note that ToDeTaS is better
than ToDeTaS-BB in terms of the mean EC for a small number
of mobile users, that is, M = 100 and 200. This phenomenon
is not difficult to understand since for a small number of
mobile users, the greedy algorithm is able to generate a high-
quality offloading decision. In addition, the branch and bound
algorithm cannot guarantee the absolute optimal offloading
decision in the Matlab toolbox.

With respect to the mean runtime, it is obvious that ToDe-
TaS performs much faster than ToDeTaS-BB. In this paper, we
defined the mean accelerator rate (MAR) of ToDeTaS against
ToDeTaS-BB:

MAR =
1

10

10∑
i=1

T1i
T2i

, (21)

where T1i and T2i represent the runtime of ToDeTaS-BB and
ToDeTaS on the ith instance, respectively. As shown in Table
V, ToDeTaS is on average 13.22 times more efficient than its
competitor. After a task is executed, the computational time
complexity of the greedy algorithm in Algorithm 5 depends
mainly on updating the candidate pattern sets of the rest of
the tasks in Steps 11 and 23, which requires MN judgements
in the worst case. Due to the fact that there are M tasks,
the computational time complexity of the greedy algorithm
is O(M2N) in the worst case. In contrast, the computational
time complexity of the branch and bound algorithm is O((N+
1)M). Therefore, we can conclude that the greedy algorithm
can efficiently optimize the offloading decision with only a

12

TABLE VI
EXPERIMENTAL RESULTS OF TODETAS-L, TODETAS-M, AND TODETAS

IN TERMS OF MEAN NC.

M
Mean NC

ToDeTaS-L ToDeTaS-M ToDeTaS
100 42.00 99.83 100.00
200 103.00 199.20 200.00
300 149.00 298.63 300.00
400 200.00 397.53 400.00
500 244.00 496.57 500.00
600 283.00 595.67 600.00
700 334.00 693.77 700.00
800 378.00 792.20 800.00
900 455.00 891.23 900.00
1000 515.00 989.00 1000.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

100 200 300 400 500 600 700 800 900 1000

M
ea

n
 N

M

ToDeTaS-M ToDeTaS

Fig. 4. Experimental results of ToDeTaS-M and ToDeTaS in terms of mean
N .

slight sacrifice of the system energy consumption, compared
with the branch and bound algorithm.

E. Effectiveness of Our Multi-UAV Enabled MEC System

Finally, we compared two algorithms—ToDeTaS-L and
ToDeTaS-M—with ToDeTaS to verify the effectiveness of
our multi-UAV enabled MEC system. For ToDeTaS-L and
ToDeTaS-M, all tasks can only be executed locally and on
UAVs, respectively. However, for ToDeTaS, a task can be
executed locally or on a UAV.

Table VI shows the experimental results of ToDeTaS-L,
ToDeTaS-M, and ToDeTaS in terms of mean NC over 30
independent runs. As depicted in Table VI, both ToDeTaS-L
and ToDeTaS-M cannot successfully complete all tasks on any
instance. However, ToDeTaS has the capability to complete all
tasks on all ten instances. The poor performance of ToDeTaS-L
and ToDeTaS-M can be explained as follows. For ToDeTaS-L,
if a mobile device cannot complete its task due to the lack of
enough computational resources, then ToDeTaS-L will fail. In
addition, for ToDeTaS-M, due to the nonuniform distribution
of mobile users, some tasks may not be covered by any UAV;
thus, ToDeTaS-M may fail. In principle, ToDeTaS can alleviate
the limitations of these two algorithms.

Note that the mean NC values provided by ToDeTaS-M
are close to those of ToDeTaS in Table VI. In order to
further identify the performance difference, we compared the
mean number of UAVs (i.e., mean N) of ToDeTaS-M and
ToDeTaS on the ten instances. Fig. 4 shows the experimental
results. From Fig. 4, ToDeTaS is able to complete all tasks
while requiring considerably fewer UAVs than ToDeTaS-M
on each instance. This is because about 40% of the tasks can

be executed locally under delay constraints according to the
parameter settings in Table I. Therefore, ToDeTaS is capable
of reducing about 40% of UAVs compared with ToDeTaS-M.
This comparison confirms the effectiveness of our multi-UAV
enabled MEC system.

