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ABSTRACT 13 

Antimicrobial resistance (AMR) is one of the greatest public health challenges we are currently facing. 14 

To develop effective interventions against this, it is essential to understand the processes behind the 15 

spread of AMR. These are partly dependent on the dynamics of horizontal transfer of resistance genes 16 

between bacteria, which can occur by conjugation (direct contact), transformation (uptake from the 17 

environment) or transduction (mediated by bacteriophages). Mathematical modelling is a powerful 18 

tool to investigate the dynamics of AMR, however the extent of its use to study the horizontal transfer 19 

of AMR genes is currently unclear. In this systematic review, we searched for mathematical modelling 20 

studies which focused on horizontal transfer of AMR genes. We compared their aims and methods 21 

using a list of predetermined criteria, and utilised our results to assess the current state of this 22 

research field. Of the 43 studies we identified, most focused on the transfer of single genes by 23 

conjugation in Escherichia coli in culture, and its impact on the bacterial evolutionary dynamics. Our 24 

findings highlight the existence of an important research gap on the dynamics of transformation and 25 

transduction, and the overall public health implications of horizontal transfer of AMR genes. To further 26 

develop this field and improve our ability to control AMR, it is essential that we clarify the structural 27 

complexity required to study the dynamics of horizontal gene transfer, which will require cooperation 28 

between microbiologists and modellers.  29 
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INTRODUCTION 34 

Antimicrobial resistance (AMR) is undeniably one of the greatest global public health challenges we 35 

are currently facing [1]. The recent discoveries on the spread of resistance genes for key antimicrobials 36 

such as NDM-1 for carbapenem resistance [2–4] suggest that to tackle this challenge, instead of only 37 

studying the spread of resistant bacteria, we must understand the processes by which individual 38 

resistance genes spread. The first is “vertical gene transfer”, where genes are passed from parent to 39 

progeny during bacterial replication. The second, which is our focus here, is “horizontal gene transfer” 40 

(HGT). This allows bacteria to acquire genetic material, including AMR genes, from their environment 41 

or other bacteria [5–7]. There are three mechanisms of HGT. Firstly, “transformation” is the capacity 42 

of bacteria to intake genetic material from their environment. Secondly, “conjugation” occurs when 43 

two bacteria come into contact with each other and form a conjugative bridge, enabling direct 44 

exchange of genetic material. Finally, “transduction” occurs when a bacteriophage (a virus that can 45 

infect bacteria) replicates and packages a bacterial gene instead of its own genetic material, then acts 46 

as a vector and transfers this gene into another bacterium. 47 

The consequences of HGT of AMR in a bacterial population are varied and can change depending on 48 

the setting that this process occurs in. Firstly, HGT can often be at the origin of new combinations of 49 

resistances to multiple antimicrobials in single bacteria strains [8]. This is amplified by the fact that 50 

HGT can occur both intra- and inter-species [9], therefore allowing for mixing between many different 51 

gene pools. Fortunately, these resistance mechanisms often impose a fitness cost which reduces the 52 

competitiveness of bacteria with AMR genes in settings where antibiotics are absent [10], thereby 53 

limiting the increase in the prevalence of these bacteria in the environment. Studying HGT of AMR can 54 

be further complicated by differences in transfer rates and importance of transfer mechanisms 55 

between bacterial species [11], with transformation for example being rare for Staphylococcus aureus 56 

[12] but common for Neisseria gonorrhoea [13], and by differences between rates estimated in-vitro 57 

and in-vivo, as was seen with transduction in Staphylococcus aureus [14] and conjugation in Klebsiella 58 

pneumoniae and Escherichia coli [15]. Lastly, HGT dynamics appear to vary depending on the presence 59 

or absence of antibiotics in the surrounding environment [16–20], therefore requiring studies to be 60 

conducted in multiple settings to fully capture this process. 61 

It is essential to fully understand HGT of AMR since it can impact the overall transmission of AMR, and 62 

therefore the predicted effect of interventions against bacterial infections, to varying degrees 63 

depending on the setting. A most striking example of this is phage therapy, where bacteriophages are 64 

proposed as antimicrobials. A risk is that therapeutic phages could perform transduction and increase 65 

the proportion of bacteria in the patient that carry a resistance gene. In that case, if the phage therapy 66 

treatment fails to clear all the bacteria this could leave the patient at a higher risk of antimicrobial-67 

resistant bacteria infection [21,22]. In addition to the aforementioned differences between bacterial 68 

