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 ABSTRACT 

 

The objective of this research is to address some of the challenges of parametric 

design associated with defining a model’s frameworks using mathematics and computer 

programming. This work proposes a tactile-based approach to automate the generation 

of such information. A design-based research method is implemented for this work, 

which involves developing research prototypes consisting of Tangible User-Interfaces 

(TUIs) to demonstrate and test the digital-physical workflow. Five prototypes were 

created each generating a type of information for setting up parametric models, 

including; linear and polynomial mathematical equations, algorithmic rules and seed 

configurations for a Cellular Automata (CA) component, geometric transformations 

(single and compound), and Non-Uniform Rational Basis Spline (NURBS) objects. 

During the progress of the work, prototypes were improved to include a higher level of 

automation by performing multiple and more complex modeling tasks.  

This research includes two levels of evaluation. The first is system correctness, 

which tests the prototypes for translating tangible interaction with design objects into 

modeling information. The second is a qualitative comparison between the developed 

method and the conventional parametric modeling approach using graph-based and/or 

text-based programming applications. The results of the research have shown the 

plausibility of the workflow and its potential benefits for parametric modeling practice 

and education. This work provides a proof-of-concept for a novel approach that 

translates design intents into mathematical and algorithmic modeling information for 
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establishing parametric frameworks. The outcomes of this research include; detailed 

workflows describing algorithmic procedures for interpreting analog data, TUI 

specifications, and an overall theoretical framework of the method. 
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1. INTRODUCTION  

 

Parametric design is broadly defined as a method of applying algorithmic 

thinking for establishing geometric dependencies (Woodbury, 2010; Jabi 2013). 

Geometric relationships can be established using analog and digital techniques. An early 

example of analog parametric modeling is seen in Antoni Gaudí’s upside down model of 

the Colònia Güell chapel. The design is composed of a vault structure made with strings 

and birdshots. The geometric composition of this chapel can be altered by changing the 

length of the strings and position of the weights. Later, Ivan Sutherland introduced 

Sketchpad, a software tool based on propagation mechanisms and a relaxation method of 

a simultaneous equation solver (Sutherland, 1963). Sketchpad was considered as a 

breakthrough in constraint modeling for creating technical and artistic drawings 

(Woodbury, 2010). The two examples demonstrate two distinct parametric design 

approaches; i.e., Gaudí’s analog approach using visual and haptic senses, and 

Sutherland’s digital constraint solver.  

Current development in digital technologies has transformed the architectural 

practice (Salim et al., 2010) making it possible for designers to experiment with 

generating architectural form expressively. The common practice of constructing 

parametric models is done through text-based (imperative) and graph-based (declarative) 

programming applications (Appleby & VandeKopple, 1997; Davis, 2013). Nevertheless, 

designers find it challenging to conceptualize forms algorithmically (Woodbury, 2010) 

as they are required to adapt to a new way of thinking that involves utilizing 



 

2 

 

mathematics and software programming to translate design knowledge into explicit 

algorithmic procedures. Instead, designers tend to operate digital tools in such a way that 

imitates traditional analog techniques (Garber, 2014). For designers, analog approaches 

provide a more natural way to creatively explore, communicate, and represent design 

ideas (Kępczyńska-Walczak, 2014; Smith, 2004).  

 

1.1. Research Problem  

Research has shown that defining parametric frameworks is problematic for 

designers (Davis, 2013; Weisberg, 2008; Gerber 2007) as it requires them to possess a 

level of knowledge in mathematics and computer programming. Although, algorithmic 

editors have enabled designers and novice-programmers to create non-standard 

geometric forms and interactively modify them (Stavric & Marina, 2011; Issa, 2013), 

such tools do not “alleviate the lack of understanding about more non-visual 

fundamentals of programming and mathematics” (Austin & Qattan, 2016, p. 832). 

Designers’ ability to utilize such tools does not demonstrate their level of knowledge and 

understanding of the fundamentals of mathematics (Ozcan & Akarum, 2001). 

Algorithmic education is generally challenging for students, both in theory and practice, 

because students have not been properly trained in the fields of computer programming 

and mathematics (Eckerdal, 2009; Austin & Qattan, 2016), which is also the case for 

architecture students (Beesley, Williamson, & Woodbury, 2006). This lack of essential 

knowledge creates a gap between designers’ intent and action, i.e., their inability to 

effectively translate their design ideas into digital models.  
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Furthermore, research has shown that the creative design process is limited when 

designers lack the required skills for operating digital tools (Kępczyńska-Walczak, 

2014). However, analog techniques have shown to support the digital design process as 

they provide designers with an intuitive approach for conceptualizing architectural form. 

Research claims computer input components, such as mice and keyboards, do not take 

advantage of designers’ haptic skills in the modeling process (Ishii, 2008; Eng, 

Camarata, Do, & Gross, 2006), because of their limited interactive capabilities.  

 

1.2. Research Questions  

This research addresses the previously mentioned challenges of parametric 

design by answering the following questions.  

• What are the types of user interfaces that can assist in capturing and 

translating design intent into parametric models? 

Text-based and graph-based programming applications are commonly used for 

embedding design intents in digital models. Yet, this research explores a method using 

tangible interaction by linking Tangible User Interfaces (TUIs) with digital models to 

improve the modeling process by automating the generation of modeling information 

required for establishing parametric frameworks. Research has shown that TUIs provide 

an intuitive approach for designers to work with digital models, which will be further 

discussed in the Literature Review chapter.  

• Can TUIs automate the generation of mathematical equations for 

establishing relationships in digital models?  
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This question focuses on utilizing TUIs for automating the generation of 

mathematical information. The equations generated by the TUIs are used for setting up 

modeling constraints. This work focuses on algebraic constraints, which require user-

defined inputs such as variables, functions, formulas, and logical arguments for 

establishing more complex object relations than the standard and commonly used 

geometric constraints.  

• How can a TUI interpret the different types of tangible interaction as 

algorithmic rules for creating a parametric model? 

Expressing design intent in digital models requires designers to demonstrate a 

level of mastery in both mathematics and computer programming. Mathematical 

functions as previously described are used to setup constraints to establish object 

relations for representing a design intent in a digital model.  In a constraint modeling 

process, the designer has an initial idea of the model’s outcomes of (e.g., rotating a panel 

array to a specific angle by changing parameter inputs). However, algorithms are used 

for embedding more complex design intents and for form finding. This question 

investigates using TUIs for generating algorithmic rules and initial cell states (i.e., seeds) 

for setting up a Cellular Automata (CA) algorithm. 

 

1.3. Research Overview  

This research demonstrates a method using tangible interaction for automatically 

capturing and embedding design intents in parametric models. The workflows developed 
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in this research link TUIs with virtual modeling environments to assist designers in 

generating modeling information for defining parametric frameworks.  

 

1.4. Research Objective   

The objective of this study is to provide an approach for generating mathematical 

and algorithmic information through interacting with physical design objects instead of 

the common practice of only using generic computer input devices with text-based 

and/or graph-based programming methods. The work focuses on developing and testing 

a novel approach that combines tangible interaction and analog data interpretation 

procedures to automate the translation of physical design intents into parametric models. 

This includes workflows for generating mathematical equations (linear and polynomial) 

and algorithmic rules, detecting and applying compound and non-compound types of 

geometric transformations, and constructing Non-Uniform Rational Basis Spline 

(NURBS) objects. The prototypes developed for this work consist of a custom-made 

TUI that is connected to a virtual modeling environment. The prototypes will monitor 

and translate physical design object states into parametric models.  

The outcomes of this research include: 

1. Flowcharts describing the programming logic and system workflow 

2. Documentation of the prototypes including photographic demonstrations 

of user interaction and digital responses  

3. Criteria for developing TUIs for modeling applications  
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4. An approach to interpreting analog data for automating modeling 

procedures  

5. An overall system framework  

 

1.5. Research Method    

This research includes three main phases: 1) literature review, for identifying the 

challenges of parametric modeling and locate some of the related works to this research 

and formulating the research questions; 2) prototyping and implementation, 3) 

Evaluating the outcomes of the work.  

This work adopts a design-based research method, which includes four main 

steps as described by Reeves (2000): 1) identifying a problem, 2) proposing a solution, 

3) testing and evaluating the solution, and 4) documenting the results. 

Haptic-based interactive prototypes are developed and used for demonstrating 

and testing the workflows. This work uses similar criteria to those established and 

discussed by Shaer, Leland, Calvillo-Gamez, and Jacob (2004) for developing TUIs. A 

typical workflow consists of four main parts (Figure 1.1) as described below:  

1. User: designer(s) interacting with the system. 

2. TUI: an apparatus consisting of: 

• An artifact, which is composed of design objects (a physical 

representation/counterpart of the digital model) and a workbench, a 

workspace defining the limits of the artifact.  
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• A physical computing system; an electrical circuit composed of 

microcontrollers, sensors, and actuators.  

3. Data interpretation scheme: a set of algorithmic procedures for analyzing 

and processing analog data for generating modeling information.  

4. Digital model: a geometric model representing a design problem for 

testing the workflow. 

Physical computing is a term that refers to any form of communication between 

the digital and physical environments, and most physical computing systems include 

three main parts: 1) input (sensor), 2) transducer (microcontroller), and 3) output 

(actuator) (O’Sullivan & Igoe, 2004). 

 

 

Figure 1.1 Graph showing the four main parts of the workflows developed and tested in 
this research. The workflow allows designers to translate design intent into parametric 

models through physically interacting with design objects. 
 

1.6. Prototyping  

The prototyping process includes four main steps as described below:  

 

1.6.1. Hardware 

Each prototype has a custom-made TUI, including an artifact and a physical 

computing system. The physical computing system provides the inputs for the digital 
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model through sensors that monitor the designer’s interaction with the artifact. The 

physical computing system is composed of an Arduino microcontroller (2005), which is 

an open-source reconfigurable device used for a wide range of applications. The 

microcontroller has a CPU with limited ROM and RAM and is programmed using the 

Arduino IDE. The microcontroller can also be set up using other programming 

languages such as; Python, C-sharp, and C++. Electronics and circuit for each prototype 

are set up according to the inputs required for the computer algorithm. For example, 

Prototype 1 uses a rotary potentiometer for providing angles of rotation as data samples 

for regression analysis, while Prototype 3 uses pressure sensitive sensors for detecting 

design object location to generate the seeds for a CA algorithm. Sensors are consistent 

with the type of geometric transformation the designer wants to apply to a physical 

object. For a rotation transformation as an example, a rotary potentiometer is used, 

because it is operated by manually rotating the sensor’s handle. 

 

1.6.2. Software 

Software applications used for this research include 1) 3D modelers (CAD and 

BIM authoring tools), 2) algorithmic editors, 3) data transfer and linkage, and 4) data 

management. Each of the five workflows includes a combination of these tools and is 

different from one prototype to the other. A sample workflow, as developed for 

Prototype 1, includes: Revit, a BIM authoring tool published by Autodesk; Dynamo, a 

visual programming add-on for Revit; IronPython, text-based programming language; 
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Firefly, a set of tools for data communication between Dynamo and the Arduino 

microcontroller (Payne & Johnson, 2012); and Microsoft Excel.  

 

1.6.3. Digital Fabrication & Assembly  

For each prototype, a design object is modeled using Rhino 3D or Revit. These 

objects and the overall artifacts are prepared for digital fabrication to construct the TUIs. 

Material type and properties, and digital fabrication machinery are taken into 

consideration during the 3D modeling process of the artifacts. Visual programs were 

written in Grasshopper and Dynamo for rapidly modifying and customizing the TUIs for 

each prototype.  

 

1.6.4. Interoperability  

Data communication between the TUI and the digital model is established using 

the software package Firefly. Other methods of data transfer and linkage were created 

for this research and further discussed in the Prior Work chapter.  

 

1.7. Prototype Implementation   

The prototypes are categorized into three groups: Algebraic constraints, 2) 

Algorithmic rules, and 3) TUI Improvements. Each of these categories tests a workflow 

for automatically setting up a parametric model. The independent variable in these 

prototypes is the physical design object’s state when manipulated by the designer. The 

dependent variables are the generated information and digital geometric responses.  
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1.7.1. Algebraic Constraints  

This category includes two prototypes, which focus on generating mathematical 

equations representing design intent (i.e., object relationships) for setting up algebraic 

constraints. Prototype 1 utilizes the TUI for generating linear equations for setting up the 

constraints in the parametric model. Prototype 2 focuses on a more complex type of 

object relationships based on polynomial equations. Both prototypes utilize regression 

models for generating the equations.  

 

1.7.2. Algorithmic Rules  

This category includes one prototype for setting up a CA component and is tested 

for two workflows. The first workflow is for generating the seeds, and the second for 

generating the rules. The workflows include a set of conditional statements to process 

analog data. For generating the seeds, the designer places blocks representing CA cells 

on a grid to create and modify a neighborhood configuration. This configuration is used 

as a custom seed for initiating the evolutionary process. For generating the rules, the 

designer defines three cell states using the blocks; alive, dead and surviving. The cell 

states composing the rule are generated by having the TUI counting the number of 

blocks placed on the grid. Changing the number of blocks modifies the rules of the 

algorithm.  
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1.7.3. TUI Improvements  

This group includes two prototypes: Prototype 4, which automatically detects 

physical object transformations; and Prototype 5, which is used to create a NURBS 

object. The algorithm for Prototype 4 detects two types of physical object 

transformations, rotation, and translation. It identifies these transformations using 

incoming sensor values received from the artifact (angles of rotation or distance). These 

values are sent to their corresponding cells in a transformation matrix to transform the 

digital model. Prototype 5 uses a similar method to detect transformations, in addition to 

the number of design objects (representing control points) used in the artifact. This 

information is provided to construct a NURBS curve. The artifact and algorithm are 

developed to generate multiple types of algorithmic information during the process of 

interaction such as; 1) the number of control points for the NURBS curve and 2) 

boundaries for the NURBS curve. The boundaries are used afterward for generating 

curve configurations (design options).  

 

1.8. Prototype Evaluation  

The prototypes are tested internally by having the researcher evaluating the work 

for system correctness and by conducting a qualitative comparison between the 

developed workflow and the common practice of using text-based and/or graph-based 

programming methods in a parametric modeling process. Correctness in the context of 

this work refers to the correlation between data input and output, i.e., types of interaction 

with the generated modeling information and geometric responses.  
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The qualitative assessment of the work provides insight into the system in terms 

of its benefits and drawbacks in the parametric modeling process. Techniques used for 

this evaluation include using visualizations of mathematical graphs (for comparing 

geometric profiles generated using the mathematical equations), and examples of 

parametric frameworks describing the conventional process of translating design intent 

into mathematical and algorithmic procedures. 

 

1.9. Research Significance  

Physical models have shown to be beneficial in a digital design process. For 

example, Shelden (2002) emphasizes the importance of such artifacts in Frank Gehry’s 

digital practice as they provide insight into a design’s physical and material properties 

that would aid in further design development. Currently, development in digital 

technologies and the emergence of notions such Mixed Reality system (Milgram & 

Kishino, 1994), the physical embodiment of computation (Dourish, 2001), ubiquitous 

computing (Weiser, 1991) and tangible interaction (Hornecker & Buur, 2006) have 

promoted research in context-aware computing for architectural applications (Salim et 

al., 2010).  

Furthermore, since the launch of Sutherland’s Sketchpad (1963), there has been a 

growing interest in enhancing the interactive capabilities of CAD systems (Davis, 2013). 

Monedero (2000) mentions that “A fundamental problem in CAD is how to make 

explicit some intuitive knowledge we have about something in such a way that a 

machine can interpret and treat it in an automatic way” (p. 371). 
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TUIs and other forms of digital-physical workflows provide a unique platform 

for working with parametric models as they enable real-time interaction with digital 

models and instant feedback to the designer. Existing TUI examples demonstrate some 

of the opportunities for improving digital processes (Ishii, 2008; Salim et al., 2010) and 

designers’ cognitive abilities (Kim & Maher, 2008a, 2008b). 

