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ABSTRACT
For (semi-)automated subject indexing systems in digital libraries,
it is often more practical to use metadata such as the title of a
publication instead of the full-text or the abstract. Therefore, it
is desirable to have good text mining and text classification algo-
rithms that operate well already on the title of a publication. So far,
the classification performance on titles is not competitive with the
performance on the full-texts if the same number of training sam-
ples is used for training. However, it is much easier to obtain title
data in large quantities and to use it for training than full-text data.
In this paper, we investigate the question how models obtained
from training on increasing amounts of title training data compare
to models from training on a constant number of full-texts. We
evaluate this question on a large-scale dataset from the medical
domain (PubMed) and from economics (EconBiz). In these datasets,
the titles and annotations of millions of publications are available,
and they outnumber the available full-texts by a factor of 20 and
15, respectively. To exploit these large amounts of data to their full
potential, we develop three strong deep learning classifiers and
evaluate their performance on the two datasets. The results are
promising. On the EconBiz dataset, all three classifiers outperform
their full-text counterparts by a large margin. The best title-based
classifier outperforms the best full-text method by 9.4%. On the
PubMed dataset, the best title-based method almost reaches the
performance of the best full-text classifier, with a difference of only
2.9%.
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1 INTRODUCTION
Semantic annotations are crucial for users of digital libraries as
they enhance the search of scientific documents. Given the large
amount of new publications, automatic annotation systems are a
useful tool for human expert annotators working at digital libraries
to classify the publications into categories from a (hierarchical)
thesaurus. However, providing automated recommendations for

subject indexing in such systems is a challenging task. This is partly
due to the data from which recommendations may be generated.
Often neither the full-text of a publication nor its abstract may be
available. For instance, the digital library EconBiz contains only for
15% of the documents an abstract. Even when the content can be
legally provided by the library to the end users, copyright laws or
regulations of the publishers may prevent text mining. Moreover,
collecting and processing PDFs where it is possible, e. g., for some
Open Access documents, adds high computational requirements to
the library. This puts annotation methods on demand that are based
on data with better availability, such as the title. Previous work
by Galke et al. [4], however, has shown that title-based methods
considerably fall behind full-text methods in terms of performance
when the number of samples for training is equal. If our classifier
was a human expert, this would not be a surprising result. A full-
text contains more information and therefore also more indication
of the publication’s topic. A human expert will always make better
annotations based on the full-text. In fact, the annotations that are
used as gold-standard for automated subject indexing experiments
are often created based on the full-text.

However, we argue that machine learning algorithms work dif-
ferently than a human. In contrast to a human, they often require
hundreds of thousands or even millions of training data to yield
satisfactory models [1]. These amounts of data are not always avail-
able in the real world. One common reason is that human expertise
is required for creating a large enough gold standard, which is
expensive. For semantic subject indexing, the availability issues
mentioned above do not only come into play at prediction time,
i.e., when a machine learning model is used in a productive system,
but also during training. In effect, methods based on the full-texts
have drastically less training data available than methods based
on titles. This raises the question if title-based methods can poten-
tially narrow the performance gap to full-text methods by fully
incorporating all training data available.

In this paper, we address this question. Formally, semantic in-
dexing is framed as a multi-label classification problem, where a
(commonly small) subset of labels has to be selected from a (rel-
atively large) set of labels. From two digital libraries of scientific
literature, PubMed and EconBiz, we have compiled an English full-
text dataset and an English title dataset. Our compiled datasets are
quite different with respect to their size. From PubMed, we extracted
12.83 million titles. For 5% of these a full-text is available (646k).
From EconBiz, we extracted 1.06 million titles, of which approxi-
mately 7% have a full-text (71k). In order to fully utilize these large
amounts of data, we develop and compare three different classifiers
that have emerged from the deep learning community in recent
years. Deep learning has advanced the state-of-the-art in many
fields, such as vision, speech, and text [18]. These techniques are
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known to shine when a lot of training data is available. For text clas-
sification in particular, recent work [43] suggests that deep learning
starts to outperform strong traditional models when 650k or more
training samples are available. The number of full-text in PubMed
is right at the edge of this number, whereas EconBiz has far less
full-texts, making these datasets an interesting and revealing choice.
In natural language processing, different types of neural networks
have been successfully employed on different tasks, but it is an
open question whether convolutional neural networks (CNNs), re-
current neural networks (RNNs), or multi-layer-perceptrons (MLPs)
are superior for text classification tasks. Therefore, we employ a
representative of each type in our study. We compare them against
another strong MLP baseline (Base-MLP), which has previously
been shown to also outperform traditional bag-of-words classifiers
such as SVMs, Naive Bayes, and kNN [4]. Since the label space
in our datasets is very large, our study can be understood as eX-
treme Multi-Label Classification (XMLC). Here, only few studies
have leveraged deep learning techniques to tackle the considerably
harder problem when the label space is large [19, 42]. Hence, with
our study, we contribute to the knowledge in this field, as well.

The results of our study indicate that title-based methods can
match or even outperform the full-text performance when enough
training data is available. On EconBiz, the best title classifier (MLP)
performs on par with the best full-text classifier (MLP) when train-
ing with only 8× as many titles as there are full-texts available.
When all available titles are used (approximately 15× more than
full-texts), the title-based MLP outperforms its full-text counterpart
by 9.4%. On the PubMed dataset, the best title method is the RNN,
and it almost reaches the best full-text performance produced by
an MLP. The gap is only as small as 2.9%. When using the same
number of titles as full-texts are available, the gap in classifica-
tion performance is 10.7%, indicating a considerable benefit from
leveraging all title data. Generally, the MLP performs well, outper-
forming RNN and CNN in three out of the four combinations of
the two datasets and title/full-text. It also consistently outperforms
the baseline when all titles or full-texts are used. Moreover, our
analysis suggests that our proposed classifiers are well-chosen for
our study, because they benefit from increasing amounts of training
data better than the baseline. The RNN performs rather poor on
full-text, but shows strong performance on titles. While also yield-
ing reasonably good results with CNN, it performs clearly below
the other classifiers in all cases. This is a surprise, because a lot of
the recent literature on large-scale text classification has focused on
CNNs (e.g. [2, 17, 43], also see Section 2). Thus, our results indicate
that it may be worth it to shift the research focus more towards
other types of neural networks for text classification.