species, HGT mechanisms themselves are biologically complex. For example, the capacity to form a 69 

conjugative bridge generally requires the presence of a specific set of “tra” genes [23]. These can 70 

themselves be transferred, leading to an increase through time in the prevalence of bacteria that can 71 

perform conjugation. Transformation gene expression is extremely variable depending on the 72 

environmental conditions that bacteria are exposed to [6], therefore we cannot realistically assume 73 

that bacteria are able to perform transformation at all times. Finally, some phages can either undergo 74 

a “lytic cycle”, where they immediately replicate upon infecting a bacterium, or a “lysogenic cycle”, 75 



where they first integrate into the bacterial genome for a variable duration [12]. Consequently, 76 

transduction dynamics can be further complicated by the characteristics of the phage life cycle. 77 

HGT is therefore complex in its dynamics, and studying these requires appropriate tools. Mathematical 78 

modelling is often used to study infectious disease processes [24]. It provides a simulation 79 

environment that can be informed by real-life data, in which dynamics can be disentangled and easily 80 

studied. Mathematical models can be split into “deterministic models”, which always generate the 81 

same results for a given set of parameter values [24], and “stochastic models”, which generate 82 

variability in their results using random events [24]. Mathematical modelling is already being used to 83 

study AMR dynamics and their public health implications [25,26]. For example, it has been employed 84 

to study within-host bacterial dynamics (i.e. the bacterial processes that occur during colonisation or 85 

infection of a host) and derive conclusions on patterns of AMR seen in the host population [27]. 86 

Consequently, it can provide novel insight into optimal strategies to combat AMR spread by analysing 87 

the effect that these have on the transmission dynamics [28]. However, existing models may not 88 

always capture the relevant and complex microbiological dynamics of HGT. In this systematic review, 89 

we aimed to find modelling studies which focus on HGT of AMR, to record their methods and research 90 

questions, and hence, to identify potential research gaps and areas for improvement in this field.  91 



METHODS 92 

The methodology of our systematic review follows the recommended PRISMA guidelines [29]. 93 

Inclusion criteria: 94 

In order to be included in this review, studies had to fulfil all of the following criteria: 95 

1) Study the horizontal transfer of genes between bacteria 96 

2) The genes studied must explicitly be identified as genes encoding antimicrobial resistance 97 

3) Use at least one dynamic population model. A model is “dynamic” if it tracks the changes in 98 

the number of bacteria belonging to various populations (e.g. antibiotic-resistant and 99 

susceptible bacteria) over time 100 

Screening process: 101 

The entire screening process is summarised in Figure 1. We searched two databases on the 26th of 102 

April 2019 using the following terms: 103 

- PubMed search: “(antimicrobial OR antibacterial OR antibiotic) resist* AND (horizontal 104 

transfer OR mobile genetic element OR plasmid OR transformation OR conjugation OR 105 

transduction OR phage) AND (math* OR dynamic*) model*”, 171 results 106 

- Web of Science search: “TS = ((antimicrobial OR antibacterial OR antibiotic) resist* AND 107 

(horizontal transfer OR mobile genetic element OR plasmid OR transformation OR 108 

conjugation OR transduction OR phage) AND (math* OR dynamic*) model*)”, 185 results 109 

After removal of duplicates, these combined searches yielded a list of 272 studies. Both QL and GK 110 

independently screened the titles and abstracts of all 272 studies. 54 studies were retained by both 111 

authors, and two more were discussed and retained after an additional screen of the methods due to 112 

uncertainty, leading to a total of 56 studies retained after the first screening step. 113 

The full texts of these 56 studies were then screened by QL, leading to 34 studies being retained as 114 

relevant for this review. Finally, by screening the reference lists in these 34 studies, nine more were 115 

included, leading to a total of 43 studies to discuss in this review. 116 



 117 

Figure 1. PRISMA flow diagram of the search and exclusion process. 118 

 119 

Information extracted from the included studies: 120 

To maximise comparability between studies, we devised a list of 11 elements to extract from every 121 

study. These are summarised and explained in Table 1. 122 

 123 

 124 

 125 

 126 



Table 1. Elements recorded from all included studies. Where no “Possible values” are given in the 127 

table, this indicates that the values were not restricted to a predetermined list. 128 

RECORDED ELEMENT SIGNIFICATION POSSIBLE VALUES 

Transfer mechanism Biological mechanism of 
horizontal gene transfer 
modelled 

“Conjugation” or 
“Transformation” or 
“Transduction” 