This research finds that there is a need to improve digital workflows to capture 

design intents and embed them in digital models automatically. This research is expected 

to contribute to the body of knowledge by suggesting that tangible interaction can 

provide an intuitive approach for generating mathematical information and computer 

programming procedures required for defining parametric frameworks. To my 

knowledge, there is hardly any research investigating the prospect of utilizing TUIs for 

assisting designers in the process of generating such information in a parametric 

modeling process.  

 

1.10. Dissertation Outline  

This dissertation consists of eight chapters as described below: 

• Chapter 1 – Introduction: describes the outline of the dissertation.  

• Chapter 2 – Literature Review: provides the literature for the two main 

topics of this work, parametric modeling, and tangible interaction. This 

chapter focuses on describing the current methods used for digital 

modeling and providing examples of related work; defining the research 

problem; and formulating the research questions. 
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• Chapter 3 – Research Method: provides a detailed description of the 

research outline, process, and phases of implementation.  

• Chapter 4 – Prior Work: describes the process of developing the TUIs and 

data transfer methods.  

• Chapter 5 – Prototype Implementation: describes the process of testing 

the developed workflows and TUIs.  

• Chapter 6 – Evaluation: presents a comparative analysis between the 

developed workflow and the current practices for embedding design 

intents in digital models.   

• Chapter 7 – Discussion: provides a description of how the method 

addresses the challenges of parametric modeling, limitations of the study, 

and its applications in both practice and academia.  

• Chapter 8 – Conclusion: discusses the contribution of the work to the 

body of knowledge and future work. 
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2. LITERATURE REVIEW  

 

Current developments in digital tools have enabled designers to explore new 

ways to conceptualize form (Schnabel, 2007), which is a fundamental shift from the 

1990s where such tools were mainly used for design representation (Stavric & Marina, 

2011) The emergence of algorithmic editors and software packages (e.g., Grasshopper, 

Dynamo, etc.) have provided designers and novice-programmers with the means to 

create and modify “non-standard” geometric forms (Stavric & Marina, 2011, p. 9). For 

example, Grasshopper, an algorithmic editor and plug-in for Rhino 3D, is commonly 

used for architectural design (Payne & Issa, 2014), because it offers a wide range of 

mathematical tools, such as “operators, conditional statements, functions, and 

trigonometric curves” (Stavric & Marina, 2011, p. 12) for creating algorithms. Such 

algorithms have provided designers with generative power for digital modeling (Stavric 

& Marina, 2011), which goes beyond the conventional and limited use of 3D modelers 

(Terzidis, 2006).  

Parametric design is based on algorithmic thinking, a process of expressing 

designs through a set of procedures. It provides designers with a novel approach to 

digital modeling. Woodbury (2010) states that “Parametric modeling…introduces 

fundamental change: ‘marks’, that is, parts of a design, relate and change together in a 

coordinated way” (p. 11). The designer assigns different values to an object’s parameters 

and modifies them to rapidly generate design variations for the same model (Woodbury, 

2010; Maher, 2011; Hernandez, 2006). An advantage of parametric design is that 
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changes can be implemented in digital models without having the need to reconstruct 

them (Burry, 2011).  The flexibility of a model to adapt to changes is a key feature of 

parametric modeling, as Davis (2013) explains, “Flexibility makes-up the central tenet of 

parametric modeling. By maintaining a flexible model the designer can afford to make 

changes, which is important given the inevitability of change on an architecture project” 

(p. 36). 

Davis (2013) further explains, “a parametric model is unique not for what it does 

but rather how it was created” (p. 31). The designer explicitly states how a set of 

outcomes can be derived from a set of parameters (Davis, 2013). Parametric modeling 

suggests that parameters are used to generate form; however “what is actually in play is 

the use of relations” (Monedero, 2000, p. 371). Novak (1998) explains that parametric 

modeling is more with the manipulation of relations and less with the manipulation of 

geometric objects. The construction of a parametric model and the way it behaves 

reflects on the purpose of the model, its intent. Therefore, it is essential to discuss the 

relationship between parametric modeling and design intent as it provides insight into 

the way a model is constructed to serve its purpose. 

 

2.1. Design Intent: Parametric Relationships  

Design intent is a concept widely referred to in design-related fields; however, it 

is challenging to formally define (Otey, Company, Contero, & Camba, 2018; Chen & 

Hoffman, 1995). Several authors have provided a description of the term with respect to 

digital modeling. For example, Martin (2017) explains that a design intent at the most 
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basic level is, “What I intend my designs to do” (para. 1.2). This refers to the model’s 

expected behavior for achieving a required function. An extended description of design 

intent is provided by Otey et al. (2018) in the context of CAD modeling for mechanical 

engineering. Although Davis (2013) mentions that the uniqueness of parametric models 

is in the way they are constructed. i.e., relating functions to outcomes, a design intent 

mostly focuses on the model’s behavior and flexibility to adapt to change when 

modified.  

Martin (2017) mentions that the objectives of design intent in CAD modeling are 

creating “parametric, flexible, and robust models that update in ways we plan and expect 

when we implement changes” (para. 1.3). Software tools such as CATIA and 

SolidWorks (Dassault Systèmes, 1995); Digital Project (Gehry Technologies, n.d.) Cero 

(PTC, 2011), etc. follow a similar process for constructing parametric models that 

include creating a 2D sketch and adding constraints and parameters to the geometric 

objects composing the model to establish relationships. A design intent in this process is 

captured by embedding mathematical equations using the constraints. Another approach 

is by expressing design intent through explicit algorithmic procedures such as the pattern 

examples provided by Woodbury (2010) in his book Elements of Parametric Design.  

In a parametric modeling process, it is essential to properly prepare a framework 

describing the relationships between the different parts of the model to achieve the 

expected behavior. As Rynne and Gaughran (2007) mention that, the extent to which a 

design intent is captured in a parametric model relates directly to the way the model is 

planned and built.  
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A parametric model consists of constraints and parameters (Hernandez, 2006), 

both of which are used to establish the design space and maintain the relationships 

between the geometric objects (Maher, 2011). Object relationships and their behavior are 

defined mathematically and geometrically in digital models (Stavric & Marina, 2011) 

using formulas, equations, and functions (Burry, 1999).  

Davis (2013, p. 21) mentions that a parametric equation must meet two 

conditions: it should (1) express a set of quantities (geometric objects) through a number 

of parameters (e.g., x and y in terms of a free parameter t), and (2) relate the outcomes to 

the parameters through explicit functions. For example, a two-dimensional circle 

equation can be represented mathematically in Eq. 2.1, and its parametrization as shown 

in Eq. 2.2 and 2.3.  

 

𝑟𝑟2 = 𝑥𝑥2 + 𝑦𝑦2    Eq. 2.1 

 𝑥𝑥 = 𝑟𝑟 cos(𝑡𝑡) ,𝑦𝑦 = 𝑟𝑟 sin(𝑡𝑡)  Eq. 2.2, 2.3 

 

The parametric equations of the circle show x and y as the quantities, which are 

made explicit in the functions in terms of an independent variable t, referred to as the 

free parameter. The free parameter generates a point on the circle. If Eq. 2.2, 2.3, for 

example, are to be used in a design context for changing the size of the circle using its 

radius, then both r and t are used as free parameters. The geometric entity in this 

example (the circle) and its behavior are expressed through functions, and the outcomes 
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of these functions are related to the parameters. These characteristics of Eq. 2.2, 2.3. 

meet the criteria that define a parametric equation. 

It is essential to explain the notion of a parameter and the method of 

implementing equations and establishing relations between objects in digital models. A 

parameter in a broader sense can be described as a “boundary” that defines a “design 

space” (Maher, 2011, p. 10). In a parametric model, it is important that the designer 

carefully establishes this boundary, as “The combinations of sets of values for the 

parameters in each of the parameterizations are ‘design space’ and determine the space’s 

flexibility” (Maher, 2011, p. 10). 

Designers utilize constraints in digital models to establish object relationships. A 

constraint is a relation that limits design possibilities (Cuff, 1991) by restricting the 

“behavior of an entity or group of entities” (Monedero 2000, p. 372). Hoffmann and 

Joan-Arinyo (2002) categorize constraint types into four groups: 

• Geometrical constraints 

• Equational constraints  

• Semantic constraints  

• Topological constraints 

This research focuses on equational constraints, also referred to as algebraic 

constraints, which utilize mathematical functions and conditional statements to link 

parameter values together to define object relationships. Such constraints include 

distance (or length), radius, and angle.  
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Constraints offer a way to establish a relationship in parametric models, yet other 

methods of constructing similar or even more complex relationships do require 

alternative programming methods. The following section will provide a description of 

some of the conventional programming methods used for parametric modeling. 

 

2.2. Programming Methods 

Weisberg (2008) reports that designers using Pro/ENGINEER have found that 

parametric modeling is more like programming than the conventional practice of design. 

Pro/ENGINEER is the first commercial parametric modeling software published in 1988 

by Parametric Technology Corporation. Currently, a wider range of parametric modeling 

tools exists with each having distinct programming and interactive features. Davis 

(2013) describes these software tools in his Taxonomy of Programming Languages 

graph (p. 62), which was initially developed by Appleby and VandeKopple (1997). As 

Davis explains (2013), in this classification, software tools fall under two programming 

paradigms Imperative and Declarative. For Imperative, programming applications are 

text-based and are subcategorized under more specific programming paradigms, such as 

Object Oriented (such as Maxscript, AutoCAD.NET, MEL, Processing, Revit Python, 

and Rhino Python) and Procedural (such as GDL). Programming applications such as 

Rhino VB and Digital Project VB overlap both subcategories. For Declarative 

programming, applications are graph-based and are subcategorized under 

Functional/Dataflow programming paradigm, and it includes Grasshopper, GC, Houdini, 
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and MaxMsp (Davis, 2013). Dynamo, an algorithmic editor for Revit, can also be 

included in functional and dataflow programming. 

The difference between both types of paradigms is the way the designer 

constructs the algorithm. For Imperative, it is mostly about the designer stating ‘how’ the 

algorithm works, the designer describes “a sequence of actions for the computer to 

perform” (Davis, 2013, p. 99). As for Declarative, the designer describes “what” the 

algorithm is going to achieve, the designer defines the results without having to explain 

the process (Van Roy & Haridi, 2004; Davis, 2013).  

In both programming paradigms, the designer must develop a set of skill and 

acquire knowledge in software programming and mathematics to utilize the tools 

(Woodbury, 2010). This process is uncommon for designers as they are required to 

approach design using a different mindset than the conventional approach of using 

analog techniques to conceptualize form. This problem is further discussed in the 

following section.  

 

2.3. Research Problem  

Designers are trained in model making and drafting (Eng et al., 2006). Such 

techniques enable them to produce artifacts that are considered essential in the design 

process (Sass, 2009). These analog skills and artifacts enable designers to naturally 

communicate their ideas and explore design solutions (Kępczyńska-Walczak, 2014). 

However, parametric modeling requires designers to adapt to a new way of thinking for 

translating design knowledge into algorithmic procedures, which is unconventional for 
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them. Designers must carefully plan the sequence and precise algorithmic procedures for 

establishing a parametric model. Davis (2013) mentions that:  

Planning is a necessary component of parametric modeling 

because the logical rigidity of a model’s explicit functions requires 

that the designer anticipate, to some degree, the parameters of the 

model and the hierarchy of dependencies between functions. (p.39)  

 The process of defining parametric frameworks is an essential step in the 

modeling process, yet it requires “a significant amount of upfront cognitive investment” 

(Gerber 2007, p. 205).  

The process of defining parametric frameworks requires specialized knowledge 

in mathematics and geometry, both of which are considered as the core of the design 

process from the initial stages of design to manufacturing (Stavric & Marina, 2011). 

Therefore, developing designers’ skills in software programming is essential (Aish, 

2005), because it allows them to embed their design intents in digital models. Issa (2013) 

mentions that algorithmic editors (e.g., Grasshopper) have enabled designers with no 

programming background to design expressive geometric forms. Nevertheless, for 

designers to translate design knowledge into mathematical functions and algorithmic 

procedures is problematic. Lacking computing skills often results in limiting or even 

blocking the creative design process (Kępczyńska-Walczak, 2014), and simply operating 

digital tools does not necessarily reflect designers’ understanding of the process. 

Kępczyńska-Walczak (2014) reveals in a study that, some students were not always 



 

23 

 

successful in writing computer codes for creating and controlling geometric forms. Their 

skillset in computing did not necessarily follow their imagination as a level of 

algorithmic thinking, and programming proficiency was required (Kępczyńska-Walczak, 

2008). Beesley, et al. (2006) also mention that:  

Effective use of a parametric modeler requires a practical 

understanding of such concepts as a vector, the cross-product, 

projection, parametric functions and Frenet frames. As anyone who 

has studied linear algebra knows, these concepts require some 

sophistication to master, that is to use effectively and with 

control…Most designers have not had much formal education in 

mathematics, computing or software engineering. (p. 3) 

Monedero (2000) states that the problem designers encounter with CAD systems 

is “How to make explicit some intuitive knowledge we have about something in such a 

way that a machine can interpret and treat in an automatic way” (p. 337). This research 

finds that there is a need to investigate and provide an approach for automating the 

process of capturing and embedding design intents in parametric models. The following 

research questions will assist in exploring alternative possibilities to current parametric 

modeling practices to support designers in the digital design process by generating 

mathematical and algorithmic information that is required for establishing parametric 

frameworks.  
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2.4. Research Questions  

Research claims that operating computers using keyboards and mice do not 

reflect the way designers interact with objects in the physical world (Dourish, 2001). 

Fischer (2005) explains that with GUIs, the physical attributes of a model are lost, such 

as “The tactile and material qualities as well as spatial realism and the required tectonic 

and construction skills that used to play a much more important role in design 

education” (p. 59). The following question aims to investigate a physical and a natural 

approach for interacting with parametric models, suggesting a method that is similar to 

using analog techniques in the design process.  

• What are the types of user interfaces that can assist in capturing and 

translating design intents into parametric models? 

Since the launch of Sketchpad in 1963, advances in digital technology have 

shifted interest from “the physical to the digital” in both the practice and the education of 

architecture (Fischer, 2005, p. 59). Although, computing technology has enabled 

designers to create elaborate forms (Stavric & Marina, 2011) and functional models 

using simulation tools and engines (Fischer, 2005), research claims that “GUIs fall short 

of embracing the richness of human senses and skills people have developed through a 

lifetime of interaction with the physical world” (Ishii & Ullmer, 1997, p. 7). Eng et al. 

(2006) mention that manipulating digital objects lacks the tactile feedback that 

traditional models provide, which is “counter-intuitive to the designer’s education” (p. 

1). Research suggests that TUIs can provide an intuitive approach for digital modeling 
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and are being developed as an alternative to using generic computer input devices like 

keyboards and mice (Maher & Kim, 2005). 

In addition, to the TUI’s intuitive interactive capabilities, it also does support 

design cognition and decision making. According to Kim and Maher (2008b), TUIs have 

shown to have a positive effect on designers’ “perception and reasoning of visuo-spatial 

information” (p. 248). Kim and Maher’s extensive research on TUIs and design 

cognition supports this research’s objectives, specifically for using TUIs to develop 

designers’ level of algorithmic thinking and knowledge in computer programming.   

• Can TUIs automate the generation of mathematical equations for 

establishing relations in digital models?  

As described earlier, the common practice of establishing relations in parametric 

models is often achieved through text-based and/or graph-based programming 

applications. A challenge of parametric modeling is that it requires specialized 

knowledge in mathematics, geometry, and computer programming (Woodbury, 2010). 