Our contributions can be summarized as follows:

• For the first time, we study the question whether title-based
methods can reach the performance of full-text-based meth-
ods by exploiting the surplus of available training data.

• We demonstrate that title-based methods are on par or even
outperform full-text methods when the number of training
samples is sufficiently large.

• We develop and compare three strong classifiers for (ex-
treme) multi-label text classification, contributing to the de-
bate on which type of neural network is superior for text
classification.

The remainder of the paper is structured as follows. In the sub-
sequent section, we review relevant work on the comparison of
short texts and full-text and on deep learning for text classification.
In Section 3, we describe our deep learning models. We introduce
the datasets and experimental setup in Section 4, and present the
results in Section 5. We analyze and discuss the results in Section 6,
before we conclude.

2 RELATEDWORK
In this section, we review previous literature relevant to our study.
First, we discuss papers that compare performance on titles with
performance on full-text. Next, we briefly discuss methods for multi-
label text classification other than deep learning. Finally, we discuss
current deep learning methods for text classification.

Title versus Full-Text. Thework directly related to our study is the
one by Galke et al. [4]. The authors compare titles with full-texts
for multi-label text classification on four datasets. Two datasets
consist of scientific publications and are therefore comparable to
the datasets in this study. In their experiments, the authors used
the same number of samples for the title-based methods and the
full-text methods. They found that the title-based methods can yield
reasonably good performance. However, the difference between
title and full-text on the two scientific datasets is still 10% and 20%
in favor of the full-text, respectively. The first dataset is from the
economics domain, and it is an earlier version of the one used in
this study. The second dataset is from the political sciences. In their
comparison of classifiers, an MLP to which in this study we refer as
Base-MLP, outperforms all other (non-neural) classifiers in 7 out of
8 combinations. All the presented classifiers are based on the bag-of-
words (BoW) feature representation, a traditionally strong baseline
for text classification that disregards word order. Due to clearly
superior performance, Base-MLP can also be considered the best
representative of traditional BoW models. We therefore report its
performance as our baseline for all subsequently developed models.

The comparison of metadata vs. full-texts has also been studied
for tasks other than document classification. Nascimento et al. [25]
studied how well queries for web search can be generated from title,
abstract, or body, respectively. These queries are then issued toWeb
information sources to retrieve papers for recommendation. In their
experiments, abstracts yielded the best queries, closely followed
by the body. The title clearly performs worse. On the contrary,
Nishioka and Scherp [26] have demonstrated that competitive paper
recommendations to researchers based on their Twitter profile can
be made by using only the title of the paper. This is achieved by
their novel profiling method HCF-IDF, which is able to extract
sufficient conceptual information from the title through spreading
activation over a hierarchical knowledge base. Galke et al. [5] use
text embedding techniques for the information retrieval task and
compare how well these techniques perform when the index is
built upon the title, abstract, or full-text of the documents. Here,
titles have demonstrated a clear advantage over abstract and full-
text. Lastly, Hemminger et al. [10] compare full-text search with



metadata search in the PubMed database, where full-text search
yields better results.

Multi-label Text Classification. Text classification is awell-studied
problem. k-Nearest-Neighbors and SVM are common choices for
text classification (see e.g. [8, 14, 28]). However, kNN’s complexity
grows in the number of training samples, which is problematic for
the training sample sizes we consider in our study. SVMs do not
provide a natural adaptation for multi-label classification. A binary
relevance classification scheme, however, is impractical when the
number of labels is large.

An active field of multi-label text classification research is the
MeSH indexing community. This area is concerned with annotating
PubMed articles with medical subject headings. BioASQ [33] is a
challenge that recently finished its 5th iteration. It has the goal to
advance the state-of-the-art in MeSH indexing, and to this end pro-
vides large datasets for training. We acknowledge the significance
of the MeSH indexing community, and in our study, we include
the dataset from the latest iteration of the BioASQ challenge. How-
ever, many of the approaches successful at this challenge, including
learning to rank [12, 20, 21] and pattern matching [23], make use of
features tailored to the biomedical domain. Since in this paper, we
study domain-independent methods for subject indexing in digital
libraries, these methods are not appropriate.

Deep Learning for Text Classification. Some early works lever-
age neural networks for multi-label text classification. In order to
capture label inter-dependencies, Zhang and Zhou [40] employ a
pairwise ranking loss function for text classification. Nam et al. [24]
show that replacing the ranking-loss with cross-entropy leads to
faster convergence and overall better prediction performance. Fur-
thermore, they are the first to incorporate some of the milestone
advancements from the deep learning era like rectified linear units,
dropout, and the smart optimizer AdaGrad.

In recent years, neural networks have become the state-of-the-art
in multi-class text classification, outperforming traditional linear
BoW models, in particular on very large datasets. On a diverse
set of text classification datasets of rather small scale (up to 10.7k
samples), neural networks have shown their capability to perform
well. These include CNNs [15, 37] and RNNs [31], as well as a
combination of both [41].

