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Abstract

This paper is devoter to ‘he siudy of discrete optimal control problems. We
aim to obtain more <on. ' ~uct’ve optimality conditions under weakened convexity
assumptions. Be . on a new approach introduced in this work, an optimality
condition with -spect to every component is obtained in the form of a global
maximum p. nciv e. In addition, an optimality condition with respect to one of
the comp nents o1 1 control in the form of the global maximum principle and
with resp. ~" to .nother component of a control in the form of the linearized
max’ num p-inciple are obtained. Furthermore, various second-order optimality
cond, ‘ons i* terms of singular and quasi-singular controls with respect to the

;ompo: =nts are obtained on the fly.
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1. Introduction

£ . dis' rete optimal control

The search for necessary optimality condition:
problems (DOCPs) is one of the most attractive tc ics in control optimization
theory. It was historically preceded by the disce =ry of ,he Pontryagin maximum
principle [1] for continuous optimal control prob. ms. The first discrete analogue
of the maximum principle was obtained 1. linear DOCPs by Rozonoer [2]. In
the same paper, Rozonoer argued ti « .. ~~y not be possible to extend the
maximum principle to nonlinear ' YCPs and this argument was confirmed by
subsequent studies [3, 4]. Soon after t. is v ork, extensive studies in this area were
devoted to obtaining a number ¢. first- and second-order optimality conditions
in various forms. For examnle, the works [5-12] obtain optimality conditions
in the form of a global » iaximw principle, while [3, 4, 13-18] obtain similar
conditions in the form of a 1. = maximum principle, the linearized maximum
principle or the Eul. - ec uatic a. Moreover, second-order optimality conditions
in terms of singul r (in the sense of the discrete maximum principle) as well as
quasi-singular controls . e obtained in [14-16, 19-22].

At the sar 1e ti ae, several results were also obtained in the discrete-time and
infinite-ho izon . *ting. Michel [23] was one of the first researchers to study the
concave iiscr :te-t'me infinite-horizon optimal control problem and obtained the
necess _y ana - fficient conditions for optimality. Blot and Chebbi [24] extended
the 1 sults o1 [2] to the infinite-horizon framework without concavity. A rigorous
2 .a.ysis ui the infinite- horizon discrete-time optimal control theory based on

everal ) ontryagin principles is provided in the book by Blot and Hayek [25]. In
a recent study, Aseev, Krastanov, and Veliov [26] obtain the linearized discrete
aaximum principle by using a tangent cone to a set at a point for the discrete-

time optimal control on the infinite horizon without requiring convexity. The
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problem of weakening of the latter in optimal control problewn. - is e. amined
thoroughly in the book by Zaslavski [27].

Generally, obtaining first- and second-order necessary oy * aality conditions
for DOCPs is studied under various types of weakenec conve -ity assumptions,
such as a starlike set with respect to a point [28], star "ke ne'ghborhoods of a
point [13], an e-convex set and convexity with res' ect *_ 'irection [6], a locally
convex set in the neighborhood of a point [18, 2C! and a t- agent cone to a set at
a point [29]. However, it can be argued that the use ¢ these types of convexity
assumptions does not enable one to obtain "he n. - .sary first-order optimality

£

conditions that are satisfied for all elerp~m*~ - 2 set of control values. This
implies that the results obtained under suc. convexity assumptions are less
constructive than the discrete analogu. = c¢. the Pontryagin maximum principle
or its corollaries.

It can be claimed that it is ~<<enti | to apply a more subtle approach that
takes into account the specificity " the considered problem in the study of
DOCPs. This is due to ‘e . =t that DOCPs have certain specific features:
for example, the discrete . nalogu : of the Pontryagin maximum principle is not
always satisfied unde thr traaitional assumptions for nonlinear DOCPs; the
linearized discrete ma.’ nur principle and the discrete analogue of the Euler
equation are not .. “equences of the discrete maximum principle, unlike for the
continuous cas . and the majority of the methods used to study continuous
cases cannoi “e < irectly used for investigating DOCPs.

In ligl . of all o. the above points, the aim of this paper is to study DOCPs
in the fin. - hori .on setting to obtain more constructive optimality conditions
unde = weak ned convexity assumptions. To do this, we introduce a new ap-
proac - that veakens the convexity assumptions. Using our approach that stud-
es DC "Ps with respect to the components of vector control, we obtain an
o, Yima' ty condition with respect to every component in the form of a global
u ... num principle (see Theorem 3.1). We also obtain an optimality condition

ith respect to one of the components of a control in the form of the global

maximum principle and with respect to another component of a control in the
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form of the linearized maximum principle (see Theorem 3.2). Furt..:rmore,
we obtain various second-order optimality conditions in te s »f singular and
quasi-singular controls with respect to components (see 1.~ rems 3.3 - 3.5).
Consequently, this paper is the first that studies DO’ .Ps wi‘h respect to the
components, enabling us to obtain more constructive oy “imali y conditions un-
der a new type of weakened convexity assumptior s, in _c ‘trast to the existing
results, e.g., [13, 15, 18, 20, 22]. Our results hax ~ practics. implications as they
can be used in solving various problems. These inc. ide modelling economic,
biomedical and chemical problems and op. mizi.: .omplex technological sys-
tems in different issues of organization cf »=~---- on.

The paper is structured as follows. In Sec.’~n 2, we introduce the optimiza-
tion problem and assumptions. Sectior. 3 nows the main results of the present
paper for the explicit first- and sec .. -orc ar optimality conditions for DOCPs
with respect to the components ~* vect. ~ control. In Section 4, we obtain various
increment formulas of the objective “mctional with respect to the components
by using various assumptic s v nrove the necessary optimality conditions in the
next section. Section 5 s. ~ws th ; proofs of the theorems. Section 6 discusses
perspectives for futur : res :arch and some open problems. We give concluding

remarks in the fina' sec” on.

2. Problem ¢ -tement and Main Assumptions

Considrr the “ollowing discrete optimization problem:

S(u(-)) = ®(z(t1)) - min, (1)

s(t+1) = f(a(t),u(t),t), tel:={to,to+1,...t: -1}, z(to) =2z*,  (2)

u(t) eU(t) R, tel. (3)
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Here, R" is an r-dimensional Euclidean space, x = (z1,...,2,,). € 2" is a

state vector, u = (u1,...,u,)? € R" is a control vector, t 15 ime (discrete),
z* € R™ is a given vector, ®(z) : R®™ - R . J-oco,+00[ and
flz,u,t) : R" xR" x I - R"™ are given functions, U.t; — 1" is an arbitrary
given set, and U(t) =V (£) x W (t), t € I :==I~{t;1 -1}, ve giv n sets satisfying
certain conditions, where V(t) ¢ R™ ¢t € Iy, ant W'., c R™ ¢ € Iy, with
ro+1T1 =T

A control u(-) satisfying the condition (3) is said v be admissible. The pair
(u(-),z(-)) is said to be an admissible pre ess ..~ ¢c),t € I, is an admissible
control and x(t),t € I U {t1}, is the correem~="*=_ irajectory of the system (2).
We will find the minimum of the problem )-(3) from the set of admissible
processes (u(-),z(-)).

An admissible process (ﬂ(-),f& ") #s sa’d to be an optimal process if it is a
solution to the problem expres =~ hv \')-(3). The components wu(-) and Z(-) of
an optimal process (ﬂ()j()) are s..’1 to be an optimal control and an optimal
trajectory, respectively.

Existing studies (e.g., 1. 5, & 13]) that address the nonlinear problem ex-
pressed by (1)-(3) he /e s’ own that the validity of some necessary optimality
conditions depends st. nglv on the structures of the sets U(t), t € I, and
fx,U(t),t) =4~ = f(z,u,t),u € U(t)}, t € I, x € R". For instance, fol-
lowing [3, 4, 17}, it is known that if along the optimal process (ﬂ(),f()), the
set f(z(6),L ‘A) J) is not convex, then the discrete analogue of Pontryagin’s

maximun prirciple can be invalid at the point 6 € I.