Aşut & Meijer (2016) state that a challenge of teaching CAD is that, “CAD mostly 

requires to communicate explicit information which do [sic] not mostly overlap with the 

implicit realms of design knowledge” (p. 322).  

The aim of this research is to explore an approach to translate design intent into 

mathematical form to be used in a digital model. This question aims at investigating a 

workflow using tangible interaction to automate the generation of mathematical 

equations depicting object relationships. TUIs do provide an intuitive approach for 
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parametric modeling; designers can manually manipulate physical objects to represent a 

relationship instead of explicitly stating it through mathematical functions.  

Existing works utilizing tangible interaction and user-interfaces do demonstrate 

the uniqueness and opportunities for improving the design process. These works mainly 

focus on gathering analog data from users and the surrounding environment as parameter 

inputs to control and manipulate digital objects. Such examples link TUIs with defined 

parametric frameworks, i.e., the designer establishes an object relationship using 

programming tools. Salim et al. (2010) state that, in their prototype demonstrations, an 

existing parametric framework is used with the TUIs. They suggest that, in their future 

work, physical computing systems can be used to define object relationship in digital 

environments.  

Furthermore, software packages and mathematical modules such as Math.Net 

Numerics (Ruegg, Cuda, & Gael, 2002) can assist in this workflow. It includes 

regression models for generating mathematical equations that depict correlation in data 

sets. This module can be used with software programming applications such as C-Sharp 

and Python. Another example is the Trendline tool in Microsoft Excel, which uses a 

curve-fitting function to evaluate a set of data points. Trendline generates best-fit curves 

using linear, polynomial, logarithmic, and other types of equations. For digital modelers 

such as Rhino 3D, designers can find best-fit curves for a set of data points using the 

Grasshopper plug-in Mantis (Zaghloul, 2010). 

Utilizing the previously mentioned software tools do offer the possibility of 

discovering the mathematical definition of geometric elements and patterns within data 
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sets. This research finds that incorporating these tools in the digital-physical workflow 

provides an innovative approach for automatically deducing physical object relationships 

and representing them as mathematical equations.   

• How can a TUI interpret the different types of tangible interaction as 

algorithmic rules for creating a parametric model? 

Research has shown that computer programming can be challenging for 

designers, because they are expected to learn, create, and utilize their algorithms in a 

short period of time (Austin & Qattan, 2016). As explained previously, most designers 

have not had any formal training in computer programming or developed a basic 

understanding of programming principles. Lahtinen, Ala-Mutka, and Järvinen (2005) 

further explain, software programming, in general, can be challenging because of users’ 

difficulty to 1) understand some of the abstract notions of programming, 2) construct 

algorithms, and 3) envision algorithms’ real-world applications.  

This research tests a workflow integrating tangible interaction and a CA 

algorithm for generating complex geometric patterns. CA rules, similar to object 

relationship, can be easily described using natural language, because of its clear 

algorithmic grammar (i.e., cell state being alive, or dead based on the number of its 

surrounding neighbors) and its simple rules, which can be used as parameter inputs. 

These characteristics of CA makes it straightforward to use and to generate outputs using 

the rules rapidly. However, the process of “formulating and elaborating the rules are 

more difficult” (Araghi & Stouffs, 2015, p. 154). CA provides a good example for 
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testing the method of generating rules using tangible interaction for reasons described 

below. 

CA is a generative algorithm represented by an infinite lattice with each of its 

cells having one possible state; a cell can be alive or dead in a two-dimensional grid or 

have more possible states if it is generated in three-dimensions (Frazer, 1995). In a 2D 

CA, a cell’s livelihood in later generations of the evolutionary process is determined by 

its eight surrounding neighbors (referred to as a neighborhood). In 1963, von Neumann 

introduced CA, and a popular example of it is shown in John Horton Conway’s Game of 

Life. The game only requires the player to input an initial cell state (seed) to start the 

evolutionary process. The game produces emergent patterns that resemble the behavior 

of living organisms (Gardner, 1970; Krawczyk, 2002). This complex behavior (i.e., 

patterns) is generated by using simple “local” rules, while the overall pattern is affected 

by the seed (Frazer, 1995, p. 54).  

CA has been extensively researched as an architectural design method (Cruz, 

Karakiewicz, & Kirley, 2016) because the characteristics of the generated patterns can 

be interpreted as spatial configurations used in conceptualizing architectural form 

(O’Sullivan & Torrens, 2001; Herr, 2008). Herr (2008) mentions that:  

Two – or three-dimensional CA-generated patterns seem related 

to architectural design at several levels… they can be a reminiscent of 

urban or architectural plans or building form. CA further depend on 

procedural rule-based logic, which can be related to rules governing 

architectural composition or functionality used in architectural design 
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processes. CA are based on spatial relationships between cells, which 

usually refer to some form of cell “neighborhood.” Finally, 

relationships between CA cells have a temporal and procedural 

dimension, which can be linked to the gradual development of design 

proposals during the architectural design process. (p. 5) 

An early example of the application of CA rules and physical computing systems 

can be traced back to work developed by John and Peter Frazer. In 1979, they created a 

Self-replicating Cellular Automata model, which is composed of cells integrated with 

electronics. The electronics enable each cell to “know the rules of self-replication, to be 

aware of its neighbors, and to display with LEDs the addition point of the next cell” 

(Frazer, 1995, p. 56). The rules control the growth of the model, and the lights used in 

the model indicate the location of the added cells by “human intervention or by a robotic 

arm controlled by the system” (Frazer, 1995, p. 56).   

This research question utilizes CA in the workflow as a sample algorithm. The 

work focuses on setting up CA by automatically generating the seeds and rules using 

tangible interaction. This approach like the previous question focuses on providing a 

natural and tactile-based approach for generating algorithmic information required for 

establishing a parametric model. A widely used software package for implementing 

evolutionary algorithms in digital models is the Grasshopper plug-in Rabbit 

(Morphocode, n.d.). It is used in this workflow, because it offers a set of comprehensive 

tools to utilize CA, and other Evolutionary Algorithms (EA) such as L-systems, in a 

digital modeling process.  
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2.5. Tangible Interaction  

Prior to digital modeling, analog techniques were used for form finding, such as 

the example of the hanging chain model of the Colònia Güell chapel by Antoni Gaudí’s 

(Burry, 2011). The chapel’s structure is composed of vaults made of strings and 

birdshots (Burry, 2007; Woodbury, 2010). The chapel represents all the attributes of a 

parametric model including independent variables, which can be manipulated for 

generating different form configurations. Davis (2013) states that “A hanging chain has 

at least four parameters: its length, its weight, and the two points it is attached to” (p. 

22). Each chain in the model creates a curve when hung, and this curve is an explicit 

function of gravity. Gaudí was able to generate different design configurations for the 

chapel all of which are under compression by changing the parameters of the model. 

These results are automatically generated without having the need to calculate them 

manually (Davis, 2013). 

Parametric modeling using analog techniques provided a tool for form finding, 

which was further explored in Otto’s work (Otto & Rasch, 1996). These examples 

demonstrate an approach using tangible interaction and a computing method using 

physical models. However, such models can only generate design options for a specific 

set of functions (Davis, 2013). In 1963, Ivan Sutherland launched Sketchpad, which was 

considered the first parametric software tool (Davis, 2013). Sketchpad was a 

breakthrough in constraint modeling, which was used for creating technical and artistic 

drawings (Woodbury, 2010). It had a unique interactive system using a light pen to draw 
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on the TX-2 computer’s console. Sketchpad and its method of interaction were 

revolutionary as they allowed for “a man and a computer to converse.” (Sutherland 

1963, p. 8).  

An essential part of any parametric model is its ability to adapt to change. 

Sutherland created Sketchpad to accommodate change, e.g., “A designer using 

Sketchpad could change their [sic] mind about the relationship between objects (the 

critical part) and Sketchpad would automatically update the objects (the related parts to 

satisfy this relationship)” (Davis, 2013, p. 4). The two constraint solving methods used 

in Sketchpad are Relaxation and the One-pass, the first uses numeric optimization and 

the second analytical solving of explicit functions (Sutherland, 1963). However, only the 

second method is considered as a parametric feature of Sketchpad, because it deals with 

explicit functions (Davis, 2013).  

Both examples of work, by Gaudí and Sutherland, demonstrate a significant 

approach to parametric modeling using distinct interactive methods, one being analog 

and the second being digital. Each takes advantages of its medium to support designers 

in the modeling process. In Gaudí’s example, the designer can use a physical model that 

is derived from physical laws, and in Sutherland’s software, it takes advantage of the 

computer’s computing power. 

Physical models, however, do have their limitations in a digital design process. 

For example, it is difficult in most cases to demonstrate or to deduce the underlying 

parametric framework that leads to a specific design solution using physical models; 

Fischer (2005) states that:  
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Traditional physical models, while possessing some advantages 

over digital models in allowing assessment of physical interaction-

related criteria, are understandably not always very useful in 

answering questions that address issues of process such as interaction 

performance and sequential logic. (p. 59) 

 Another example of physical models’ limitation, when compared to digital 

methods in a parametric modeling process, can also be seen in Gaudí’s inverted model, 

the chapel is designed to solve a single parametric equation, unlike Sketchpad which can 

solve any parametric equation (Davis, 2013).  

Garber (2014) mentions that designers use digital tools in such a way that 

imitates conventional analog techniques. In Sutherland’s example, it is evident that the 

user is interacting with Sketchpad in a similar way to using a pen and a piece of paper to 

draw geometric objects, yet unlike CAD tools, it takes advantage of computing in the 

digital process. Sutherland (1963) further explains:  

The major feature which distinguishes a Sketchpad drawing 

from a paper and pencil drawing is the user’s ability to specify to 

Sketchpad mathematical conditions on already drawn parts of his 

drawing which will be automatically satisfied by the computer to make 

the drawing take the exact shape desired. (p. 110) 

Both analog and digital tools offer unique benefits for parametric modeling. 

Research suggests that there is a need to “integrate the real world and the digital 
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information space for designing parametric models” (Salim, Mulder, & Burry, 2011, p. 

133). Embedding computing in physical objects can take advantage of both mediums, 

the digital and physical in the parametric modeling process. 

 

2.5.1. Digital-Physical Workflows and TUIs 

Sears and Jacko (2007) mention that haptic-based user interfaces are a new 

frontier of media technology, which has great potential in contributing to human life. 

The implementation of such technology can be of great value for supporting designers 

creative process. Kim and Maher (2008a) conducted a comparative study between the 

effects of TUIs and GUIs on designers’ spatial cognition, concluding that “TUIs change 

designers’ spatial cognition and these changes are associated with the creative process” 

(p. 26). Kim and Maher’s (2008a) study focused on the epistemic actions and their 

effects on designer’s cognitions by reducing cognitive loads using physical objects. 

Epistemic refers to the motor active exploration of information that is challenging to 

compute manually (Fitzmaurice, 1996). Hornecker and Buur (2006) state that, “Tangible 

User Interfaces (TUIs) and Tangible Interaction are terms increasingly gaining currency 

within HCI. This field of research relies on tangibility and full-body interaction and 

gives computational resources material from” (p. 437). Tangible interaction is defined by 

Hornecker and Buur (2006) in an inclusive manner around a broad range of systems and 

user interfaces, which “encompasses approaches from HCI, computer science, product 

design, and interactive arts” (pp. 437-438). User interfaces can be organized into three 

categories; “text-based, graphical, and emerging user interfaces” (Razzaq, Qureshi, 
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Memon, & Ullah, 2017, p. 466). Shaer and Hornecker (2010) provide an extensive study 

on TUIs and a comprehensive accumulation of TUI models and application. Hornecker 

(2005) explains that TUIs are categorized in literature into three groups:  

• Data-centered view 

• Perceptual-moto-centered view 

• Space-centered view 

The data-centered view, which is pursued in the fields of computer science and 

HCI (Hornecker, 2005), is a type of TUI where “Tangible interaction is about physical 

representation of digital functions and data, or of rather physical objects” (Hornecker & 

Buur, 2006, p. 441). The suitability of the representational is significant in such systems 

as they provide users with comprehensible objects that would facilitate the interaction 

(Ullmer & Ishii, 2000). In haptic-based systems, physical objects are useful to users and 

intuitive if they are expressive and are considered as an essential part of the TUI (Eden, 

Scharff, & Honecker, 2002). More precisely, Hornecker and Buur (2006) state that, the 

representation must be:   

A salient part of the representation (e.g. emphasizing 3Dness or 

material qualities) or in effecting the style of interaction. Thus, these 

interactions should not be peripheral, but need to be salient to the 

overall use process…legibility of system reactions and experience of 

the system as being hybrid are enhanced by perceived coupling 

between physical objects and digital representations and between user 

actions and effects. (p.442) 
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McNerney (2004) provides an overview of the development of TUIs at MIT 

which are mainly used for educating students in computing. The list of works McNerney 

discussed was included from the mid of the 1960s with the groundbreaking work of 

Seymour Papert and his students at MIT and elsewhere, which has “provided a rich body 

of research into the field of educational programming and tangible user interfaces” 

(McNerney, 2004, p. 336).  

The conceptual framework provided by Fitzmaurice, Ishii, and Buxton (1995) 

described in their graspable user interfaces provided a methodological approach and the 

foundation for developing TUIs. A graspable user interface uses physical objects as 

“input devices that can be tightly coupled or ‘attached’ to virtual objects for 

manipulation or for expressing action” (Fitzmaurice et al. 1995, p 442). The graspable 

user interface is evolutionary in the sense that it complements the GUI, taking advantage 

of both computing and human skills (Fitzmaurice et al., 1995). Ullmer and Ishii (2000) 

further expand on this framework in their study by exploring the characteristics of TUIs 

and different methods of interaction. 

 

2.6. Related Work  

Ishii and Ullmer (1997) have demonstrated three TUI examples (metaDESK, 

transBOARD, and ambientROOM). The first two examples utilize foreground objects on 

interactive surfaces. The metaDESK example is related to this research as it shows a 

system for users to interact visually and haptically with digital environments: Ishii and 

Ullmer’s physically represented GUI elements in the TUI, e.g., using a flat-panel for 
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physically representing a window on a computer screen, or a phicon (physical icon) for 

representing a computer icon. In this example, GUI elements are given a symbolic 

physical form for users to interact with. The aim of their work is to free the user form 

GUIs’ limited control system, providing a more intuitive approach of interaction. The 

objective of developing and using TUIs is to bridge the gap between digital and physical 

environments (Ishii & Ullmer, 1997). Such an approach has been further developed and 

implemented in the context of design and geometric modeling. For example, the work by 

Eng et al. (2006), provides a different approach for developing TUIs using a hub and 

strut construction kit, referred to as FlexM. Enhancing the kit using computation allows 

the user to explore digital geometry interactively by manually creating the different 

geometric configuration. These configurations are directly displayed on the computer 

screen using VRML (Virtual Reality Modeling Language), and later using FormWriter.  

In the previous examples, the TUI was used for geometric modeling; the artifact 

assisted the designer in exploring and creating 3D graphical representations. Salim et al. 