Zhang et al. [43] were the first to introduce several large-scale
multi-class text classification datasets ranging from 120k to 3.6 mil-
lion training samples. The number of classes ranges from two to 14.
Zhang et al. proposed a deep, character-based convolutional neu-
ral network and compared it with a number of traditional models,
including multinomial logistic regression based on bag-of-ngrams
with TF-IDF, and deep learning models such as a Long Short-Term
Memory network (LSTM) and word-based CNNs. The finding most
relevant to our study is that traditional models tend to outper-
form the neural network architectures on the four relatively small
datasets with 560k training samples or less, whereas on the remain-
ing four datasets with 650k training samples or more their neural
network approach is superior. Although these numbers may vary
depending on the dataset and classification task at hand, this re-
sult is the main reason why we choose to employ deep learning
techniques in our study.

Several studies employing deep learning on these datasets have
followed. Conneau et al. [2] draw inspiration from the computer
vision community and improve the performance of character-based
CNNs by increasing the depth. Le et al. [17] put these results into
perspective by demonstrating that a shallow, word-based CNN
performs on par with these models or better. Therefore, we have
limited our study to shallow, word-based CNNs. For text classifica-
tion, it is an open question whether CNNs or RNNs are superior [36].
Consequently, LSTMs had also some success on these large-scale
datasets [35, 38], as well as hybrid approaches [34]. Joulin et al. [6]
demonstrated that even a linear MLP classifier can yield results com-
petitive with non-linear deep learning methods while maintaining
computational efficiency.

To the best of our knowledge, each of the neural network types
MLP, CNN, and LSTM provide the current state-of-the-art on at
least one of these large-scale datasets (as shown in the work by Le
et al. [17]). Hence, with our study we would like to contribute to
this discussion by employing a representative of each of the neural
network types.

Finally, due to the number of labels in our datasets, our study
may be classified as XMLC. To the best of our knowledge, only two
papers studied the application of deep learning to this setting [19,
42], from which we draw some inspiration for our models, which
are described below.

3 METHODS
In this section, we present three neural network architectures for
text classification used in our study. In the design phase, we aimed
at carefully developing the strongest representative of each of the
most common types of neural networks, MLPs, CNNs, and RNNs1.
Here, we only present the final architectures which are used in
the experiments presented in Section 4. These architectures may
differ depending on the dataset and type of text (title or full-text)
they operate on. This is necessary to avoid a bias for either of the
datasets or types of text. The output layer as well as the training pro-
cedure in our neural networks are the same for all neural network
architectures presented here.

Below, we describe the training procedure, before we go into
each neural network architecture up to the last hidden layer. For
brevity, we omit a formal mathematical description of the models
here.

3.1 Training Procedure
The semantic annotation task is formally a multi-labeling problem,
where instead of belonging to exactly one class, each publication
is assigned a set of labels. This is an important difference to most
of the previous literature on text classification with large datasets.
Binary Relevance is a common technique to adapt a classifier for a
multi-labeling problem. However, this is a costly technique when
the number of labels is high because it requires to train as many
classifiers as there are labels. Neural networks have a more natural
way to deal with multi-label classification, which is also made use
of by Galke et al. [4]. For multi-class text classification, the softmax
activation function is used at the output layer to obtain a probability

1For transparency, intermediate results of the design phase can be found in an extended
version of the paper provided at https://github.com/florianmai/Quadflor.
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distribution over the classes. For multi-label classification, however,
the sigmoid activation can be employed to determine a probability
pl for each label l whether it should be assigned or not. The differ-
ence is that softmax regards all labels at once, while sigmoid makes
an independent decision for each label. Finally, the binary decision
whether label l is assigned is made by checking whether pl exceeds
a threshold θ .

Using Adam [16], the networks are trained as to minimize the
sum of all binary cross-entropy losses over all labels. This has
shown to be superior to a ranking-based loss on multi-label text
classification [19, 24]. Training is executed in mini-batches of size
256. We employ early stopping for regularization and as criterion
to terminate training. The performance on the validation set is
evaluated in terms of the sample-based F1-measure. Training is
terminated when the validation score has not improved over the
best reported score for 10 consecutive evaluations.

Since the output of the sigmoid activation function can be in-
terpreted as the probability whether a label should be assigned, a
typical choice for the threshold is θ = 0.5. However, depending on
the evaluation metric, dataset, or model that generates the assign-
ment probabilities, this value does not necessarily yield optimal
results. Unfortunately, finding a good value for θ can be compu-
tationally expensive, especially when the datasets are very large.
Therefore, we use a heuristic that continuously adjusts the thresh-
old during training. To this end, the evaluation on the validation
set used for early stopping is also used to optimize θ .

Formally, we initially set θ0 := 0.2, which Galke et al. [4] found
to be a better threshold value than 0.5. After each validation step i ,
where the classifier predicts a probability for each of the |L| labels
and each of the n samples in the validation set, accumulated in
Pi ∈ (0, 1)n×|L | , we set

θi := argmax
θ̃ ∈{−k∗α+θi−1, ...,k∗α+θi−1 }

F1(Pi ; θ̃ )

where α > 0 is the step size and k controls the number of threshold
values to check. This heuristic is based on the observation that the
optimal choice for θi is in most cases in close proximity to the opti-
mal choice of the previous evaluation step, θi−1. Since computing
the F1 score can be costly, we set k = 3 and α = 0.01 to trade off
granularity with speed.

In our preliminary experiments, this way of optimizing the
threshold consistently yields good results, sometimes even better
than when it is optimized manually.

