
ar
X

iv
:1

51
2.

05
68

5v
2 

 [c
s.

D
B

]  
11

 J
an

 2
01

6

TermPicker: Enabling the Reuse of Vocabulary Terms by
Exploiting Data from the Linked Open Data Cloud

An Extended Technical Report

Johann Schaible
GESIS - Leibniz Institute for

the Social Sciences
Germany

johann.schaible@gesis.org

Thomas Gottron
WeST - Institute for Web

Science and Technologies
Germany

gottron@gmail.com

Ansgar Scherp
ZBW – Leibniz Information

Centre for Economics,
Germany

Knowledge Discovery, Kiel
University, Germany
a.scherp@zbw.eu

asc@informatik.uni-
kiel.de

ABSTRACT
Deciding which vocabulary terms to use when modeling data as
Linked Open Data (LOD) is far from trivial. Choosing too gen-
eral vocabulary terms, or terms from vocabularies that are not used
by other LOD datasets, is likely to lead to a data representation,
which will be harder to understand by humans and to be consumed
by Linked data applications. In this technical report, we propose
TermPicker: a novel approach for vocabulary reuse by recommend-
ing RDF types and properties based on exploiting the information
on how other data providers on the LOD cloud use RDF types
and properties to describe their data. To this end, we introduce
the notion of so-calledschema-level patterns(SLPs). They capture
how sets of RDF types are connected via sets of properties within
some data collection, e.g., within a dataset on the LOD cloud.
TermPicker uses such SLPs and generates a ranked list of vocabu-
lary terms for reuse. The lists of recommended terms are ordered by
a ranking model which is computed using the machine learningap-
proach Learning To Rank (L2R). TermPicker is evaluated based on
the recommendation quality that is measured using the Mean Aver-
age Precision (MAP) and the Mean Reciprocal Rank at the first five
positions (MRR@5). Our results illustrate an improvement of the
recommendation quality by29− 36% when using SLPs compared
to the beforehand investigated baselines of recommending solely
popular vocabulary terms or terms from the same vocabulary.The
overall best results are achieved using SLPs in conjunctionwith the
Learning To Rank algorithmRandom Forests.

1. INTRODUCTION
When modeling Linked Open Data (LOD), engineers employ Re-
source Description Framework (RDF) vocabularies to represent their
data as LOD. An RDF vocabulary is a collection of (unique) vocab-
ulary terms, i.e., RDF types (also referred to as ”classes“)and prop-
erties, that represent a model about a certain domain. It is consid-
ered best practice to choose RDF types and properties from existing
vocabularies, i.e., reuse vocabulary terms, before defining propri-
etary terms to create a LOD model. This reduces heterogeneity in
the data representation by generating some ontological agreement
with other data providers [18]. However, finding vocabularyterms
that areappropriate for reuse is far from trivial. Prominent ser-
vices, such as the, Linked Open Vocabularies catalog (LOV) [34],
vocab.cc [31], and others, can be used to find specific RDF types
and properties based on string search. LOV also provides an op-

portunity to use SPARQL for exploiting T-Box information onvo-
cabularies and their terms, i.e., Linked Data engineers cansearch
for equivalent RDF types or properties viaowl:equivalentClass or
owl:equivalentProperty, for sub-classes and sub-properties viardfs:
subClass or rdfs:subProperty, or for other relations between vocab-
ulary terms which are defined within the vocabularies. However,
these services do not exploit any A-Box information, unlessa vo-
cabulary is pointing to datasets that use the vocabulary. Services
like LODstats [3] go a step further and use A-Box informationto
provide detailed statistics on the usage of vocabularies and vocab-
ulary terms. However, none of these services provide information
on how data providers on the LOD cloud combine the RDF types
and properties from the different vocabularies to model their entire
dataset.

Thus, selecting appropriate vocabulary terms for reuse canstill
be time-consuming, if one intends to reuse terms that other LOD
providers use for publishing similar data. One has to identify such
LOD providers among the amount of different datasets on the LOD
cloud and examine their data on instance-level, i.e., browse through
resources and examine of which RDF type they are and which out-
going properties they have.

In this paper, we introduceTermPicker:1 a novel vocabulary term
recommendation approach enabling the reuse of vocabulary terms
by exploiting already published datasets on the LOD cloud. It pro-
vides Linked Data engineers a possibility to choose RDF types and
properties used by other LOD providers in a manner that is similar
to the engineers’ needs.

To leverage the information how other LOD providers modeled
their data, one needs to induce some structural informationabout
which vocabulary terms were used to model entities and theirre-
lationships. In this paper, the structural information is captured by
so-calledschema-level patterns(SLPs). A schema-level pattern is
a tuple describing the connection between two sets of RDF types
via a set of properties. For example, the SLP

({swrc:Publication}, {dc:creator}, {foaf:Person})

1This is a preliminary URL for the review process:http://
bit.ly/termpicker-eval, last access 9/14/15
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Feature Computation

{F (slpq, x1), ..., F (slpq, xn)}{F (slpq, x1), ..., F (slpq, xn)}

Recommender of vocabulary terms:

Ranking Model

query input

query output IV

I
II

III

RDF types for subject: 

properties: 

RDF types for object:

query-SLP: slpq = ({swrc:Publication}, ∅, {swrc:Person})slpq = ({swrc:Publication}, ∅, {swrc:Person})

{x1, ..., xn}{x1, ..., xn}

̺(F (slpq, x1)), ..., ̺(F (slpq, xn))̺(F (slpq, x1)), ..., ̺(F (slpq, xn))<dc:BibliographicItem,...,xm ><dc:BibliographicItem,...,xm >

<dc:creator,swrc:author,...,xk ><dc:creator,swrc:author,...,xk >

<foaf:Person,dc:Agent,...,xl ><foaf:Person,dc:Agent,...,xl >

Figure 1: Example. A Linked Data engineer models data as LOD illustrating publications and a persons, who are the corresponding
creator of a publication. She decided to reuse the SWRC vocabulary and has already chosen to useswrc:Publication and swrc:Person.
TermPicker uses this information and provides her with RDF vocabulary term recommendation from other vocabularies, such as
FOAF, which were used by other LOD providers along with the chosen vocabulary terms. In detail, TermPicker’s input is the
query-SLP slpq = ({swrc:Publication},∅, {swrc:Person}) (step (I)). In step (II), the query-SLP is extended by a recommendation
candidatexi from the set {x1, ..., xn} of all terms published on the LOD cloud, and five features are calculated for each extended
query-SLP. The resulting feature valuesF (slpq, xi) are used by the ranking model in step (III) to order all vocabulary term recom-
mendations from most to least appropriate, before providing the ranked lists as output in Step (IV).

specifies that within one LOD collection (e.g. a dataset on the LOD
cloud) resources of RDF typeswrc:Publication are connected to
other resources of RDF typefoaf:Person via the propertydc:creator.
The input for TermPicker is such an SLP that is specified by the
user, i.e. the query-SLPslpq. TermPicker aims at extending the
query-SLP by recommending additional vocabulary terms, which
are used in other SLPs, which are calculated from existing datasets
on the LOD cloud, and that are similar toslpq.

The ranking of the recommendation candidates, i.e., vocabulary
terms extracted from vocabularies published on the LOD cloud,
is computed based on five features. Three of the five features rep-
resent thepopularity of the recommendation candidate, i.e., how
many data providers on the LOD cloud use the candidate, how
many providers use the candidate’s vocabulary, and what is the to-
tal number of occurrences of the candidate on the LOD cloud. The
fourth feature specifies if the recommendation candidate isfrom
a vocabulary that is already used in the query-SLPslpq. Finally,
the fifth feature is the so-called “SLP-feature”. It calculates the
number of SLPs computed from datasets on the LOD cloud, which
contain all terms fromslpq as well as the recommendation candi-
date. In other words, the SLP-Feature investigates whetherother
data providers on the LOD cloud have used the recommended term
in a similar SLP toslpq, i.e., in a similar manner. The output is a
set of three lists of vocabulary terms containing RDF types for re-
sources and properties connecting these resources. These lists are
ordered by a ranking model, which is induced from some training
data using the machine learning approachLearning To Rank(L2R).
Learning To Rank is a family of supervised learning algorithms to
establish a ranking over a set of items, in our case vocabulary terms,
by observing a general coherence between the utilized features and
the relevance of an item.

Figure 1 illustrates TermPicker’s general workflow and its com-
ponents, such as the computation of the features and the rank-
ing model̺. Let us assume, a Linked Data engineer wants to
model some data as LOD illustrating publications and each pub-
lication’s creator. She decided to reuse the SWRC2 vocabulary
and has already chosen to useswrc:Publication and swrc:Person.
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In a first step, TermPicker receives the input in form of the query-
SLPslpq = ({swrc:Publication},∅, {swrc:Person}) (∅ denotes an
empty set). TermPicker uses this information and provides the en-
gineer with RDF vocabulary term recommendation from other vo-
cabularies, such as FOAF3, which were used by other LOD providers
along with the chosen vocabulary terms. To this end,slpq is ex-
tended with a recommendation candidate from a set of all vocabu-
lary terms{x1, ..., xn} that are published on the LOD cloud, and
the five features introduced beforehand are computed for theex-
tended query-SLP. The ranking model in the third step establishes
three ranked lists of vocabulary terms that represent TermPicker’s
output. One list contains RDF type recommendations for the re-
sources in subject position, another one contains the RDF type
recommendations for resources in object position, and the third
one comprises recommendations of properties to connect these re-
sources. As these recommendations contain RDF types and proper-
ties from other vocabularies, the engineer is helped in finding also
equivalent terms, which might better suit the engineer’s need, e.g.,
usingfoaf:Person instead ofswrc:Person.

We conduct a 10-fold leave-one-out evaluation to measure Term-
Picker’s recommendation quality in different situations,in which
one needs to select a vocabulary term for reuse. The recommenda-
tion quality is assessed using the Mean Average Precision (MAP)
and the Mean Reciprocal Rank at the first five positions (MRR@5).
As gold standard, we do not rely on human judgment, but rather use
an automated held-out approach, i.e., before providing TermPicker
with a query-SLP, we randomly extract several terms from this SLP,
and solely the extracted terms are considered relevant; each other
recommended term is considered irrelevant. We perform suchan
evaluation using data from the Billion Triple Challenge 2014 [20]
as well as from the DyLDO seed-list [19] dataset. The query-SLPs
for training and testing the ranking model are computed fromten
different pay-level domains (PLDs), which have a relatively high
ratio between reused vocabulary terms and all terms describing the
data. The triples and the calculated SLPs from the remainingPLDs
represent the datasets that are already published on the LODcloud.
The calculated SLPs from nine PLDs are used to train the ranking
model and the calculated SLPs from one PLD are used to validate

3
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the ranking model. As the SLPs are computed from real-world data,
they vary by different vocabulary terms and by the number of con-
tained vocabulary terms. To evaluate different ranking models, we
use the L2R algorithms contained in the RankLib4 library, which
provides an entire framework to train and evaluate diverse ranking
models. Summarizing, the main contributions of this paper are:

(i) Evaluation of the diverse Learning To Rank algorithms con-
tained in the RankLib library that are used to calculate a
ranking model for TermPicker’s recommendations.