(2010) however, provide a novel approach utilizing TUIs for parametric modeling, 

which focuses on analyzing physical data to “capture relations and interactions that exist 

in the physical world as parameters” (p. 380). The interactive experiments demonstrated 

by Salim et al. (2010) include Ur-moeba, a tangible user-interface for collaborative 

parametric modeling; and Rapid Design Coordination (RDC), which is for parametric 

design and construction coordination. Both examples have a similar setup using video 

cameras, Processing IDE, and reacTIVision TUIO for detecting fiducial markers. The 

table top setup is linked to GC (Generative Components) using UbiMash (a generic 
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interoperability software tool for connecting hardware with CAD systems). Their work 

shows dynamic and interactive systems for parametric modeling. Ur-moeba 

demonstrates the potential of a TUI to facilitate “direct feedback on a complex 

simulation process,” and RDC is an intuitive approach using a TUI to deal with 

“coordination and change management in various stages of building design to 

construction” (Salim et al., 2010, p. 396). Further exploration of this approach is shown 

in the work developed by Salim et al. (2011) where they connected parametric models in 

Rhino 3D to a Wiimote controller. The controller in this example is intended for 

exploring the “potential of mapping of the user’s embodied space onto a 3D model” 

(Salim et al., 2011, p. 138). The same controller was used in a later experiment with GC 

to reform a parametric surface, to draw BsplineCurves, and to act as a camera view 

controller. The experiments with the controller demonstrate a range of possibilities using 

the device as an alternative technology to interactively control and manipulate 

parametric models (Salim et al., 2011). 

Later experiments such as the work conducted by Kensek (2014), links physical 

computing systems and artifacts with Revit models. Her demonstrations do not include a 

TUI for designers to manipulate. The work focuses on simulating kinetic responses in 

the physical artifact coupled with the environmental analysis in the digital environment. 

The sensors are used to record ambient data to transform building components in both 

the digital and physical models. The link in Kensek’s work utilizes Firefly (Payne & 

Johnson, 2012), software tools for Grasshopper and Dynamo, to establish data 

communication between 3D models and physical computing systems using Arduino 
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microcontrollers. More experiments using physical computing systems and Firefly with 

digital modelers are posted on Firefly’s website, showing the wide range of possibilities 

and application for using interactive and responsive systems with parametric models. 

 

2.7. Summary 

The previous examples have shown some of the workflows utilizing TUIs for 

parametric modeling. These applications range from design collaboration, environmental 

analysis, to construction management. Furthermore, the examples also show some of the 

studies developed for assessing the technology in terms of intuitiveness of interaction, 

supporting design cognition, and computing education.  

This research takes advantage of the intuitiveness of interaction with the TUIs, 

which is established in the literature, to develop a workflow for generating mathematical 

and algorithmic information to address the problem of defining parametric frameworks. 

The research finds that tangible interaction and methods for data interpretation can 

automate the process of establishing parametric models. To the author’s knowledge, 

there is hardly any research on this topic of utilizing tangible interaction for automating 

the generation of mathematical and algorithmic information for establishing parametric 

models. This information is representative of physical design intents that is captured by 

the system and embedded in a parametric model. 
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3. RESEARCH METHOD 

 

This work assumes a design-based research method that focuses on developing, 

testing, and evaluating haptic-based interactive prototypes. These systems utilize 

tangible interaction as an approach for addressing some of the challenges associated with 

parametric modeling, defining frameworks using mathematics and computer 

programming for embedding design intents. This research is conducted in three phases. 

Phase 1 involves 1) identifying the challenges of parametric modeling, 2) formulating 

the research questions and proposing a solution, and 3) providing a comprehensive 

overview of works and locating related examples of work. Phase 2 describes (1) the 

prototyping process and implementation, and 2) testing of the workflow. Phase 3 

involves 1) internally evaluating and documenting the work, and 2) developing a 

framework for the method. Each prototype developed for this work reveals new findings 

in this experimental research approach, which contributes to the progress and the 

constant refinement of the method.  

 

3.1. Design-Based Research 

The act of design as a research approach as explained by Ma and Harmon (2009), 

is the process that:   

Usually starts with a complex real-world problem. It involves 

iteratively generating a problem solution based on existing theories 

and practice, gathering empirical data to evaluate the solution, and 
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reflecting on the design experience to refine the solution and to 

construct theoretical knowledge. It is usually a long-term research 

engagement requiring close collaboration among researchers and 

practitioners. (p.75) 

The Design-based research development process as explained by Reeves (2000) 

and Ma and Harmon (2009) includes four main steps as illustrated in Figure 3.1 below. 

 

 

Figure 3.1 Research development process. Adapted from Ma and Harmon (2009), and 
Reeves’s (2000). 

 

3.2. Phase 1: Literature Review  

This research intersects the disciplines of HCI and computational design. 

Examples of work in digital modeling that are influenced by these fields of study are 

examined in this research. Research articles on these topics are gathered from online 

repositories such as Cumincad (an open source Cumulative Index about research in 

Computer Aided Architectural Design), ACM digital library, ProQuest, WorldCat, and 

other scholarly platforms. The literature review process continues throughout the study 

to identify the most recent developments in tangible interaction for digital modeling. 
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While this research is primarily focused on parametric modeling, the work will also 

expand the investigations to include CAD tools and other virtual modeling platforms that 

are operated through tangible interaction. Research preparation involves acquiring skills 

in computer programming languages such as Python and Processing, computational 

modeling tools using algorithmic editors, and electronics.  

 

3.2.1. Theoretical Background  

This section focuses on providing a historical description of the development of 

parametric modeling and tangible interaction. Its core content provides an overview of 

fundamental concepts, terminology, definitions, and examples of significant works 

related to these topics in the context of this research.  

 

3.2.2. Research Problem & Questions  

Literature review assists in identifying some of the main challenges of parametric 

design. This research focuses on the problem of defining parametric frameworks using 

mathematics and computer programming for embedding design intents in digital models. 

Defining a parametric framework requires the designer to translate design knowledge in 

an explicit way into programming procedures.   

The research questions, which are discussed in the Literature Review chapter, are 

intended to address the previously stated challenges of parametric modeling. This 

research includes three questions that investigate an approach for solving the issues of 

establishing parametric frameworks.  
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3.2.3. Theoretical Workflow  

This research builds on top of earlier research that claims that tangible interaction 

can be considered as an intuitive method for interacting with digital models. A general 

workflow for the tactile-based system is illustrated in Figure 3.2. The workflow utilizes 

TUIs for generating the mathematical and algorithmic information necessary for 

embedding design intents in parametric models. 

 

 

Figure 3.2 Prototyping theoretical workflow. 
 

A list of criteria is developed for each segment of the workflow. The list is 

created by answering the following two questions: 

• What is the type of physical interaction used for operating the prototype?  

This question focuses on interaction design and the role of the designer in the 

digital modeling process. The objective of each prototype defines the specific type of 

interaction required to generate modeling information; e.g., if the designer wants to set 
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up a geometric relationship based on a rotation parameter, then physical design objects 

must be manually rotated to generate angles of rotations for the parameter inputs.  

• What are the components of a TUI?  

The TUI models developed for this work include two main components:  

1. An artifact, which is composed of: 

• Design objects: a physical representation of digital geometry or 

information and used for tactile manipulation.  

• Workbench: a workspace that defines the physical boundaries of the TUI 

and holds the design objects.  

2. A physical computing system: a circuit composed of a microcontroller, 

sensors, and actuators. The computing system is embedded in the artifact 

and monitors the changes in the objects’ state.  

The physical representation of a design object is essential in the design of a TUI; 

it assists the designer in making sense of the task at hand. Ishii (2008) mentions that 

there are general purpose and special purpose TUIs, and both have advantages and 

disadvantages in a digital-physical workflow. For the general purpose TUIs, they do lose 

the legibility of the physical representation because the objects in the artifact have an 

abstract form. However, they are suitable for a wide range of applications. For the 

special purpose TUIs, they can be limited in their application because of their specific 

design.  

The representation of design objects in the artifact is determined in this research 

based on the modeling task and type of information, which the TUI will support in 
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generating.  Design objects for this research are mainly geometric representations of 

architectural elements (e.g., louvers and panels) or digital information (e.g., control 

points for NURBS curves). Each type of design objects is used in an example design 

scenario for solving a parametric modeling problem.  

 

3.3. Phase 2: Prototyping  

The prototyping process includes three main steps: defining the objective of the 

prototype (problem), interactive procedure (input), and the type of parametric modeling 

information it will generate (output). A detailed process is provided in the diagram in 

Figure 3.3.  

 

 

Figure 3.3 Graph showing the prototyping process. 
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3.3.1. Objective and Scope of Work 

Each prototype investigates a specific problem related to the general inquiry of 

this research as described in the Literature Review chapter. The objective of each 

prototype determines the type of interaction for collecting analog data. In general, the 

prototypes are focused on direct manipulation by applying geometric transformations to 

physical objects.  

 

3.3.2. TUI Specifications  

A list of specifications is developed for each prototype, and is determined by the 

following points:  

• Type of user interaction 

• Transformation/behavior (physical object manipulation) 

• Artifact components and data collection  

• Type of data input  

• Type of data output/digital model feedback  

An example set of TUI specifications is shown in Figure 3.4.  
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Figure 3.4 TUI specifications developed for Prototype 5. 
 

The following description will focus on the data components of the specification 

list. 

• Data collection 

Data collection method refers to the type of sensors used in the physical 

computing system. Sensors are embedded in the artifact, and they are manually operated 

by manipulating the design objects. Sensor choice reflects the way the interaction will 

take place in the physical environment, e.g., a rotary potentiometer is used for objects 

that will be rotated, and a ribbon sensor for objects that will be moved.  

• Data input  

Sensors monitor and record physical interactions with their corresponding 

objects. Data gathered by these sensors reflect the physical state of the design objects, 

which is then sent to the digital model as raw values.  

• Data output 

Each prototype generates specific information, which includes a combination of 

geometric and non-geometric data. Non-geometric data in the context of this work refers 
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to equations, algorithmic rules, and numerical values that are generated after data 

interpretation for establishing the parametric model.  

 

3.3.3. Control System Setup  

The physical computing system is a circuit that is composed of a microcontroller, 

and a set of sensors and actuators. The purpose of this system is to translate a design 

object’s physical state into the digital environment, and vice versa.  

The criteria for choosing and setting up the physical computing system includes: 

• Resources and support 

Arduino and Raspberry Pi are two of the most common types of microcontrollers 

used for prototyping. The Microcontroller manages data exchange between the different 

components of the physical computing system. The type of microcontroller chosen for 

this research is Arduino, models MEGA 2560 and UNO. Both Arduino models are 

programmed using personal computers and the Arduino IDE software, which is written 

in Java and based on the Processing programming language. Arduino can be used with a 

verity of hardware components (sensors and actuators) to create a customized system for 

a wide range of applications. Information and documentation for building these circuits, 

including component specifications and schematics, IDE software updates and modules, 

training tutorials, and other technical support are available online for users through the 

official Arduino website and other online databases.  
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• Customization and reproduction   

Arduino microcontrollers allow for creating specialized instruments for operating 

and interacting with digital models, because 1) they are reconfigurable opensource 

devices, with very minimal software and hardware restrictions compared to smartphones 

(or tablets), 3D scanners, and other digitization equipment; and 2) they can be easily 

linked to several computer application programs, which are accessible by the modeling 

platforms used for this research.  

This research focuses on limiting data inputs to types of numerical values, angles 

of rotation and distance, using linear and rotary sensors. The objective is to maintain a 

consistent structure for the physical computing system assists in its rapid reproduction 

for other prototypes. 

 

3.3.4. Design, Fabrication, & Assembly  

Following is modeling the components of the artifact and preparing them for 

fabrication and assembly. This process uses a conventional CAD/CAM procedure. The 

artifact is designed using Rhino 3D. The completed components are stored in two 

separate file formats .3ds (for PLA 3D printing), or .dwg (for Laser cutting). The 

modeling process takes into consideration the following:  

• Assembly details 

• Design objects’ mechanical movement  

• Circuit integration  

• Material properties  
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• Fabrication machinery specifications 

These aspects of the artifact can be time-consuming to define for each prototype. 

Therefore, assembly details (such as joint configuration, type of nuts and bolts, and 

circuit casing), and materials (acrylic boards) were unchanged for the ease of 

reproduction. Furthermore, the artifact’s parts (objects and workbench) were designed 

using visual programming. The algorithm included the assembly details, material 

dimensions, and fabrication machinery bed size. Having this information ready in the 

visual program allowed for the rapid reproduction of the different artifacts and the 

customization of individual parts as needed.  

 

3.3.5. Interoperability  

Several methods were developed and used for data communication between 

artifacts and digital models. Data flow for the prototypes can either be unidirectional or 

bidirectional. In addition, calibration and remapping are required: calibration, for 

removing errors in sensor reading and value fluctuation, and remapping, for maintaining 

consistency between sensor values and a model’s measurements. 

The methods for data exchange developed was primely achieved through the 

software package Firefly. Other methods that were tested for this work are discussed in 

the Prior Work chapter. Firefly offers a convenient approach for data communication 

and interaction with digital models compared to other methods of data transfer.  

The modeling and visual programming environments used for this work are 

Rhino 3D (NURBS modeler) and Grasshopper (visual programming plug-in for Rhino), 
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and Revit (a BIM authoring tool) and Dynamo (visual programming add-on for Revit). 

Both sets of digital tools are commonly used for architectural design and are chosen for 

this work for their parametric modeling features.  

 

3.3.6. Testing   

Testing in this phase is for determining if the prototypes are fit for use, and it is 

not to be confused with testing for validation that is explained in Phase 3 (Prototype 

Implementation chapter). Testing helps in determining if a part of a system is working 

correctly (e.g., data flow, code, and operating procedures), and it is done separately for 

the artifact and the visual programming workflow in the digital model.  

 

3.4. Phase 3: Prototype Implementation   

Each prototype is explained in the Prototype Implementation chapter using the 

following outline: 

• Introduction: describing the specific objective of the workflow and scope 

of work. 

• Prototyping: Tools and TUI specifications used for developing the 

prototype. 

• Testing for validation: demonstrating the workflow and documenting the 

results.  
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• Results: reflecting on the study to determine if the workflow meets the 

objectives of the research and proposing further developments to the 

workflow.   

 

3.4.1. Testing Scenarios    

Five prototypes are developed for this work and categorized into three groups: 

Algebraic Constraints, Algorithmic Rules, and TUI Improvements.  

• Algebraic Constraints  

This work focuses on setting up algebraic constraints for establishing parametric 

relationships in digital models. Two types of relationships are tested for this work which 

is based on linear and polynomial equations. This work involves using a regression 

analysis model in the visual programming algorithm for automatically deducing physical 

object relationships and representing them in mathematical equations. The objective of 

the work is to find the coefficients of the equations, which is challenging to calculate and 

implement manually for setting up algebraic constraints in digital models.  

• Algorithmic Rules 

The prototype is tested for setting up the initial cell state and rules for a CA 

algorithm to produce three-dimensional geometric patterns. CA rules define the dynamic 

relationship between cells on a lattice. Unlike the previous examples of constraints, 

which require equations for setting up a parametric framework, CA requires a set of 

rules for defining the cell states (alive, dead, or surviving). The objective of the work is 
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to provide a tool that promotes a higher level of understanding of abstract algorithmic 

concepts by associating physical configurations with programming logic.  

• TUI Improvements 

This section explores approaches for improving the workflow and functionality 

of the prototypes. Two prototypes are developed for this work and are described below: 

The first involves developing an algorithm that detects the types of physical 

interactions to produce single and compound transformations using transformation 

matrices. The objective is to test a higher level of automation that allows for defining 

geometric operations in the digital workflow manually through the TUI. The artifact can 

be easily modified by adding and removing design objects to the workbench. This 

feature provides the flexibility needed to increase or decrease analog inputs 

The second prototype is developed for modeling NURBS curves. This work 

involves developing an algorithm using visual programming to achieve three steps, 

modeling NURBS objects, set up its boundaries, and generate design options. The 

NURBS curve is constructed by proving the number and the location of its control 

points. The boundaries are established for the manipulation of the NURBS curve. The 

design options (curve interpolations) are generated using the boundaries.  

 

3.5. Evaluation  

The evaluation process includes two phases: 

• Phase 1: correctness of the system 
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The observation will enable the researcher to evaluate the correctness of the 

system, by juxtaposing digital and physical results.  