Rema, " ..1 T should be emphasized that along an admissible process (u°(-), 2°(+)),

the ¢ onvexi'v of the sets f(2°(0),V(0),w°(9),0) and f(x°(8),v°(0), W (0),0)
does . nt alv ays lead to the convexity of the set f(z°(8),V (), W(8),0), where
() = (UO(Q),wO(H))T7 v2(0) e V(0), w°(0) e W(#) and § € I_; (see Example
SRR

“egarding Remark 2.1, it can be argued that the investigation of the problem
.xpressed by (1)-(3) by components will be effective. Thus, the main aim of this

paper is to study DOCPs with respect to the components of vector control.
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Let us also recall some concepts that could be useful in study.. ~ the , roblem

of (1)-(3).

Definition 2.1. [11] We call a set Z € R™ - convex v*h res, <t to the point
20 € Z if for every z € Z, there exists v = v(2) € ]0,1] s ch that for all € € [0,~],
the inclusion zg +&(z — zg) € Z is valid. If Z is y-co” . :x w.... respect to each of

its points, then we call it v-convex.

Definition 2.2. [28] We call a set Z € R™ starlike with respect to the point

zp € Z if for any point z € Z, the segment ¢ mnec. ne .t to z lies in Z.

It is important to remark here that . -ery convex set as well as every open
set is a y-convex set, but the reverse "~ not always true. Indeed, for example,
the set Z = [-1,0[ U]1,2] is y-convex, b. * 1t is neither a convex nor an open set
and is not even starlike with respec. to ~ny of its points.

To investigate the optimali,,” ur ... .dmissible process (uo(-),xo(-)), where
ul(t) = (v°(2), wo(t))T7 t € I, the following assumptions are used in the paper.

(A1) The functional 7/(-) is . ontinuously differentiable on R";
(A2) The functior al ®(-) . cwice continuously differentiable on R™;

(B1) For evers t €. tF: function f(-,t) and its partial derivative f(-,t)

are continuous v .t ~spect to (z,u) on R™ x R";

(B2) For eve y t € I_1, the partial derivative f,(-,t) is continuous with

respect to ‘x,u, n R" xR";

(B3) 7 eve.y tel, the function f(-,t) and its partial derivatives f,(-,t)

and (-t are continuous with respect to (x,u) on R™ x R";

(Ba) T .revery t € I_y, the function f(-,¢) and its partial derivatives fy,(-,t),

fww(t, fwz(t) and fr., (-, t) are continuous with respect to (z,u) on R" xR";

(C1) For every t € Iy, the set f(2°(t),V(t),w’(t),t) is y-convex with re-
pect to the point 29 (¢ +1);
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(C2) For every t € Iy, the set f(x°(t),v°(t), W (t),t) is ~-con, x with

respect to the point 2°(¢ + 1);

(C3) For 6; = 6+1, there exists § > 0 such that for all ~ = 5. ~%(6,)), the set
f(z,0°(01),W(61),61) is starlike with respect t  the point
F(z,0°(01),w’(01),01), where 0 € {to,to +1,....t1 3} acl Bs(z%(6;)) is an

open ball with radius § > 0 and center x°(6;);

(C4) For 0§ € I_y, there exists § > 0 such that for .11 w € Bs(w®(0)) n W (0),
the set f(2°(0),V(0),w,0) 1is starlire \.'*h respect to the point
f(2°(0),0°(0),w, 0);

(C5) For every t € I_1, the set W #) is v— onvex with respect to the point
w¥(t).

Furthermore, for the sake of cou e, *=nce, we use the following notations.

f&) = f@0@),0°@), 50 folt) = fa(@0(0),00(1), w0 (1), 1),
H(t,a) =7 (Ga) (1), Ho(t,a) =" (60)fo(t), and Hoo () = 07 (82) fru (2)
(similarly, fiu,(t), fex(t) Hup\ @), Huyw(t;a), and Hyy(t;4) are defined),
where w(,ﬁ) is the solutio. ~f (73) and H (3, z,v,w,t) = T f(x,v,w,t) - is the

Hamilton-Pontryagir tun- ¢ion

3. Statement .f . > Main Results

The mai’ res Its of the present paper concern explicit first- and second-
order opti’ iality « nditions for DOCPs with respect to the components of vector
control. n t'isse tion, we present our main results and provide some illustrative

exam _.ws to ac nonstrate the effectiveness of the obtained conditions.

8 1 Fu. ' Uurder Necessary Optimality Conditions by Components

The irst-order optimality conditions with respect to the components can be

suminarized in the following theorems.

“heorem 3.1. Let assumptions (A1), (B1), (C1) and (C2) hold along an ad-

missible process  (u°(-),2°(")). Then, for the admissible control




ul() = (V0 (), w’ ()T to be optimal, it is necessary that the ine, alitic.

Ag®(f(t1-1)) >0, VieU(t; - 1), (4)
AH(0;1) <0, YaeUy(ty1 —1), V(0,0) € "1 x V()), (5)
AH(0:3) <0, Vi€ Ug(ty - 1), V(0,u, € . < W(0) (6)

hold, where Ay ®(f(t1-1)), AsH(0;4), Ag T(0;4)  1d Up(ty — 1) are defined
by (25), (31), (34) and (63), respectively.

The proof of Theorem 3.1 is given in Sec“ion 5.
In fact, Theorem 3.1 gives an op ‘ma .v, condition with respect to every
s component in the form of a globa. . ~axin um principle. This form of the max-
imum principle can be applied for a wiaer class of DOCPs than the discrete
maximum principle obtained in |, 7I. More specifically, it is obvious that for
these DOCPs that if the 1’ -~ is valid, the maximum principle by the compo-
nents is also valid. Howe -r, the ¢ »nverse may not always be true. We illustrate
o this with the followins exampic
Example 3.1 Conside. *'.e fo'.owing problem:

z1(t+1) =v(?, “in(Fw(r)), z2(t+1)=v>(t)cos?(Fuw(t)),

w3(t+1) =0y f) + m2(t) +23(t) + w?(t) —v3(t), tel={0,1},

1‘1(0) = $2(U, = 1‘3(0) =0, t1 =2, ve V(t), w € W(t), te {O, 1},
S(u(-)) = ®(x(t1)) = z3(2) - min,

whei> u(t) = (v(t),w®)?, t e {0,1}, V(0) = [-3,-2] u [-1,0],

ws TW) =(0,1]u[2,3], and V(1) = W(1) = {£3,0,-1}.
One can calculate directly S(u(-)) = w?(0) + w?(1) - v?(1). It is obvious
“hat if ©0(0) = w?(0) = w°(1) = 0, v°(1) = -1, 2°(0) = 2°(1) = (0,0,0)7,
ad 2°(2) = (0,1,-1)7, then (u%(:),2°(:)) is an optimal process, where

u’ () = (0(),w’()T, 2C) = (21 (), 25(), 25()) "




Furthermore, according to Definition 2.1, the sets
F(2°(0),v°(0), W(0),0) = {(0,0,°(0))" : w(0) € [0 Ju 25, and
F(@°(0),V(0),°(0),0) = {(0,°(0), ~v*(0))" : v(C; € [-3, -2] u [-1,0]}
are y-convex with respect to the point z°(1). Howe  r, tuc .t
F((0). V(0). W(0),0) = { (0(0) sin(Fw(0), v* (0 cos” (Fu(0)).
w?(0) = v*(0)) : v(0) € [-3,-2] U [-1 0], w(0) +[0,1]u[2,3]}

w0 is not convex and is even not y-convex with res, ~ct to the point z%(1).
Next, along an optimal process (u’(-), *°(-)), considering (25), (26), (31),
(34) and (63), we have

Ag®(f(1)) =® - b = . i = (D,0) e V(1) x W(1);

Uo(1) = {t=(0,0)T : 0 e V() weW(1),w*-2+1=0} = {(-1,0)T},
e i=u’(1)=(~1,0, , “1;a) = (0,0,-1)T, 4(0;a) = (0,-1,-1)7;
AH(0;4) =0, =V 0), AgH(0;40) = —?, w e W(0);
AzH(0:%, =7 “siv’ (gw) —@2, G = (5,@) € V(0) x W(0).