(ii) Evaluation of the SLP-feature’s impact on the recommenda-
tion quality by comparing its recommendations to the base-
lines of recommending solely popular vocabulary terms and
recommending terms from an already used vocabulary [29,
24].

(iii) Evaluation of the different recommendations regarding whether
to choose an RDF type for resources in subject position of a
triple, an RDF type describing resources in object position,
or to pick a property, as this reflects different real-world LOD
modeling scenarios [27].

The paper is structured as follows: Section 2 describes the notion
of schema-level patterns in detail and depicts how they are com-
puted from RDF triples. Section 3 illustrates the general work-
flow of the proposed recommendation approach including a de-
tailed description of the five features and a brief introduction to
L2R. The evaluation of the proposed approach is described inSec-
tion 4, whereas the results of the evaluation are illustrated in Sec-
tion 5. TermPicker and the evaluation results are discussedin Sec-
tion 6. The related work is discussed in Section 7, in which wealso
differentiate TermPicker’s approach to existing tools andservices,
before we conclude the paper.

2. SCHEMA-LEVEL PATTERNS (SLPS)
When reusing vocabularies with the goal to preferably result in
some ontological agreement in data representation, one must inves-
tigate how other Linked Data providers modeled their data. Inves-
tigating solely the specification or documentation of vocabularies
does not provide such information. To know which propertiesare
used to connect resources of specific RDF types, existing datasets
published on the LOD cloud must be investigated on instance level,
i.e., one must browse through the data. This can be very time con-
suming, specifically as the number of datasets on the LOD cloud is
rising.

To alleviate the situation, we introduce the notion of schema-level
patterns (SLPs). They illustrate how the resources from a dataset
on the LOD cloud are connected. For example, the schema-level
pattern

slp = ({foaf:Person, dbo:ChessPlayer},

{foaf:knows}, {foaf:Person, dbo:Coach})
(1)

illustrates that resources of typesfoaf:Person anddbo:ChessPlayer
are connected to resources of typesfoaf:Person anddbo:Coach via
the propertyfoaf:knows. Such SLPs can be calculated from existing
data sets on the LOD cloud, i.e., the SLPs are calculated based on

4
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1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-

ns#>

2 @prefix foaf: <http://xmlns.com/foaf/0.1/>

3 @prefix dbo: <http://dbpedia.org/ontology/>

4
5 <http://ex1.org/sports_001>

6 rdf:type foaf:Person;

7 rdf:type dbo:ChessPlayer;

8 foaf:knows <http://ex1.org/employee_002>.

9
10 <http://ex1.org/sports_002>

11 rdf:type foaf:Person;

12 rdf:type dbo:Coach.

Listing 1: Fictive RDF triples in Turtle syntax. The RDF trip les
specify that a resource of typesPerson and ChessPlayer knows a
resource of typesPerson and Coach

Table 1: Tabular overview of the variables that are used and
explained in Section 2.1 and Section 2.2

Variable Definition

V Set of all vocabularies on the LOD cloud
T Set of all RDF types from all vocabularies inV
P Set of all properties all vocabularies inV
slp A schema-level pattern withslp = (sts, ps, ots)
sts Subject type set withsts ∈ P(T): RDF types de-

scribing a resource in subject position of a triple
ots Object type set withots ∈ P(T): RDF types de-

scribing a resource in object position of a triple
ps Property set withps ∈ P(P): properties interlinking

resources of types insts andots
DS The set of datasets that are published on the LOD

cloud
G A graph representing a dataset such thatG ∈ DS

(s, p, o, c) An RDF quadruple consisting of a subject, property,
object, and a context URI whereG can be found

an RDF triple representation, such as N35, Turtle6, or others. The
SLP in equation (1) is calculated from the fictive RDF triplesin
Listing 1.

SLPs provide an easy to use possibility for investigating how other
data providers on the LOD cloud have modeled their data without
having to look into the data itself. Thus, choosing vocabulary terms
that are recommended based on SLPs will eventually result inan
ontological agreement in data representation.

In the following we define schema-level patterns formally (cf. Sec-
tion 2.1) and describe how they can be computed from existing
LOD sources in Section 2.2.

2.1 Formal Definition of Schema-Level Patterns
For a better overview, the most important variables used to define
SLPs are enlisted in Table 1.

Let V = {V1, V2, ..., Vn} be the set of all vocabularies used by
datasets on the LOD cloud. Each vocabularyV ∈ V consists
of vocabulary terms that are either an instance ofrdfs:Class or
rdfs:Property, such thatV = PV ∪ TV , wherePV is the set of

5
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all propertiesp andTV is the set of all RDF typest in vocabulary
V . Accordingly,T =

⋃

V ∈V
TV is the set of all RDF types and

P =
⋃

V ∈V
PV the set of all properties on the LOD cloud. The

formal definition of an SLP is

slp ∈ P(T)× P(P)× P(T) (2)

whereP(T) is the power set of all RDF types andP(P) the power
set of all properties on the LOD cloud. Based on this, an SLP isa
tuple

slp = (sts, ps, ots) (3)

wherests ∈ P(T) is the set of RDF types describing resources
in subject position of a triple,ots ∈ P(T) the set of RDF types
describing resources in object position of a triple, andps ∈ P(P)
the set of properties interlinking the resources of types insts and
ots.

To operate with SLPs, we define the two operators⊕ and⊖. The
commutative⊕ operator combines two SLPs:

slpi ⊕ slpj := (stsi ∪ stsj, psi ∪ psj , otsi ∪ otsj) (4)

It can also be used for extending an SLP with a further vocabulary
term by adding it either to the setssts, ps, or ots. In detail, the
operator⊕sts adds an RDF type to the setsts, operator⊕ots adds
a RDF type toots and the operator⊕ps adds a property to the set
of propertiesps. This is specifically useful for examining whether
a query-SLP is used in combination with a recommendation candi-
date by other data providers on the LOD cloud. The operation to
remove terms from an SLP via the⊖ is defined accordingly. The
operator⊖sts removes an RDF type from the setsts, operator⊖ots

a RDF type fromots and the operator⊖ps removes a property from
the set of propertiesps. An example for first removing a property
from an SLP and subsequently extending the SLP with an RDF
type for resources in object position would be as follows:

slp =({foaf:Person}, {dc:date},∅)⊖ps dc:date

=({foaf:Person},∅,∅)

slp =({foaf:Person},∅,∅)⊕ots foaf:Image

=({foaf:Person},∅, {foaf:Image})

The relationship “≤” between two schema-level patternsslpi and
slpj illustrates that one SLP can be asubsetof another SLP. It is
defined as

slpi ≤ slpj , iff (stsi ⊆ stsj) ∧ (psi ⊆ psj)

∧ (otsi ⊆ otsj)
(5)

and illustrates thatslpj contains more or at least as many vocab-
ulary terms asslpi. The strict relationslpi < slpj defines that
at least one setstsi, psi, or otsi is a proper subset ofstsj , psj ,
or otsj , respectively. Such a relation is useful for comparing two
SLPs, especially to inspect whether a query-SLP in conjunction
with a recommendation candidate is a subset of other SLPs calcu-
lated from datasets on the LOD cloud.

2.2 Computing SLPs from Linked Open Data
Let DS = {G1, G2, ..., Gm} be the set of all data sources on the
LOD cloud. Hereby,G denotes the graph of the data source and
can be considered as a set of quadruples with

G = {(s, p, o, c) | s ∈ URI∪ BN, p, c ∈ URI,

o ∈ URI∪ BN∪ LIT}
(6)

whereURI is a set of URI’s,BN a set of blank nodes, andLIT
a set of literals. A triple consists ofs, p, ando with s being the
subject,p being the property, ando being the object of a triple.
The context URIc specifies where graphG can be found. Func-
tion λ(G) = {slp1, slp2, ..., slpk} defines the set of SLPs that
are computed from the according graphG. The specification of
λ : DS → SLP is

λ(G) = {(sts, ps, ots) | ∃ s, o :

(∀ ts ∈ sts: (s, rdf:type, ts) ∈ G)∧

(∀ p ∈ ps : (s, p, o) ∈ G)∧

(∀ to ∈ ots : (o, rdf:type, to) ∈ G)}

(7)

Hereby,SLP is the joint set of schema-level patterns that are com-
puted from each graphG ∈ DS

SLP =
⋃

G∈DS

(λ(G)) (8)

An example for calculating an SLP from a graphG is provided in
Equation (1), which illustrates a computed SLP from the datalisted
in Listing 1.

3. PICKING VOCABULARY TERMS USING
SLPS

Besides illustrating how resources of specific RDF types arecon-
nected to each other, schema-level patters can be used to recom-
mend vocabulary terms for reuse. TermPicker’s input is an SLP,
i.e., the query-SLPslpq. It is extended with a vocabulary term
x from the set of terms from all data sources on the LOD cloud
(x ∈ (T ∪ P)). These vocabulary terms are considered to berec-
ommendation candidates. Subsequently, TermPicker compares the
extended query-SLP to all SLPs inSLP. Each SLPslpi with

slpi ∈ SLP and (slpq ⊕sts x) ≤ slpi ∨

(slpq ⊕ps x) ≤ slpi ∨

(slpq ⊕ots x) ≤ slpi ,

(9)

is an SLP that uses vocabulary termx in combination with the terms
in slpq. Thus, vocabulary termx can be generally considered a
goodrecommendation candidate for reuse. For providing meaning-
ful recommendation candidates, the query-SLP must not be empty,
i.e.,slpq 6= (∅,∅,∅), otherwise each termx would be considered
a good recommendation. Also, for better readability of the paper,
we generalize the extension of a query-SLP
slpq = (stsq, psq, otsq) by a termx with

slpq ⊕ x := stsq ∪ x ∨ psq ∪ x ∨ otsq ∪ x (10)

that specifies:slpq is extended with a vocabulary termx by adding
termx either to the setstsq, psq, or otsq.

However, considering solely the existence of SLPs fromSLP that
use a recommendation candidatex in combination with the terms in
slpq, might not be sufficient to provide most reasonable recommen-
dations. To rank each recommendation candidate frommost appro-
priate to least appropriate, one should also encounter the popular-
ity of the recommendation candidate and whether it is from a vo-
cabulary that is already used in the query-SLP [29, 24]. Thus, one
must first define a set of features representing each of these aspects
of the recommendation candidates. A ranking model then putsthe
recommendation candidates in order by using these features. Es-
tablishing a general ranking model based on observing coherences
between the features manually is a challenging task. Therefore,



Table 2: Overview of the utilized features. The features are
computed for every recommendation candidatex ∈ (T ∪ P)

Feature Definition

f1
Number of datasets on the LOD cloud using the rec-
ommendation candidatex

f2
Number of datasets on the LOD cloud using the vo-
cabularyVx of recommendation candidatex

f3
Total number of occurrences of recommendation
candidatex on the LOD cloud

f4
Whether the recommendation candidatex is from a
vocabulary that is already used in query-SLPslpq

f5
Number of SLPs inSLP that contain recommenda-
tion candidatex in conjunction withslpq

TermPicker utilizes a Learning To Rank (L2R) algorithm thatob-
serves such coherences in an automatic way.