• Phase 2: qualitative comparison    

The evaluation process involves providing a comparison between the developed 

workflow using TUIs and the conventional practice of establishing parametric models 

using text-based and graph-based programming methods.  

 

3.6. Reflection   

Reflection is stated in the Results section of the Prototype Implementation 

chapter, and it highlights the advantage and disadvantages of each prototype to inform 

the progress of the work. The objective of the work is to develop workflows that 

progress from performing simple to more complex modeling tasks with a higher level of 

automation for establishing parametric models, as shown in Table 3.1.  

 

Table 3.1 Workflow progress. 
Simple Modeling Tasks  Complex Modeling Tasks 

- Basic object relationships 

- Programmed geometric 

transformations  

- Single geometric 

transformations  

- Pattern generation  

- Automatic detection of 

transformations  

- Compound geometric 

transformations  
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4. PRIOR WORK 

 

This section explains the process of developing the prototypes for this research. 

The work presented in this chapter was published in the Proceedings of the 34th eCAADe 

conference, “Developing a Tangible User Interface for Parametric and BIM Applications 

Using Physical Computing Systems” by Al-Qattan, Galanter, and Yan, 2016. This 

section includes updated figures in addition to the published material. 

A series of tangible and interactive systems were created and tested for setting up 

the TUIs. The two main phases of this process include:  

1. Prototyping  

• Prototype components  

• Hardware and software tools 

2. Types of workflows  

• The direction of data transfer and linkage methods 

• Interaction design and TUI specifications 

• Overall system framework 

 

4.1. Prototyping  

The physical computing system is designed and seamlessly integrated within the 

TUI’s artifact. The artifact is composed of physical design representations of either 

architectural design objects or digital information and a workbench, which is the 

physical workspace of the TUI and casing for the physical computing system. A link is 



 

55 

 

developed for enabling direct manipulation of the digital model through the TUI. Several 

linkage methods have been tested for this work and are demonstrated in the examples of 

this chapter. The integration between the computing system and artifact allows for 1) 

real-time data processing during user interaction with the TUI and 2) providing the user 

with familiar objects to naturally interact with for manipulating digital models. Figure 

4.1 shows the different parts of a TUI in a fully developed prototype for parametric 

modeling.  

 

 

Figure 4.1 Prototype main parts; left and middle images show the TUI, which is 
composed of an artifact (panels), and workbench (supporting frame for the panels and 

physical computing system). The right image shows the digital model of the panels 
created in Rhino. Figure Adapted from Al-Qattan et al. (2016).  
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4.2. Workflows  

Sensors embedded in the design objects monitor physical object changes and 

pass on this information to the microcontroller. Each linkage method uses a different set 

of computer applications for processing analog data as will be shown in the following 

tests.  

Three tests were conducted showing the different approaches using a 

combination of different sensors and actuators, and data flow methods for setting up 

TUIs. These examples are organized based on the direction of data flow, and they 

include:  

• Unidirectional data flow: Physical to digital 

A workflow for collecting and processing analog data provided by the designer 

to transform digital geometry. The set of tools for this example includes Revit, Dynamo, 

Arduino, a proximity sensor, a rotary potentiometer, Excel, and PLX-DAQ (Parallax 

Inc., n.d.). 

• Unidirectional data flow: Digital to physical 

A workflow for exporting digital data from the model to actuate physical design 

objects. The set of tools used for this system includes Revit, Dynamo, Arduino, two 

servomotors, Excel, and Processing. 

• Bi-directional data flow 

A workflow that enables data exchanges to occur between both the digital and 

physical environments. This workflow enables the designer to take advantage of both 

digital tools and haptic skills in the modeling process (Figure 4.2). The set of tools for 
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this example includes Rhino, Grasshopper, Firefly, Arduino, two proximity sensors, and 

eight servomotors.  

 

 

Figure 4.2 Workflow is showing a bi-directional link between the TUI and the digital 
model. 

 

4.2.1. Unidirectional Data Flow: Physical to Digital  

The TUI for this test explores a simple unidirectional data flow for providing 

parameter inputs for a Revit model. The physical computing system provides two types 
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of inputs, which are angles of rotation by using a rotary potentiometer and distance 

measurements using a proximity sensor. This set up does not include design objects or a 

workbench. It only includes the sensors for the designer to operate as shown in Figure 

4.3. This set up is simplified to test the operability of the system.  

 

 

Figure 4.3 Testing a physical computing system for transforming design objects in 
Revit. The left image shows the circuit having a proximity sensor, which is linked to 

Mass 1 in the Revit model and a rotary potentiometer linked to Mass 2. Sensor data will 
provide numerical inputs to transform the objects in the digital model (Al-Qattan et al., 

2016). 
 

The specifications for the TUI are illustrated in Figure 4.4. The artifact does not 

include a design object or workbench as the purpose of this test is to explore the set up 

for the physical computing for collecting, processing, and transferring analog data to the 

virtual environment. The designer interacts with the device by rotating the 

potentiometer’s handle or by moving the proximity sensor closer or away from the piece 

of paper attached to the breadboard. The designer is required to make these actions to 
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operate the control system and provide the inputs for transforming the objects in the 

Revit model.  

 

Figure 4.4 TUI specification for testing a digital to physical workflow. 
 

The Revit model consists of two geometric masses that resemble Lego blocks 

and includes two transforming parameters: rotation and translation. Each sensor is 

connected to its corresponding parameter in Revit: rotary potentiometer with rotation 

and proximity sensor with translation. Each transforming parameter is assigned to one of 

the Revit blocks using Dynamo. The aim of associating parameters to sensors in this 

manner is to maintain consistency between the designer’s interaction with the device and 

geometric behavior, i.e., if the designer rotates the sensor’s handle, it provides Dynamo 

with angles of rotation for transforming. The workflow for this test is shown in Figure 

4.5.  
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Figure 4.5 The digital to physical workflow setup adapted from Al-Qattan et al. (2016). 
 

1. Testing   

The physical computing system for this test is linked to Revit and Dynamo using 

Excel and PLX-DAQ. Sensors send data continually to Arduino during the user’s 

operation of the device. This data is stored in a Comma-Separated Values (CSV) file for 

compatibility with Excel. Values are arranged in two separate columns in Excel, one for 

angles of rotation and the other for distance values. The latest values received from the 

sensors are inserted in a new row in their corresponding columns in the spreadsheet. As 

seen in Figure 4.6, there are two columns of numerical values in both the Arduino serial 

port and the Excel spreadsheet. The left column is for distance in inches, and it is 

received from the proximity sensor, and the right column is for the angles of rotation in 

degrees, and it is received from the rotary potentiometer. The Excel file afterward is 

imported in Dynamo where the values form each sensor are extracted and sent to their 
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assigned parameters. The link between Excel and Dynamo enables data exchange in 

almost real-time by using a MACRO in Excel, which automates the file Save function. 

 

 

Figure 4.6 A screenshot showing the Arduino serial port (left), and Excel spreadsheet 
and the dialog box for the PLX-DAQ plug-in (right) (Al-Qattan et al., 2016). 

 

Figure 4.7 (left image) shows the masses in Revit. The mass on the left (Mass 1) 

is located at the origin of the coordinate system and set up with a rotation parameter. The 

rotary potentiometer provides the rotation angles for this mass to rotate it around the Z-

axis. The mass on the right (Mass 2) is set up with a distance parameter, which controls 

the distance between it and Mass 1. The distance parameter establishes a simple type of 

parametric relationship between the two masses, which can be manipulated by operating 

the proximity sensor. Distance values translate Mass 2 closer to or away from the Mass 

1. The proximity sensor measures the distance between it and the piece of paper attached 



 

62 

 

to the breadboard. If the sensor is moved closer or away from the piece of paper, the 

Revit model responds in a similar way. Figure 4.7 shows the transformation of both 

masses in Revit using the two sensors. The left image shows the Starting Position for 

both masses, and the middle and right images show the process of transforming both 

masses gradually to their target position (image on the right).  

 

 

Figure 4.7 The Revit masses transformed using the control system (Al-Qattan et al., 
2016). 

 

2. Results 

This test shows a simple workflow for setting up a physical computing system 

for creating TUIs. The unidirectional data flow provides designers with an interactive 

device using sensors to manipulate digital models. The test also shows consistent results 

between the behavior of both masses in the digital model and the designer’s interaction 

with the sensors. However, the link established between the digital model and control 

system using several computer program applications made it difficult to monitor data 

flow and navigate the computer programs during operation.  
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4.2.2. Unidirectional Data Flow: Digital to Physical  

This test explores a workflow for sending digital data to TUIs. The physical 

computing system includes two servo motors to display rotation transformations. A 

piece of paper is attached to each of the servo motors’ arms as shown in Figure 4.8 

(image on the left). The pieces of paper assist in monitoring the servo motors’ 

performance (rotation) when they receive data from the digital model. The digital model 

from the previous workflow is reused for this example except for the translation 

parameter (image on the right). The physical computing system and digital model are 

linked together using the same set of tools as in the previous workflow, with the 

exception of PLX-DAQ being replaced with Processing.  

 

 

Figure 4.8 The physical computing system (left image) having two servomotors with a 
piece of paper attached to each of them. Each mass in the Revit model (right image) is 

connected to one of the servo motors in the physical computing system (Al-Qattan et al., 
2016). 
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The specifications for designing the user’s interaction with the system are shown 

in Figure 4.9. The designer provides angles of rotation in Revit for each of the two 

masses using Dynamo. The angles of rotation are then passed on to the Arduino 

microcontroller then to the servo motors. The user interacts with the system using the 

keyboard and mouse.  

 

 

Figure 4.9 Specification for developing the physical computing system and user 
interaction with the system. The dashed lines indicate that there is an indirect 

relationship between user input and servo motor’s motion, as the angles of rotation 
values are not set directly by the user manually rotating the servo motors’ arms. 

 

The two rotation parameters are linked to the servo motors in the physical 

computing system and are provided using a number slider in Dynamo. The angles of 

rotation are transferred to the servo motors by having them recorded and stored in a CSV 

file using the Excel tools in Dynamo. The data file is accessed and sent to the 

microcontroller using Processing. Figure 4.10 shows the workflow for this test.  
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Figure 4.10 The workflow for the digital to physical data flow test adapted from Al-
Qattan et al. (2016). 

 

1. Testing   

Figure 4.8 previously demonstrates an example of how both physical and digital 

objects respond accordingly showing consistent results when their parameter values are 

changed. This test is a simple demonstration of data flow from the digital model to the 

physical computing system.   

2. Results 

This workflow, using Processing and Dynamo has helped in reducing the number 

of computer applications that were running at the same time, which made navigating the 

system much more efficient. It is important to note that actuators can be limited in their 

response, unlike digital models which are more flexible in constructing and 

manipulating. Thus, the physical behavior of physical objects must be considered early 

in the prototyping phase of the TUI to ensure that both digital and physical geometry 

demonstrate consistent results.  
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4.2.3. Bi-directional Data Flow  

The previous tests helped in understanding the essentials of building interactive 

systems for digital modeling. This example expands on previous tests to include a fully 

functional prototype using bi-directional data flow. The artifact includes a physical 

computing system that is composed of two Arduino microcontrollers, eight servomotors, 

and two proximity sensors. The artifact also includes design objects and workbench, a 

full-scale section of a cladding system with its panels capable of three-dimensional 

rotation (Figure 4.11).  

 

 

Figure 4.11 The artifact showing the four panels in front and the workbench in the back 
(Al-Qattan et al., 2016). 

 

1. Prototyping 

The designer interacts with the TUI through the proximity sensor or through the 

digital environment as an alternative. Each panel includes two axes of rotation, and each 
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axis is controlled by one of the two proximity sensors. The proximity sensors are 

operated by measuring the designer’s distance from them. Distance values are converted 

to angles of rotation in the digital environment using visual programming. Figure 4.12 

shows the specifications for this prototype example.  

 

 

Figure 4.12 Specifications for the prototype. The top image shows the data flow from 
the physical to the digital environment, and the bottom image shows the data flow from 

the digital to the physical. The top image also shows that no transformation of the design 
object is included because there is no direct tactile manipulation of the design object. 

 

An architectural element (design object) is included as part of the TUI to provide 

a familiar object. Custom elements were designed and fabricated to create the objects, 

workbench, and assembly details. The same tools, assembly techniques, fabrication 

machinery, and materials used for this example were reused for developing Prototypes 1 

to 5 included in the Prototype Implementation chapter. The two main fabrication 
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methods used are additive manufacturing using Fused Disposition Modeling (FDM 3D 

printing) and subtractive manufacturing using laser cutting.  

The panels in the artifact are capable of rotating in two axes, which is a type of 

motion referred to as Pan and Tilt. Each type of motion is on a single axis, which 

enables the panels to demonstrate complex behaviors in the physical space. This is 

achieved by attaching two servo motors using aluminum brackets (provided by 

Lynxmotion, n.d.) to each panel. Each sensor is used to control one of the two motions 

for all the four panels. Figure 4.13 shows the sensor and bracket assembly.  

 

 

Figure 4.13 The image on the left shows the proximity sensor and its casing, and the 
image on the right shows the servo motor set up using the aluminum brackets for a 

single panel. Figure Adapted from Al-Qattan et al. (2016). 
 

The artifact is linked to a digital model in Rhino using Grasshopper and Firefly. 

Rhino and Grasshopper are used in this example as an alternative set of parametric 

modeling tools to Revit and Dynamo. The primary consideration of choosing a modeling 
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tool for this work is its parametric capabilities, and software support. Firefly for 

Grasshopper includes a broader set of tools to establish the link between the TUI and 

digital model.  

Each sensor provides the angles of rotation to its corresponding parameter in the 

digital model and servo motors in the artifact. These values are sent to Grasshopper 

using Firefly as distance values, which are then converted into angles of rotation. These 

values are treated in a similar manner in both Grasshopper and the artifact, values are 

sent to their corresponding plane for rotating the panels (Figure 4.14). 

 

 

Figure 4.14 The workflow for developing the prototype adapted from Al-Qattan et al. 
(2016). 

 

2. Testing  

The prototype is operated through hand movement, i.e., users move their hands 

closer or away from the proximity sensors to rotate the panels. The distance input is 

converted into angles of rotation in Grasshopper. Sensors detect users’ hands up to 12 

inches away from the artifact. Sensor values are remapped in Grasshopper from 0 to 12 
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inches to -90 to 90 degrees for rotating the servomotors. The angles of rotation are then 

sent to their corresponding nodes in the Grasshopper algorithm to transform the Rhino 

model and to the artifact to display the geometric results (Figure 4.15).   

 

 

Figure 4.15 Showing the results of testing the prototype. Two panels are shown in the 
Rhino viewport for monitoring the model’s behavior (Al-Qattan et al., 2016). 

 

Figure 4.16 shows the artifact as a standalone interactive geometric model 

(without the digital model) on display in downtown Bryan, Texas. It was presented as 

part of the 22nd Viz-a-GoGo exhibition in 2015, an annual showcase of students’ work at 

the Department of Visualization (College of Architecture at Texas A&M University). 

Users interact with the artifact during this event was not under a controlled setting or 

part of a formal user-study experiment. It was a simple case of observing people of all 

ages interacting freely with the device for transforming the panels. Noticeable was users’ 
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hand-eye coordination, a connection established naturally without having any prior 

training on how to use the device. 

 

 

Figure 4.16 Artifact on display at the 22nd Viz-a-GoG0 exhibition in Downtown Bryan, 
Texas. Figure adapted from Al-Qattan et al. (2016). 

 

3. Results  

This work tested a bi-directional data flow using a TUI with a full-scale design 

object. There was no direct physical interaction with design objects in the artifact. The 

drawback of this set up is that it is difficult to determine the precise degree of rotation 

based on simple hand movement. Using proximity sensors which measure distance 

requires practice to establish the connection between the distance from the sensor and 

the panels’ angle of rotation. Conversely, the example of the Physical to Digital 

workflow in the first test of this section, the potentiometer’s handle provided a good 

indicator for objects rotation when operated by the designer.  