3.2 Multi-Layer-Perceptron
Our baseline is a multi-layer-perceptron (MLP) described by Galke
et al. [4]. It has one hidden layer with 1,000 units and rectifier
activation and it takes a TF-IDF [29] bag-of-unigrams as input. The
bag-of-unigrams only contains the 25,000 most common unigrams,
which we determined to be sufficient for the multi-labeling task. For
regularization, dropout [30] is applied after the hidden layer with a
keep probability of 0.5. We will refer to this baseline as Base-MLP.

We extend the MLP from Galke et al. [4] by incorporating some
techniques inspired from recent deep learning literature. The MLP
architecture introduced in this study can be viewed as an adaptation
of fastText [6] for multi-label classification. FastText is a linear BoW
model enhanced with a feature sharing component (a hidden layer

with identity activation) and local word order information (bigrams).
We adopt this model by adding the 25,000 most common bi-grams
in addition to the 25,000 most common unigrams. However, we
found that omitting the non-linearity at the hidden layer rather
hurts the classification performance considerably. Therefore, we
keep the rectifier as a non-linear activation at the hidden layer.

In the introduction, it was mentioned that deep neural networks
excel when the number of training samples is very large. This is
because the representational power of neural networks increases
as the number of parameters increases. This can be obtained by
adding more layers or by adding more units to the existing layers.
Additionally, deeper networks may be able to learn hierarchical
representations of the input, as can be observed in the vision do-
main [9]. However, deep networks are generally harder to train due
to the vanishing and exploding gradient problems. We apply Batch
Normalization [13] to our deep MLPs to alleviate those.

In summary, MLP differs from Base-MLP in that it incorporates
bi-grams and uses multiple layers and Batch Normalization where
appropriate.

3.3 Convolutional Neural Network
We present a CNN architecture whose core was introduced by
Kim [15] for sentence classification and has since been repeatedly
adopted and enhanced upon. We adopt and combine some of these
enhancements for our model.

The CNN operates on word embeddings, which are initialized
with a pretrained model but finetuned during training. As in Kim’s
model, our CNN applies a 1D-convolution by sliding a window
over the text in order to extract features at each position. These
outputs are then transformed by a non-linear activation function
(the detector). Commonly, the most salient position is selected by
applying max-pooling after the detector stage. However, Liu et
al. [19] instead split the output of the convolution into p nearly
equal chunks, and performmax-pooling on each chunk. Afterwards,
the outputs of the pooling stages are concatenated. For p = 1, this
is identical to Kim’s architecture.

Commonly, this process is repeated for multiple window sizes.
The outputs of these processes are then concatenated before passing
them to the next layer. For example, Kim’s CNN uses window sizes
3, 4, and 5, while Liu et al. use 2, 4, and 8. We experimentally
determined that using 2, 3, 4, 5, and 8 yields to even better results.

In Kim’s model, the concatenated output of the pooling stages is
directly propagated to the output layer. Liu et al. argue, however,
that it is better to have an additional fully-connected layer with nb
units, called the bottleneck layer, because it adds more representa-
tional power to the network through the increased depth.

Considering the complexity of our datasets and the number
of training samples available, the question of increased capacity
arises with CNNs. Similar to MLPs, an increase in capacity can be
achieved either through wider convolutions (larger feature-map)
or additional stacked layers of convolutions. Since a recent study
by Le et al. [17] has shown that depth does not yield improvement
over shallow nets, we only consider the former approach.



3.4 Recurrent Neural Network
The Recurrent Neural Network (RNN) is a family of neural net-
works that was specifically designed for sequential input data. By
maintaining a hidden state, the network is able to keep track of
previous inputs. However, the vanilla RNN has difficulties keeping
track of inputs that are far in the past. The LSTM [11] was designed
to alleviate this by explicitly modeling the control over whether
the current hidden state shall be forgotten, updated, or kept. For
this study, initially we use an LSTM that has already achieved good
results for text classification in a study by Zhang et al. [43]. This
LSTM is the “vanilla” version described in [7]. Our final model,
however, incorporates two techniques which have proven useful
for NLP tasks in recent years, attention and bidirectionality [39].

Since any RNN produces an output at every time step, the outputs
have to be aggregated after processing the entire sequence, in order
to pass a vector of fixed size to the next layer. We experimented
with choosing the last output, computing the sum, computing the
average, and computing a weighted average where the weights are
determined by an attention mechanism as used by Yang et al. [35].
While the benefit over the other aggregation methods is not large
for titles, the attention mechanism consistently performs best. On
full-texts, on the other hand, the difference is considerable. This is
intuitive, because there is less need to focus on specific parts of the
input if the input is as short as in a title.

In the same fashion as Yang et al. [35], we incorporate bidirection-
ality into our LSTM by concatenating at each time step the output
of an LSTM that reads the input sequence from left to right, and an
LSTM that reads the sequence in reverse order. This is a common
technique to make the model aware of the entire sequence at every
time step, and commonly boosts performance in text applications.

Again, we made some effort to investigate an increase in the
capacity of the LSTM to account for the large number of training
samples in our datasets. In the past, both increasing the memory cell
size (the width) and stacking LSTMs on top of each other has been
successful in some NLP tasks. For text classification, this has not
been the case. The results of our experiments support this, where
wider LSTMs are superior to stacked LSTMs, even when variational
dropout [3] is used.

4 EXPERIMENTAL SETUP
4.1 Datasets
We built English datasets from two digital libraries of scientific pub-
lications. EconBiz2 is a search portal for economics and business
studies. Currently, it contains 2,485,000 English publications, out
of which 615k are open access. Many publications are annotated
by experts with a variable number of subject headings (so-called
subject indexing) taken from a standardized set, the “Thesaurus for
Economics” (STW)3. From all 2,485,000 English publications, we fil-
tered the ones that have annotations and extracted their title. After
deleting duplicates, 1,064,634 publications with annotations remain.
Out of the 615k open access publications, the number of publica-
tions that have annotations and whose full-text can be downloaded
and processed reduces to 70,619, which is 6.63% of all publications.