Therefore, fo ) = (v°(-),w"(-))T, all three statements of Theorem 3.1
are satisfied, r _ ely, w* - 0%+ 120, ¥Y(0,0) e V(1) x W(1); 0<0, Vi € Up(1),
Vo € V(0); nd -w? <0, Ya € Uy(1l), Vi € W(0). However, along an op-
timal cor rol «°(-), the discrete maximum principle is not valid, such as for
ws U=-3ev 0 ardd=1eW(0): (9%sin®*(Zw)-w?) |(_3,1)=8 < 0. Furthermore,
the ] nown "~cal maximum principles are not effective (or effective but not ap-
plicai'e [151" for investigating the optimal problem in Example 3.1 due to the
act th. “ at the point ¢ = t; — 1, they are valid only for those sets that consist of

o. » ele” ient.
i Zonsequently, Example 3.1 allows us to state that maximum principle with
_»spect to the components is valid for a wider class of DOCPs compared to

the discrete maximum principle. This implies that the method introduced in
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our paper which is based on studying DOCPs with respect to co. *none. ts have

wider application areas.

Theorem 3.2. Let assumptions (A1), (B1), (B2), (C1' ana [75) hold along
an admissible process (u’(-),2°(-)). Then, in order f r the a 'missible control
u®(:) = (0°(-),w°(:))T to be optimal, it is necessary it ti. .uequalities (4), (5)

and
HE(0;0) (0 - w(0)) <0, Ve Up(t; — 1), Y(u ) e I_; x W(0) (7)
hold, where Uy(ty — 1) is defined by (63).

The proof of this theorem is presented in ~ction 5.

In Theorem 3.2, we obtain an opt. ma ity condition with respect to one of
the components of a control in the .~ of . global maximum principle and with
respect to another component ¢~ cont. 2l in the form of the linearized maximum
principle. Note that this theorem . ~s its own application areas compared to
Theorem 3.1, and the rels ;an. vesults for the necessary optimality conditions
are studied in [4, 13, 15].

Finally, we emphs size .hat vhe fulfillment of the first-order necessary opti-
mality conditions (1)-\7 an . (7) does not even guarantee the local minimum
of the functional (., in the presence of singularities (see [19]). The next section

addresses such _ <es.

3.2. Secor I-Orac ~ Necessary Optimality Conditions by Components
In th. se _tior, we introduce the concepts of singular as well as quasi-singular

contr is with respect to the components, and for the optimality of such controls,

varic 's seco’ d-order necessary conditions are obtained.

Definit on 3.1. An admissible control u°(:) = (v°(-),w’(-))? satisfying the
cow. "lons (4)-(6) is called singular with respect to the vector component v (w)
#. the point ¢t = 6 € Iy with the parameter (a,Vy(0)) € Up(t1 — 1) x V(0)
(%, Wo(0)) € Uo(t1 — 1) x W(8)) if for all & e Vy(0) (@ € Wy(6)), the following

10
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equality holds:
AsH(0;0) =0 (AgH(60;4) =0), (8)
where V5(0) ~ {0°(0)} = @ (Wo(e) A{w ()} # 2).

Definition 3.2. An admissible control u°(-) = (v°/ ,,w"(-,, satisfying condi-
tions (4), (5) and (7) is called quasi-singular with re » _t to he vector component
w at the point ¢ = § € I_y with the parameter (4, (0)) c Up(t; — 1) x W(0) if
for all w e Wy (8), the following equality holds.

Hy (50)(@ =005, (9)

Ny
where Wy (0) ~ {w®(0)} # @, and Up(. — . '~ defined by (63).

Now, we are in the position to | . »nt . ur main results for the second-order

optimality conditions with resr ~* to v"e components.

Theorem 3.3. Let assumptions (A2), (B3), (C1) and (C3) hold along an ad-
missible process (uo(-),xp\-)). . oreover, let u®(-) = (v°(-),w(:))T be singular
with respect to the vec or co. m nent v at the point t = 0 € I_1 ~ {t; — 2} with
the parameter (4, Ve A)) and de singular with respect to the vector component
w at the point t = Jy with e parameter (4, Wy(61)). Then, for the admissible
control u®(+) to ve opiw. ~al, it is necessary that for all v € Vo(0), @ € Wo(61) and

a e Ry, the i equd ity
EM((0,0);0) + 2aN ((01,9); @) Ag £(0) + M((01,0);a) <0 (10)
(\WH v )y ) ) v ) ) =
holds —were . f(0), M(-) and N(-) are defined by (16), (48) and (49), respec-
tivel_ .

(heor m 3.4. Let assumptions (A2), (B3), (B4), (C4) and (C5) hold along
w adr ssible process (u°(:),z°(+)). Moreover, let u’(-) = (UO(-),wO(-))T be
5 oy ar with respect to the vector component v at the point t = 0 € I_y with the
, arameter (ﬂ, VO(H)) and be quasi-singular with respect to the vector component

w at the point t = 0 with the parameter (d, WO(Q)). Then, for the admissible

11
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control u°(-) to be optimal, it is necessary that for all © € Vo(6), ™ e W’0) and
a e R,, the inequality
M((0,8);0) +20Q((0,0); @) (@ - w’(2) (1)
11
+a? (0 - w?(0))TG(0;0)) (@ - w’ (6 ) <0
holds, where M(-), Q(-) and G(-) are defined by (48) '6) and (57), respec-
tively.

Theorem 3.5. Let assumptions (A2), (B3), 'B4), (21) and (C5) hold along
an admissible process (u°(:),z°(-)). Moreove  let u’() = (v0(~),w0(-))T be
singular with respect to the vector compor. mt v at the point t =0 € I_1 N\ {t1 -2}
with the parameter (4,Vp(0)) and b. . ~-<ingular with respect to the vector
component w at the point t = 01 with ."e parameter (4, Wo(61)). Then, for

1

the admissible control u°(-) to be op.‘mv." it is necessary that for all v € Vy(6),

w e Wo(61) and a e R,, the iney. "uy
M((0,0); 7, A f1(O)P(01;0) (= w’(61)) a2)
o (w w(0))TG(02;)) (@ - w’(61)) <0
holds, where Az f(0) M -), € () and P(-) are defined by (16), (48), (57) and
(62), respectively.

The proofs “these theorems are presented in Section 5.

Consequ. ~tly we obtain second-order necessary optimality conditions by
componer .s ir the forms of (10), (11), and (12). Although these conditions
have var. . are s of application, the applications of (10) and (11) are less
cons’ suctive relative to those of (12). This is because assumptions (C3) and
(C4) re rec ired for the validity of optimality conditions (10) and (11), and it
3 gene. ally difficult to determine whether these assumptions are true. Hence,
1. =re v 1y be a question, for instance, of whether it is possible to weaken (C4).
L < her words, it is unclear whether Theorem 3.4 is valid if (C4) holds only at
ne point. The following example provides the answer to this question.

Example 3.2 Consider the following optimization problem:
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zy(t+1) =21 (t) + V2vu(t)w(t), za(t+1)=-af(t) +aa(t) + 1) (w ) - 1),
21(0) =22(0) =0, I={0,1}, t1 =2, u(t) = (v(t),w(t)) : V O x W(t),
te{0,1}, V(0)=[-1,0], W(0)=[-2,2], V(1) =W (1)- "),+1},

S(u(-)) = ®(2(2)) = —22(2) > miv

235 Let us calculate S(u(+)) :
S(u(+)) =v*(0)[2w?(0) - w(0) + 1] +v*(1)[1- (1] - min,
where (v(0),w(0)) € [-1,0] x [-2,2] and (v(.) w(1)) :{0,+1} x {0,+1}.
Clearly, u°(t) = (v°(t),w°(t))T = (0,1)*, * € {u,1}, is an optimal control,
and z°(t) = (0,0)7, t € {0,1,2}, is an opt.. a1 trajectory. Moreover, assumptions
20 (A2), (B3), (B4) and (C5) hold for thi ~vample, but (C4) is satisfied only at the
point w® = w®(0) = 1, i.e., the set f(z* "),V (0),w’,0) |yo-1= {(v20v(0),0)T :
v(0) € [-1,0]} is convex. Now, let u. ci. ~k the condition (11) along an optimal
process (u°(+),2°(+)) at the po.. = v -
By (25), (26), (31), (51) and (63), one can write the following calculations:

Aa®(f(1))=02(1 -0, 4= (d b)e{0,£1} x {0,£1}, Az £(0) = (v/25,0)7,

fw(0) = (0,007, Jo(")=L0,0)T e {0,213} u{(5,1)T : 0 €{0,+1}},
P(1 ) =4(0;a) = (0,1)", AgH(0;4) =0, Vi e U(1),

T0(050) = 0, Hyw(0;0) =0, AgH,(0;4) = 02,

e NG . 20 . _lool . |20
Hyo (Y7 1;0),2 1), 4,1) = , U(1;4) = , U(0;4) = .
0 0 0 0 0
Ne* by *9), (56) and (57), in a similar fashion, one can obtain
M((0;0);a) = ~45°, Q((0,0);a) =%, G(0;d) = 0. (13)

Taki .g into account the above expressions for Ay ®(f(1)), AsH(0;4) and
H..(U;1), we obtain that the optimal control u°(t) = (0,1)T, ¢ € {0,1}, is sin-
,ular with respect to the vector component v at the point ¢t = 0 with parameter

(u,V(0)), where @ € Up(1), and is quasi-singular with respect to the vector

13
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component w at the point ¢ = 0 with parameter (4, W(0)), w..ve u - Up(1).
Thus, taking into account (13), the condition (11) takes the for r

492 + 200% (W - 1) <0, V(o,D,0) € Ry x [-1.01x | 2.2].

This inequality for a =3, v = -1, w = 2 is not satisfied: 2 <0.
Thus, Example 3.2 enables us to state that ass.uption (C4) is essential for

the validity of Theorem 3.4 and generally cannot . weak ned.

4. Various Increment Formulas of the O. *ective Functional by Com-

ponents

In this section, considering separat. cac s, drst- and second-order increment
formulas of the objective functione. ') w. h respect to the components are ob-
tained along an admissible process (u ‘-),z°(-)), where u%(t) = (v°(t),w°(t))7,
vO(t) e V(t), t eI, and w®(t) e W(.) tel. The results of this section are aux-
iliary and play an importe .. _~le in the proof of the theorems in the following

section.

4.1. First-Order Inc emre it F rmulas

To obtain first order 1.. .ement formulas, we consider the following various
cases.

Case 1.1 Ass mptions (A1), (B1) and (C1) hold true.

Let (6,9,4) T_1xV(0)xU(t1—1) be any fixed point. Consider the special

variatior of tie acmissible control u°(-) = (v°(-),w°(-))T in the form

ul(t), teI~{0,t; -1},
u(t;p1,€) = (v(e),w’(0))T, t=0, (14)
1, t=t; - 1.

Hei, 1 = (0,0,14), and the vector function v(¢g) :]0,41 ] - V(0) is the solution

. the following equation:

F(2°(8),0(),w"(8).0) - f(8) = Az f(),e €10, 7], (15)

14
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where 47 := (@) €]0,1] exists by Definition 2.1, and
Apf(t) = f(a®(t), 0,0 (), t) = f(2°(),0° (1), °(2,1). (16)

Note that the existence of v(g) :]0,71] = V() follows “:om (C*) and Definition
2.1, and it is clear that for every € €]0, 41 ], the function u\ 1., is an admissible
control.

Consider an admissible process (u(-;p1,€), 2 *p1,6)" [t is obvious that the
increment x(t;p1,e) —2°(t) =t Az(t;p1,€), t € [U{t1}, = €]0,71], is a solution to
the system

Ax(t+1ipi,e) = f(a(t) + Ax(ts, €) ultipi,e),t) - f(1),

Az(t;pr,e) =0, te{to,to+. ... 7}

(17)

Considering (14) and (15), the system (17) can be written in a clearer manner:

0, to—1<t<b,
eAsf0), t=0,
Ax(t+Lipr,e) =4 f(x(t,, €) uO(t),t) - f(t), b<t<t, 1, (18)
\af b1 -1)
+Ap(t-1pr 0y f (@0 (B = 1), 0,8 = 1), t=ty -1,

where € €]0,7-], ud

Aﬁ./ /+'1 - 1) = f(xo(tl - 1),1),t1 - 1) - f(tl - 1)7
Az (t- —1;p1,5)f(-r0(t1 - 1); ﬁ/7t1 - 1) (19)
= f(m(tl - 1;p17‘€)aﬁ7t1 - 1) - f(xo(tl - 1)7ﬁ>t1 - 1)

Le us #pply the steps method. Then, using Taylor’s formula considering

B1), w obtain from (18)
||A$(t,p1,€)|| < R(p1)€7 te Ia €€ ]07:5/1] ) [N((pl) > 07 (20)

v.here || - || is the Euclidean norm and K (p;) is some number.
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Furthermore, taking into account (19),(20) and (B1), for Ay ¢,—, ¢y @®(t1 -
1),1,t; — 1), we easily obtain the followings:
Az(tl—l;pl,s)f(xo(tl - 1)7’&7t1 - 1) =

fo(2®(ty = 1), 4, t1 - 1) Ax(ty - p1,€) + o(e),

(21)

||Az(t171;p1,s)f(x0(t1 - 1)’ﬁ7t1 - 1)” <KO L)€, :(pl) > 0. (22)

Here and throughout the paper, we will use e 0(e™) » 0 as € > 0, with m > 0.
Let us now calculate the increment S(u(-,,e,, 5(u’(:)) = AS(u’(-);p1,¢),
where u(t;p1,¢€), t € I, is defined by (14> < . . (t1) = f(¢t1 - 1), by (18) and
(19), the following equality holds:
AS(u(-);p1,e) = (2 (1) + Az(t, v1,e)) - ®(2"(t1))
= (2"t - D)it = D)+ Ay o (0 ( - D) 0t - 1)) (23)
- ®(f(t1-1)), £€]0,7].
From (23), considering (2%) a..? (Al) and using the Taylor expansion at the
point f(2%(t; —1),4,t; — .\ we ¢ dtain
AS(u(-);prie) = 3T f(t 1))+

(I)g(f(l‘o(tl -1 ‘~ﬁat1 - */)Ax(tlflml,E)f(xO(tl - 1)7’0’at1 - 1)) + 01(6)7

(24)

where

A (t1=1)) = O(f(a"(tr = 1), 8,11 = 1)) = D(f(t:1 - 1)). (25)

Folle -in, [15! we introduce the vector function 1/0)(75; @), t € I, as the solution

of th” unear di.crete system
O(t-130) = LGt a), tef{to+1,....t1 -2},
bt - 2;a) = f1 (2t - 1), .t — 1) (t - 1;), (26)
Dty — 1) = ~0, (f(2°(t — 1), 0,81 — 1)).

_ et us continue the calculation of AS(-) by considering (21) in (24). Then, by

(26), the expansion (24) takes the form

16




AS(u(-);prre) = Aa®(f(t - 1)) e
- JJT(tl -2;u)Ax(ty — 1;p1,e) +ox(e),e €10,

Here and throughout the paper, we denote oy (¢) as a total re 1ainder term.
Let us now calculate the second term in (27). Tt ¢ < ? .. ¢; — 2}. Then,
from (18), taking into account (20) and applying “av’.r’s ormula, we obtain
Ax(t+1;p1,¢) = fo(£)Ax(t;p1,e) + 02(g;t), te{by,..,t1 -2} (28)
Consider (28) in the following identity:

OT(ty - 2;0) Ax(ty - Lpr,e) [T L Ax(015p1,e)

t1-2 o o
+ Z [wT(t;ﬂ)Aﬂc(t+1;p = "/'T(t—l;a)Ax(t;pl,s)].
=0,

Then, by (26), for iT(tl - 2;u)Aa v, -1;,1,€), we easily obtain the following
representation:

T (= 2 0)Aw(t - 15p1,e) = 97 (0; @) Ax(61;p1,€) +ox(e).  (29)
Therefore, taking into iccount (29) in (27) and considering the equality
Ax(01;p1,e) =eAsf (1) (see \_")) and the definition of the function H(-), for
AS(u(-);p1,€), we _te.n th o first-order increment formula of the form

AS("()ipr e, - Da®(f(ti =1)) —eAgH (050) +0x(e), € €]0, 7). (30)
where
AsH(t:0) = 07 (8@) Ao f (1). (31)

Case .. As'amptions (A1), (B1) and (C2) hold true.
I opy=100,w,a)el 1 xW(0)xU(t;—1) be an arbitrary fixed vector param-
eter. Simila: to (14), let us define a variation (with respect to the component

v) of the admissible control u°(-) = (v°(-),w°(-))? as follows:

ul(t), telI~{0,t; -1},
u(t;p2,e) =1 (0°(0),w(e))”, t=0, (32)
, t=1t; - 1.