In the following, we describe and explain each feature that is used
to categorize a recommendation candidate as well as the features’
computation in Section 3.1. The machine learning approach Learn-
ing To Rank and how it is used to generate a ranking model for rec-
ommending vocabulary terms is briefly illustrated in Section 3.2.

3.1 Feature Computation
The set of features that categorize each recommendation candidate
x is enlisted in Table 2. This set of features was derived from [29],
which illustrated that the most common strategies and influencing
factors to choose a vocabulary terms for reuse is itspopularityand
whether or not it is from a vocabulary that is already used. Features
f1 to f3 represent the popularity of a vocabulary terms whereas
featuref4 specifies whether the recommended term is from a vo-
cabulary that is is already used in the query-SLP. Additionally, we
introduce featuref5 that calculates how many SLPsslpi ∈ SLP

exist withslpq ⊕ x ≤ slpi. Each of these features represent some
factor that an engineer might consider important in her vocabulary
term choice. However, none of the features encode the relevance
of a recommendation candidate directly. In Sections 3.1.1 to 3.1.3,
these five features are described in detail including the formaliza-
tions for their computation.

3.1.1 Popularity (Featuresf1 to f3)
Featuref1 comprises the number of datasetsG ∈ DS on the LOD
cloud using a recommendation candidatex. It is calculated by ex-
amining whether the termx is contained in an RDF triple/quadruple
of a graphG.

f1(x) = |{G | (∃ (s, p, o, c) ∈ G : p = x)∨

(∃ (s, rdf:type, o, c) ∈ G : o = x)}|
(11)

Featuref2 depicts the number of datasets on the LOD cloud using
the vocabularyVx of the recommendation candidatex. It is calcu-
lated similar to featuref1, but it examines whether the vocabulary
of termx is used in a triple of graphG.

f2(Vx) = |{G | (∃ (s, p, o, c) ∈ G : p ∈ Vx ∨

(o ∈ Vx ∧ p = rdf:type))}|
(12)

The total number of occurrences of the recommendation candidate
x on the LOD cloud is calculated by featuref3. In contrast to

the featuresf1 andf2, featuref3 is calculated by counting each
triple/quadruple, in which the vocabulary termx is contained.

f3(x) =
∑

G∈DS

|{(s, p, o, c) ∈ G | (p = x)∨

(o = x ∧ p = rdf:type)}|

(13)

Combined, these three features define the popularity of a vocabu-
lary term on a very fine-grained level. Whereas the total number
of occurrences of a recommendation candidatex depicts its overall
usage, the number of data sources usingx and its vocabulary spec-
ifies whether its usage is spread across many datasets on the LOD
cloud or concentrates on only a few ones. We do not normalize any
of the feature values, but rather use the absolute values, asthis en-
sures that valuable information would not be lost, i.e., normalizing
the feature values in our L2R based evaluation setup could lead to
false recommendations.

The benefit of reusing popular vocabulary terms is supposed to
enable an easier consumption of the data, as many Linked Data
consumption tools provide tailored support for popular vocabular-
ies [18]. This is also backed up by the recommendations of the
W3C when modeling LOD.7 In addition, it makes the data more
understandable for humans. TermPicker makes use of these fea-
tures, as they are also acknowledged by Linked Data practitioners
in a survey on their strategies and influencing factors to reuse a
vocabulary term or not [29].

3.1.2 Same Vocabulary (Featuref4)
Featuref4 indicates whether the vocabulary of a recommendation
candidate x is already contained in the query-SLP, i. e.,
slpq = (stsq, psq, otsq). The calculation returns a binary value,
where1 denotes that the vocabulary of termx is already used in
slpq, and0 if it is not contained inslpq.

f4(slpq, x) =







1 if ∃V : x ∈ V ∧
(stsq ∪ psq ∪ otsq) ∩ V 6= ∅

0 else
(14)

Reusing terms from the same vocabulary is considered as an impor-
tant strategy not only in the survey on vocabulary reuse strategies
described in [29], but specifically in certain domains such as the
statistics domain. There, it is accustomed to reuse primarily vocab-
ulary terms from SKOS8 or XKOS9 [24]. In other words, one might
want to search for vocabularies covering the domain of interest and
subsequently adapt RDF types and properties from those vocabu-
laries for particular needs. The reason for that: it seems quite likely
that one specific domain vocabulary, such as SKOS, contains many
RDF types or properties that can be reused for describing data from
that specific domain. Furthermore, reusing terms from the same
vocabulary reduces the overload of too many different vocabularies
and makes the data easier to understand for humans that are famil-
iar with the domain specific vocabulary [29].

3.1.3 The SLP-Feature (Featuref5)

7
http://www.w3.org/TR/ld-bp/#VOCABULARIES, last

access 12/12/15
8
http://www.w3.org/2004/02/skos/, last access

09/06/15
9
http://rdf-vocabulary.ddialliance.org/xkos.
html, access 09/06/15



The SLP-feature is calculated based on a query-SLPslpq that is
extended with a recommendation candidatex. The extended query-
SLPslpq⊕x is compared to existing SLPsslpi ∈ SLP, in order to
find SLPs with(slpq⊕x) ≤ slpi. The number of SLPsslpi ∈ SLP

with (slpq ⊕ x) ≤ slpi represents how often other datasets on the
LOD cloud use vocabulary termx in conjunction with the terms in
slpq.

f5((slpq ⊕ x) , SLP) = |{slpi | slpq ⊕ x ≤ slpi}| (15)

Using recommendations based on this feature is likely to result in
reducing heterogeneity in the data representation by relying on on-
tological agreement. The more SLPs inSLP use the recommenda-
tion candidatex in such asimilar way, the more appropriate does
it seem to reuse this term in order to eventually result in some on-
tological agreement.

3.2 Learning to Rank
Combined, featuresf1 to f5 describe each recommendation can-
didatex in a unique way. However, it remains unclear how these
features can be used to provide a ranked list of recommendations.
The feature values for each recommendation candidate mightvary
a lot, as in the following fictive example:

• (slpq ⊕ x1) = f1: 7, f2: 9, f3: 20,f4: 1, f5: 4

• (slpq ⊕ x2) = f1: 3, f2: 3, f3: 5, f4: 0, f5: 6

• (slpq ⊕ x3) = f1: 10,f2: 30,f3: 80,f4: 0, f5: 2

• (slpq ⊕ x4) = f1: 4, f2: 20,f3: 29,f4: 1, f5: 0

Immediately, the question arises which of these four recommen-
dation candidates can be considered the most appropriate term for
reuse. To rank these terms from most to least appropriate, one must
observe a general coherence between the features and the relevance
of each recommendation candidate. However, observing sucha co-
herence manually can be quite difficult. Rather, it must be observed
in an automatic way to learn the feature’s impact on the quality of
the recommendations.

In order to address this challenge, TermPicker makes use of the
machine learning approach “Learning To Rank” (L2R). Learning
to rank refers to a class of supervised machine learning techniques
for inducing a ranking model [23, 17]. In detail, a ranking model
̺ allows for determining relevant and irrelevant items for a given
information need. In our case, an information need corresponds to
the query-SLPslpq. The relevant and irrelevant items correspond
to the recommendation candidatesx ∈ T ∪ P. The ranking model
̺ is derived from some training data by observing the mentioned
general coherence between the feature values and the relevance of
a recommendation candidate. Ideally, the derived ranking model
lists all relevant vocabulary terms high and before less relevant or
irrelevant vocabulary terms.

Formally, the ranking model (̺(F (slpq, x))) calculates a ranking
score for the recommendation candidatex, whereF (slpq, x) de-
notes the calculation of featuresf1 to f5 for the extended query-
SLPslpq by the recommendation candidatex. This way, each rec-
ommendation candidatex ∈ T∪P can be ranked based on the rank-
ing score in descending order. To establish such a ranking model,
one needs training data to derive a general coherence between the
feature values and the relevance of a recommended term. In our

case, the training data is a set of query-SLPs with existing rele-
vance information on each recommendation candidate. It contains
SLPs such as

slpq = ({swrc:Publication},∅, {foaf:Agent})

with the relevance information that e.g. for recommending prop-
erties solely the termsdc:creator andswrc:author are considered as
relevant. Using this information, an L2R algorithm iterates through
the training data to detect the beforehand mentioned coherence be-
tween the feature values and the relevance, such that the relevant
terms get ranked as high as possible. This way, the learned rank-
ing model can be used in new and previously unknown situations
with new and unknown query-SLPs. For example, a query-SLP that
was not part of the training set using terms from the CreativeCom-
mons10 ontology and from an ontology for managing presentations
at W3C11

slpq = ({cc:Work}, {w3:presenter},∅)

can get recommendations, such as the RDF typesfoaf:Person and/or
dc:Agent to reuse for resources in object position.

L2R algorithms are categorized in three different groups according
to their method for learning a ranking model [23]: (A)point-wise
L2R algorithms, (B)pair-wiseL2R algorithms, and (C)list-wise
L2R algorithms. A point-wise approach ranks vocabulary terms di-
rectly by allocating a ranking score to each recommendationcandi-
date individually. Pair-wise methods rank vocabulary terms solely
in a given pair of two recommendation candidates. This way, aterm
is considered a better recommendation compared to the termsin a
lower ranking position. List-wise approaches rank recommenda-
tion candidates by optimizing the quality measure of the result list,
such as the Mean Average Precision (MAP). They examine which
coherence between the features provides the highest measure, e.g.,
the highest MAP value, and use the derived ranking model assum-
ing the quality measure is as high in new situations.

In particular, the pair-wise and list-wise approaches havedemon-
strated good performance in generic ranking scenarios [6].How-
ever, it is of interest for our use-case to determine which ofthe
approaches, i.e., point-wise, pair-wise, or list-wise, perform better
in our setting of recommending vocabulary terms for reuse.

4. EVALUATION
The proposed approach is evaluated using a 10-fold leave-one-out
evaluation. Each fold comprises atraining setto induce the rank-
ing model, atest setto evaluate the ranking model, and a set rep-
resenting datasets that are already published on the LOD cloud to
calculate featuresf1 to f5. We investigate different ranking mod-
els and thus TermPicker’s recommendation quality based on the
aspects that depict the main contribution of this paper:

(i) Comparison of all Learning To Rank algorithms containedin
the RankLib library that provides a framework for inducing
and evaluating a ranking model. The three most competitive
Learning To Rank algorithms are examined in detail, i.e., in
our evaluation these three algorithms wereCoordinate As-
cent[26], LambdaMART[36], andRandom Forests[4].

10
http://creativecommons.org/ns#, last access

09/06/15
11
http://www.w3.org/2004/08/Presentations.
owl#, last access 09/06/15



(ii) Comparison of using the SLP-feature (f5) to using features
f1 − f3 (baseline of reusing only popular vocabulary
terms) [29] and to using featuresf1−f4 (baseline of reusing
popular vocabularies from the same vocabulary) [24] to in-
vestigate the impact of the SLP-feature on the recommenda-
tion quality.