Bacteria Any species of bacteria explicitly 
modelled 

-  

Aim of the study Whether the study looked at 
gene transfer to understand 
evolutionary trends seen in the 
bacterial population, or to 
understand its impact on public 
health, or both 

“Evolutionary” or “Public 
Health” or “Both” 

Bacterial environment Any environment which 
contained bacteria in the model 

- 

Antibiotic effect considered Whether one or more 
antibiotic(s) were present in the 
model(s) 

“Yes” or “No” 

Multiple resistances 
considered 

Whether the model(s) tracked 
multiple resistance genes that 
could be transferred separately 

“Yes” or “No” 

Fitness cost of resistance 
considered 

Whether the model(s) included a 
fitness cost for bacteria carrying a 
resistance gene 

“Yes” or “No” 

Source of model parameters Whether the study also 
generated its own experimental 
data to support its parameter 
values, or chose values informed 
by previous studies (which could 
be experimental studies or not), 
or assumed values 

“Experimental” and/or 
“External” and/or “Assumed” 

Type of model Whether the structure of the 
model(s) was deterministic, or 
stochastic, or both (if the study 
presented more than one model) 

“Deterministic” or 
“Stochastic” or “Both” 

Type of parameter values If the model(s) structure was 
“Deterministic”, whether the 
parameter values were constant 
or were sampled from 
distributions before each model 
run 

“Constant” or “Sampled” 

Sensitivity analysis 
performed 
 

 

Whether the study performed 
any type of sensitivity analysis of 
the effect of model parameter 
values on the results 

“Yes” or “No” 

 129 

 130 



Note that in our analysis, “Type of parameter values” and “Sensitivity analysis performed” are two 131 

independent criteria. We can therefore report that a study only uses “Constant” parameter values, 132 

yet still performs a sensitivity analysis. If a study is reported to have “Sampled” parameters, this 133 

means that the values of the parameters vary for each model run, and that this is represented in 134 

the main results, with figures showing model output with ranges instead of single lines for 135 

example. If a sensitivity analysis was performed, this means that the authors report conducting 136 

such a procedure to support their findings (e.g. to argue that their choice of “Constant” parameter 137 

values is a reasonable assumption, and does not significantly affect their results).  138 



RESULTS 139 

The table showing all of the recorded elements from the 43 included studies can be found in the 140 

Supplementary Material of this paper. 141 

Firstly, when looking at the transfer mechanism modelled by these studies, we observe that almost all 142 

exclusively focus on conjugation (40 out of 43) [30–69] (Figure 2). Of the remaining three, two focused 143 

on transformation [70,71], and one on transduction [72]. Additionally, more than a third of the studies 144 

(16/43) chose exclusively Escherichia coli (E. coli) as the bacteria in which to model the transfer 145 

processes [30,34,36,41–46,52,53,59,64,66,68,72] (Figure 2). It is also worth noting that another third 146 

of the studies (15/43) do not model a specific organism, and instead indicate that they are looking at 147 

bacteria in general [31,32,37,38,48,51,54,56–58,61,62,65,67,69]. Finally, while eight studies applied 148 

their model to more than one bacterial species [33,35,39,40,47,49,60,63], only four of these modelled 149 

two strains of bacteria simultaneously and captured inter-species transfer of resistance genes 150 

[39,49,60,63].  151 

 152 

 153 

Figure 2. Transfer mechanisms and bacterial species modelled in the 43 studies included in our review. 154 

 155 

In terms of the aims of these studies, all except eight [32,55,58,60,63–65,69] used modelling 156 

approaches exclusively to improve the understanding of bacterial evolutionary dynamics (Figure 3). 157 

This covered questions such as how the prevalence of resistance genes in the bacterial population 158 

changes over time (as in [34] for example), or how the rise of multi-drug resistant bacteria varied 159 

under different environmental conditions (as in [30] for example). Inversely, the remaining eight 160 

studies [32,55,58,60,63–65,69] attempted to place at least some of their results in a public health 161 

setting by, for example, quantifying the impact of transfer on the incidence of multi-drug resistant 162 

bacteria infection in humans [32,69]. In accordance with this previous point, almost half of the studies 163 