17
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Here, the vector function w(e) :]0,42] — W(0) is the solution * the .. llowing
equation:

f(xO(Q),vO(H),w(s),é') - f(e) = EA’LDf(e)? €€ 10-’72J ~—107 1]7
where Ay f(0) is defined similarly to (16). Note that the exi tence of w(e) :
10,%2] = W(0) follows from (C2) and Definition 2 ..

In this case, using (32) and applying step by step. * che s -heme used to obtain
the formula (30), for increment S(u(-;pa,e)) - S(u"?)) =t AS(u°(-);p2,€), we
easily obtain

AS(O()ip2,e) = Da®(f(ti 1)) —eA=Hl4 ) v o5(e), £€]0,7%2],  (33)
where
AgH(t0) =0 #a)Ag f(1). (34)

Case 1.3 Assumptions (A1), (B1), (©°2) and (C5) hold true.
Consider the special variation 0. “he admissible control u%(-) = (v°(-), w%(:))T

in the form

fuo(t , tel~{0,t; -1},
u(t;p ) \(2°(0), w(e)T, t=6, (35)
i t=1t;-1.

s
Here, p3 := (0,%,1), w'ore 6 € I_1, w € W(0) and @ € U(t; — 1) are arbitrary
fixed points, o(e) = w’() +e(w - w(0)) e W(H), £ € ]0,73] c ]0, 1], where the
existence cf 43 .. ~(w) follows from (C5) by considering Definition 2.1.

Cons der .n a’'missible process (u(-;ps,e),z(-;ps3,€)). Similar to (18), con-

siderir= (B2), © r the increment x(-;p3,e) - 2°(-) = Axz(-;p3,¢), we can write

0, to-1<t<0,
efu(0) (@ —w’(8)) +o(e), t=9,
Nl 1ips,e) =9 f(x(t; ps,e),ul (L), t) - £(1), O<t<ty—1, (36)
Aaf(ti-1)
+ A (11— 1ps,0) f (@0 (t1 = 1), 0,81 = 1), t=ty -1,

18




s where € € ]0,93]; Aaf(+) and Ay (s, —1;py,¢) f(+) are defined simila.'v to 9).

From (36), similar to (20) - (22), we obtain
|Az(t; ps, )|l < K (ps)e, t € I, €]0,73], K (ps) >0,

Am(tl—l;pg,e)f(xo(tl - 1)7ﬂ7t1 - 1) =

fo(2O(ty = 1), 0, t1 = D) Az(?, - 1:m3,6) + 0(e),

18t 1,00 (@0t = 1), 8,01 = 1] € K(pa)e, 4 (ps) > 0.
Following the scheme used to obtain formula (30, and taking into account
(25), (26), (35)-(37), (A1) and (B1), for in.veme. 5(u(-;p3,e)) - S(u’(})) =
AS(u°(+); p3, €), we have

AS(’(-)ips,e) = Aa®(f(ti =1 FT(A:a)Aw(0+1;p3,€) + 05 ().

Therefore, considering Az(0 + 1;p. N =¢",(0) (@ - w°(0)) +o(e) (see (36)) in

the last equality, we obtain the follow.ng nrst-order increment formula:

AS(u°(-);p3,€) = Ag®(f(t1 - 1)) - &Hi(@;ﬂ)(ﬁ) —w’(0)) + oy (), €€]0,73].
(38)

N

4.2. Second-Order Inc ement =" rmulas

We next consider " follr wing various cases for obtaining the second-order
increment formul -

Case 2.1 Assumptios (A2), (B3), (C1) and (C3) hold true.

Define t}: ve cor parameter in the form ¢; = («,0,61,0,w, %), where « €
R, :=]0,+ o[, 0 Ho,to+1,..;t1 -3}, 01 =0+1, 0V (0), weW(f;) and i €
U(t1-1; ~re .y f zed points. Consider an admissible process (u(-;c1,€),z(-;¢1,€))
and t'.c mcremont z(-;c1,€)-2°(-) = Ax(-;c1,¢), where u(-;¢1,¢) and Ax(-;¢1,¢€)
are ¢ ~fined ¢ ; follows:
ul(t), telI~{0,0,,t; -1},
u(tien,e) - | VEON =0 (39)
(v (01),w(e)", t=01,

i, t=t; -1,
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Az(t+1;c1,e) = f(2°(t) + Az(t;cr,e),u(t;cr,e) ©) — (),

Ax(t;cl,e) = O, te {to,to + ]., ,0}

(40)

20 Here, the vector functions v(e) : ]0,v1] = V(0) and w(.:10 ;] - W(61) are

defined implicitly as follows:
(a) v(e) :]0,v1] = V(0) is a solution of the “llowine :quation:

F(@®(0),v(e),w"(8).0) = f(8) = e N f(F),e €]0,m],

where A;f(0) is defined by (16), and 7. (= «, by, v =7(0)€]0,1].

(41)

First, by assumption (C1) and Definition .. the solution of equation (41) as

a vector function v(+) exists; second, by « v sidering (41) and equality u(6;c1,¢) =

(v(e),w?(0))T from (40), we have

Az(01;c1,e) =ansf(0),c€]0,m],

||A£L’(91, 5)“ .y 357 66]0,’}/1], K:K(Cl) >0,

5

2%(01) + Az (€ ser,e) « 35(2”(601)),€ €10,97], 71 = min{y1, ——}.

K+1
(b) w(e): o, 1] = W(61) is a solution of the following equation:
f(SU(Pi;Cl,»\ 00(91),11)(5),91) - f(fﬂ(el;01,5)790(91)771)0(91)791)
= €Auvf(x(91;6175)a1}0(‘91)’w0(‘91),91), e€]0,77],
wher 2 z(0; -1, €) = 2°(6,) + Az(61;¢1,¢) and
Aﬁ,‘, (£(01;01,5),v0(01),w0(01),91)

= (2(01;¢1,8),0°(01),@,01) - f(x(01;c1,2),0°(61),w’(61),61).

(45)

(46)

r, (23), (44), (46) and Definition 2.2, the solution of equation (45) as a vector

Jmction w(-) exists.
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In this case, for S(u(-;e1,e)) = S(u°()) = AS(u’(-);c1,¢,, the .« lowing
second-order increment formula holds:
AS(P();e1,e) = Ag®(f(t1 - 1)) — e[aAsH(0;0) + Agrx [%;0)]
- %[aw((e,@);a) +20N((01,0); @) As f(0) + £ 1((0r,0 5 @)]  (47)
+oy(e%),e€]0,77].
Here, Ay ®(f(t1-1)), AsH(0;4) and Ay H(61;u, ~te Gouned by (25), (31) and

(34), respectively, and

M((r,p);t) = A fT (D) W(r; @) A F(T) (= Y e{(0,9),(01,W)},  (48)
N((01,@);8) = AgHT (01;0) + A fT(01) W (01;2) f(61), (49)

AgHy (0r50) =470, D0F 000),0°(00),@,01) = f(01)],  (50)

e

»s  where the matrix function W(#: 4), t €1, is defined as the solution of the linear

discrete system [15]

U(t-15a) = [Tty 057 ) folt) + Hop (), te{to+1,.ts —2},
Uty —2a) = f, 0t = 1), .t - 1)U (t; - 1;4) 1)
x fo (200 =1 ity 1) + Hop (b(t — 1), 2%(t1 — 1), 4,81 — 1),

Uty La) - P (f(20(t — 1), 0,1~ 1)).