Furthermore, the TUI includes two microcontrollers, yet Firefly only 

communicates with one Arduino at a time. Each Arduino controllers the panels’ rotation 

in one plane (one microcontroller for tilting motion and the other for panning motion) 
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thus making it difficult to rotate the panels in three-dimensional space when connected 

to a digital model. However, if the artifact is used as a standalone device, it worked 

adequately. The artifact is set up to send and receive data from the digital environment. 

However, data transaction does not co-occur, and the system is either used to send data 

from the physical to the digital or vice versa. Most importantly, the artifact provided an 

instrument for working with digital models by merely providing parameter input values, 

which can be easily achieved by manually inserting them in the digital model using a 

number slider in the visual program.  These issues are considered when developing later 

prototypes for this research. This chapter explores the development of TUIs and linkage 

methods between artifacts and digital models, which will be used in the Prototype 

Implementation chapter.  
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5. PROTOTYPE IMPLEMENTATION  

 

This chapter discusses the workflows and prototypes developed using tangible 

interaction for parametric modeling. The workflows demonstrated in these examples are 

for automatically capturing design intents from physical objects and translating them 

into parametric frameworks. The term design intent encompasses a broad range of 

meanings and activities associated with the design process, which can be very 

complicated to demonstrate entirely through the prototypes presented in this chapter. For 

this work, the design intent is represented by object relationships and algorithmic rules. 

The workflows in this chapter focus on the process of constructing parametric 

frameworks using mathematics and programming procedures for representing design 

intents digitally. Further prototype improvements demonstrate sophisticated workflows 

for automating modeling procedures for detecting physical transformations and creating 

parametric NURBS objects. The prototypes are organized into three categories: 

Algebraic Constraints, Algorithmic Rules, and TUI Improvements; and each is focused 

on demonstrating a process for translating tangible interaction with design objects into 

modeling information as shown in Table 5.1. Algebraic Constraints includes two 

prototypes, and each is designed to demonstrate a workflow for setting up object 

relationships in digital models using mathematical equations. Algorithmic Rules 

includes one prototype tested for two workflows for setting up a CA algorithm for 

generating geometric patterns in a digital model. TUI Improvements include two 
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prototypes that demonstrate a higher level of automation for generating geometric 

procedures and creating NURBS objects. 

 

Table 5.1 Each category explains a workflow for generating specific modeling data to 
address a parametric modeling problem. 

Modeling Input TUI Scope of Work 

Algebraic 

Constraints  

Prototype 1 Generating line equations  

Prototype 2 Generating polynomial equations  

Algorithmic Rules  Prototype 3 Setting up CA rules and initial cell states  

TUI 

Improvements  

Prototype 4 Automatic detection of geometric 

transformations  

Prototype 5 Generating NURBS curves and setting up 

modeling boundaries  

 

Each prototype included in these categories is composed of two main parts, the 

artifact and the digital model, which establish the TUI. The artifact, as seen in the 

previous chapter, is composed of design objects, a workbench, and a physical computing 

system. Design objects are a physical representation of architectural elements or digital 

information; and a workbench, which defines the workspace and limits of the artifact 

and acts as the casing for the physical computing system. The physical computing 

system is composed of a microcontroller and a set of electrical and electro-mechanical 

components. The circuit is integrated with the artifact for close monitoring of design 

objects during user interaction and to create a seamless interface for completing the 
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different modeling tasks. The artifact in each example is linked to a virtual environment 

for live data streaming, enabling real-time interaction with digital models when design 

objects are manipulated.  

 

5.1. Algebraic Constraints  

The examples of work in this section address the problem of utilizing 

mathematical equations for generating object relationships and complex forms in digital 

models. This work was published in the Proceedings of the 22nd CAADRIA conference, 

“Establishing Parametric Relationships for Design Objects Through Tangible 

Interaction” by Al-Qattan, Yan, and Galanter, 2017a. This section includes updated 

figures in addition to the published material.  

Prototypes 1 and 2 demonstrate a method for automatically generating 

mathematical equations for digital modeling by analyzing physical object states. The 

work focuses on generating linear and high-degree polynomial equations for creating 

parametric object relationships. The results obtained from testing the systems have 

shown the plausibility for utilizing tangible interaction as an approach for constructing 

mathematical equations and embedding them in digital models instead of the 

conventional approach using text-based and graph-based programming applications.  

 

5.1.1. Linear Equations  

Prototype 1 tests a workflow for generating linear equations for establishing 

object relationships in digital models. The TUI is composed of an artifact consisting of 
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three panels (Figure 5.1, left image), which are assumed to be as a small section or part 

of a larger tessellated surface. The physical computing system includes sensors that are 

embedded in the artifact to monitor the changes in the panels’ physical state during the 

process of user interaction and actuators for displaying physical responses. It is 

important to note that the panels in the artifact are for representational purposes and for 

providing a familiar object for working with abstract mathematical and algorithmic 

information. Therefore any configuration of design objects can be used instead of the 

panels if a similar type of linear relationship is to be established in the digital model. The 

digital model in Revit includes a duplicate version of the panels, which are linked to 

their corresponding physical counterparts in the artifact (Figure 5.1, right image).  

 

 

Figure 5.1 Prototype 1 consists of a TUI composed of an artifact having panels and a 
workbench and a physical computing system having sensors and actuators (left image), 

and a BIM model created in Revit (right image) (Al-Qattan et al., 2017a). 
 

The prototype is tested for establishing a relationship between the panels through 

physically transforming the design objects, e.g., rotating the panels. The algorithm 

created in Dynamo will detect how the objects relate to each other when the direction 
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and degree of rotation are changed in the physical panels. The system monitors these 

changes and uses this information to generates an equation depicting the panels’ 

relationship to replicate the physical results in the digital model. The procedures written 

in the algorithm include analog data logging and analysis which are used for generating 

the equations. Raw data samples are collected when the designer transforms the panels. 

A regression model is implemented in the algorithm to analyze data samples, by using a 

curve-fitting function. The equation generated through these procedures is then used to 

setup constraints in the digital model. 

1. Prototyping 

Prototyping includes two phases, determining the list of tools and specifications 

for developing the prototypes.  

Phase 1. The set of tools for developing Prototype 1 includes:  

• Software tools: Revit; Dynamo, a visual programming Add-on for Revit; 

IronPython, a programming language; Firefly; and Microsoft Excel.  

• Hardware tools: an Arduino UNO microcontroller, a servomotor, and two 

rotary potentiometers.  

Phase 2. Shaer et al. (2004) have developed an outline for specifying TUIs. This 

work will adopt a similar approach for developing the list of specifications for the TUIs. 

The list describes the process of designing the TUI for user interaction; it provides a 

conceptual framework of the system’s operation. The list of specifications includes the 

type of user interaction, type of transformations, artifact composition, data input, and 

data output. Each list of specifications is unique to its TUI for achieving the prototype’s 
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objective. For example, Prototype 1 is developed to generate a linear type of object 

relationship such as having panels rotating accordingly to a specific angle. The designer 

transforms the panels directly by rotating them during which the sensors will start 

collecting data samples. These samples are analyzed by the system for generating the 

equations for setting up modeling constraints in the BIM model. Additionally, Prototype 

1 includes a bidirectional data flow; raw data samples are transferred from the artifact to 

the virtual environment and vice versa, thus enabling the prototype to display digitally 

and physically the design objects’ relationship when modeling parameter values are 

changed. Figure 5.2 shows the list of specifications for Prototype 1. 

 

 

Figure 5.2 TUI specifications for Prototype 1. The angels of rotation for Panel 2 are 
calculated using the generated equation and sent to both the artifact and digital model. 

This process is shown using dotted lines.  
 

2. Testing 

The prototype is operated by manually rotating Panel 1 and 3 horizontally around 

their centers (panels at the opposite ends of the workbench). The rotary potentiometers 

attached to each of the two panels will monitor the changes in the angles of rotation 

when the two panels are transformed. Analog values are collected by the sensors and 
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sent to the visual program created in Dynamo as data samples for regression analysis. 

The curve-fitting function programmed in IronPython and integrated within the 

algorithm in Dynamo detects patterns in the data sample collected by the sensors. The 

outcome of this process is a mathematical equation depicting the relationship found in 

the data samples. The equation then is used for setting up constraints in the digital model 

and used to rotate Panel 2 in between the other two panels as illustrated in Figure 5.3.  

 

 

Figure 5.3 The workflow for Prototype 1 adapted from Al-Qattan et al. (2017a). 
 

The process of collecting data samples is shown in Figure 5.4, where Panel 1 and 

3 are respectively rotated from 0 to 180 degrees, i.e., Panel 1 rotated by {X1, X2, X3} 

degrees and Panel 3 rotated by {Y1, Y2, Y3} degrees. The values obtained from each 

sensor is recorded and stored in a CSV file using the Excel tools in Dynamo.  
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Figure 5.4 The left image shows Panels 1 and 3 rotated respectively in opposite 
directions. The middle image shows data samples collected and stored in a CSV file; the 

X data list includes angle values from the sensor attached to Panel 1 and Y data list is 
from Panel 3. The right image shows the direct user transformation of the panel (Al-

Qattan et al., 2017a). 
 

The CSV file including the data samples is imported into Dynamo for curve-

fitting and generating the equation. A linear equation in mathematics consists of a 

constant and the first power variable, which can be represented mathematically as 𝑦𝑦 =

𝑚𝑚𝑚𝑚 + 𝑏𝑏 , where m is the Slope and b is the y-Intercept. This format of the equation is 

referred to as Point-Slope form with a single variable.  

The constants of the generated equation are calculated as shown in Eq.5.1 

(Slope) and Eq.5.2 (y-Intercept) (Yan & Su, 2009). 

 

𝑚𝑚 = ∑[(𝑥𝑥𝚤̇𝚤−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)]
∑[(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2]   Eq.5.1 

𝑏𝑏 = 𝑦𝑦� − (𝑚𝑚𝑥̅𝑥)   Eq.5.2 

 

The generated equation at this point deduces a relationship between Panel 1 and 

3 in the array excluding Panel 2. The angle of rotation value for rotating Panel 2 is 

obtained by solving x and y in the Point-Slope equation. 
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Parametric functionality is not supported by the generated equation. i.e., the 

calculated angle of rotation will provide a single instance for rotating Panel 2 in between 

the other two panels. Therefore, an additional procedure is implemented in the Dynamo 

algorithm to parametrize the equation, which involves setting up a free parameter (t) as 

an independent variable for solving x and y (𝑥𝑥 = 𝑡𝑡,𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏). The values of t is 

substituted with the angles of rotation provided by the rotary potentiometer attached to 

Panel 1 in the artifact. Using this methods of parametrization allows for calculating all 

the possible angles of rotation for Panel 2 (i.e., interpolations) in the array between the 

other two panels.  

Once a constraint is set up using the parametrized equation, any further changes 

in the angles of rotation for Panel 1 and 3 will automatically reflect in both the digital 

model and artifact by updating the parametric equation’s coefficients and recalculating 

the angles of rotation for Panel 2 (Figure 5.5).  

 

 

Figure 5.5 The manual rotation of Panel 1 and/or 3 will automatically rotate Panel 2 
using the generated parametric equation. Images on the top and bottom show consistent 
results when the angles of rotation for the panels are changed (Al-Qattan et al., 2017a). 
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The live link established between the TUI and the digital model enables real-time 

interaction and response in both environments. Panel 2 in the artifact rotates using a 

servomotor and in the digital model using an angle parameter. 

3. Results 

Prototype 1 has shown that utilizing curve-fitting in this workflow assisted in 

generating the mathematical equation that best depicts the relationship between the 

panels. The objective of Prototype 1 is not to merely determine the angles of rotation for 

Panel 2, which can be found by simple interpolation between the angles of rotation for 

Panel 1 and 3 but to determine the linear function and its coefficients representing the 

parametric relationship in the array of panels. This approach enables the designer to 

make changes to the model once the relationship is set up, and the design intent – object 

relationships - will remain intact. For this example, the TUI was linked to a BIM model 

in Revit using Dynamo and Firefly. BIM authoring tools are useful for modeling and 

documenting architectural designs, and Firefly offered functionality for collecting, 

managing, and translating data from the TUI to the digital model. 

 

5.1.2. Polynomial Equations  

Prototype 2 explores creating curvilinear geometric configurations using 

complex types of mathematical equations as an approach for capturing design intents in 

a digital model. The work explores creating parametric models based on high-degree 

polynomial equations. Like Prototype 1, this prototype includes three procedures: data 
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logging, data analysis, and generating the equations. The regression model for this 

example also uses a curve-fitting function for establishing data relationships.  

The artifact consists of a workbench representing an architectural space with its 

roof made of an array of eight louvers (Figure 5.6, left image). The louvers are the 

objects used for tangible interaction by the designer to operate the system. The TUI is 

linked to a digital model of the space created in Rhino 3D (Figure 5.6, right image). The 

purpose of the artifact emphasizes the architectural properties of the model by providing 

a spatial context and elements.  

 

 

Figure 5.6 Prototype 2, TUI includes an artifact composed of a workbench representing 
and architectural space and louvers as design objects for user interaction (left image). 
The architectural model is reconstructed in Rhino and linked to the TUI (right image). 

 

1. Prototyping 

Phase 1. The set of tools used for developing Prototype 2 include: 

• Software tools: Rhino 3D, a NURBS modeler; Grasshopper, a visual 

programming plugin for Rhino; CS-script, a programming language; 

Math.Net Numerics, a module for numeric computation, and Firefly.  
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• Hardware tools: Arduino MEGA microcontroller and eight linear SoftPot 

(ribbon) sensors.  

Phase 2. The modeling problem involves creating curvilinear geometric 

configurations using polynomial equations. Prototype 2 will generate the equation, 

which will be used for creating the roof in the Rhino model by having the designer 

manually translating the louvers in the artifact. The process is similar to the previous 

prototype where sensors attached to design objects to monitor their physical changes and 

collect data for analysis. Sensors measure the distance between their corresponding 

louvers and the “floor” in the architectural model. The specifications for Prototype 2 are 

shown in Figure 5.7. Additionally, this workflow includes a unidirectional link allowing 

for data transfer only from the TUI to the digital model. 

 

 

Figure 5.7 Prototype 2 specifications for developing the TUI.  
 

2. Testing 

The TUI is operated by having the designer translating the louvers vertically for 

creating the roof configurations in the artifact. Sensors attached to the louvers start 

collecting distance values during user interaction. Sensor values are then sent to 

Grasshopper and are plotted as geometric points in the Rhino viewport using the XZ 
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plane. Each point generated in the digital model is a geometric representation of the 

louvers’ current position in the artifact. These points are used for regression analysis 

using curve-fitting. The results of the process include a polynomial equation and a 

geometric representation of the equation (a curve). The louvers in Rhino will be 

redistributed along the generated curve, having equal spacing between them, to replicate 

the roof’s configuration in the artifact. Additionally, any changes made to the louvers’ 

layout in the artifact will translate directly into the Rhino model, thus updating the 

equation and parametric curve. Figure 5.8 shows the workflow for Prototype 2.  

 

 

Figure 5.8 The workflow for Prototype 2 adapted from Al-Qattan et al. (2017a). 
 

The implementation of the regression analysis in this example uses CS-script and 

Math.Net Numerics, which is adapted from the discussion posted on the Grasshopper 

forum under the title How to Find Mathematical Functions of Curves (Rutten, 2015). 