(20/43) modelled bacteria exclusively in culture [33–42,47,49,50,52,53,58,59,66,70,71], and only 164 



seven modelled bacteria in humans [30,32,55,60,63,65,69] (Figure 3). In the remaining studies, seven 165 

did not specify an environment for their bacteria [31,48,56,57,61,62,67].  166 

 167 

 168 

Figure 3. Aims and environments modelled in the 43 studies included in our review. 169 

 170 

Almost all of the studies included a bacterial fitness cost for the carriage of a resistance gene in their 171 

models (Table 2), except for six [32,42,48,63,66,71]. On the other hand, despite the fact that in reality 172 

bacteria can acquire multiple AMR genes independently (i.e. the acquisition of each gene is a separate 173 

HGT event), only four studies included this feature [30,32,60,69] (Table 2). Lastly, it is important to 174 

note that almost half of the studies did not model the presence of antibiotics, and therefore did not 175 

consider the effect of antibiotics on transfer rates [33–36,39–42,47,52,53,59,63,66,68,71,72] (Table 176 

2).  177 

 178 

Table 2. Summary of the presence or absence of model characteristics in the 43 studies we reviewed. 179 

 
Include antibiotic 

effect 
Include multiple 

AMR genes 
Include fitness cost 

Include sensitivity 
analysis 

Yes 26 4 37 29 

No 17 39 6 14 

 180 



Almost half of these modelling studies (19/43) included their own experimental work to generate data 181 

and estimate at least some parameter values for their models [33–36,39–42,47,49,51–182 

54,59,66,68,70,71] (Figure 4). On the other hand, more than half (23/43) chose to assume the values 183 

of at least some of their parameters, without explicitly citing any sources to support their choices, and 184 

a quarter (12/43) assumed the values of all of their parameters [31,32,37,38,65,67]. Finally, a third 185 

(15/43) used previous studies to obtain at least some of their parameter values. For these, except for 186 

three studies (two of which were each the direct follow-up of another one on the same topic [44,50], 187 

and one an analysis of data collected during an outbreak [63]), more than one previous study was 188 

taken to estimate the value of parameters, with a median number of studies of 8 and a maximum of 189 

42.  190 

 191 

 192 

Figure 4. Sources of parameter values in the 43 studies included in our review. “Assume” (top, 193 

green): no clear reference is given to support the choice of parameter value; “Experimental” (right, 194 

orange): the study generated its own experimental data to support the choice of parameter value; 195 

“External” (left, brown): the study references a previous study to support the choice of parameter 196 

value. Studies in an overlap region used each of the corresponding methods at least once to 197 

estimate the value of their parameters. 198 

 199 



Finally, more than three quarters of the studies (33/43) exclusively relied on deterministic models to 200 

obtain their results [30,32,34,36–40,42,43,45,47–51,53–56,58,59,61,63–69,71–73]. All of these 201 

deterministic models were composed of a set of ordinary differential equations to track the different 202 

sub-populations (susceptible bacteria, resistant bacteria etc…) through time. As for the ten studies 203 

which relied on stochastic models [31,33,35,41,44,52,57,60,62,70], most of these were agent-based 204 

models, where the bacteria were tracked individually [31,33,41,52,57,60], while the remaining ones 205 

either used stochastic differential equations [44,62,70] or difference equations [35]. Out of the studies 206 

which exclusively used deterministic models, only eight acknowledge variability in the parameter 207 

values by running their model multiple times and sampling parameters from distributions instead of 208 

assuming them to be constant [32,38,43,46,56,64,65,72]. Nevertheless, most studies performed 209 

sensitivity analyses of the effect of their parameter values on their model results (Table 2). Overall, 210 

nine studies still relied solely on a deterministic model without either sampling their parameter values 211 

or performing sensitivity analyses [30,36,40,42,48,54,55,58,68]. We also noted that except for the one 212 

study on transduction [72], all the studies modelled transfer as a mass-action process. This assumes 213 

that the number of transfer events is determined by multiplying the number of bacteria that can 214 

receive the gene, the number of bacteria that can transfer the gene, and the rate at which transfer 215 

occurs. This is therefore generally written as some form of β*S*R/N, where β is a rate of transfer, S is 216 

the number of bacteria that can receive the resistance gene, R is the number of bacteria that can 217 

provide the resistance gene, and N is the total bacterial population in the system.  218 



DISCUSSION 219 

We used a systematic literature review of mathematical models of horizontal gene transfer (HGT) to 220 

determine our current understanding of the dynamics of HGT of AMR. The first main observation from 221 

our results is that the majority of studies assessed only focus on HGT by conjugation (40 out of 43). 222 