It shou. be noted that i(t;ﬁ), t € I, defined by (26) and \i/(t;ﬁ), tel,
corr: spond . » the admissible control @(t),t € I, where 4(t; —1) =4 € U(t; — 1),
and iy N = () = (O(t),w ()Tt e Iy,
290 The droof of (47) is presented in Appendix A.
- _e 2.2 Assumptions (A2), (B3), (B4), (C4) and (C5) hold true.
Again, we start with a vector parameter ¢ = (@, 0,0, w, 1), where « € Ry,

t=I_1,0eV(0), weW(0)and @€ U(t;—1) are arbitrary fixed points. Consider
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also the variations of the admissible control u°(-) = (v°(-),w%(-),” of 1. 2 form

u®(t), teI~{0,t, 1},
u(ties ) ={ (v(e), ()T, t=0, (52)
i, t=t; - 1.
Here,
w(e) = w’(#) + ea(w - w’(#)) € Bs(w’(8)) nWw ‘8), £€]0,72], (53)

where v = min{(1+a) y(@), (1+a) (1 +]w w"(0)]])16} (the scalar () €
10,1] exists by (C5) and Definition 2.1) a.. ! it is clear that v € ]0,1]; the vector

function v(e) : ]0,72] = V(0) is a sol- ... - ~f the following equation:

F(@%(0),v(c),w(e),0) =y °(6), °(0),w(e),0) =

(54)
=e[f(2°(0),0,w(e), > F(2"(0),0°(0),w(e),0)],€ €10,72] -

Note that the existence of w(e) : ]0,v2 | > W(0) follows from (C5) and Definition
2.1, and the existence of (g): |\ y2] = V() follows from (C4) by considering
(53) and Definition 2.2 Ou. v 1y, for every € € ]0,72], the function u(-; ca,€)
is an admissible cont ol.

In this case, fr S(uy 2,¢)) - S(u’(-)) =t AS(u’(-);c2,¢), the following

second-order incceme..’ formula holds:
ASU’() .6 =
Na @S (t1 = 1)) —e[AsH(0;0) + aHE (0;0) (0 - w’(6))]

2. ) (55)
= 7 [M((8,0); 8) + 2002((0, 0); @) (w - w’(9))
+ a2 (- wo(ﬂ))Té(G; a) (0 - w(0))] + 02(82), €€]0,72].
fere, 17((A,); @) is defined by (48), and
Q(0,0); ) = Ay Hy, (0:0) + Mg f T (0) W (6;0) fu (6), (56)
G(050) = [ (0)W(8; @) fuu (6) + Huo (65 ), (57)
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where Az HI(6;1) is analogously defined by (50).
The proof of (55) is presented in Appendix B.
Case 2.3 Assumptions (A2), (B3), (B4), (C1) and (Cb, ™ .d true.

Consider the variations of the admissible control 2 *(-) = ‘v%(:),w’(-))T of

the form
u®(t), tel {7,601, -1},
w(tics.) - (v(e),w ()T, t=9, (58)
(°(01), w(e)”, t="
U, oL -1
Here,

300 (a) ¢z = (,0,01,0,%,4), where a . Ry, 0 € T4~ {t1 — 2}, © € V(0),
weW(61) and 4 e U(t; — 1) are arb.‘ra. ~ fixed points;
(b) the vector function v(e; v, ,l,] = V(0) is a solution of the equation

~

F@®(0),0(e), "> 0) = f(8) = A f(6), £ €]0,4(9)], (59)

where Az f(0) is define 1 by (<) and the existence of v(-) follows from (C1) by
considering Definitic » 2.7; an .

(c) the vector unction s(¢):]0,75] = W(61) is defined as
w(e) = w’(01) + as(@ - w’(01)),€ €10,75], (60)

where 75+ (1+. ) 1y (), the existence of w(-) and v(w) € ]0,1] follows from
25  (Ch) an De miti n 2.1.
Fe  _very v. _tor parameter c3 and for all € € ]0,v3], where 73 = min{y(?),75},
the i« mction 1(t;¢3,¢), ¢ € I is an admissible control.

.n this case, for S(u(-;cs3,€)) — S(ul(+)) =t AS(u®(-);e3,¢), the following
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second-order increment formula holds:
AS(u’(-);e3,6) = Aa®@(f(t - 1))~
elAGH(0;) + aH,, (01;@) (@ - w’(01))]
- I((0.9):8) + 20 47 (0) P(91:3) (- °(61)
+a®(@-w’(01)) "GO ) (@ - w’(01) ]+, P), £ €]0,98],
where M(-) and G(-) are defined by (48) and (51, respectively, and
P(0130) 1= Hy (0130) + fO0) 5 92 0) fu (61). (62)

The proof of (61) is given in Appena. - C.

5. Proofs of Theorems
Recall that
Up(t1 —1)={a:0eU,-1), Ag®(f(¢t1-1)) =0}, (63)

where Az ®(f(t1 —1)) ie lefined 1y (25).

Here, we present p oofs ot “.aeorems 3.1 - 3.5.

Proof. of Theorem 3.1 L~ tb . conditions of the theorem, the increment formulas
(30) and (33) ar* va.'1. Then, along an optimal process (u°(-),2°(-)), for every
p1 = (0,0,4) .l pa = (0,w,4) and for all € € ]0,min{71,72}[, the following

inequalities 1. '

AS P (D pr,e) = Ag®(t — 1) —e[As H(0;0) + £ oy ()] 2 0, (64)

AS u(-)ip2.e) = Na®(ts - 1) - e[AgH(0;0) +e og ()] 20, (65)

vhere " € 11, 0 € V(0), w € W(0) and @ € U(t; — 1). The inequality (4)
t lows .rom (64) and the arbitrariness of ¢ € ]0, min{%;,72}[. Furthermore,
v o Luequality (5) follows from (64) considering (63), the arbitrariness of ¢ €
L0, min{d1, %2} and the definition of oy (g). Similarly, we obtain the proof of
the inequality (6) from (65). O
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Proof. of Theorem 3.2 Since (A1), (B1) and (C1) hold, formu.. (30, ‘5 valid.
Then, along the optimal process (u°(:),2°(+)), inequality (“4) = ~lds. Thus, as
in the proof of Theorem 3.1, we obtain the validity of inequ. ™ jies (4) and (5).

Moreover, since (Al), (B1), (B2) and (C5) hold, fc .mula 38) can be used.
Then, for every ps = (0,w,4) € .y x W(0) xU(t; —1) a. 1 for .Ul € €]0,73], the
increment (38) is nonnegative along the optimal - roce . “u®(-),z°(-)). There-
fore, considering (63), the arbitrariness of € € |0, 32| and t".e definition of ox.(¢),

we obtain the validity of inequality (7). O

Proof. of Theorem 3.3 By the conditions ot . » theorem, for every vector pa-
rameter ¢; = («,0,61,0,w,4) and for all ¢ = |0,~5 |, formula (47) is valid. Then,
considering (63) and Definition 3.1, "= ¢ Up(t; — 1) and for all o € V,(0),

weWy(01), aeR, and € € ]0,~1 ], form. "a (47) takes the form

AS((Yier,e) = - —[a= 1((0,0):0) (66)

+2aN((01,0);0) A f (0, + M((01,@);4) +e 205 ()]
Thus, since along the op mmal « ntrol u°(-), the increment AS(u’(-);cy,¢) is
nonnegative, taking intn acc. 't he arbitrariness of € € ]0,~7] and the definition

of ox.(g?), we easily pta’1 th~ validity of (10) from (66). O

Proof. of Theor- n 3.4 by the conditions of this theorem, for every
co = (a,0,0,w,4) and to. all € € ]0,72], formula (55) holds. Then, by Definition
3.1 and (9), .akir g into account (63), for & € Up(¢; — 1) and for all & € V;(0),
weWy(0) acelk, and € € ]0,72], formula (55) takes the form

|

AS(u { ey 2)=- : M((0,7);2) +2aQ((0,0); @) (@ - w°(0))

(67)
+a?(w - wO(H))T(o?(G; @) (0 - w’(0)) + e oz ()]

F_.ce, suice along the optimal control u%(-), the increment AS(u°(-);ca,¢) is

onnege ive, considering the arbitrariness of € € ]0,v2] and the definition of

ox(g~), we easily obtain the validity of (11) from (67). O

roof. of Theorem 3.5 Since assumptions (A2), (B3), (B4), (C1) and (C5) are
satisfied, for every 6 e I_1 \ {t; -2}, 0 e V(0), w e W(6;) and @€ U(t; — 1) and
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for all € € ]0,v3], formula (61) holds. Then, by Definitions 3.1 . ~d 3.., taking
into account (63), for @ € Uyp(t1 — 1) and for all © € Vp(0), se V-(0;), a e R,
and ¢ € ]0,~3], formula (61) takes the form
2
AS(u’(-);es,6) == %[M((G,ﬁ);ﬁ) + 2205 fT(O)P(C;0) (0 w(6r)) (68)
68
+ (0 - w’(0,))TG(0r;0) (0 - w (0:)) +e %05 (7)].