2https://www.econbiz.de/
3http://zbw.eu/stw/version/latest/about

Table 1: Characteristics of EconBiz and PubMed datasets. |D |
denotes the sample size, |L| denotes the number of labels
used in the dataset,d/l is the average number of publications
a label is assigned to. l/d is the average number of labels as-
signed to a publication. |V | is the size of the vocabulary and
w/d denotes the average number of words per document.

EconBiz (STW) PubMed (MeSH)
Title Full-Text Title Full-Text

|D | 1,064,634 70,619 12,834,026 646,513
Size 78.8MB 6.27GB 1.32GB 20.06GB
|L| 5661 4849 27773 26276
d/l 819.1 75.8 5852.3 331.0
l/d 4.4 5.3 12.6 13.5
|V | 91,505 1,502,336 660,180 6,774,130
w/d 6.88 6694.4 9.6 2533.4

PubMed4 is a search engine for biomedical and life science liter-
ature provided by the US National Library of Medicine. The pub-
lications found on PubMed are annotated with “Medical Subject
Headings” (MeSH)5 by human curators. We obtained a dataset con-
sisting of millions of publicationmetadata, including title andMeSH
annotations, from the training set of the semantic indexing task of
the BioASQ challenge 2017 [33], which are all in English language.
PubMed Central6 is an archive of full-texts of biomedical and life
science literature provided by the US National Library of Medicine.
It comprises 4.3 million publications, which can be accessed freely
and which are mostly English. However, only 1.5 million are open
access and therefore allow text mining. From this dataset, we com-
puted the intersection with the publications obtained from the
BioASQ challenge. After removing duplicates, 12,834,026 titles and
646,513 full-texts with respective annotations remain. Hence, 5.04%
of the samples have a full-text.

Table 1 lists some characteristics of the two datasets, EconBiz
and PubMed. In terms of combinatorial complexity, the PubMed
dataset is a harder problem because the number of labels out of
which to pick the annotations for a publication is much higher. Yet,
due to the relatively large number of labels and small number of
samples per label on average, both datasets can be considered as
XMLC problems7. The titles in PubMed contain on average more
words than the publications’ titles in EconBiz. However, this fact is
put into perspective considering that the titles in PubMed have on
average more labels to be predicted than there are words in the title.
Regarding the full-texts, the ratio of words/labels is approximately
the same in both datasets. Another fact worth noting is that the
titles corpora have on average one label less than the full-texts. This
suggests that the label distributions in the title dataset and full-text
dataset are quite different.

Please note that on both datasets, the set of titles is a superset of
the set of full-texts.
4https://www.ncbi.nlm.nih.gov/pubmed/
5https://www.nlm.nih.gov/mesh/meshhome.html
6https://www.ncbi.nlm.nih.gov/pmc/
7An overview of datasets commonly considered XMLC can be found at http://
manikvarma.org/downloads/XC/XMLRepository.html.

https://www.econbiz.de/
http://zbw.eu/stw/version/latest/about
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.ncbi.nlm.nih.gov/pmc/
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


Figure 1: We organize our dataset in several sub-datasets to perform an iterative evaluation. T1 and Full comprise of the same
set of publications (all samples where a full-text is available), and is split into 10 folds in order to perform the same 10-fold
cross-validation with titles and full-texts for a fair comparison. For T2, T4, T8, increasingly more titles that do not have a
full-text are added for training, but are in each cross-validation step evaluated on the same test samples (highlighted in green
for exemplification). Tall includes all title samples.

4.2 Experiments
In order to assess how the title-based methods behave as more and
more titles are considered for training, we create sub-datasets of
the title datasets by iteratively adding more data. This is illustrated
in Figure 1.

For a fair comparison of title and full-text performance, the
trained model must be evaluated on the same data. To this end,
we split the set of publications where a full-text is available into
ten folds, and perform a 10-fold cross-validation. In each iteration,
nine folds are selected for training, and one is selected for testing.
From this training set, we randomly select 20% for the validation
set for early stopping and adjusting the threshold, as described in
Section 3.1. These comprise the data used for our experiments on
full-text, and will be abbreviated as EconBiz Full and PubMed Full,
respectively.

For the experiments on titles, the same publications from the
10-fold cross-validation are used for testing. However, the training
set is iteratively extended with more samples from the titles dataset,
so that the total number of training samples is always a power of
two of the number of samples in the full-text experiment. In total,
we conduct experiments on five title sub-datasets per domain: T1,
T2, T4, T8, and Tall . Here, Tx means that x times as many title
samples are used for training as there are full-text samples in the
dataset. Lastly, Tall contains all title samples from the dataset.

We run each of the four classifiers Base-MLP, MLP, CNN, and
LSTM on all of the sub-datasets. In total, we run 48 cross-validations.
Following Galke et al. [4] who argue that the sample-based F1-
metric best reflects how subject indexers work, we use this metric
to report the results. We also use this metric for early stopping
and threshold adjustment on the validation set. The sample-based
F1-measure calculates the harmonic mean of precision and recall
for each sample individually, and averages these scores over all
samples.

4.3 Choice of Hyperparameters and Training
Since there are a lot of tunable hyperparameters involved in deep
learning, tuning multiple hyperparameters at the same time can be
very expensive, especially when the datasets are very large. On the

other hand, fixing hyperparameters across all datasets and models
would not be a fair approach in our study because the datasets
and model architectures are very different and therefore may re-
quire very different hyperparameter settings. As a compromise,
we decided to tune the hyperparameters for full-texts and titles
separately in an incremental fashion on one fold. Here, we tuned
one hyperparameter at a time and selected the locally best solution
for full-text and titles, respectively. It is important to note that the
parameters for titles were determined based on the performance on
Tall , and were adopted for all other title sub-datasets. On the one
hand, this alleviates a lot of the computational cost and allows to
compare the performance between title sub-datasets. On the other
hand, especially the performance of smaller sub-datasets might
be suboptimal due to overfitting. This must be kept in mind for
analysis.