The regression model is modified and integrated within the Grasshopper algorithm 

created for this prototype to generate the equation. Utilizing Math.Net Numerics within 
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the Grasshopper algorithm assists in avoiding the extensive programming of the curve-

fitting procedures, which was done for Prototype 1, in addition to the flexibility of 

making modifications to the generated equations, i.e., fine-tuning, which will be further 

discussed later in this section. The equations generated using Prototype 2 are for second-

degree orders and higher, e.g., quadratic, cubic, quartic, and so on. Eq.5.3 shows an 

example of a single variable polynomial (univariate) equation and its format. 

 

𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎0 = 0  Eq.5.3 

 

Figure 5.9 (Graph 1) shows the process of generating the polynomial equation 

and curve for reconfiguring the roof in Rhino. Sensor values are plotted as points in the 

Rhino viewport and represented in the graph as crosses. Each cross is labeled with its 

corresponding sensor to assist the designer in associating digital information with 

physical object state. The curve-fitting function used finds the best fit polynomial curve 

between the eight geometric points. The regression model generates a geometric 

polynomial curve (Graph 2) and a parametric equation as a mathematical representation 

of the geometric curve. The curve is then used to rearrange the louvers in the Rhino 

model (Graph 3).  

The prototype is retested for regenerating polynomial equations by having the 

louvers rearranged in the artifact. The results show that the Rhino model updates 

instantaneously with the designer’s real-time interaction with the louvers. Figure 5.10 
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shows the rearrangement of the louvers layout for producing a different curve 

configuration and producing a polynomial equation of fourth-degree (Eq. 5.4). 

 

𝑓𝑓(𝑥𝑥) = −0.007𝑥𝑥4 + 0.123𝑥𝑥3 − 0.540𝑥𝑥2  + 0.122𝑥𝑥1 + 7.057𝑥𝑥0  Eq.5.4 

 

 

Figure 5.9 The louvers’ layout in the artifact (top left), and in the Rhino after 
performing curve-fitting (top right). Graph 1 shows sensor values plotted in Rhino and 
labeled with their corresponding sensors. Graph 2 shows the generated best-fit curve 

between the points. Graph 3 shows the louvers redistributed across the polynomial curve 
in Rhino. The polynomial curve generated for this example is of third-degree as shown 
in the equation. Note that the louvers’ angle of rotation (Graph 3) was modified later in 
Grasshopper to match the artifact as seen in the top two images. The generated equation 

in this example is: 𝒇𝒇(𝒙𝒙) = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟑𝟑 + 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟏𝟏 + 𝟓𝟓.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟎𝟎. Figure 
adapted from Al-Qattan et al. (2017a). 
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Figure 5.10 A fourth-degree polynomial curve generated by rearranging the louvers in 
the artifact (Al-Qattan et al., 2017a). 

 

The louver’s layout in Rhino can be fine-tuned to match their physical 

counterpart by increasing or decreasing the degree of the polynomial curve. Figure 5.11 

shows that the louvers layout, previously shown in Figure 5.10, can be further adjusted 

by increasing the polynomial degree of the generated curve from four to eight. The 

generated equation for a fourth-degree polynomial is shown in Eq. 5.5 and for eighth-

degree is shown in Eq. 5.6. 

 

 𝑓𝑓(𝑥𝑥) = − 0.007𝑥𝑥4 + 0.123𝑥𝑥3 − 0.540𝑥𝑥2 + 0.122𝑥𝑥1 + 7.057𝑥𝑥0  Eq.5.5 

 

𝑓𝑓(𝑥𝑥) = 0.001𝑥𝑥8 − 0.031𝑥𝑥7 + 0.380𝑥𝑥6 − 2.817𝑥𝑥5 + 13.171𝑥𝑥4 − 38.432𝑥𝑥3 +

66.612𝑥𝑥2 − 61.928𝑥𝑥1 + 31.312𝑥𝑥0       Eq. 5.6 

 

The result also shows that an eighth-degree polynomial curve is the best fit among the 

points, however high degree order polynomials are undesirable for design applications as 
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they are complicated to construct and represent, therefore NURBS curves are utilized 

widely and are further discussed in Prototype 5.  

 

 

Figure 5.11 The fine-tuning process of the polynomial curve from fourth-degree to 
eighth-degree (Al-Qattan et al., 2017a). 

 

3. Results  

The work has shown another approach for interpreting tangible interaction using 

regression analysis. This example does not focus on the individual relationships of 

objects as in Prototype 1 but on the process of creating complex parametric forms. 

Additionally, the louvers’ overall relationship is associated with the curve, as the curve 

is reconfigured the louvers’ layout responds accordingly. For example, if the designer 

changes the number of louvers by increasing or decreasing their number (in both the 

digital model and artifact), the updated array of louvers automatically relocates along the 

curve maintaining the overall configuration and degree of the curve. The coefficients of 

the polynomial equation are considered as the parameters, changing them enables the 

fine-tuning of the curve to explore unique design options for the roof.  

This method of generating curves for parametric modeling is different from the 

widely used method for generating NURBS curves. User input points in this example are 

a direct translation of the louvers’ configuration, and the polynomial curve is created by 
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generating an interpolated curve that passes through them. As for NURBS, input points 

are used as control points for creating low degree Bézier curves, which then are pieced 

together for creating a compound curve. The method for constructing NURBS curves 

will be discussed in the TUI Improvements section of this chapter in Prototype 5.  

 

5.2. Algorithmic Rules  

Prototype 3 explores the potential of tangible interaction to setup algorithmic 

rules for parametric modeling to create and manage complex geometric patterns. The 

purpose of the study is to address the challenges of digital modeling associated with 

computer programming. This work was published in the Proceedings of the 35th 

eCAADe conference, “Tangible Computing for Establishing Generative Algorithms: A 

Case Study with Cellular Automata” by Al-Qattan, Yan, and Galanter, 2017b. updated 

figures are added to this work in addition to the published material. 

The workflow created for Prototype 3 (Figure 5.12) tests the TUI for providing 

two types of data inputs; the rules and initial cell state for a CA algorithm.  

 

 

Figure 5.12 The TUI developed for Prototype 3 (left) which uses CA for generating 3D 
geometric patterns (right) (Al-Qattan et al., 2017b). 
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The prototype like the previous examples links a TUI to a digital modeling 

environment for generating three-dimensional geometric patterns using CA rules. The 

artifact in this example demonstrates a level of abstraction as design objects are 

represented as solid geometric forms with no distinct architectural design features. 

However, the objects and workbench are direct representations of CA elements (the grid 

and cells), which can assist in making the association between both the physical and 

digital models. 

CA is an EA, which, has been extensively explored as a design tool in 

architecture (Cruz et al., 2016). Conway’s Game of Life (Life) is an example of CA’s 

applications, and it is a digital simulation of patterns that exhibit emergent behavior 

much like living organisms (Gardner, 1970; Krawczyk, 2002). Life is represented by an 

infinite two-dimensional lattice where each cell can have one of two possible states, 

alive or dead. Life also implements a simple set of rules, which determines the state of a 

cell in future generations (Fazer, 1995). Below is a sample set of CA rules which 

Conway developed for Life: 

• A cell is born if it has three live neighbors.  

• A cell remains alive if it has two or three neighbors. 

• A cell dies if it has fewer than two live neighbors.  

• A cell dies if it has more than three live neighbors. 

 

5.2.1. Prototyping  

Phase 1. The set of tools used for developing Prototype 3 are: 
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• Software: Rhino 3D; Grasshopper; Firefly; and Rabbit, a CA component 

and plugin for Grasshopper.  

• Hardware: Arduino UNO, and eight pressure-sensitive sensors.  

The workbench for Prototype 3 consists of a 3-by-3 square grid representing a 

single cell neighborhood, which is considered as a simplified version of CA’s infinite 

lattice, and a total of 3 blocks representing the alive cells. Each cell in the 9-square grid 

includes a pressure sensor, which links each cell to its corresponding square in the Rhino 

model as seen in Figure 5.13.  

 

 

Figure 5.13 The 9-square grid in Rhino (left) and TUI (Right). Each cell in the grid is 
linked to its corresponding sensor in the workbench. The two highlighted cells (white) in 
the Rhino model show the alive cells as an example of how the TUI communicates with 
the digital model. The ninth cell (center square) in both the model and the artifact is the 

initial cell which will be generated based on the rules (Al-Qattan et al., 2017b). 
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Phase 2. The designer interacts with the artifact by adding and removing blocks 

on the workbench. The artifact will provide two types of inputs (1) the number of blocks 

(alive cells) and (2) their configuration. Two workflows are tested using the TUI for 

Prototype 3.  

Workflow 1 tests the prototype for setting up the initial cell configuration for the 

CA algorithm and is referred to as the seed (Figure 5.14). Unique seeds are generated by 

changing the blocks’ layout on the workbench, moving them from one cell to another. It 

is important to note that, this work is intended to generate a three-dimensional geometric 

configuration using the generative algorithm. Unlike two-dimensional CA, which has 

only two possible states, this work will include a third state, a surviving cell that will 

inform later generations of the pattern’s evolution.  

Workflow 2  tests the prototypes for generating CA rules by counting the number 

of blocks placed on the workbench (Figure 5.15). The number of blocks used will 

determine the number of surviving cells in the algorithm’s evolution in the digital model. 

The initial assumption is that these inputs will enable the generation of geometric 

compositions in Rhino, and as these inputs are changed, the overall geometric system 

will respond accordingly.  
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Figure 5.14 TUI specifications for Prototype 3 - Workflow 1. 
 

 

Figure 5.15 TUI specifications for Prototype 3 - Workflow 2.   
 

5.2.2. Workflow 1  

Block configuration in Workflow 1 is set by using the artifact, and the number of 

neighboring cells is set manually in Grasshopper. The objective of this work is to test the 

TUI for generating and manipulating the seeds for the CA algorithm. The Grasshopper 

algorithm utilizes the plug-in Rabbit, which is a three-dimensional CA generator. The 

CA rule set in Grasshopper for the generator to start the evolutionary process is: A cell is 

born and survives if it has at least two neighbors, else it dies in the next generation. As 

for the seed, the TUI will use the artifact to determine the blocks’ configuration. The 

seeds will guide the geometric composition’s evolution in Rhino. Figure 5.16 shows the 

workflow for generating the seeds using Prototype 3.  
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The workbench detects which sensors in the grid are used. Sensors are activated by 

weight when blocks are placed on them. Sensor data provides the system with the 

current locations of the blocks, which are then used as an input parameter for Rabbit to 

create the custom seed. Activated sensors represent alive cells in the CA grid and 

changing the blocks will reconfigure and update the seed as shown in Figure 5.17. Three 

seeds are generated using the artifact with each having a different number of neighbors 

and a unique cell configuration. Seed inputs must follow the CA rule set in Grasshopper, 

which requires having at least two alive neighboring cells to start the evolutionary 

process.  

 

 

Figure 5.16 Workflow 1, the inputs for generating the Seeds. Sensors are used to 
indicate which cells are used in the grid to determine the seed’s configuration. Figure 

adapted from Al-Qattan et al. (2017b). 
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Figure 5.17 Block configuration for generating custom Seeds. The top image shows a 
configuration generated having three blocks, and both the middle and bottom images 

having only two blocks but with a different layout (Al-Qattan et al., 2017b). 
 

The seeds are then used for generating three-dimensional patterns in the Rhino 

model. The workflow is tested using three seeds as shown in Figure 5.18. The test shows 

that when physical blocks are relocated on the workbench to create a different 

configuration, the digital model responds by producing a new three-dimensional pattern 

in Rhino.  
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Figure 5.18 Geometric patterns generated in Rhino using three Seeds. Each level of 
blocks arranged vertically is one generation of the CA evolutionary process (Al-Qattan 

et al., 2017b). 
 

5.2.3. Workflow 2  

This test focuses on setting up CA rules using the TUI by providing the number 

of alive cells as the input for Rabbit. The graph illustrated in Figure 5.19 explains the 

process of setting up the rules for the algorithm. The rules for the CA component which 

is set up using the TUI are: 

• Rule 1: a cell is Born and survives if it has one neighbor. 

• Rule 2: a cell is Born and Survives if it has two neighbors.  

As for the seed, it is generated using a 15-by-15 grid lattice and by selecting a 

random neighboring cell configuration in Grasshopper. 
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Figure 5.19 Workflow 2, procedures and inputs for generating the rules for the CA 
algorithm adapted from Al-Qattan et al. (2017b). 

 

The TUI counts the number of blocks when added or removed from the 

workbench to determine the number of cell neighbors. The increase or decrease of 

neighbors changes the algorithm’s rule and the overall geometric outcome in the Rhino 

model. Unlike Workflow 1, the location of the blocks on the workbench has no effect on 

the rule. Figure 5.20 shows two geometric patterns generated by implementing the two 

rules. The left image shows the seed consisting of four randomly placed neighbors to 

determine the initial cell state, middle image shows the geometric pattern of Rule 1, and 

the right image shows the change in pattern configuration using Rule 2. 

It is important to note that, the increase in the number of neighbors, adding more 

blocks, will also affect the evolutionary process. For example, if three neighbors are 

used to set up the rule, the CA evolution will only produce two generations, because the 
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cells will die out of the specific seed and lattice length. Moreover, if further flexibility is 

required by the designer to set up rules, e.g., a cell is born if it has one neighbor and 

survives if it has two or more neighbors; then such a rule must be set up in Grasshopper 

using a conditional statement. Using conditional statements provides the designer with 

the flexibility to create more complex rules to meet different design conditions.  

 

 

Figure 5.20 15-by-15 lattice using a random Seed (left image showing part of the 
lattice), the geometric pattern produced using Rule 1 (middle image) and Rule 2 (right 

image) (Al-Qattan et al., 2017b). 
 

5.3. Results  

Prototype 3 has shown that tangible interaction can be used for establishing 

algorithmic rules for digital modeling. The TUI provided the parameter inputs for 

generating CA custom seeds and setting up the number of neighbors for generating CA 

rules. The prototype has shown to be limited to setting up either seeds or rules using the 

TUI in this setting. A procedure must be set up in the visual program if both were 

required to be simultaneously set up using the same artifact.  
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5.4. TUI Improvements  

Prototypes 1, 2, and 3 have shown a method for establishing object relationships 

by providing parameter inputs such as mathematical equations and algorithmic rules. A 

parametric framework is partially defined prior to linking the artifacts to the digital 

models. This section of the research focuses on expanding on the method by automating 

the process of constructing parametric frameworks and modeling procedures. This work 

was presented as a research poster at the 8th DCC conference, “Utilizing Tangible 

Computing for Parametric Modeling: Case Studies for Detecting Types of Geometric 

Transformations and Setting Up Constraints Through Tangible Interaction” by Al-Qattan 

and Yan, 2018. Updated figures and method description are added to this work in 

addition to the material included in the poster and abstract in the conference preprints.  

Prototype 4 (Figure 5.21, left image) tests a method for detecting physical object 

transformations and automatically translating them in digital models. The system detects 

the different types of physical transformation applied to design objects and applies them 

to a digital model without the extensive programming of such procedures. Prototype 5 

(Figure 5.21, right image) tests a method for constructing NURBS curves, establishing 

boundaries, and generating design options for modeling an architectural element. 

Prototype 5 covers a broader range of modeling tasks usually found in a digital 

design process. The two prototypes expand the capabilities of earlier workflows by 

introducing a higher level of automation of parametric modeling procedures. 
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Figure 5.21 The TUIs developed for Prototype 4 (left) and Prototype 5 (right). 
 