Thus, since along the optimal control u°(-), the 1.creme it AS(u®(-);e3,¢€) is
nonnegative, considering the arbitrariness of € € Ju,v3] and the definition of

oy (€?), we easily obtain the validity of (12) fro.. (62,. O

6. Perspectives and Open Problems

In this section, we provide a short 1is _ussion regarding the prospects that
are open to the researchers of opu w..~1 ccitrol problems when using the new
approach to optimality conditi~~< inti. duced in this paper.

First, to demonstrate the apphc tion of studying DOCPs with respect to
the components of vector < uuu. 1, we have considered a simple discrete optimal
problem. However, we be."~ve th' t our approach may be applied to more com-
plicated discrete opti- 1al r ontrot problems, such as the problems with terminal
equality and inequ-lity ons’.aints, problems with a delay, and infinite horizon
discrete time op? ... ! control problems. Future research may examine whether
our approach . indeed be applied to such optimal control problems.

Second, i. thi, study, we have obtained optimality conditions with respect to
the comp nent*s ot .ector control in the form of a global maximum principle by
using ass.. ~ otio” 5 (C1), (C2), and (C5). However, these assumptions may not
hold .or sor = DOCPs. In this case, first- and second-order necessary optimality
condi ‘ons v ith respect to components can be obtained in the form of a local
naxim. m principle.

Fin- ly, we use assumption (C3) to prove Theorem 3.3. As noted in section
o - . is not easy to determine whether (C3) holds in the application of Theo-
.~m 3.3. Therefore, it is interesting to investigate whether assumption (C3) is

essential for the validity of Theorem 3.3.
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7. Conclusions

In this paper, we have established more constructive fi’ st- & .d sccond-order
necessary optimality conditions under lightened convexi* - assu. »tions. These
results are obtained by introducing a new approach th t weake 1s such assump-
tions. This approach studies optimal control proble ... witw .espect to the com-
ponents of vector control, and it is more characte. ‘«*’; for discrete rather than

the continuous optimal control problems.
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Appendices

AppendixA. Proof ,f Fo. - .fa (47)

Consider an admis.’ le 7 cocess (u(+¢1,€),z(+¢1,€)), where an admissible
control u(+;e1,e) 15 lefined by (39), (41) and (45). Then, taking into account
(39), (42), (4% -nd the inequality 7 < =1, we can write the system (40) as

follows:
{0, to-1<t<4,
50[A5f(9), t=0,
. : 0 0
Amlts: o)- €Awf(x(91,cl,5),v (61),w (91),91)
+Aﬂ?(91;61,6)f(91)7 t=0q,
fla(tier,e),u®(t),t) - £(t) 0r<t<ty-1,
Aaf(t=1) + Apy-tier,0f (@0t = 1), 0,1 = 1), t=t; - 1.
(A1)
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Here, € € ]0,77], z(t;c1,e) = 2%(t) + Ax(t;cy,e), Asf(0) is ac’ned v, (16),
Aaf(r) and Ay, -1;6,,6)f(-) are analogously defined by (79), »nd L\fuf(-) is
defined by (46).

From (A.1), similar to (20)-(22), taking into accov it assv nption (B3) and
(43), we obtain

||A*T(t; Clvs)” < K*(Cl)sv le I’ €€ ]077f] ) :’*(Cl) 2 K(Cl)' (A2)

Aa:(tl—l;cl,e)f(xo(tl - 1)7ﬂ7t1 - 1) =

(A.3)
fo(2O(ty = 1), 0, t1 — DNAz(t; - 1;¢1,€) +o(e),

||Az(t1_1;c1,5)f(370(t1 —1),4,t - M<a(cr)e, e€]0,77], K(cl) >0. (A4)

Now, let us calculate the in. <.~ AS(u’(-);c1,€). Similar to (23), we can

write
AS(UO(')501,5) :‘I’(f(xo ti=1), 0t -1) + Aw(tl—l;cl,s)f(xo(tl -1),4,t, - 1))
(- )
(A.5)
From (A.5), con .. ~ing (A.4) and assumption (A2) and using the Taylor ex-
pansion at the _ ~int f(z’(t; —1),4,t; — 1), we obtain
ASW ()i e, Aa®(f(t-1)) + ADSWO();eq,e) + %A@)S(uo(-); c1,€) +o(e?),
(A.6)
wher . Ay ®/ f(11 — 1)) is defined by (25), and

AVSW rer,e) = @Y (F(a (b = 1)t = 1)) Aty reer.oy f (2 (81 = 1), a0ty — 1),
(A7)

AP SWO();er,8) = Aty 1ier oy f (@ (b1 = 1), a0ty — 1)

(A.8)
x q)r'r(f(xo(tl - 1),ﬁ,t1 - 1))Aw(t1—1;61,6)f(x0(t1 - 1)aﬁ7t1 - 1)
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By (26) and the definition of the function H(-), the formula * 7) v kes the

form

A(I)S(UO()’ 6175) = _Aw(tl—lgcl,a)H(/(Z)(tl - ].;’lAL),.T(‘\bl - 1), W7t1 - 1)

From the last equality, according to (A.2), assumption 2 and Taylor’s for-
mula, we have the following representation for AC)S( .7(- ;¢y,¢€):
AWSWO(iere) = —Hy ($(t - ;i) 2t - 1), 0, — DAzt - Licr,e)
1 o
- §AxT(t1 — 11, ) Hyw(W(ty - 1;0),2%(t, -1),0 + = 1)Ax(t; - 1;¢1,€) + 01(€?).
(A.9)
Furthermore, substitute (A.3) int [* ® T1anen, by (51), we have
APS(WO(Yser,e) = =AaT(t -+ o ), T(a®(t - 1), ity - 1)V (t - Ly)x
 fo(20(t = 1) &+ = VAz(t; - 1;¢1,€) + 02(e?), €€]0,7]].
(A.10)

Substituting (A.9) and (#.10) in.» (A.6) and taking into account (26) and (51),

we obtain

AS(U’(Yserve, = 2a® f(t = 1)) =97 (1 - 20) Ax(ty - Liep,€)
1 ) (A.11)
—EAxT(tl ~1 ¢, V(t; - 2;0)Az(ty - Lycp,6) +ox (%), €]0,77 ]

Let us nor ca. :ulate the second term in (A.11). According to the definition

of H(-) and (a. ), we have the followings:

1ZT(el; v \/‘\ “:(9? 6175) = EA’LDH(qz(el;a)wT(el?Chg)av0(91)7w0(91)a01)
+Z\m(91;cl,\\H(91;a)a QLT(H;'I_AL)A.’E(Ql;ChE) :€OZA{,H(9;'IAL), (A12)
DT (1, A+ Lie1,8) = Ay o) H(1), te {02, 11 -2},

Ne, firs , consider (A.12) in the following identity

:Tftl - 2;u)Ax(ty - 1;¢1,¢€) = zZT(Q;ﬂ)Ax(Hl; c1,€) + QZT(Hl;ﬁ)Ax(Qg; €1,€)

-2 -2
+ Y YT (B a)Ax(t+1er,e) = Y T (E- La)Ax(tyer,e).
t=04 t=01
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Then, taking into account (26), (50), assumption (B3) and the T~vlor [rmula,

we easily obtain
Pl (t - 20) Ax(ty - Le1,e) = e[@Ag H(050) + A H (0154) )

t1-2
+ 2aAg HT (615 0)An f(6) + é S AcT(te1,8) Hoo(t 0) At c1,) + 05(2).

t=01

(A.13)
Next, we calculate the third term in (A.11). Tvom (A '), taking into account
(A.2) and Taylor formula, we have the following deco 1positions:
Ax(01;c1,€) =ealsf(0), Ax(ba;c1,e) =enn, f(b1)+ fo(01)Ax(015¢1,¢€) + ox(e;601),
Ax(t+1;c1,e) = fo(t)Ax(t;c1,e) +o(esr,  te{ba,...,t1 —2}.
(A.14)