The likely reason for this is the simplicity of conjugation dynamics. Effectively, these are comparable 223 

to infections transmitted upon contact, such as influenza, where established modelling exists using 224 

mass-action dynamics [24]. Consequently, modelling conjugation does not require much complexity 225 

to be added to these models. However, we know that transformation and transduction also contribute 226 

to HGT [7,14] and the lack of studies on these mechanisms is worrying.  227 

Conjugation, transformation and transduction fundamentally differ in their biology, making it essential 228 

to study each of them in their own modelling framework; it is unknown whether models of conjugation 229 

could be directly applied to transformation and transduction. When looking at the studies which 230 

attempted to model these two processes, we first see that the one which focused on transduction 231 

[72] attempted to place it in a complex setting, with the phage able to undergo both lytic and lysogenic 232 

cycle, and the possibility for some bacteria to be resistant to phage infection. Transduction is 233 

represented as a multi-step process in this model, as opposed to relying on a single rate. The phage 234 

must first successfully infect a bacterium, then pick up a resistance gene, before successfully 235 

transferring this gene to a different bacterium. This model aims to accurately represent most of the 236 

biological complexity of transduction, which necessarily requires many assumptions regarding 237 

parameter values. Further study of this trade-off would be greatly beneficial; it is currently unclear 238 

whether this complexity is required, at the cost of more assumptions, or if the process of transduction 239 

could be simplified and modelled using fewer parameters, which could be estimated from 240 

experimental data. The two studies which focused on transformation [70,71] applied similar mass-241 

action dynamics to this process as what can be seen in models of conjugation. However, this approach 242 

assumes that the number of resistance genes available in the environment is equivalent to the number 243 

of bacteria carrying these genes. This is questionable, as we would only expect these genes to be 244 

available in the environment after the bacteria die and release their genetic material; while it is 245 

possible for bacteria to actively release their genetic material while still alive, the extent of this 246 

phenomenon is unclear [6]. Further exploration of this assumption, and perhaps redesigns of model 247 

structures for transformation would be of value. 248 

E. coli is the most commonly studied model organism for bacteria in general [74]. Its rapid growth and 249 

consistent behaviour in in-vitro settings make it amenable to experimental work, including transfer 250 

studies, therefore its overwhelming presence as the organism of choice for studies modelling HGT of 251 

AMR genes is not a surprise. However, HGT is known to occur with varying rates in multiple bacterial 252 

species, consequently it is unlikely that the rates of transfer estimated by looking at E. coli are equally 253 

applicable to other bacterial species [7]. In addition, HGT of AMR is a process that can also occur 254 

between bacterial species [9,11], while most models here exclusively focused on E. coli alone. Some 255 

resistances in bacterial species are in fact thought to have been originally acquired following a gene 256 

transfer event with another species, such as the mecA resistance gene in Staphylococcus aureus 257 

acquired from S. fleurettii [75].  258 

Despite the fact that the carriage of an AMR gene often imposes a reduction in the growth rate of the 259 

bacteria [10], a few studies did not model this (6/43), but only one argued that this element could be 260 

ignored after fitting their model to experimental data [66]. However, this was once more only based 261 



on observations in-vitro, which are likely to differ from the in-vivo reality. Including a fitness cost, while 262 

requiring the estimation of an additional parameter, does not add any particular complexity to the 263 

model structure itself, effectively only requiring a reduced growth rate value for the bacteria carrying 264 

AMR genes as opposed to bacteria susceptible to the modelled antibiotic (as can be seen in [68] for 265 

example), and should therefore be included at least for sensitivity analyses. In addition, although it is 266 

understandable that the first models of HGT of AMR should focus on tracking single genes to 267 

understand the basic dynamics of this process, in reality many bacteria carry multiple AMR genes that 268 

can be transferred independently [8]. However, we only identified four studies in our review which 269 

included more than one independent AMR gene in their model [30,32,60,69]. 13 studies did model 270 

the transfer of multiple linked genes [34,35,66,68,70,40–42,47,49,53,55,59]; however in these cases 271 

a single HGT event causes the transfer of all of these genes, therefore there is little difference between 272 

the model structures of these 13 studies and those of other studies which modelled the transfer of 273 

single genes. 274 

Many studies did not allow for the presence of an antibiotic in their model. However, antibiotics are 275 

likely to modify HGT dynamics by directly affecting transfer rates, as well as the survival of bacteria 276 