(iii) Comparison of recommending RDF types for resources in
subject position of a triple, RDF types describing resources
in object position, and recommending properties, as this re-
flects different real-world LOD modeling scenarios [27].

The recommendation quality is measured using the Mean Average
Precision (MAP) and the Mean Reciprocal Rank at the first five
positions (MRR@5).

In the following, Section 4.1 describes the evaluation design in de-
tail. It is illustrated how the relevance of a recommendation can-
didate is defined, in order to enable the L2R algorithm to learn the
ranking model. In Section 4.2 it is explained which data was used
for the evaluation as well as how it was split to train and evalu-
ate the ranking model. It also includes statistics on the data and
the ten folds. Finally, we formalize the quality measures MAP and
MRR@5 to illustrate how the recommendation quality was calcu-
lated.

4.1 Evaluation Design
TermPicker’s recommendations are evaluated by simulatinga search
for an appropriate vocabulary term that can be reused. Thus,the
training set and test set, which are used to induce and evaluate the
ranking model, are disjunct sets of distinct SLPs. These SLPs are
used as input for TermPicker. However, before providing TermPicker
with these SLPs as input, one or more random vocabulary terms
are extracted from that SLP using the⊖ operator. These extracted
terms determine the set ofrelevantrecommendation candidates, as
they are the ones that have been initially used. All other recom-
mendation candidates that are not contained in the set of theex-
tracted terms are considered as irrelevant recommendations. This
way, for each query-SLP, the ranking model is provided (a) a set
of recommendation candidates, (b) five feature values categorizing
each recommendation candidate, and (c) the relevance of each rec-
ommendation candidate. The L2R algorithm uses this information
and observes a general coherence between the feature valuesand
the relevance of a recommendation [17].

For example, given an SLPslpj from the training or test set with

slpj = ({swrc:Publication}, {swrc:author}, {swrc:Person})

the propertyswrc:author is randomly extracted via the⊖ps opera-
tor.

slpq = slpj ⊖ps swrc:author

= ({swrc:Publication},∅, {swrc:Person})

The query-SLPslpq is now provided as input for TermPicker. The
output is a set of vocabulary terms, including a set of properties.
The previously extracted propertyswrc:author is considered a rele-
vant recommendation, as it was initially used inslpj . Every other
recommendation is considered irrelevant, as these terms were not
used inslpj . This makes it possible to induce and evaluate a rank-
ing model by interpreting a ranked list of recommendations

< dc:date, dc:title, swrc:author, ... >

in the following way: the first two recommendations are irrelevant,
and the first relevant recommendation is at the third rank of the
result list.

Such an evaluation can be performed fully automatically reflect-
ing many different real-life scenarios. Human assessment whether
a recommendation is relevant or not is not required. This helps
drastically to establish a first generalized ranking model using a
lot of data. Relying on human judgment would be very time con-
suming and difficult, as the manual assessment would take a lot of
time and one would need many different domain experts, in order
to correctly judge every recommendation candidate. The real-life
scenarios are represented by the many different query-SLPs. Each
query-SLP represents the Termpicker’s input provided by the en-
gineer, and the previously extracted term represents what the engi-
neer is looking for. Every recommendation candidate is assigned its
feature values. Sometimes the previously extracted term isused by
other LOD providers in conjunction with the query-SLP and some-
times not, which is reflected by the SLP feature value. Thus, the
SLP feature is only an indicator that a recommendation candidate
might be relevant, and therefore, the automatic evaluationprovides
every aspect in order to evaluate how much influence the SLP fea-
ture actually has on the recommendation quality.

4.2 Datasets for the Evaluation
To validate TermPicker’s recommendation quality, we perform two
separate evaluations. One evaluation uses the seed-list data of the
Dynamic Linked Data Observatory (DyLDO) [19]12 and the other
evaluation uses the Billion Triple Challenge dataset (BTC)
2014 [20]13 (crawl no. 1). We chose these two data sets, as they
represents parts of the LOD cloud in different way. For once,
DyLDO’s seed list, i.e., the set of URIs that form the core of the
data crawling, is different from the seed list of the BTC 2014dataset.
The seed list of the BTC 2014 dataset is sampled from the previous
year’s dataset, and the initial seed-list was gathered fromvarious
semantic search engines. DyLDO’s seed list comprises the220
most popular URIs selected from the BTC 201114 dataset based on
a PageRank analysis combined with another220 URIs from the
CKAN/LOD15 registry, which were not contained in the BTC 2011
dataset. This means that the DyLDO and the BTC 2014 datasets
contain different data, as it was crawled from different dataset on
the LOD cloud. Furthermore, DyLDO’s seed list makes about50%
of the entire data contained in the DyLDO dataset, whereas the seed
list of BTC 2014 makes only less than one percent, resulting in way
more data than in DyLDO.

DyLDO comprises a considerable amount of about10.8 million
triples from 382 different pay-level domains. In total there are
about2.3 million distinct vocabulary terms from about600 vocab-
ularies. The BTC 2014 dataset contains about1.4 billion triples, of
which we use solely34 millions, in order to keep the in-memory
SLP computation maintainable. These34 million triples are pro-
vided by3, 493 pay-level domains. Within these triples there are
about5.5 million distinct RDF types and properties from about
1, 530 different vocabularies.

12
http://swse.deri.org/dyldo/, last access 12/12/15

13
http://km.aifb.kit.edu/projects/btc-2014/,

last access 12/12/15
14
https://km.aifb.kit.edu/projects/btc-2011/,

last access 12/12/15
15
https://datahub.io/dataset?tags=lod, last access

12/12/15



Table 3: PLDs that were selected as test and training in the evaluations. The selection was based onC1 (PLDs that provided the
highest number of distinct vocabulary terms) andC2 (PLDs with the highest ratio between the reused vocabulary terms and all RDF
types and properties). The left half of the table shows the selected PLDs from the DyLDO dataset, whereas the right half shows the
selected PLDs from the BTC 2014 dataset

DyLDO BTC 2014
PLD (C1) (C2) # of SLPs PLD (C1) (C2) # of SLPs

kasei.us 100 1.00 121 b4mad.net 291 1.00 393
thefigtrees.net 89 1.00 102 derby.ac.uk 137 1.00 197

bblfish.net 82 0.99 150 heppnetz.de 121 1.00 199
wikier.org 96 1.00 133 ivan-herman.net 196 1.00 303

bl.uk 102 0.46 246 jones.dk 164 1.00 155
kanzaki.com 176 0.99 294 ldodds.com 115 1.00 125

taxonconcept.org 139 0.92 424 lmco.com 128 1.00 204
fundacionctic.org 110 0.97 390 mfd-consult.dk 192 1.00 315

data.gov.uk 258 0.93 920 mit.edu 174 0.96 293
bbc.co.uk 146 1.00 522 nickshanks.com 100 0.97 164

We regard a vocabulary simply by its URI namespace which is
specified by the W3C.16 This means that a vocabulary either uses
a hash namespaceor a slash namespace, i.e., the vocabulary of a
term is represented by the URI before the last occurrence of ei-
ther a hash or a slash. Therefore, we do not distinguish between a
vocabulary being of typeowl:Ontology, voaf:Vocabulary, or others,
and keep it as simple as possible. To differentiate which dataset
is under the control of which data publisher, we make use of the
the pay-level domain (PLD) calculated from the the context-URI c
contained in the data. A pay-level domain (PLD) is a direct sub-
domain of a top-level domain, such as.org or .com, or of a second-
level country domain, such as.deor .uk.17 Examples of pay-level
domains included in the BTC 2014 (about3, 500 PLDs) and the
DyLDO (about382 PLDs) dataset aredbpedia.org or bbc.co.uk.

A fully qualified domain name, such as the context-URI itself, would
over-exaggerate the diversity of the data, as it would also differ-
entiate data from different sub-domains. Hence, by referring to a
dataset published on the LOD cloudor a data publisher on the
LOD cloud, we refer to a PLD that specifies which data publisher
is in control of the data.

For each evaluation, the evaluation dataset is split by the pay-level
domains. The data from ten different PLDs is used as trainingand
test set, whereas the data from the remaining PLDs is used to simu-
late the data sets published on the LOD cloud. For each fold ofthe
10-fold leave-one-out evaluation, one of the ten PLDs is left out
and resembles the test set, whereas the other nine PLD represent
the training set. As mentioned before, both the test and training
set consists of the computed SLPs from the data of the according
pay-level domain(s).

The more query-SLPs are used to train and test the ranking model,
and the larger the data for calculating the features values,the more
representative are the generated results [6]. Thus, the tenpay-level
domains for training and testing are selected based on two criteria.

(C1) A high number of distinct vocabulary terms within a PLD
16
http://www.w3.org/2001/sw/BestPractices/
VM/http-examples/2006-01-18/#naming, last access
9/25/15

17To calculate the pay-level domain, we make use of the
Google guava library: https://code.google.com/p/
guava-libraries/, last access 9/28/15

(C2) A high ratio between the reused vocabulary terms and all
RDF types and properties used within a PLD

The high number of distinct vocabulary terms indicates thatre-
sources of various RDF types are interlinked via several different
properties. This way, it is very likely to calculate a high number of
distinct SLPs from that data. A negative example is a datasetmod-
eling several million instances of typefoaf:Person knowing other
persons, as this will generate solely one SLP. The high ratiobe-
tween the reused terms and all terms used to describe the datain-
dicates that most resources and their interlinking are described via
reused and not self-defined vocabularies. This enables to calculate
SLPs that most likely contain many reused terms, which is impor-
tant to generate valuable recommendations. Selecting PLDsfor
training and test sets randomly and not based onC1 andC2 is
very likely to result in poor evaluation results, as many PLDs ei-
ther do not use many different vocabulary terms or they use many
self-defined terms.

Table 3 provides an overview of the selected PLDs used for the
evaluations based on the DyLDO (left half of the table) and BTC
2014 (right half of the table) dataset as well as the numbers con-
sidering(C1) and (C2). Those PLDs that provided the highest
numbers in bothC1 andC2 were selected as test and training sets.
Furthermore, it displays the number of distinct SLPs that are calcu-
lated from the data of the selected pay-level domains.

Naturally, SLPs that are used to train the ranking model are dif-
ferent to the SLPs that are used to evaluate the model. The data
from the remaining PLDs that is used for calculating the features
contains117, 776 (DyLDO) and227, 010 (BTC 2014) SLPs, re-
spectively.

4.3 Evaluation Metrics
As a user, who searching for possible RDF types and properties for
reuse, is likely to browse only through the top-k vocabulary terms
(wherek is generally a small number such as5 or 10), it is impor-
tant to evaluate the ranking model by measures that use ordered sets
of vocabulary terms. We use the Mean Average Precision (MAP)
and the Mean Reciprocal Rank to the fifth position (MRR@5).
Both measures illustrate the quality of the ranking model well, as
they compute values using such ordered sets of vocabulary terms
(in contrast to basic measures such as precision and recall).