In our experiments involving the MLP, we use a one-layer MLP
with 2,000 units and dropout with a keep probability of 0.5 after
the hidden layer for all experiments. Only for the experiments on
the PubMed titles, we use a two-layer MLP with 1,000 units each,
and apply no dropout. Instead, we use Batch Normalization after
each hidden layer. In all cases, the initial learning rate for Adam is
set to 0.001.

In the CNN experiments, we use p = 3 chunks and nb = 1, 000
units at the bottleneck layer [19] for both full-text experiments. On
titles, we do not perform chunking (p = 1), and use a bottleneck
layer size of nb = 500. The size of the feature map is set to 400 in all
experiments except for PubMed Full, where we use 100. The keep
probability is set to 0.75 in all cases, and the initial learning rate is
0.001.

We use a single-layer LSTM for all experiments. For both datasets,
we determined 1,536 to be the best size for the memory cell when
using titles. 1,024 units and 512 are used for PubMed Full and
EconBiz Full, respectively. The keep probability is set to 0.75 in all
experiments except for PubMed on titles, where we set it to 0.5.
The initial learning rate is 0.01 for EconBiz Full and 0.001 in all
other cases. Training is done with backpropagation through time
by unrolling the LSTM until the end of the sequence.



We adopt the preprocessing and tokenization procedure of Galke
et. al [4]. For the LSTM and CNN, we use 300-dimensional pre-
trained word embeddings obtained from training GloVe [27] on
Common Crawl with 840 billion tokens8. Out-of-vocabulary words
are discarded. The maximum sequence length is limited to the first
250 words. Longer sequences were harmful in preliminary experi-
ments.

For implementation of our neural network models, we used the
deep learning library TensorFlow9 and integrated them within the
multi-label classification framework “Quadflor"10. All experiments
are run either on an NVIDIA TITAN or on a TITAN Xp GPU which
both have 12GB of RAM.

5 RESULTS
The results of our experiments are shown in Table 2. In addition, we
plot the performance of each method as a function of the number
of samples used for training the title model. These are shown in
Figure 2.

EconBiz. On the EconBiz dataset, the best results on both titles
and full-texts are obtained by MLP. The title-based method is on par
with the full-text method when eight times as many titles as full-
texts are used. When all titles are used, the title-MLP outperforms
its full-text counterpart by 9.4%, achieving an F1-score of 0.500. In
contrast, when the same number of samples for full-text and titles
is used, the gap between the best title method (Base-MLP) and the
best full-text method (MLP) is 16.9% in favor of the full-text.

The MLP seems to benefit the most from additional titles. Ini-
tially, when as many titles as full-texts are used for training, all
our proposed methods, i. e., MLP, CNN, and LSTM, perform within
0.007 points in F1-score from each other, but MLP performs worst.
However, the relation flips as more titles are added. In Figure 2 (a),
we can observe that MLP has the steepest curve of improvement
out of all methods, in particular when considering the improve-
ment from T1 to T2. With twice as many titles as full-texts, MLP
is already the best performing classifier out of the ones we have
proposed. The gap to the other methods only gets wider as more
data is added for training. Overall, the MLPs performance on Tall
improves over the performance on T1 by 40.1%. The other methods
also improve continuously as more training data is added. However,
the CNN and LSTM improve by only 17% and 29.4% with respect
to T1, respectively. Still, this is enough to surpass their full-texts
counterparts by 10.1% and 28.4%, respectively.

When using as many titles as full-texts, Base-MLP outperforms
our proposed methods clearly by 0.027 points in F1-score. However,
Base-MLP does not benefit as much from additional training data.
Its overall improvement is only 20.7%, so when all titles are used
for training, it is outperformed by MLP by a margin of 5.9%. On the
full-text, MLP has an advantage of 3.6% over the baseline. Yet, the
baseline still has a large advantage over LSTM and CNN, both on
titles and full-texts.

PubMed. On PubMed, MLP shows the best full-text performance,
whereas LSTM yields the best results on titles. However, even when
8This pretrained model can be downloaded at https://nlp.stanford.edu/projects/glove/.
9https://www.tensorflow.org/
10To increase the reproducibility of our study, we made the source code and the title
datasets available at https://github.com/florianmai/Quadflor.

all titles are used for training, that is almost 20 times as many titles
as full-texts, the LSTM still lacks behind the full-text MLP by 2.9%.
However, this is a considerably smaller gap than when the same
number of samples are used. Base-MLP, the best performingmethod
on PubMed T1, achieves 10.7% lower scores than the best method
on PubMed Full, which is MLP.

The MLP and the LSTM show very similar behavior when more
training data is added. This can be seen from Figure 2 (b), where the
lines of the MLP and LSTM are almost parallel. However, the overall
improvement from T1 to Tall is slightly higher for the MLP than
for the LSTM. The former improves by 12.3%, whereas the latter
improves by 10.8%. The CNN does not seem to benefit from addi-
tional data at all. Initially, on T1, the CNN performs relatively close
to the other methods, lacking behind the LSTM by 5.7%. However,
as more data is added for training, the CNN demonstrates a worse
classification performance than with fewer training samples. Only
when all available titles are used, the CNN barely outperforms itself
on T1 by a very slim margin of 0.5%. Consequently, the CNN has
the largest difference to its full-text counterpart out of all proposed
methods. It scores 9.8% lower onTall than on PubMed Full, whereas
the gap is 5.2% for the MLP and 1.8% for the LSTM.