not carrying the AMR gene [16–20]. The former has been shown to occur for transduction in S. aureus, 277 

where the addition of antibiotics induced a higher proportion of transducing phage compared to lytic 278 

phage [76]. On the other hand, some studies correctly argue that it is equally important to understand 279 

the dynamics of HGT in the absence of antibiotics. Effectively, it is common for bacterial populations 280 

to rapidly transition between being exposed to antibiotics or not, with the most obvious example 281 

being individuals transiently consuming antibiotics. Consequently, understanding the dynamics of HGT 282 

of AMR both in the presence and absence of antibiotics is essential. 283 

HGT of AMR has been studied in laboratory settings, consequently data around which models can be 284 

built have been generated and are available [7,77]. However, we note that, to the best of our 285 

knowledge, most data appear to focus on conjugation in in-vitro settings. The availability of 286 

experimental data on HGT of AMR by transformation or transduction, and on any of the three HGT 287 

mechanisms in more complex settings (such as in-vivo), is unclear. This should be investigated in future 288 

work to further refine the recommendations we make here, and identify where more data are needed 289 

to support the development of mathematical models. This is essential to understand which of the gaps 290 

we identify are due to theory outpacing data collection, and which are due to under-utilisation of 291 

available data. In any case, using these external data sources for purposes they were not originally 292 

designed for can require assumptions to be made in the model structure and parameters. In addition, 293 

it is essential to bear in mind how these data were originally collected, since for example combining 294 

sources which look at bacteria in multiple environments to derive parameters in a single environment-295 

specific model is far from ideal. On the other hand, the fact that a quarter of the studies we reviewed 296 

(12/43) assumed all of their parameter values is worrying. While the purpose of some of these studies 297 

was to exclusively test a range of parameter values to identify conditions for a specific event to occur 298 

(e.g. AMR prevalence increases), the absence of any clear sources for the limits of these ranges is 299 

questionable. Looking at studies which determined their parameter values experimentally, we see 300 

that some of these also assume values such as the initial proportion of bacteria capable of performing 301 

transformation and the rate at which they can gain this ability [70], the bacterial growth rate and the 302 

conjugation rate [40], or the fitness cost of carrying an AMR gene and the rate at which such genes 303 

are lost by the bacteria [34]. Informing models with data is essential to ensure that they are accurate 304 

representations of reality, therefore, as stated above, we believe that further work is required to 305 



review the availability of data on HGT of AMR, and the methods that could be used to generate them 306 

when they are currently missing. 307 

Regarding model structures, the majority of studies relied on deterministic models. To allow variability 308 

in the dynamics and therefore increased realism, studies more often chose to sample their parameter 309 

values, run their deterministic model, and repeat this process a number of times (as can be seen in 310 

[32,38,43,46,56,64,65,72]), a simpler alternative to developing new stochastic models. Acknowledging 311 

stochasticity when looking at HGT is essential; HGT rates are typically low (estimates from studies in 312 

our review include for example 5.1*10-15(cells/mL)-1hour-1 for conjugation [49] and 10-16(cells/mL)-313 
1hour-1 for transformation [70]). These are therefore models of rare events which, by chance, might 314 

not always occur as expected, a feature which deterministic models fail to capture [24]. Sensitivity 315 

analysis is extremely important in any case since a small change in parameter value can lead to a 316 

greater change in the results. Despite this, nine studies exclusively relied on a deterministic model 317 

without sampling parameters or performing sensitivity analyses [30,36,40,42,48,54,55,58,68]. 318 

Interestingly, five of these nine studies also generated their own parameter values experimentally 319 

[36,40,42,54,68]. Although they capture variation when measuring the parameters experimentally, 320 

often providing distributions for their values, they then only retain fixed point estimates for their 321 

corresponding model parameter values instead of sampling them from these distributions, and only 322 

use these fixed estimates to derive their conclusions. Acknowledging variability in microbiological 323 

observations by specifying distributions rather than point estimates is essential, and this must be 324 

represented in the corresponding mathematical models. 325 

This also raises the question of how to best represent these microbiological events in mathematical 326 

models. Effectively, almost all of the models here describe transfer as a mass-action process (42/43). 327 

However, as stated above this approach is acceptable for conjugation, but might not fully apply to 328 

transformation, where transfer depends on the density of DNA in the surrounding environment rather 329 

than the number of bacteria, and transduction, which follows vector-like dynamics with the phage 330 

acting as carriers of resistance genes between bacteria. Transformation dynamics might therefore be 331 

better represented by models of environmental transmission of infections (such as [78]), and 332 

transduction by models of vector-borne diseases (such as [79]), as opposed to mass-action models. 333 