V. DISCUSSION

A. On Hyper-Heuristic Approaches for the Task Scheduling in
the Lower Layer

One may be interested in whether hyper-heuristic approach-
es (e.g., genetic programming and particle swarm optimiza-
tion) can work better for the task scheduling in the lower
layer. There is no doubt that hyper-heuristic approaches are
able to solve the task scheduling in the lower layer and
may even obtain a better solution than our greedy algorithm.
However, the computational time complexity of a hyper-
heuristic approach is significantly higher than that of our
greedy algorithm. This is because a hyper-heuristic approach
searches for the optimal solution via an iterative way. In
this paper, we adopted a two-layer optimization method.
Obviously, if the computational time complexity of the lower
layer optimization method is high, it is impossible to apply
the two-layer optimization method in the large-scale scenarios.
Moreover, as can be seen from the experimental studies in
Section IV, our greedy algorithm exhibits good performance.
Overall, by considering the tradeoff between computational
time complexity and accuracy, we made use of a greedy
algorithm to optimize the task scheduling in the lower layer.

B. On Dynamic Environment

Although we only consider the static environment in this
paper, a dynamic environment can also be applied to our
system. We will explain this from the following two aspects.
• If xi, yi, Ci, and Di (i ∈ M) change in different time

slots, then we can use ToDeTaS to jointly re-optimize
the deployment of UAVs and the task scheduling in each
time slot.

• If xi, yi, Ci, and Di change within a time slot, then we
can tighten the delay constraints (i.e., C7 and C8 in (12))
to make the task executed in the time duration less than
T .

VI. CONCLUSION

This paper proposed a new multi-UAV enabled MEC system
to enhance the performance of traditional MEC systems by
making use of multiple UAVs. In this system, it is necessary to
jointly optimize the deployment of UAVs and task scheduling.
When EAs are employed to solve this joint optimization
problem, they face two issues: large-scale search space and
mixed decision variables. Moreover, they usually ignore the
correlation between the deployment of UAVs and task schedul-
ing. In this paper, we proposed a two-layer optimization
method, called ToDeTaS, which considered the deployment
of UAVs as the upper layer optimization problem and the
task scheduling as the lower layer optimization problem. For
the upper layer optimization, a new encoding mechanism was

13

suggested, which encoded the location of a UAV into an
individual; thus, the whole population represented an entire de-
ployment and the number of UAVs was equal to the population
size. Then, DE served as the search engine and an elimination
operator was designed to adaptively tune the population size.
In the lower layer optimization, for a given deployment of
UAVs, we first determined the resource allocation, and then
optimized the offloading decision by a greedy algorithm.

Overall, ToDeTaS has the following three advantages:
• Compared with the original joint optimization problem,

the optimization problems in the upper and lower layers
have fewer decision variables, therefore reducing the
dimension of the search space.

• ToDeTaS avoids mixed decision variables by the new
encoding mechanism, the elimination operator, and the
derivation of resource allocation.

• The correlation between the deployment of UAVs and
the task scheduling is fully taken into consideration.
Specifically, the upper layer make the lower layer more
likely to complete all tasks, and the lower layer improves
the accuracy of the evaluation of the upper layer.

The performance of ToDeTaS was investigated by ten in-
stances with up to 1000 mobile users. We also demonstrated
the effectiveness of the two-layer optimization and the pro-
posed system by various performance indicators.

APPENDIX

Suppose that the minimum energy to execute Ui (i ∈ M)
under its delay constraints in pattern k (k ∈ K) is E?i,k. Note
that E?i,k may change with different deployments of UAVs. We
are interested in identifying the maximum energy improve-
ment for Ui in different deployments of UAVs, denoted as
∆E?i . If Ui can be executed locally and if the minimum energy
to complete Ui can be improved by offloading it to a UAV, then
the maximum energy improvement should be less than E?i,0,
that is, ∆E?i < E?i,0 = η1(f?i,0)v−1Ci, where f?i,0 is defined in
(18). In addition, if Ui cannot be executed locally, then suppose
that it is executed on UAV j. When mobile user i has the short-
est distance with UAV j (i.e., mobile user i is located directly
below UAV j), we can obtain the ideal minimum energy to
complete Ui: E?i,k,min = P Di

ri,k,max
+ η2(f?i,k)v−1Ci (k = j),

where ri,k,max represents the maximum uplink data rate and
is equal to Blog2

(
1 + Pβ0G0

N0Bθ2((dMU
i,j,min)