By a considerable margin, the baseline is the best method on T1,
where relatively few samples are used for training. However, despite
using 20 times as many training samples, the performance on Tall
is only 1.3% better, which is a difference to the MLP and LSTM of
3.9% and 6.2%, respectively. As it is the case on the EconBiz dataset,
the full-text performance of BaseMLP is the second best and gets
as close to the MLP as 0.8%.

6 DISCUSSION
The main question of our study is to which extent title-based meth-
ods can catch up to the performance of full-text-based methods by
increasing the amount of title training data. On EconBiz, the best
title-based method outperforms the best full-text method by 9.4%
when all title training data is used. Considering that the difference
is 16.9% in favor of the full-text when the sample sizes are equal,
this is an impressive improvement. On PubMed, the improvement
is less astounding. However, the title-based method is close to com-
petitive to the full-texts, as the difference in score (less than 3%)
is small. Considering that the gap is much larger for equal sample
sizes (10.7%), we must acknowledge that current machine learning
techniques in combination with large quantities of data are able to
obtain just as good classification performance by merely using the
titles.

However, in order to utilize title-based methods in a particular
application, it is important to understand why there is such a large
difference between the EconBiz and PubMed datasets regarding the
benefit of employing title-based methods with large amounts of
data. A possible explanation for that difference lies in the absolute
numbers of full-texts available for training. As we have pointed
out, previous literature suggests that deep learning models require
around 650,000 samples to outperform more traditional approaches.
On EconBiz, this number of full-texts is far from being reached.
Due to this lack of enough training data, our deep learning mod-
els may not do so well with full-texts, in absolute numbers. The
models based on titles on the other hand may be able to achieve

https://nlp.stanford.edu/projects/glove/
https://www.tensorflow.org/
https://github.com/florianmai/Quadflor


Table 2: Results of experiments in terms of sample-based F1-measure. The best performing method on each sub-dataset is
printed in bold font.

Method
Dataset EconBiz F1 scores PubMed F1 scores

Full-Text T1 T2 T4 T8 Tall Full-Text T1 T2 T4 T8 Tall
Base-MLP 0.441 0.391 0.419 0.442 0.451 0.472 0.526 0.479 0.478 0.475 0.465 0.485

MLP 0.457 0.357 0.396 0.432 0.453 0.500 0.530 0.449 0.456 0.464 0.465 0.504
CNN 0.387 0.364 0.382 0.400 0.407 0.426 0.483 0.438 0.437 0.431 0.419 0.440
LSTM 0.363 0.360 0.392 0.417 0.435 0.466 0.524 0.465 0.470 0.477 0.481 0.515

(a) (b)

Figure 2: The figures show the performance of each classifier on titles as a function of the sample size relative to the number
of full-texts as a solid line on EconBiz (a) and PubMed (b). The dashed horizontal lines represent the respective classifier’s
performance on the full-text.

their impressive results because there is just enough data to un-
leash the power of deep learning models. In fact, our MLP, which
was optimized for large sample sizes, starts to outperform the base-
line when eight times as many titles as full-texts are used, which
nets to approximately 560,000 training samples. On the PubMed
dataset, there are almost 650,000 full-text samples available. Here,
the deep learning models can already work well on full-text. This
may explain why the LSTM performs so much better on PubMed’s
full-texts than on EconBiz’s full-texts. These findings support the
claim from previous literature that deep learning models work well
for text classification only when the sample size is several hun-
dred thousands. Furthermore, since our datasets have large label
spaces, we can state that this observation extents to XMLC, which
is arguably a harder task than single-label classification.

In order to push the limits of text classification based on titles,
our strategy was to develop and employ methods that can make
use of the vast amount of data available for training. Our results
suggest that this strategy was largely successful. On both datasets,
some of our methods surpass the performance of the baseline as
they are given more and more data for training. BaseMLP on the
other hand cannot make such good use of the additional training
data. This becomes particularly apparent on the PubMed dataset,

where it improves by only 1.3% even when it has 20 times more
training data. Our methods on the other hand improve considerably
the more data is used for training. To be fair, it is clear that part of
the much larger gain compared to the baseline is due to overfitting
on the small title datasets such as T1. Recall that our methods are
optimized towards their performance on Tall . This design decision
in our study was made to be able to fairly assess the development
of the performance as the sample size increases. We observed that
the capacity of the resulting models is likely too large for smaller
datasets, which results in overfitting. This can be seen by the fact
that BaseMLP, which has considerably lower capacity, outperforms
our proposed methods on both PubMed and EconBiz. Yet, on Tall ,
MLP outperforms Base-MLP by a wide margin on both datasets.
LSTM is close to Base-MLP on EconBiz and outperforms it drasti-
cally on PubMed. Again, this indicates the success of our strategy.
The only exception is the CNN, which does not benefit as much
from additional data as our other proposed methods, although its
capacity is large compared to other architectures recently proposed
in the literature. It is particularly interesting that the performance
of CNN (and Base-MLP, too) actually has a drop on PubMed as
more title samples are used for training. We explain this by the fact
that in T2 to T8 more than 1,300 new labels that do not occur in T1



are introduced. Hence, the models have to account for these new
labels even though they never appear in the test set, reducing their
capacity to learn to classify the labels relevant to the test set.