The degree of modelling complexity required to accurately represent HGT is therefore unclear. This is 334 

also true for models designed to understand the public health implications of HGT of AMR, for which 335 

the level of detail required to represent within-host dynamics must be clarified. In addition, since 336 

transfer dynamics have thus far been mostly studied in bacterial culture, mostly “short” time-frames 337 

have been explored (hours or days), with long term dynamics remaining unclear despite our 338 

knowledge that even resistant bacteria can colonise us for weeks or months [80–82]. To best guide 339 

our public health policies with mathematical modelling, we must first clarify the complexity of the 340 

process we are actually attempting to model, and the time required to fully capture its in-vivo 341 

dynamics. 342 

This is the first attempt at providing an overview of existing mathematical modelling work on HGT of 343 

AMR. Our systematic review methods, with two individuals separately screening the titles and 344 

abstracts of candidate studies, allowed us to identify and bring together key studies on this topic. 345 

Using our list of comparison elements, we extracted and contrasted essential information between 346 

studies, overall allowing us to obtain a broad overview of the field and identify research gaps.  347 

However, our approach also has some limitations. Firstly, it was necessary for us to specify “(math* 348 



OR dynamic*) model*” rather than just “model*” in the search, since otherwise it would have 349 

returned results on experimental models (e.g. mice) as opposed to mathematical models. Effectively, 350 

repeating our search with “model*” instead of “(math* OR dynamic*) model*” yields 2,360 and 1,560 351 

results on PubMed and Web of Science respectively, as opposed to our 171 and 185 results. The 352 

consequence of our choice however was that nine relevant studies were missed in the search, and 353 

were only identified by screening the references of already included studies. These nine studies were 354 

missed in the original literature search due to the absence of at least one of the search terms, with 355 

some studies for example referring to their models as “mass action models” instead of “mathematical 356 

models”. In addition, we only searched for studies which modelled transfer of AMR genes, as opposed 357 

to HGT of any gene. This is firstly due to our specific research interest; horizontal transfer of AMR 358 

genes is an especially strong evolutionary driver for bacteria populations, compared to transfer of 359 

other genes. This is because AMR genes can be strongly selected for by environmental factors, such 360 

as the presence of antibiotics, while many other genes are often not subject to such selection 361 

pressures. In addition, AMR genes can be selected in more settings compared to other genes; for 362 

example, genes involved in immune evasion will only be selected for during infection of the host, while 363 

AMR genes can also be selected for during asymptomatic colonisation. The consequences of HGT of 364 

AMR in the bacterial population can therefore be greater than for other genes, which is why we 365 

believe it is important to study this process. Secondly, repeating the search without “(antimicrobial 366 

OR antibacterial OR antibiotic) resist*” yields 12,236 and 38,148 results on PubMed and Web of 367 

Science respectively, which would be too many to cover in a single systematic review. Nevertheless, 368 

this suggests that there are other studies which model HGT more broadly. These could be a source of 369 

methodologies that could be applied to further develop the specific field of HGT of AMR modelling. In 370 

terms of the elements gathered from the studies to compare them, we were unable to extract any 371 

meaningful quantitative data (e.g. estimated gene transfer rates) common to all studies due to the 372 

high variability of study designs. This variability also prevented us from identifying common measures 373 

of study quality we could report aside from the presence or absence of sensitivity analysis. 374 

Studying the effect of HGT of AMR on bacterial evolutionary dynamics is a necessary first step to 375 

understand the overall importance of this process. This has been the focus of the vast majority of the 376 

studies identified in this review, however the public health implications remain vastly unknown. This 377 

is related to the observation that the majority of studies model bacteria in an in-vitro setting; to 378 

understand the public health impact of HGT of AMR, it is essential to expand this to include other 379 

bacterial environments such as within humans and animals. In addition, important differences have 380 

been identified between transfer rates estimated in-vitro and in-vivo, with in-vivo transduction rates 381 

in S. aureus and conjugation rates in K. pneumoniae and E. coli for example being much higher than 382 

expected [14,15]. This difference in dynamics is attributable to the fact that in-vitro conditions fail to 383 

capture essential biological mechanisms influencing bacteria and therefore HGT [6,10]. Studying HGT 384 