On one hand, MAP provides a measure of quality across recall lev-
els [25]. It illustrates the quality of the entire result list in which
the ranking position of the relevant vocabulary term is considered.
The higher the MAP value, the more relevant vocabulary termsare
ranked to the top positions of the result list. On the other hand, the
Mean Reciprocal Rank at the firstk results (MRR@k) investigates
the result list only to the rank position of the first relevantvocab-
ulary term [11]. In other words, MRR returns a metric specifying
the ranking position of the first relevant term.

In the following, we usek = 5. We define the set of query-SLPs
asQ = {slpq1 , ..., slpqn}. If the set of relevant vocabulary terms
for a queryslpqj ∈ Q is {rt1, . . . , rtmj

} andRjh (1 ≤ h ≤ mj)
is the set of ranked retrieval results from the top result until one
gets to the relevant vocabulary termrth, then theMean Average
Precisionand theMean Reciprocal Rankof Q defined as

MAP(Q) =
1

|Q|

|Q|
∑

j=1

1

mj

mj
∑

h=1

Precision(Rjh) (16)

MRR(Q) =
1

|Q|

|Q|
∑

j=1

1

|Rjh|
(17)

5. RESULTS
The results of the evaluation are presented in Figure 2 and Figure 3.
They illustrate the recommendation quality via box-plots based on
the MAP and the MRR@5 respectively. The figures depict the mea-
surements of the recommendation quality considering the aspects
(i), (ii), and (iii) introduced in Section 4. The three most competi-
tive L2R algorithms in the RankLib library are:Coordinate Ascent,
LambdaMARTand theRandom Forestalgorithm. The difference
between these three L2R algorithms can be observed by comparing
the three different rows in Figures 2 and 3. The varying recommen-
dation quality between the different set of features can be examined
by comparing the three columns of the Figures. Both reusing solely
popular vocabulary terms (marked as POP) and reusing vocabulary
terms from the same vocabulary (marked as SAME) resemble the
baseline, as they are considered current state of the art strategies
to reuse a vocabulary [29, 18]. Our proposed approach, marked
as “SLP-feature-based”, additionally uses the SLP-feature. Within
each plot, the x-axis displays the different recommendations of a
RDF type for resources in subject position (abbreviated as “sts”), of
a RDF type for resources in object position (abbreviated as “ots”),
or of a property (abbreviated as “ps”) for both the BTC 2014 and
the DyLDO dataset. Each box plot comprises the measured rec-
ommendation quality of the ten PLDs that were used as test sets in
the 10-fold leave-one-out evaluation. The plot that is marked bold
illustrates the configuration, i.e., which features and which L2R al-
gorithm, achieving the overall best recommendation quality.

(i) Differences between L2R algorithms.Comparing the
three most competitive L2R algorithms, one can observe thatthere
are no obvious differences between the algorithms when using solely
featuresf1 − f3 (baseline POP) or when using featuresf1 − f4
(baseline SAME). The median MAP and MRR@5 values are be-
tween0.3 and0.5 for each of the three algorithms. However, when
making use of all features including the SLP-feature, the differ-
ences of the median values are more noticeably. While the median
values using the algorithmsCoordinate AscentandRandom Forests
on the BTC 2014 data are between0.7 and0.8, the median values
usingLamdaMARTvary in average at0.6. Four other algorithms

from the RankLib library, i.e.,AdaRank[37], RankNet[5], Rank-
Boost[16], andListNet[7], did not provide such good results. The
median MAP and MRR@5 values were never above0.3, and there
was no increase of the recommendation quality between usingthe
different sets of features. Finally, the L2R algorithmMART [5]
was able to achieve a median MAP and MRR@5 value of about
0.5, but in total, MART’s successor, i.e., LambdaMART, provided
very similar but slightly better results. These results canbe ob-
served when using the BTC 2014 dataset as well as the DyLDO
dataset as evaluation data.

(ii) Impact of the SLP-feature.Comparing the different set
of utilized features, one can observe that the differences are more
visible when using the BTC 2014 dataset as evaluation data. There
is a slight increase in the recommendation quality, when adding
featuref4 to the set of features, i.e., the medians for the baseline
POP and the baseline SAME differ in average by about7%. When
adding the SLP-feature however, the median recommendationqual-
ity increases by about30% compared to the baseline of reusing
solely popular vocabulary terms (compared to POP). Even com-
pared to the SAME baseline, i.e., reusing popular vocabulary terms
from the same vocabulary, one can perceive an increase of therec-
ommendation quality by20%. Such differences between the sets of
utilized features are not as visible when performing the evaluation
on the DyLDO dataset. However, one can still observe that there
is only a small increase of the recommendation quality (< 7%)
of the baseline SAME compared to the baseline POP. Using also
the SLP-feature increases the median recommendation quality by
about15− 20% compared to the baselines POP and SAME.

(iii) Differences between recommendation types.Finally,
using all features (including the SLP-feature) and comparing the
recommendation quality between recommending RDF types forre-
sources in subject position, RDF types in object position, or proper-
ties, only slight changes (between5−10%) in the recommendation
quality can perceived. Solely the L2R algorithmLambdaMART
based on the BTC 2014 dataset has a higher median recommen-
dation quality when suggesting RDF types for resources in object
position (MAP= .83) compared to the medians when suggesting
a property (MAP= .63) and when suggesting an RDF type for a
resource in subject position (MAP= .5). The MRR@5 values are
very much the same.

In addition, Table 4 and Table 5 illustrate the average MAP and
MRR@5 values (including the standard deviation) for the evalua-
tions based on the BTC 2014 and the DyLDO datasets, respectively.
They underline the increase of the recommendation quality,when
adding the SLP-feature to the set of features, which is used by the
ranking model. For the BTC 2014 dataset, in average, using the
SLP-feature provides a higher MAP and MRR@5 value than us-
ing features to reusing terms from the same vocabulary (SAME)
by 29%, and comparing to the features for reusing solely popu-
lar vocabulary term (POP), it provides better recommendations by
36%. For the DyLDO data, these differences are not as distinctive,
but they are still13% compared to the baseline SAME and23%
compared to the baseline POP. Looking at Table 4, the L2R algo-
rithm Coordinate Ascentseems to provide the best results with a
MAP of MAP = .76 and an MRR@5 value of MRR@5= .81.
However, it does not perform as well based on the DyLDO dataset
(MAP = .43 and MRR@5= .55). Therefore, the overall best rec-
ommendation quality, which is calculated based on the values from
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Figure 2: MAP results. On the x-axis of each plot one finds the recommendations for RDF types for resources in subject position
“sts”, for properties “ps”, of for RDF types for resources in object position “ots”. The left part of each plot representsthe results
of the evaluation performed on the BTC 2014 dataset and the right part of the plots depicts the results using the DyLDO dataset.
The proposed SLP-Feature can be compared with the baseline reusing popular vocabularies (POP) and the baseline reusingpopular
vocabularies from the same vocabulary (SAME) for the three most competitive L2R algorithm from the RankLib library. The plot
marked bold depicts the overall best results, which is the Random Forests algorithm using the SLP-Feature.

Table 4 and Table 5, is provided by the L2R algorithmRandom
Forestsusing all features, including the SLP feature (MAP= .70
and MRR@5= .73).

6. DISCUSSION
The discussion is structured as follows: In Section 6.1, we dis-
cuss the results of the evaluation based on the three main contri-
butions of this paper, i.e., (i) the difference between the utilized
Learning To Rank algorithms, (ii) the impact of the SLP-feature on
the recommendation quality, and (iii) the difference between rec-
ommending RDF types and properties. We also provide insights
whether the measured differences are significant using the Fried-
man test (differences are significant with ap-valuep < .05) and a
Wilcoxon signed-rank test with a Bonferroni correction applied to
detect pair-wise differences (the correctedp-value for (i) to (iii) is
p < (.05/3 = .017)). In Section 6.2, we discuss the general use
of a Learning to Rank algorithm for providing vocabulary term rec-
ommendations, as well as the limitations of the utilized evaluation
design.

6.1 Discussion of the Results

6.1.1 Differences between the L2R algorithms (i)
From the eight L2R algorithms contained in the RankLib library,
solely four algorithms were able to provide recommendations with
an MAP above50% when making use of all features. Out of the
four algorithms with MAP< 0.5, two algorithms (RankNetand
RankBoost) are pair-wise approaches, and the other two algorithms
(ListNet and AdaRank) are list-wise approaches. The best per-
forming algorithm, i.e.,Random Forests, is a point-wise approach,
whereas the other ones (Coordinate Ascent, LambdaMART, and
MART) are all list-wise approaches.

Generally, list-wise and pair-wise approaches perform better than
point-wise approaches [1, 6]. However, in cases where thereis only
a binary relevance, i.e., a recommendation candidate is either rel-
evant or irrelevant, point-wise approaches perform better, if there
is solely one relevant recommendation candidate for most queries
[1, 6]. In our use-case, recommendation candidates have indeed
a binary relevance. Additionally, most of the query-SLPs used to
train and evaluate the ranking model contained mostly up to three
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Figure 3: MRR@5 results. On the x-axis of each plot one finds the recommendations for RDF types for resources in subject position
“sts”, for properties “ps”, of for RDF types for resources in object position “ots”. The left part of each plot representsthe results
of the evaluation performed on the BTC 2014 dataset and the right part of the plots depicts the results using the DyLDO dataset.
The proposed SLP-Feature can be compared with the baseline reusing popular vocabularies (POP) and the baseline reusingpopular
vocabularies from the same vocabulary (SAME) for the three most competitive L2R algorithm from the RankLib library. The plot
marked bold depicts the overall best results, which is the Random Forests algorithm using the SLP-Feature.

vocabulary terms. Therefore, based on the evaluation design, only
one or two vocabulary terms could be extracted, to provide rele-
vant recommendation candidates and to provide TermPicker with
a non-empty query-SLP. Thus, in our evaluation, we use a binary
relevance, and for most of the queries there are solely one ortwo
relevant recommendation candidates. Based on this, it is quite rea-
sonable that a point-wise L2R algorithm performs best.

This is underlined by the significant differences between the recom-
mendation quality using the algorithmRandom Forestsand the rec-
ommendation quality using the other L2R algorithms. The Fried-
man test, which compares the overall MAP and MRR@5 values
based on both the BTC 2014 and the DyLDO data using all fea-
tures, showed that these differences are statistically significant with
X 2 = 14, 000, p = .001. The Wilcoxon signed-rank with Bonfer-
roni correction applied proved that there is no significant difference
between using theCoordinate AscentandLambdaMARTalgorithm
(Z = −0.243, p = .808 n.s.). However, withZ = −2.492, p =
.013, the Random Forestsalgorithm provides significantly better
recommendation than theCoordinate Ascentalgorithm, and with

Z = −4.237, p < 0.001 it is also significantly better thanLamb-
daMART.

6.1.2 Impact of the SLP-feature (ii)
To discuss the impact of the features on the recommendation qual-
ity, we use the best performing L2R algorithm for each set of fea-
tures across both the BTC 2014 and the DyLDO dataset, i.e., for
the baseline POP that is the L2R algorithmLambdaMARTand for
the baseline SAME as well as for using the SLP-feature that isthe
algorithmRandom Forests.