Considering the amount of attention CNNs have received in re-
cent years for their performance in text classification (cf. Section 2),
the results of our CNN is rather underwhelming. This is true for
both full-text, and titles. In neither case is this due to overfitting.
Our preliminary experiments showed that the CNN benefits from
increasing the feature map size a lot. Yet, the CNNs do not benefit
from additional training data in the same way LSTMs and MLPs
do. On PubMed, no benefit at all can be observed. On EconBiz,
the rate of improvement is comparable to MLP and LSTM only up
to a factor of four times the number of full-texts. After that, the
improvement is relatively marginal. In conclusion of our findings,
we think it would be good if future research shifted its focus more
towards MLPs and LSTMs, as they have demonstrated to be serious
competitors for CNNs in text classification.

The goal of this study is to investigate to which extent a model
trained on vast amounts of sample titles can compensate for the
lack of information in comparison to the full-text. Thus, it is not the
aim to achieve results beyond the state-of-the-art performance on,
e. g., full-texts. Yet, the models we use are based on and also enhance
recently proposed models. As described in Section 3.1, the MLP is
at its core a non-linear version of the popular fastText. The CNN is
based on recent advances from the domain of text-based XMLC, but
was improved by integrating more fine-grained window sizes and
larger feature maps. Finally, we present a strong bidirectional LSTM
with attention over the outputs that does not assume a hierarchical
structure of the document and therefore also works for short text
snippets, in contrast to previous work by Yang et al. [35]. Therefore,
our methods are good candidates for researchers to also adopt for
single-label text classification.

A common problem in machine learning research and in deep
learning in particular is that models are very sensitive to the choice
of hyperparameters. However, examining the whole hyperparam-
eter space is very difficult due to its combinatorial complexity.
Recently, this has called the validity of deep learning results into
question, for example in language-modeling [22] or even text clas-
sification [17]. This problem persists in our study as well. However,
instead of simply assuming values for our parameters or manually
tuning them in a somewhat arbitrary fashion, we took an incre-
mental tuning approach that in the end led to an improvement over
initial base models from the literature in all cases. This gives us
reason to believe that our results are largely reliable.

In this study, we have compared three deep learningmethods.We
did not compare against linear models such as logistic regression,
andwe did not compare against other non-linear approaches such as
kNN or SVMs. However, as described in Section 2, there is evidence
that traditional linear methods are inferior to non-linear ones when
the training data is large. More importantly, we compared against a
non-linear baseline by Galke et al. [4] that was shown to outperform
not only linear models, but also other non-linear, non-parametric
models like kNN and SVMs on a diverse set of datasets and by a
wide margin on both titles and full-texts.

For comparability, our proposed models were chosen such that
they can be employed to titles and full-texts uniformly. This pro-
hibits that certain strengts of the full-text can be made full use of.

For instance, full-text models might benefit greatly from a hierar-
chical model as proposed by Yang et al. [35]. On the other hand, we
tried our best to tap the full potential of full-texts. For instance, in
our CNN we employ dynamic max-pooling with p = 3 for full-texts
although this does not have any beneficial effect on titles.

In our study, we have examined two datasets from digital li-
braries of scientific content. We argue that these results are likely
to generalize to other datasets of scientific publications as well. In
consent with previous text classification research, we found our
deep learning methods to require approximately 550,000 samples to
outperform the previous baseline (EconBiz T8). While this number
of titles can certainly be reached in domains other than economics
and biomedicine, not many scientific domains will reach this num-
ber of full-texts. This can be seen by considering the fact that the
availability of full-texts is generally tied to their open access rate.
The rate of open access journals in academia is approximately 7%
as reported by Teplitskiy et al. [32]. This number closely matches
the rate of 5 to 6.5% of available full-texts in our datasets. Moreover,
Teplitskiy et al.’s study also suggests that the corpus of publications
from the medical domain are among the largest. Therefore, we
think it is likely that in other domains at least the relatively small
gap of less than 3% between titles and full-texts can be achieved as
well. However, in many other domains where only few full-texts
are available, training models on titles may actually be much better,
as we demonstrated for the economics domain.

Our results are of great practical importance for automatic se-
mantic indexing in digital libraries. Considering the large amount
of new literature published every year, subject indexers rely on
the assistance of machines. It is desirable to have algorithms that
produce good annotation suggestions by using only the title as
textual input instead of the abstract or full-text. This is because
the title is easy to obtain and free to use in text mining applica-
tions, whereas the full-text and even the abstract are often either
not available or may not be processed automatically due to legal
restrictions. For instance, in EconBiz only approximately 15% of
the documents have an abstract and 7% have a full-text available.
Furthermore, the task of downloading and processing the full-text
is cumbersome, where one has tens of gigabytes of data. In con-
trast, as Table 1 shows, titles only comprise up to a few gigabytes
of data. Thus, the full-text are by an order of magnitude larger.
Thanks to the vast amount of data available for training title-based
deep learning models, our study demonstrates that in a realistic
scenario deep learning algorithms are able to satisfy the demand
for sufficiently strong title-based classification methods. Engineers
of (semi-)automatic semantic indexing algorithms should therefore
consider shifting their focus from full-text-based classification to
title-based classification in order to maximize the applicability of
automatic semantic indexing systems.

7 CONCLUSION
In this paper, we have successfully answered the question if a seman-
tic indexing system based on the title can reach the performance of
a system based on the full-text if the number of samples for training
the title-based method is much larger than the number of full-text
samples. To this end, we developed three deep learning methods
and evaluated them on two scientific datasets of different size. We



found that in one case such a system is competitive with the full-
text system, and in the other case it even yields considerably better
scores. These results have important implications for automatic
semantic indexing systems in digital libraries of scientific content.

In the future, we want to push the limits of classification based on
large amounts of titles even further, and we would like to encourage
the community to do the same. To this end, we published the title
datasets, the source code, and an extended version of this paper on
GitHub11.
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