in-vitro allows for a controlled environment to understand the basic dynamics of this process and the 385 

factors that might influence them (e.g. antibiotic exposure), and consequently offers a starting point 386 

to inform in-vivo models.   We therefore recommend that future modelling studies should build upon 387 

the work of existing in-vitro studies to evaluate HGT of AMR in more complex scenarios, utilising 388 

parameter estimates from in-vitro studies as a baseline and refining them using data generated with 389 

in-vivo model organisms such as mice [68]. Due to the added complexity (e.g. immune system, 390 

simultaneous within-host and between-hosts dynamics, rapidly varying host exposure to antibiotics 391 

and therefore selection pressure on the bacteria…), this will require major extensions to existing 392 



models. However, we believe that this is necessary to truly assess the potential consequences of HGT 393 

of AMR on human well-being. 394 

This systematic review allowed us to identify key research gaps on the dynamics of HGT of AMR. Firstly, 395 

we recommend that future studies should focus on developing models of transformation and 396 

transduction to determine the required complexity to represent these dynamics. Since these 397 

mechanisms fundamentally differ in their biological characteristics, this will likely require substantial, 398 

novel modelling work as opposed to the extension of existing models of conjugation. In parallel, since 399 

the basic dynamics of conjugation are already reasonably well understood, future studies on this 400 

mechanism should focus on other bacterial species than E. coli, preferably in a setting where inter-401 

specific HGT and the movement of multiple, separate AMR genes can both be observed. This should 402 

be achievable simply by re-parameterisation or minor extension of existing models; the greatest 403 

challenge would be to generate new data on HGT in these currently unexplored settings. The optimal 404 

solution to address these research questions would be to design frameworks to study HGT of AMR 405 

that encompass both laboratory and modelling work; this would ensure that the data collected are 406 

appropriate for the modelling needs, and that the actual model is a good representation of the 407 

situation measured in the laboratory. We therefore believe that, to fully understand the complexity 408 

of both the biology and the dynamics of HGT, collaboration of both microbiologists and mathematical 409 

modellers would be the best strategy for future research on this topic, and that studies should attempt 410 

to generate both their own data and models to reduce the assumptions they require. 411 

While exclusively microbiological approaches have successfully been used to identify when HGT 412 

occurs, combining these with modelling has allowed us to estimate rates at which these events occur, 413 

and to disentangle the finer temporal dynamics of this process. For example, some studies we 414 

identified in our review which combined microbiology and modelling work answered questions such 415 

as how changing the exposure of bacteria to antibiotics influences HGT rates [49], how a bacterium 416 

interacts in space with its neighbours to perform HGT [31], or how to adjust shaking speed to maximise 417 

contact between bacteria, and thus the rate of HGT, in a liquid culture [66]. Modelling also allows 418 

faster exploration of situations that could be harder to test using only microbiological methods, since 419 

an experiment where the bacteria need to grow for 24 hours in the lab could be completed in a few 420 

seconds using a mathematical model. Crucially, this requires the model to be an accurate 421 

representation of reality, which in turn requires it to be informed by microbiological data to begin 422 

with. Our conclusion here is therefore not that either one of modelling or microbiology is superior to 423 

the other, but that both approaches complement each other. Consequently, we believe that close 424 

cooperation between these two fields would allow us to greatly improve our understanding of 425 

complex microbiological processes, such as HGT of AMR.  426 



CONCLUSIONS 427 

In this systematic review, we aimed to assess the current state of mathematical modelling as a tool to 428 

improve our understanding of horizontal gene transfer of antimicrobial resistance. From the 43 429 

studies identified, we found that the majority focused on conjugation in E. coli, exploring evolutionary 430 

dynamics of HGT in culture. Whilst this provides a solid base for a key method of HGT, future work 431 

must also consider HGT by transformation and transduction which are also essential drivers of HGT in 432 

bacteria. Importantly for public health implications, only one bacterial species was considered in most 433 

models when we know that inter species transfer is responsible for many of our epidemic AMR clones 434 

and much of the work was fitted to data in the absence of antibiotic exposure. Crucially, to answer 435 

these questions we must first clarify the level of modelling complexity required to accurately represent 436 

HGT dynamics, as well as the availability and capacity to generate experimental data on these 437 

processes. This complex topic requires close collaboration between mathematical modellers and 438 

microbiologists in order to determine the full impact of these processes on our ability to control the 439 

public health threat posed by antimicrobial resistance.  440 
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