Let us consider (A.14) in the folloring 1" »ntity:

AxT(tl - l;cl,s)i'(tl -2;0)Ax(t) — . c1,¢) = AJ:T(Gl; 01,6)@(0;11)A:c(91; €1,€)

v —2 .
+ Az (095¢1,8)U(01;0)Ax(Oa;c1,e, Y. Az (t+ 1ier,e)U(ta)Ax(t + 1yc1,€)

t=05

t1—-2 .
- Z Az (tye1,e)U(t— - a)Ax( ;e1,¢), €€]0,77].
t=01

Then, by (51), we o} .ain
AzT(ty - 1e0,6)0 (8 - 25 Ax(ty — 1ie1,e) = 2[a®As fT(0)U(0;0) Ay £(0)
+ 2000, T(01)0(0150) (1) A £(8) + Agp fT(6:) U (6150) A £(61)]

t -2
- Azt (t;c1,e) Hpy (t;0) Az (t; c1,€) + 05 (62).
91

(A.15)
As a result lev us consider (A.13) and (A.15) in (A.11). Then, taking into
acco. 1t (48) and (49), for AS(u°(-);¢1,¢€), we obtain formula (47).

AnpendixB. Proof of Formula (55)

Consider an admissible process (u(-; ce,€),2z(+; ca,€)), where u(-; co,e) is de-

fined by (52)-(54). Then, similar to (A.1), by (52)-(54) and considering (19),
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for the increment z(+;c2,€) —2°(-) =t Az(+;c2,¢), € €]0,%2], we .~ wriy.

0, to—1<t<6,
el£(2°(0), 9, w(e),0)
Ax(t+1ic2,8) =~ f(2°(8),0°(0), w(e),0)] + Ao £ (0, t=9,
f(x(t;co,e),ul(t),t) - £(t) O<t<t—1,
Aaf(ti—1) +Dpytiene)f (@0 =1yt t1—1), =t -1
(B.1)

From (B.1), similar to (20)-(22), taking into ac. ~unt assumptions (B3), (B4)

and applying Taylor’s formula, we obtain ti. followings:
Az (t;ca,e)|l~ O(e), (t,€) € Ix]0,72],

Am(tl—l;CQ,E)f(xO(tl = 1)7’&7 f - 1) =
fe(@®(t1 = 1), % t1 = 1)Az(t; - 1;¢,¢) + 0(e),
||Aw(t1—1;cz,5)f\a"u(7’l N 1)772’ tl - 1)” ~ 0(5)7 €€ ]0772] .
These will be used to » btain "~ aulas below.
Applying an app ~ac sim iar to the scheme used to obtain (A.11), by (25),
(26), (51), (52), (">.1) ana ssumptions (A2) and (B3), for AS(u’(-);e2,¢), we

obtain a decompositio.. ‘n the form

AS(WO(-) 70,2, = Aa®(f (1 = 1)) =" (81 - 2@) Aw(tr - L2, )
B.2)
1. - . (
- iA' St - 1ice,e)U(t - 2;0)Ax(ty — 1;¢9,¢) + o5 (€2),6 €10, 72] .
Le’ _s now, similar to (A.13), calculate the second term in (B.2). Using the
defir ‘tion of he function H(-) and the identity

ti-2
Z;T(t1 - % u)Ax(ty - 1;¢c9,€) :1/)T(9;12)A1:(91;62,6) + Z 1/;T(t;1l)Aas(t +1;¢9,€)

t=01

t1-2 N
- Z wT(t_l;ﬁ)Ax(t;027E)7

t=01
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considering (26), (52), (53), (B.1) and assumptions (B3) and (b~ and pplying

Taylor’s formula, we obtain

OT (4 = 250) Ax(ty — 1;¢0,6) = e AgH(0;0) + eaHL (00 0 — . °(0)+
2 2

s HE (6:0)(0 - w”(6)) + o (= w(0)) Ho %) ~u0(0)) (3.3)
+ ltlz? Azt (t;co,6) Hpp (t;0) Az (t; co,€) + 05 (€ ).
=0,

We next, similar to (A.15), calculate the third ter.» in (B.2) using the iden-
tity

A:rT(tl - 1;02,5)\i1(t1 -2;0)Ax(t) — . o9,e) = A:rT(Gl; 02,5)@(9;Q)Ax(01; €2,€)

t1-2 . t\1_‘2 .
+ Az (t+1;¢0,)U(t;0)Ax(t+1; »,e — 2. Azt (t;c0,e)U(t - 1,0)Ax(t; ca, 1)
t:91 t:01

and considering (51), (53), (B.1) and as. 'mptions (B3) and (B4). As a result,

we have the following decompos. ‘on:

Az (ty - 1;¢0,6)U(ty -2, 0, Nty — 1yc0,8) =
=2 [AsfT(O) U (B 1) - F(O) + 2085 fT(0)T(0; 1) fur () (@ - w'(6))

wa2(d—w®(8)) T 0:i) fu(0) (6 - w'(0))] (B-4)

t1—
- Az (t: ~ &) Hpprt; 1) Ax(t; co,€) + 05 (¢2), € €]0,72] .
t=04

Then, substit «tin ; (B.3) and (B.4) into (B.2) and considering (48), (56) and
(57), we obtai.. Hrmula (55).

Apig endixt . Proof of Formula (61)

Corsider an admissible process (u(-; cs,€),z(+;c3,€)), where u(+;c3,¢) is de-
1ned by (58)-(60). Then, similar to (A.1), by (58) and (59) and considering
O and (19), for the increment z (v e3,€) — 2°(+) =2 Az(;e3,¢), € €]0,73], the
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following equality is valid:
0, to-1<t<4,

EA@f(0)> t= 93

Au(t+15e3,€) = f(2°(61) + Az(Brscs,€),0°(61),w(e), ) — 1 \61), =61,

f(],‘(t;Cz;,&‘),uO(t),t)—f(t), 01 <t<ity -1,
Aﬁf(tl_1)+Aw(t1—1;0375)f(1“\'. —;),ﬁ,tl—l), t=t;-1.
(C.1)

Using (C.1), let us step by step apply an appro. ' similar to the scheme used
to obtain formula (A.11). Then, taking in.~ account (25), (26), (51) and as-
sumptions (A2) and (B3), for AS(u" \;cr <, we obtain

AS(u0()icse) = Aa®(f(tr - 1) = T (1 = 250)An(ty ~ 15c3,€)

1. 4 ) , (C.2)
—§Ax (t1 = L;¢3,8)U(t1 — 25 0N Aw e, — 1ie3,8) +ox(e%), £ € ]0,73].
Let us now calculate t . .. ~ond and third terms in (C.2). First, similar to

(A.13), considering (16), ‘26), (3 ), (C.1) and assumptions (B3) and (B4) and

applying Taylor’s forr .ula we easily obtain
DT (t - 20)A (tr - 1,7 €)= e[AgH(0;0) + aH o (0134) (@ - w’(61))]

+ %[of(w = (01,7 Huno (015 0) + 2085 [T () Hao (61 0) ) (0 = w° (61))
t1=7

1 .o
*3 S 2o (tiezie)Hyo(t0) Ax(tc3,¢) + 05 (€2), € €]0,73].
1 .01

(C.3)

Furt’ ermor >, similar to (A.15), considering (16), (51), (C.1) and assumptions
(B3) nd (R:), we obtain
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AzT(ty - 1;e3,8)U(ty - 2;0) Ax(ty — 1;05,2) = €2 [AsfT () 2(0: > Asf(6)
+ 200 FT(0) fT(01) U (010 foo (61) (0 — w0 "))
+ 0 (1 = w’(01))" £ (01)0(01;8) fu 01) (- w'(61))]

t1-2

Z AxT(t;c;;,s)Hm(t;ﬁ)Ax( ;C3, 7, " 02(52), €¢€]0,7vs].

t=61

(C.4)
s Thus, we substitute (C.3) and (C.4) into (C.?). Thea, considering (48), (57)
and (62), for AS(u°(-); c3,¢), we obtain formu ~ (61).
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