With MAP ≈ .35, the average MAP value of recommendations
based on reusing solely popular vocabulary terms (baselinePOP)
is quite high. Specifically considering the fact, that the feature val-
ues describing the popularity of a recommendation candidate are
static, meaning they do not depend on the query-SLP. However,
such MAP values can be explained by the setup of our evaluation.
As we use real-life data for our evaluation, the relevant recommen-
dation candidates are vocabulary terms that actually have been used
by some ontology engineer to describe the data. The best prac-



Table 4: MAP and MRR@5 values for BTC 2014. Each row depicts the average MAP and MRR@5 values and their standard
deviation for the three most competitive L2R algorithms in the RankLib library and the set of features, i.e., baseline POP, baseline
SAME, and using the SLP-feature. The columns depict the difference between recommending a property or RDF types for resources
at subject or object positions of a triple. The overall recommendation quality of a L2R algorithm with a specific set of features is
illustrated in the two most right columns

sts ps ots overall
Model Featues MAP MRR@5 MAP MRR@5 MAP MRR@5 MAP MRR@5

CoordinateAscent POP .38 (.18) .49 (.15) .25 (.11) .27 (.11) .38 (.19) .41 (.19).34 (.16) .39 (.15)
SAME .48 (.16) .55 (.19) .31 (.10) .33 (.09) .39 (.18) .43 (.18).39 (.15) .44 (.15)
SLP .75 (.12) .83 (.10) .76 (.06) .78 (.08) .76 (.14) .81 (.10).76 (.11) .81 (.09)

LambdaMART POP .31 (.22) .39 (.21) .27 (.15) .28 (.14) .42 (.20) .45 (.20).33 (.19) .37 (.18)
SAME .34 (.21) .44 (.17) .33 (.13) .34 (.14) .49 (.19) .49 (.17).39 (.18) .42 (.16)
SLP .46 (.25) .61 (.18) .64 (.10) .73 (.12) .82 (.12) .86 (.09).64 (.16) .73 (.13)

RandomForests POP .32 (.20) .40 (.21) .26 (.12) .28 (.12) .45 (.17) .48 (.15).34 (.16) .39 (.16)
SAME .52 (.16) .56 (.15) .37 (.14) .39 (.14) .49 (.16) .50 (.17).46 (.15) .48 (.15)
SLP .72 (.11) .80 (.10) .75 (.10) .77 (.10) .78 (.12) .83 (.08).75 (.11) .8 (.09)

Table 5: MAP and MRR@5 values for DyLDO. Each row depicts the average MAP and MRR@5 values and their standard deviation
for the three most competitive L2R algorithms in the RankLib library and the set of features, i.e., baseline POP, baseline SAME, and
using the SLP-feature. The columns depict the difference between recommending a property or RDF types for resources at subject
or object positions of a triple. The overall recommendationquality of a L2R algorithm with a specific set of features is illustrated in
the two most right columns

sts ps ots overall
Model Featues MAP MRR@5 MAP MRR@5 MAP MRR@5 MAP MRR@5

CoordinateAscent POP .22 (.18) .37 (.23) .31 (.14) .31 (.14) .37 (.15) .43 (.13).30 (.16) .37 (.17)
SAME .26 (.16) .33 (.24) .29 (.13) .29 (.13) .39 (.13) .47 (.12).31 (.14) .36 (.16)
SLP .25 (.23) .43 (.21) .58 (.18) .60 (.19) .45 (.17) .63 (.14).43 (.19) .55 (.18)

LambdaMART POP .48 (.27) .54 (.33) .38 (.28) .39 (.27) .43 (.24) .48 (.16).43 (.26) .47 (.25)
SAME .48 (.26) .57 (.29) .40 (.26) .40 (.26) .41 (.23) .51 (.19).43 (.25) .49 (.25)
SLP .49 (.27) .56 (.27) .63 (.23) .63 (.24) .58 (.20) .56 (.21).57 (.23) .58 (.24)

RandomForests POP .44 (.29) .55 (.31) .35 (.28) .36 (.28) .43 (.25) .49 (.26).41 (.27) .47 (.28)
SAME .59 (.27) .65 (.24) .46 (.24) .46 (.24) .49 (.21) .52 (.21).51 (.24) .54 (.23)
SLP .65 (.26) .70 (.24) .63 (.25) .63 (.24) .64 (.17) .68 (.15).64 (.23) .67 (.21)

tices [18] recommend to reuse terms from popular vocabularies,
therefore it is very likely that the ontology engineer initially has
reused terms from popular vocabularies. This leads to a general co-
herence, which is trained by the Learning To Rank algorithm,that a
vocabulary term from a popular vocabulary is likely to be a relevant
recommendation candidate.

Recommendations based on reusing vocabulary terms from thesame
vocabulary (baseline SAME) have an MAP value of MAP≈ .43.
A Friedman test (X 2 = 51, 667, p < .001) and the following
Wilcoxon signed-rank test (Z = −1.692, p = .011) indicate that
this difference in the recommendation quality is still significant
compared to the baseline POP. However, it seems interestingthat
using the same-vocabulary-feature provides only an8% gain in
the absolute recommendation quality. Investigating the vocabu-
lary terms used in the query-SLPs showed that many query-SLPs
contain quite popular vocabulary terms, but they are rarelyfrom
the same vocabulary. In total, in43% of the SLPs in the training
and test set contained two or more terms from the same vocab-
ulary. That means: the vocabulary terms that are extracted from
an SLP before providing TermPicker with the resulting query-SLP
are rarely from the same vocabulary as the remaining terms inthe
query-SLP. Thus, the L2R algorithms are less likely to regard this
feature to provide more appropriate recommendations.

Using the SLP-feature increases the average MAP value up to
MAP ≈ .70. A Wilcoxon signed-rank test showed that using the
SLP-feature and comparing its recommendation quality to the one
of the baseline SAME, thep-value isZ = −4.782, p < 0.001.
Due to the transitivity of this relation, the recommendation quality
when using the SLP-feature is also significantly higher to the rec-
ommendation quality when using solely features to define popular
vocabulary terms (baseline POP). Such a result depict to which ex-
tend the SLP-feature is relevant for providing valuable vocabulary
term recommendations. Yet again, these results are based onus-
ing real-life data for calculating the query-SLPs for the evaluation.
If the recommendation quality using the SLP-feature is thatlarge,
one can argue that the utilized real-life data was initiallymodeled
by investigating which vocabulary terms other data providers have
used to model their data. However, as establishing an ontological
agreement in data representation is one central goal when reusing
vocabularies [18], the results indicate that using recommendation
based on the SLP-feature will eventually result in such a goal.

The evaluation based on the BTC 2014 data provides a more no-
ticeable gain in the recommendation quality when using the SLP-
feature than the evaluation based on the DyLDO data. In gen-
eral, the key aspect of providing valuable recommendationslies
in training the ranking model using representative data. Inour



case, this includes the query-SLPs that are used to train theranking
model, but also the data that is used to calculate the five feature
values for each recommendation candidate. Further investigations
have shown, that the feature values calculated based on DyLDO
data were less expressive compared to the feature values calculated
based on the BTC 2014 dataset. In other words, the evaluation
based on the BTC 2014 dataset provided an SLP-feature value of
f5 > 0 for 37% more relevant recommendation candidates than
using the DyLDO data. The ranking model, which was learned
based on the BTC 2014 data, therefore ranked recommendations
with an SLP-feature value greater than zero rather to the topof the
result list. This observation is validated by using the ranking mod-
els learned using the BTC 2014 data to rank the recommendation
candidates for query-SLPs calculated from the DyLDO data. The
resulting recommendation quality was15%− 20% higher than us-
ing a ranking model learned based on the DyLDO data. The reason
for such a difference in the recommendation quality is very likely
the number of SLPs in the setSLP, i.e., the SLPs that are calcu-
lated from existing datasets on the LOD cloud. Using the BTC
2014 dataset the number of such SLPs is twice as high compared
to the number of such SLPs using the DyLDO data. As it is much
more likely to calculate an SLP-feature value off5 > 0 with more
SLPs contained inSLP, it is quite reasonable that the evaluation
based on the BTC 2014 data provides a higher recommendation
quality.

6.1.3 RDF type recommendations vs. property rec-
ommendations (iii)

The differences between recommending RDF types a properties
represent the differentmodeling stepsin the engineering process
of a schema [27]. It is accustomed to define a set of classes, which
depict the entities that one wants to model, first, and then define re-
lationships connecting these classes. Thus, it could be also accus-
tomed that TermPicker recommends RDF types to describe the de-
fined classes before recommending properties to interlink the RDF
types. However, the differences in the recommendation quality be-
tween recommending RDF types for resources in subject or ob-
ject position, or recommending properties seem to be marginal and
cannot be considered significant according to the Friedman test,
X 2 = 14, 000, p = .449 n.s..

One aspect might be that the recommendation quality dependson
how many vocabulary terms are already included in the query-SLP.
In other words, a query-SLP containing three or more vocabulary
terms could provide more concrete recommendations, than a query-
SLP containing solely one term. For example, one would assume,
that on one hand the query SLPslpq1 with

slpq1 = ({foaf:Person},∅, {foaf:Image})

produces more specific recommendation, due to the restriction of
already reusingfoaf:Person and foaf:Image. On the other hand a
query-SLPslpq2 , such as

slpq2 = ({foaf:Person},∅,∅)

should produce a larger amount of recommendations, as the query
is not as restricted as the queryslpq1 . The chances of ranking a
relevant vocabulary term to the top of the result should thusbe
higher for a query-SLP such asslpq1 , i.e., query-SLPs that con-
tain more vocabulary terms, as there is not as much noise in the
recommendations. However, the differences between the query-
SLPs with varying amount of contained vocabulary terms did not
prove to be significant,X 2 = 15, 800, p = .327 n.s.. Therefore,

one can conclude that TermPicker provides appropriate vocabulary
term recommendations regardless if one is searching for RDFtypes
describing resources in subject or object position of a triple, or for
properties connecting two sets of RDF types. If another dataset
on the LOD cloud uses a vocabulary term in conjunction with the
terms included in the query-SLP, it has a large chance to be ranked
at the top of the recommendation list.

6.2 Discussion of the Proposed Approach and
the Evaluation

Learning to Rank tries to establish a correlation between the feature
values of a recommendation candidate and its relevance [23]. Using
the SLP-feature provides valuable results in most cases, but in the
end the ranked results lists depend on the ranking model. Whether
or not the SLP-feature is useful thus depends on the utilizedtraining
data, as demonstrated by the differences of using the BTC 2014
and the DyLDO data. For DyLDO, it does not work as well and
leads to a decrease of the influence of the SLP-feature. This is
because it does not contain a large variety of vocabulary terms and
thereby decreases the chance of finding a term that has been used
by other datasets on the LOD cloud in a similar way. The same
applies for the same-vocabulary-feature. Generally, the proposed
recommendation approach is reproducible with each Linked Data
collection, e.g., with the BTC 2012 or theTimbldataset which seed
list contains URIs from Tim Berners-Lee’s FOAF profile, but the
bigger the data, the better the training data and the resulting ranking
model. The best option would be to use the data from all datasets
on the LOD cloud. However, computing SLPs from such a massive
data collection is very time consuming and was not feasible for the
provided evaluation.