2+H2)

)
, f?i,k is defined

in (18), and dMU
i,j,min = 0. On the other hand, when mobile

user i has the longest distance with UAV j (i.e., mobile user
i is located on the boundary of the area covered by UAV
j), we can obtain the ideal maximum energy to complete
Ui: E?i,k,max = P Di

ri,kmin
+ η2(f?i,k)v−1Ci (k = j), where

ri,k,min represents the minimum uplink data rate and is
equal to Blog2

(
1 + Pβ0G0

N0Bθ2((dMU
i,j,max)

2+H2)

)
and dMU

i,j,max =

H tan θ. Therefore, under this condition, ∆E?i = E?i,k,max −
E?i,k,min (k = j).

According to the parameter settings in Table I, we can derive

that
M∑
i=1

∆E?i < EH , which means that the maximum energy

improvement of all tasks in different deployments of UAVs is

less than the energy to hover a UAV. That is, although adding
a UAV can reduce the energy to complete all tasks (i.e., the
first term of the objective function of (12)), the total system
energy consumption (i.e., the objective function of (12)) will
definitely add. Therefore, if all tasks can be executed under
delay constraints, we should use as few UAVs as possible,
which is property 1.

REFERENCES

[1] J. O. Soh and B. C. Tan, “Mobile gaming,” Communications of the ACM,
vol. 51, no. 3, pp. 35–39, 2008.

[2] J. Cohen, “Embedded speech recognition applications in mobile phones:
Status, trends, and challenges,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE,
2008, pp. 5352–5355.

[3] R. Q. Hu and Y. Qian, “An energy efficient and spectrum efficient
wireless heterogeneous network framework for 5G systems,” IEEE
Communications Magazine, vol. 52, no. 5, pp. 94–101, 2014.

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[5] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,
2016.

[6] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small cells
in the clouds: Design, deployment and performance analysis,” in 2015
IEEE Global Communications Conference (GLOBECOM). IEEE, 2015,
pp. 1–6.

[7] Z. Wu, H. Kumar, and A. Davari, “Performance evaluation of OFD-
M transmission in UAV wireless communication,” in Proceedings of
the Thirty-Seventh Southeastern Symposium on System Theory, 2005.
SSST’05. IEEE, 2005, pp. 6–10.

[8] Y. Zhou, J. Li, L. Lamont, and C.-A. Rabbath, “Modeling of packet
dropout for UAV wireless communications,” in 2012 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2012, pp. 677–682.

[9] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Com-
munications Magazine, vol. 54, no. 5, pp. 36–42, 2016.

[10] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, 2018, in press.
DOI: 10.1109/JSAC.2018.2864426.

[11] R. Fan, J. Cui, S. Jin, K. Yang, and J. An, “Optimal node placement and
resource allocation for UAV relaying network,” IEEE Communications
Letters, vol. 22, no. 4, pp. 808–811, 2018.

[12] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D
placement of an aerial base station in next generation cellular networks,”
in 2016 IEEE International Conference on Communications (ICC).
IEEE, 2016, pp. 1–5.

[13] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient de-
ployment of multiple unmanned aerial vehicles for optimal wireless
coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–1650,
2016.

[14] ——, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient
internet of things communications,” IEEE Transactions on Wireless
Communications, vol. 16, no. 11, pp. 7574–7589, 2017.

[15] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization
of UAV-mounted mobile base stations,” IEEE Communications Letters,
vol. 21, no. 3, pp. 604–607, 2017.

[16] V. Sharma, M. Bennis, and R. Kumar, “UAV-assisted heterogeneous
networks for capacity enhancement,” IEEE Communications Letters,
vol. 20, no. 6, pp. 1207–1210, 2016.

[17] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15,
no. 6, pp. 3949–3963, 2016.

[18] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, 2016.

[19] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the green
internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60, 2018.

14

[20] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou, “Dynamic
resource scheduling in mobile edge cloud with cloud radio access
network,” IEEE Transactions on Parallel and Distributed Systems, 2018,
in press. DOI: 10.1109/TPDS.2018.2832124.

[21] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[22] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[23] J. Zhang, W. Xia, Y. Zhang, Q. Zou, B. Huang, F. Yan, and L. Shen,
“Joint offloading and resource allocation optimization for mobile
edge computing,” in 2017 IEEE Global Communications Conference,
GLOBECOM 2017. IEEE, 2017, pp. 1–6.

[24] T.-Y. Kan, Y. Chiang, and H.-Y. Wei, “Task offloading and resource
allocation in mobile-edge computing system,” in 2018 27th Wireless
and Optical Communication Conference (WOCC). IEEE, 2018, pp.
1–4.

[25] K. Wang, K. Yang, and C. Magurawalage, “Joint energy minimiza-
tion and resource allocation in C-RAN with mobile cloud,” IEEE
Transactions on Cloud Computing, 2018, in press. DOI: 10.1109/TC-
C.2016.2522439.

[26] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency trade-off for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2018.

[27] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3D placement of
an unmanned aerial vehicle base station for maximum coverage of
users with different QoS requirements,” IEEE Wireless Communications
Letters, vol. 6, no. 4, pp. 434–437, 2017.

[28] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[30] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth
optimization for UAV-enabled multiuser communications,” IEEE Com-
mun. Lett, vol. 22, no. 2, pp. 344–347, 2018.

[31] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, 2017.

[32] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[33] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[34] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.

[35] T. Liao, K. Socha, M. A. M. de Oca, T. Stützle, and M. Dorigo, “Ant
colony optimization for mixed-variable optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503–518,
2014.

[36] B. Hutt and K. Warwick, “Synapsing variable-length crossover: Mean-
ingful crossover for variable-length genomes,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 1, pp. 118–131, 2007.

[37] Y. Wang, H. Liu, H. Long, Z. Zhang, and S. Yang, “Differential evolution
with a new encoding mechanism for optimizing wind farm layout,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 3, pp. 1040–1054,
2018.

[38] R. Storn and K. Price, “Differential evolution – A simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, Dec 1997.

[39] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the
generalized assignment problem,” Mathematical Programming, vol. 8,
no. 1, pp. 91–103, 1975.

[40] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2018, pp. 1–6.

[41] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”

IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2049–
2063, 2018.

[42] P. Kadlec and V. Šeděnka, “Particle swarm optimization for problems
with variable number of dimensions,” Engineering Optimization, vol. 50,
no. 3, pp. 382–399, 2018.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China. His
current research interests include theory, algorithm
design, and interdisciplinary applications of compu-
tational intelligence.

Dr. Wang is an Associate Editor for the Swarm
and Evolutionary Computation. He was a Web of
Science highly cited researcher in Computer Science

in 2017 and 2018.

Zhi-Yang Ru received the B.S. degree in automation
from the Xiangtan University, Xiangtan, China, in
2016. He is currently pursuing the M.S. degree
in control science and engineering, Central South
University, Changsha, China. His current research
interests include evolutionary computation and mo-
bile edge computing.

Kezhi Wang received the B.E. and M.E. degrees in
School of Automation from Chongqing University,
China, in 2008 and 2011, respectively. He received
the Ph.D. degree in Engineering from the University
of Warwick, U.K. in 2015. He was a senior research
officer in University of Essex, U.K. Currently he is
a Lecturer in Department of Computer and Informa-
tion Sciences at Northumbria University, U.K. His
research interests include wireless communication,
mobile edge computing and artificial intelligence.

Pei-Qiu Huang received the B.S. degree in au-
tomation and the M.S. degree in control theory
and control engineering both from the Northeastern
University, Shenyang, China, in 2014 and 2017, re-
spectively. He is currently pursuing the Ph.D. degree
in control science and engineering, Central South
University, Changsha, China. His current research
interests include evolutionary computation, bilevel
optimization, and mobile edge computing.

	Introduction
	System Model and Problem Formulation
	Local Execution Model
	MEC Execution Model
	UAV Hover Model

	Proposed Approach
	Motivation
	ToDeTaS
	Initialization
	Upper Layer Optimization
	Lower Layer Optimization
	Discussion

	Experimental Study
	Experimental Settings
	Effectiveness of Two-Layer Optimization
	Effectiveness of Upper Layer Optimization
	Effectiveness of Lower Layer Optimization
	Effectiveness of Our Multi-UAV Enabled MEC System

	Discussion
	On Hyper-Heuristic Approaches for the Task Scheduling in the Lower Layer
	On Dynamic Environment

	Conclusion
	Appendix
	References
	Biographies
	Yong Wang
	Zhi-Yang Ru
	Kezhi Wang
	Pei-Qiu Huang