The problem of finding an appropriate vocabulary term is a typi-
cal information retrieval problem that can be addressed viaa ma-
chine learning approach. Thus, we validated the usefulnessof the
SLP-feature by using Learning To Rank, as it provides a method-
ology to induce a ranking model, that can be applied in general
situations to retrieve appropriate vocabulary terms for reuse. Other
approaches such as the Data Mining approachAssociation Rules
conquer this problem by recommending terms based on the sim-
ple statement: “Datasets on the LOD cloud, who have used these
vocabulary terms, have also used the following:...”. This way, a
vocabulary term that is not used in a similar manner will not be
recommended. However, it also increases the chances that the re-
sult lists return empty. Therefore, it is rather a question whether the
user also wants to get recommendation that make him/her “think
outside the box”, or whether he/she likes to stay as conform as pos-
sible to what others have used.

A potential threat to the validity of our experiments is the utilized
evaluation design. It considers solely the recommendationcandi-
dates as relevant that have been extracted from a query-SLP before
providing this query-SLP as input for TermPicker (cf. Section 4.1).
This leads to two major vulnerabilities considering the validity of
the evaluation. For once, many recommendation candidates are
identified as irrelevant, although they are appropriate considering
therdfs:domain andrdfs:range, theowl:equivalentClass, or other in-
formation. For example, for the query-SLPslpq with

slpj = ({swrc:Publication}, {swrc:author}, {foaf:Person})

slpq = slpj ⊖ps swrc:author

= ({swrc:Publication},∅, {foaf:Person})



the only relevant recommendation candidate for propertiesis swrc:
author, as it was originally used. Properties, such asdc:creator or
foaf:maker are considered as irrelevant in our evaluation, although it
would make sense to reuse these properties to interlink resources of
type swrc:Publication with resources of typefoaf:Person. Thus, an
L2R algorithm may identify manyappropriatevocabulary terms
(with an SLP-feature greater than zero) as irrelevant, which then
can result in a ill-trained ranking model. Second, using many SLPs
such asslpj in the previous example, will favor point-wise L2R al-
gorithms, as they tend to perform better, if there is only oneor a few
relevant items [23]. The previous example also shows, that there
might be more than only a few relevant vocabulary terms. Utilizing
a bigger set of relevant recommendation candidates might change
the quality of point-wise, pair-wise, and list-wise L2R algorithms,
such that list-wise and pair-wise algorithms might performbetter
than the point-wise approach. However, addressing this limitation
requires human judgment whether a recommendation is relevant or
not. Thus, conducting an experiment with human users is partof
our future work.

7. RELATED WORK
The related work focuses on the schema-level patterns as well as
on services that support an engineer in reusing vocabularies. The
notion of schema-level pattern can be compared to the notionof so-
calledtriple patterns[33], which essentially describe which prop-
erty is in between a certain subject and a certain object. They can
also be used to identify the RDF types of the subject and object,
leading to the possibility of constructing a tuple that specifies which
RDF type is connected to another type via a specific property.The
tool for inspecting and exploring datasets Loupe,18 makes use of
these triple patterns to explore the triples in a dataset. Such result
can also be achieved using a SPARQL query that retrieves the RDF
types of a subject and an object as well as the connecting prop-
erty between the subject and the object. However, both of these
approaches contain solely one RDF type for the subject resource,
one RDF type for the object resource, and one property connecting
the resources. SLPs on the contrary may include more vocabulary
terms to specify an RDF type of a resource or a property specifying
a connection. It is a more condensed form of representation of the
triple patterns and makes it easier to understand the data and faster
to compute vocabulary terms recommendation. For example, the
single SLP

({foaf:Person, dbo:SoccerPlayer}, {foaf:knows, schema:colleague},

{schema:Person, dbo:Coach})

is enough to specify that resources of RDF typesfoaf:Person and
dbo:SoccerPlayer are connected to resources of typesschema:Person
anddbo:Coach via the propertiesfoaf:knows andschema:colleague.
One would need eight triple patterns, i.e., every combination be-
tween the RDF types and the two properties, in order to specify the
relationship. With each additional vocabulary term, the number of
triples patters needed to represent the relationship risesdrastically,
such that it makes it harder to understand the data as well as more
complicated to calculate recommendations from it.

7.1 Vocabulary Search Engines
Services providing a search for specific vocabulary terms gener-
ally utilize a keyword-based approach. Their input is a string de-
scribing the desired vocabulary term, e.g., a search-string “Per-
son” to find vocabulary terms describing a person. The outputis

18
http://loupe.linkeddata.es/loupe/, last access

12/12/15

1 PREFIX owl: <http://www.w3.org/2002/07/owl#>

2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

3
4 SELECT DISTINCT ?t {

5 GRAPH ?src{

6 ?t owl:equivalentClass foaf:Person.

7 }} ORDER BY ?t

Listing 2: SPARQL query in LOV. Querying for RDF types
(?t) from all vocabularies/graphs in LOV (?src) that are
equivalent to the RDF typefoaf:Person. This enables to exploit
structural information encoded in the RDF vocabularies

a set of RDF types and/or properties that are similar to the search-
string based on some string similarity measure. Prominent and
inspiring examples of such search engines are Swoogle [13],vo-
cab.cc [31], Watson [12], Falcon’s concept and object Search [8,
10], and LOV [34]. Falcons contains RDF types and properties
from over4, 000 ontologies, Swoogle even from over10, 000 on-
tologies, whereas LOV comprises over 500 established manually
curated vocabularies, and vocab.cc provides lists of the top 100
RDF types and properties in the Billion Triple Challenge 2011 data
set. Each service provides also various meta-information on the vo-
cabulary terms and their vocabularies, such as the term’s number of
usages on the LOD cloud. LOV also offers an API19 that enables
retrieving vocabulary terms by providing a query (e.g. “Person”)
and various other parameters, such as atype(e.g. “class”) or even a
tag specifying a category for a term (e.g.“people”). The results are
ordered based on a sophisticated ranking method adapting term fre-
quency inverse document frequency (tf-idf) to the graph-structure
of vocabularies [35]. Falcons concept search recommends further
ontologies once the user selects an RDF type or a property from the
result list, which can be investigated for further vocabulary terms.
Falcons object search as well as Watson let the user search for
specific entities, such as “Barack Obama”, and retrieve resources
from datasets on the LOD cloud that have properties containing the
search string. This way, they are able to suggest RDF types and
properties for the retrieved resources.

Alani et al. [2] propose another approach for searching ontologies
from different domains. When searching for ontologies of a partic-
ular domain, a collection of terms that represent the given domain
is retrieved and used to expand the user query. This is especially
helpful when starting to choose vocabulary terms for reuse from
scratch.

As additional information on the vocabulary terms, most services
exploit schema-information encoded in the vocabularies, such as
sub-class, sub-property or other relations between vocabulary terms.
For example, LOV offers a SPARQL20 endpoint for Linked Data
practitioners and applications. Using the endpoint, one can search
for RDF types or properties that areequivalent or asub-class-of an-
other vocabulary term, or one can search for properties thathave
a specific RDF type asrdfs:domain and/or rdfs:range. Listing 2
illustrates an example query to retrieve RDF types from all vocab-
ularies stored in LOV that are equivalent tofoaf:Person. SPARQL
queries for selecting RDF types that are ardfs:subClassOf another
RDF type, or properties having a specific domain and range can
be designed analogously. The results of such queries however de-

19
http://lov.okfn.org/dataset/lov/api, last access

09/03/2015
20
http://lov.okfn.org/dataset/lov/sparql, last ac-

cess 09/03/2015



pend on whether the connections are defined in the vocabularies
stored, i.e., T-Box specification of vocabularies. Equivalent vo-
cabulary terms cannot be retrieved, if vocabulary terms arenot
connected via links such asowl:equivalentClass, rdfs:subClassOf,
owl:equivalentProperty, or others.

However, such additional information on vocabulary terms do not
depict how other datasets on the LOD cloud describe their data.
TermPicker does not rely on T-Box information and the modeled
connections between vocabularies, nor does it suggest vocabulary
terms forspecificresources. It rather uses the datasets on the LOD
cloud to calculate schema-level patterns representing which vocab-
ulary terms are used to describe all resources and their connections.
This way, TermPicker’s recommendations are based on the encoded
A-Box specification of datasets published on the LOD cloud. On
contrary to Falcons’ object search and Watson, TermPicker’s input
is a set of vocabulary terms, i.e., a query-SLP. Using this input,
it generates a list of other vocabulary terms that are used incon-
junction with the sets contained in the query-SLP, and not a list
of vocabulary terms used to describe one specific resource. Based
on this, TermPicker is able to retrieve further RDF types to de-
scribe resources of a given RDF type. For example, for resources
of type foaf:Person it can suggest the RDF typesschema:Person,
swrc:Person, dbp:FootballPlayer, if other LOD data providers have
used these types in combination withfoaf:Person to describe their
data. Summarizing, with TermPicker, connections between vocab-
ulary terms do not have to be made explicit, but can be induced
directly from datasets on the LOD cloud.

7.2 Vocabulary Recommender Systems
Existing services that recommend RDF types and properties are
generally based on syntactic and semantic similarity measures as
well as on algorithms that provide a statement on the popularity
of a recommended term. One prominent example is the collab-
orative system CORE for ontology engineering (short for: Col-
laborative Ontology Reuse and Evaluation) [15]. A set of initial
keywords defines CORE’s input. Starting from this, CORE deter-
mines a ranked list of domain-specific ontologies considerable for
reuse. The approach uses WordNet21 to expand the initial set of
terms, and performs a search for each of the defined keywords on
an index of ontologies. Besides syntactic and semantic similarity
measures, CORE uses manual user evaluations of suggested on-
tologies to raise the recommendation quality. A similar system was
developed by Romero et al. [28]. However, it measures the popu-
larity of an ontology by the number of appearances in Wikipedia
or bookmarks on Del.icio.us22. The previously mentioned service
Watson [12] also provides a plug-in for the NeOn ontology engi-
neering toolkit23 that supports the engineer in reusing vocabularies.
It uses semantic information from a number of ontologies andother
semantic documents published on the Web to recommend appropri-
ate vocabulary terms.

Again, the input for these recommendation services is a single string
or a set of strings specifying a vocabulary term or a domain of
interest. Whereas these services provide recommendationsbased
on string analyzes, they do not exploit any structural information
on how vocabulary terms are connected to each other. In contrast,
Falcons’ Ontology Search [9] provides the engineer with such in-
formation. Compared to traditional ontology matching approach,

21
http://wordnet.princeton.edu/, last access 09/05/15

22
http://delicious.com/, access 7/15/2014

23
http://www.neon-project.org/, last access 09/05/15

which align ontologies based onsimilarity, the authors of Falcons’
Ontology Search use different kinds of relatedness, in order to iden-
tify which vocabulary terms might express similar semantics. How-
ever, it is mainly designed to establish a general relatedness be-
tween vocabularies specifying that different vocabularies contain
terms that describe similar data. Thus, it does not investigate how
data providers on the LOD cloud use vocabulary terms to describe
their data and individual relations as it is done by TermPicker.

There are various tools and services that transform data from var-
ious formats, such as CSV data, into RDF, but only a few ones
provide support for reusing vocabularies by integrating a vocabu-
lary recommendation service. The “data2Ontology” module of the
Datalift platform [30] provides suggestions to match data entities
to a vocabulary term based linguistic proximity between thedata
entity and the vocabulary term and the quality of the vocabulary
using criteria from LOV. The data integration tool Karma [21] con-
tains two different types of recommending vocabulary terms. One
approach suggests so-calledsemantic typesfor a column contain-
ing data, such as the first name of a person [22]. The approach
analyzes the content of the column using NLP techniques and rec-
ommends an RDF type in conjunction with a datatype property
containing the literal value of a column’s cell. The other recom-
mendation approach is based on what the user has previously mod-
eled [32]. For example, if she has already modeled data entities
and relationship about museum items, and the next data collection
contains data on other museum items, the system is likely to rec-
ognize this and recommends the vocabulary terms that were used
to model the previous data collection. However, these toolseither
use string similarity, analyze the modeled data entities themselves,
or rely on previously modeled data by the user, and do not consider
what other data providers on the LOD cloud have used to model
their data. This way, their input for providing recommendations is
very different and cannot be directly compared to TermPicker and
its approach.

7.3 Ontology Matching and Alignment
As schema-level patterns can be used to describe Linked OpenData
on schema-level, and given that TermPicker compares the query-
SLP with other SLPs calculated from existing datasets on theLOD
cloud, one might consider TermPicker’s approach being related to
ontology matching [14]. However, typical ontology matching tech-
niques try to find correspondences between semantically related
vocabulary terms of two or more different ontologies by applying
(semi-)automatic alignment algorithms. In contrast, SLPssolely
represent the connection between resources of specific RDF types
via a set of properties. The comparison of two SLPs is done solely
syntactically, i.e., if the two sets of RDF types and the set of prop-
erties of two SLPs contain the same vocabulary terms, these two
SLPs are considered the same. Thus, SLPs do not find any corre-
spondences between semantically related vocabulary termsand is
therefore not some type of ontology matching technique, norcan it
be directly compared to such.

8. CONCLUSION
This paper presented TermPicker: a novel approach for recom-
mending vocabulary terms for reuse. The notion of schema-level
patterns (SLPs), which are a major part of TermPicker, was in-
troduced including the description how they are calculatedfrom
datasets on the LOD cloud. It has been demonstrated how SLPs
are used to define the SLP-feature and how Learning To Rank al-
gorithms use the features to train a ranking model. Two 10-fold
leave-one-out evaluations were performed on the BTC 2014 and



the DyLDO dataset, respectively, and the results illustrate that us-
ing the SLP-feature provide vocabulary term recommendation with
a Mean Average Precision of about MAP≈ 0.70. This improves
the recommendation quality by about35% compared to the base-
lines of recommending vocabulary terms from popular vocabular-
ies and recommending terms from the same vocabulary. Further-
more, with a Mean Reciprocal Rank at the first five positions of
MRR@5 ≈ 0.74, the results indicate that the first relevant vocab-
ulary term recommendation is within the first five results in74%
of all queries. Finally, based on the evaluation design thatassesses
the relevance of a recommendation candidate automatically(by ex-
tracting some terms from a query-SLP before using it as inputfor
TermPicker), it seems that point-wise Learning To Rank (L2R) al-
gorithms provide better results than pair-wise or list-wise L2R al-
gorithms.

As future work, we intend to compare the data mining approach
Association Rule Miningto the utilized L2R algorithms. To do so,
we compose a user-study, in which the user gets recommendations
based on Learning To Rank or on Association Rules for a specific
assignment. The user subsequently rates the perceived recommen-
dation quality of both approaches, such that we can compare which
approach provides the overall better recommendations.

To increase the recommendation quality based on Learning ToRank,
it seems useful to consider the domain in which a vocabulary term
is used most often. As another feature, one could use the PageRank
information of a given pay-level domain that uses a recommended
vocabulary term. This way, recommendations can be more domain
specific. Furthermore, each recommendation candidate can be en-
riched with meta-information, such as the appropriaterdfs:domain
andrdfs:range information for properties, orowl:equivalentClass or
other information for RDF types. To this end, LOV provides an
API or a SPARQL endpoint that can be used.

Acknowledgment.We thank the staff of ZWB Kiel for pro-
viding feedback for this research. Specifically, Norbert Lutten-
berger, who, inspired by the toolColumnPicker, proposed the name
TermPicker, as it resembles a similar useability for picking vocab-
ulary terms instead of columns. Furthermore, Jesper Zedlitz pro-
vided valuable insights on distinguishing the proposed approach to
existing tools and services, using the the specifications ofthe T-Box
and the A-Box.

9. REFERENCES
[1] A. Agarwal, H. Raghavan, K. Subbian, P. Melville, R. D.

Lawrence, D. C. Gondek, and J. Fan. Learning to rank for
robust question answering. InProceedings of the 21st ACM
international conference on Information and knowledge
management, pages 833–842. ACM, 2012.

[2] H. Alani, N. F. Noy, N. Shah, N. Shadbolt, and M. A. Musen.
Searching ontologies based on content: experiments in the
biomedical domain. InK-CAP, pages 55–62. ACM, 2007.

[3] S. Auer, J. Demter, M. Martin, and J. Lehmann. Lodstats–an
extensible framework for high-performance dataset
analytics. InKnowledge Engineering and Knowledge
Management, pages 353–362. Springer, 2012.

[4] L. Breiman. Random forests.Machine learning, 45(1):5–32,
2001.

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. InICML, pages 89–96. ACM, 2005.

[6] R. Busa-Fekete, G. Szarvas, T. Elteto, B. Kégl, et al. An
apple-to-apple comparison of learning-to-rank algorithms in
terms of normalized discounted cumulative gain. InECAI
2012-20th European Conference on Artificial Intelligence,
volume 242, 2012.

[7] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: from pairwise approach to listwise approach. In
Proceedings of the 24th international conference on Machine
learning, pages 129–136. ACM, 2007.

[8] G. Cheng, W. Ge, and Y. Qu. Falcons: searching and
browsing entities on the semantic web. InProceedings of the
17th international conference on World Wide Web, pages
1101–1102. ACM, 2008.

[9] G. Cheng, S. Gong, and Y. Qu. An empirical study of
vocabulary relatedness and its application to recommender
systems. InThe Semantic Web–ISWC 2011, pages 98–113.
Springer, 2011.

[10] G. Cheng and Y. Qu. Searching linked objects with falcons:
Approach, implementation and evaluation. pages 49–70,
2009.

[11] N. Craswell. Mean reciprocal rank. InEncyc. of Database
Systems. Springer, 2009.

[12] M. d’Aquin, C. Baldassarre, L. Gridinoc, M. Sabou,
S. Angeletou, and E. Motta. Watson: Supporting next
generation semantic web applications. 2007.

[13] L. Ding, T. W. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,
P. Reddivari, V. Doshi, and J. Sachs. Swoogle: a search and
metadata engine for the semantic web. InCIKM, pages
652–659, 2004.

[14] J. Euzenat, P. Shvaiko, et al.Ontology matching, volume 18.
Springer, 2007.

[15] M. Fernandez, I. Cantador, and P. Castells. Core: a toolfor
collaborative ontology reuse and evaluation. In4th
International Workshop on Evaluation of Ontologies for the
Web, 2006.

[16] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences.The Journal
of machine learning research, 4:933–969, 2003.

[17] L. Hang. A short introduction to learning to rank.IEICE
TRANSACTIONS on Information and Systems,
94(10):1854–1862, 2011.

[18] T. Heath and C. Bizer.Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011.

[19] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and
A. Hogan. Observing linked data dynamics. InThe Semantic
Web: Semantics and Big Data, pages 213–227. Springer,
2013.

[20] T. Käfer and A. Harth. Billion Triples Challenge data set.
Downloaded from http://km.aifb.kit.edu/projects/btc-2014/,
2014.

[21] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, and
et al. Semi-automatically mapping structured sources intothe
semantic web. InThe Semantic Web: Research and
Applications, volume 7295, pages 375–390. Springer
Berlin/Heidelberg, 2012.

[22] R. Krishnamurthy, A. Mittal, C. A. Knoblock, and
P. Szekely. Assigning Semantic Labels to Data Sources. In
Proceedings of the 12th Extended Semantic Web Conference
(ESWC), May 2015.



[23] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[24] G. Lodi, A. Maccioni, M. Scannapieco, M. Scanu, and
L. Tosco. Publishing official classifications in linked open
data. 2014.

[25] C. D. Manning, P. Raghavan, and H. Schütze.Introduction to
information retrieval, volume 1. Cambridge university press
Cambridge, 2008.

[26] D. Metzler and W. B. Croft. Linear feature-based modelsfor
information retrieval.Information Retrieval, 10(3):257–274,
2007.

[27] N. F. Noy and D. L. McGuinness.Ontology development
101: A guide to creating your first ontology. Stanford
knowledge systems laboratory technical report KSL-01-05
and Stanford medical informatics technical report
SMI-2001-0880, 2001.

[28] M. M. Romero, J. M. Vázquez-Naya, C. R. Munteanu,
J. Pereira, and A. Pazos. An approach for the automatic
recommendation of ontologies using collaborative
knowledge. InKES (2), volume 6277 ofLNCS, pages 74–81.
Springer, 2010.

[29] J. Schaible, T. Gottron, and A. Scherp. Survey on common
strategies of vocabulary reuse in linked open data modeling.
In ESWC. Springer, 2014.

[30] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, and et al.
Enabling linked-data publication with the datalift platform.
In AAAI 2012, 26th Conf. on Artificial Intelligence -
Semantic Cities, 2012.

[31] S. Stadtmüller, A. Harth, and M. Grobelnik. Accessing
information about linked data vocabularies with vocab.cc.In
Semantic Web and Web Science, pages 391–396. Springer,
2013.

[32] M. Taheriyan, C. Knoblock, P. Szekely, and J. L. Ambite.
Learning the Semantics of Structured Data Sources.Journal
of Web Semantics Special Issue on Knowledge Graphs, 2016.

[33] T. Tran and G. Ladwig. Structure index for rdf data. In
Workshop on Semantic Data Management (SemData@
VLDB), volume 2, 2010.

[34] P.-Y. Vandenbussche, B. Vatant, and L. Rozat. Linked open
vocabularies: an initiative for the web of data. InQetR
Workshop, Chambery, France, 2011, 2011.

[35] P.-Y. Vandenbusschea, G. A. Atemezingb,
M. Poveda-Villalónc, and B. Vatantd. Linked open
vocabularies (lov): a gateway to reusable semantic
vocabularies on the web.Semantic Web Journal, 2015.

[36] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting
boosting for information retrieval measures.Information
Retrieval, 13(3):254–270, 2010.

[37] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. InSIGIR, pages 391–398. ACM, 2007.