5.4.1. Physical Transformation Detection  

The prototype is developed for automatically detecting the different types of 

geometric transformations applied to a design object through tangible interaction. The 

workflow enables designers to manipulate a Rhino model using an artifact. The 

improvement in this workflow, which distinguishes it from prior examples is that the 

algorithm created in Grasshopper does not include a set of predefined geometric 

operations. The algorithm is designed to distinguish between the different types of 

analog data inputs and use this information for manipulating digital objects using a 

transformation matrix. Figure 5.22 shows the TUI for Prototype 4 which consists of a 

single detachable panel, a workbench, and a Rhino model of the panel. Testing the 

prototypes have shown that tangible interaction can be used for applying both compound 

and non-compound geometric transformations instead of having to create programming 

graph for each type of transformation.  
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Figure 5.22 Prototype 4, the TUI consisting of a detachable panel and workbench (left 
image) and a Rhino model of the panel (right image). 

 

1. Prototyping 

Phase 1. The set of tools used for developing Prototype 4 includes: 

• Software: Rhino 3D, Grasshopper, and Firefly. 

• Hardware: Arduino MEGA microcontroller and custom-made sensors 

using conductive paint (Bare Conductive, 2009). 

Phase 2. The design object for Prototype 4 is represented by a square panel, and 

unlike previous prototype examples in this research, the panel is not considered as part 

of a more significant design problem (e.g., the panel being part of a tessellated surface), 

only as an object for facilitating tangible interaction. Therefore the artifact in this 

example can include any geometric configuration for testing the system for detecting 

transformations.  

Prototype 4 is operated by having the designer manually translating and rotating 

the panel. The artifact provides the digital model with two types of inputs, the panel’s 

angles of rotation and distance from the horizontal length of the workbench. The system 
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processes this information to replicate the panel’s physical state in the digital model. The 

specifications for Prototype 4 are shown in Figure 5.23. 

 

 

Figure 5.23 TUI specifications for Prototype 4. 
 

An essential feature of the artifact is the detachable panel, which creates a more 

flexible interactive medium. The designer can remove or add additional panels to the 

artifact. Figure 5.24 shows the detachable panel. Prototype 4 includes a new method for 

embedding the sensors and the electrical circuit within the artifact using conductive 

paint. This approach allows for a higher level of physical computing systems and design 

objects integrations, and TUI customization. Previous models used off-the-shelf sensors, 

which did to some extent limit the design and fabrication of the physical objects. For this 

example, the panel is designed to include a rotary potentiometer to monitor changes in 

the panel’s angles of rotation. The workbench is designed and fabricated to include a 

linear ribbon sensor to monitor the panel’s position when translated across its surface.    
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Figure 5.24 The detachable panel and workbench: left image shows the panel lifted 
from the workbench below, and the right image shows circuit-object integration (rotary 

potentiometer). 
 

Figure 5.25 describes the digital workflow for Prototype 4 and the mechanism for 

detecting physical transformations.  

 

 

Figure 5.25 The workflow for Prototype 4. 
 

The sensors monitor the panel’s rotation around its center and translation across 

the workbench’s length. Values from both sensors are sent to the algorithm written in 
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Grasshopper where they are remapped and matched with units of measurement, referred 

to as labels; i.e., the labels “degrees” is used for rotation values and “inches” for 

translation values. The algorithm will then use the units of measurement to identify each 

incoming value and send it to its corresponding element in an original identity matrix to 

create the transformation matrix for manipulating the Rhino panel. Regardless of which 

of the two sensors is operated, linear or rotary sensors, the algorithm will automatically 

detect the types of transformation using the labels given to each of the two values. 

In mathematics, a Transformation Matrix is a method for working with and 

representing linear and non-linear transformations, such as rotation, translation, scale, 

shear, perspective, and their combinations. A transformation matrix is a useful tool in 

digital modeling, as it allows for multiple transformations to co-occur when 

manipulating the same geometry. A matrix is represented as a rectangular array of 

numbers, with its dimension m-by-n; m being the number of rows and n being the 

number of columns (Issa, 2013). Prototype 4 is tested for rotation and translation, which 

are two types of Affine transformations. Affine transformations modify a geometric 

object’s shape while keeping the rest of its properties unchanged, e.g., parallelism of 

lines (Mitchell, 1990). Figure 5.26 shows a 4-by-4 matrix in Grasshopper for three-

dimensional transformation. The 16 values of the matrix are set manually. The matrix 

example shows a compound type of transformation for translating and rotating a panel 

from its Start Position (P) to its Target Position (P’). For panel translation, the cells of 

the far-right column of the matrix are changed to 8 inches along the X-axis and -8 inches 

along the Y-axis. For panel rotation, the two left columns are changed to 17 degrees. 
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Rotation requires matrix multiplication to obtain the Target Position’s angle of rotation 

in degrees prior to inserting the number value in its corresponding cell. 

 

 

Figure 5.26 Shows a compound transformation, a Rhino panel is translated along the X 
and Y axes and rotated counterclockwise. 

 

2. Testing 

The prototype is tested for three transformation scenarios; translation, rotations, 

and their combination. For translation, the panel is moved across the workbench along 

the linear ribbon sensor. The Grasshopper algorithm automatically detects the panel’s 

physical state. Figure 5.27 demonstrates the panel’s translation from P to P’ on the 

workbench. The figure also shows that the sensor value is inserted in the top right cell, 

which is used for translation along the X-axis. The example shows the panel moving 

from 5.12 inches (P) to 16.81 inches (P’) starting from the left side of the workbench 

moving towards the right. 
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Figure 5.27 Panel translation from the Start Position (left) to the Target Position (right). 
 

For rotation, the panel is rotated around its center, activating the rotary sensor. 

The Grasshopper algorithm automatically detects the type of transformation applied to 

the panel using the units of measurement. Unlike translation where sensor values are 

inserted directly into the matrix, the obtained angle values are used to calculate the 

corresponding cell values for the panel’s Target Position. A matrix multiplication 

equation for counterclockwise rotation is implemented in Grasshopper for calculating 

the panel’s Target Positions prior to inserting the values in the matrix. Figure 5.28 shows 

the panel being rotated from P to P’ (top three images), the calculated values inserted in 

the transformation matrix and the panel’s response in Rhino (bottom right image).  

For compound transformations, Prototype 4 is tested for both translation and 

rotation. The two types of transformations are applied using the physical panel. This 

process was repeated several times while monitoring both the physical and digital 

panels. The values obtained from each type of two sensors, as shown in Figure 5.29, 
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indicate that the system is correctly identifying each type of physical transformation. The 

values obtained from the artifact are transferred to the digital model and are inserted in 

their corresponding matrix cells to generate a compound transformation. Both digital and 

physical panels in Prototype 4 show consistent results when the designer interacts with 

the TUI. 

 

 

Figure 5.28 The system is tested by rotating the panel approximately 63 degrees (P’) 
around its center (top images). The angles of rotation obtained from the artifact are used 
to calculate the cell values before having them inserted in the upper left 2x2 cells of the 

transformation matrix in Grasshopper (bottom images). Adapted from Al-Qattan and 
Yan (2018). 

 

 

Figure 5.29 The process of generating compound transformations using the TUI. The 
panel rotated and translated (left image), and the values form each sensor are inserted in 

the transformation matrix (right image). 
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5.4.2. Automating Modeling Procedures  

The objective of developing Prototype 5 is to expand the functionality of the 

workflow demonstrated in Prototype 4 for creating parametric models using NURBS 

curves. The artifact for this example includes a workbench which is represented as an 

architectural space and several blocks located on its “floor” that represent a NURBS 

curve control points (Figure 5.30). The intent is to use the TUI to design an interior wall 

within the architectural space. Although the design object for manipulation is abstracted, 

having no distinct design features, the architectural context is established through the 

physical boundaries of the model (workbench). 

 

 

Figure 5.30 Shows Prototype 5, the TUI representing an architectural space (left), 
blocks representing a NURBS curve control points (middle), and a Rhino model 

showing the eight control points (right). Adapted from Al-Qattan and Yan (2018). 
 

1. Prototyping 

Phase 1. Similar to Prototype 4, the set of tools includes: 

• Software: Rhino 3D, Grasshopper, and Firefly. 

• Hardware: Arduino MEGA microcontroller and custom-made sensors 

using conductive paint. 



 

110 

 

Phase 2. The Blocks in the artifact are a physical representation of control points 

and are used to provide the input data for constructing NURBS curves in Rhino. The 

number of blocks added/removed on the workbench are used to determine the number of 

control points in Grasshopper. The artifact is designed to hold up to eight blocks. Each 

block is placed on one linear ribbon sensor on the workbench. These ribbon sensors are 

spaced out equally across the length of the workbench and are activated when a block is 

added to them and moved. The blocks provide the system with two types of inputs, the 

number of control points and their configuration. The list of specification for Prototype 5 

is illustrated in Figure 5.31. 

 

 

Figure 5.31 TUI specifications for Prototype 5. 
 

The Grasshopper algorithm detects the number of blocks used and their position 

on the workbench to generate a corresponding control point in the Rhino scene. Block 

position refers to which sensors are used in the artifact (for example sensors 1, 3, 5, and 

7) and their geometric configuration (layout on the model’s floor). The block count will 

provide the number of control points, which is the input data required for the algorithm 

to construct the NURBS curves. The physical transformation detection method 
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developed in Prototype 4 is reused in this example for monitoring the blocks position 

when translated across the workbench for manipulating the generated curves’ 

configuration.  

For establishing curve boundaries, the algorithm records the preferred curve 

configurations and uses them as constraints. Preferred curves are the configurations of 

NURBS curves that meet the designer’s intent when modeling the interior wall. 

Preferred curves are generated by translating the blocks in the artifact, then recorded and 

referred to as Special Case curves. These recorded curves are set automatically as 

boundaries in the digital model and are used for generating curve interpolation between 

them to explore design options for the proposed interior wall. This process is shown in 

Figure 4.31. 

 

 

Figure 5.32 Digital workflow developed for Prototype 5. 
 



 

112 

 

In computer graphics, NURBS are described as mathematical representations of 

curves and surfaces. NURBS extensive use in digital modeling is due to their mathematical 

precision and intuitive control features. Designers can reconfigure NURBS objects by just 

dragging their control points in the 3D model’s viewport (Figure 5.33). NURBS curves 

can be constructed using programming by providing the following inputs: dimension, 

degree, control points, and their weights and knots (Issa, 2013). The artifact in Prototype 

5 is used to provide the input data for generating the control points to construct the NURBS 

curves while having the rest of the parameter inputs set with default values in Grasshopper. 

 

 

Figure 5.33 A degree 3 NURBS curve with five control points, created in Rhino. 
 

2. Testing 

The TUI provides Grasshopper with the following information: the number of 

control points, and their current location on the workbench. A corresponding control 

point is generated for each block in Rhino using the XY plane. Figure 5.34 shows 

constructing a NURBS curve using these inputs. The figure also shows how the number 

of control points is increased from four to eight by adding more blocks on the 
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workbench. Sensors are automatically activated when blocks are added to the 

workbench. Regardless of the sequence of adding the blocks, the Grasshopper algorithm 

detects which sensors are used. The artifact demonstrates a level of flexibility for 

making changes to the artifact for acquiring greater precision and control over the 

generated geometry. Once the number of control points is set, the sensors then start to 

monitor the blocks’ physical state. The curve’s configuration is modified by moving its 

control points using their corresponding blocks on the workbench to set up the Special 

Case curves.  

 

 

Figure 5.34 Shows the blocks and their corresponding points in Rhino for generating the 
NURBS curves. Figure adapted from Al-Qattan and Yan (2018). 

 

The algorithm allows the recording of the different preferred curve 

configurations, (Special Cases), to be used as boundaries for limiting the interior wall’s 

behavior. Figure 5.35 shows the step-by-step process for setting up the boundaries in 

Rhino using the artifact. First, the NURBS curve is constructed in Rhino then recorded 

as shown in Figure 5.35, Image 1. Second, the process is repeated several times 

depending on the number of preferred curve configurations needed. However at least 
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two curves must be provided to define the two extremes (minimum and maximum 

bounds) as shown in Figure 5.35, Image 2. The control points of each of the Special 

Case curves are connected using a series of lines as shown in Figure 5.35, Image 3. The 

lines connecting the control points between the Special Cases curves establish the 

constraints for modeling the interior wall.  

 

 

Figure 5.35 Shows the process of setting up constraints using the artifact. For the clarity 
of illustration, only two Special Case curves are generated and are shown in this figure. 

 

After setting up the boundaries, they are used for generating intermediate curves, 

i.e., design options for the interior wall’s configuration. These design options are 

produced by generating new control points on the series of lines connecting the Special 

Case curves’ control points. These new control points are used as inputs for generating 

the intermediate curves. The process of generating NURBS curves as design options is 

automated by the system using the analog inputs provided by the artifact. The main 

feature of these intermediate curves is that they are always restricted by the Special Case 

curves, which assists in preserving the design intent. This process can be explained by 
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giving the example of a designer drafting several curves for a design study before 

making the final decision about a curved object.  

Figure 5.36 shows two constraint scenarios (Option 1 top images and Option 2 

bottom images) for generating curve interpolations for modeling the interior wall. 

Images on the left in Figure 5.36, show the model in the Rhino viewport (left) and 

images on the right show the artifact with the interior wall 3D printed and placed in the 

artifact.  

 

 

Figure 5.36 Shows the process of generating interpolated curves using the artifact (left) 
and the 3D printed interior walls (right). Curves are color-coded; Special Case curves 

(black color), samples of interpolated curves (grey), and selected curve (cyan). 
 

As can be seen in Figure 5.36, the control points of the intermediate curves (cyan 

color) are on the lines that connect the control points of the two Special Case curves. The 
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points’ location on the connecting lines is controlled by a Number Slider. The slider can 

move all the points of the intermediate curves together, or individually by adding more 

than one slider in Grasshopper. Changing the values of the Number Slider(s) will 

reconfigure the interpolated curves in Rhino. In the Rhino scene, several intermediate 

curves are generated for both design options (gray color curves). The selected curve is 

highlighted (cyan color) and then fabricated as the chosen option for the interior wall. 

 

5.5. Results  

Prototype 4, the workflow has shown that utilizing artifacts with transformation 

matrices can assist in automatically translating physical interactions into digital models 

for transforming design objects. Matching sensor values with units of measurement 

enabled the system to detect distinct types of transformations and to transfer them into 

the digital model correctly. This approach to modeling streamlines the manipulation of 

geometry without the extensive programming of such operations in the digital model. 

The artifact is designed for two types of transformations, and for translation only along a 

single axis. However, the Grasshopper algorithm can include additional transformations 

by simply matching sensor data with their corresponding units. Moreover, the current 

algorithm can also detect translation along all three axes and for multiple objects. The 

algorithm was reused for Prototype 5 for detecting translations for multiple objects.  

Prototype 5, Each example of the boundary options shown in Figure 5.36 

produces several configurations for the same wall, constrained by the special case 

curves. This test has shown a benefit of using TUIs for parametric modeling, creating 
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boundaries for preserving a design intent. The artifact also provides the flexibility of 

adding/removing objects (control points) as inputs for the Grasshopper algorithm. The 

Prototype demonstrates an interplay between physical and digital mediums, which helps 

in providing a platform for automating algorithmic processes and visualizing designs 

both physically and digitally. The Special Case curves are generated using the artifact; 

and once the parametric digital model is set up, it can be easily controlled in 

Grasshopper. The 3D printed interior wall placed in the artifact is not linked to the 

digital model; it is used to visualize the product of the digital workflow in its physical 

context. 
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6. EVALUATION  

 

The prototypes developed for this work demonstrate an innovative approach for 

parametric modeling using tangible interaction for automating the generation of digital 

information and modeling procedures. This chapter focuses on providing a comparative 

study to evaluate the performance of the prototypes. Each prototype will be compared to 

the typical process of using conventional programming methods for establishing and 

controlling parametric models. Example algorithms and programming workflows are 

used for the comparison.  

 

6.1. Algebraic Constraints   

The prototypes are compared to the conventional approach of constructing, 

parametrizing, and embedding mathematical functions, equations, and formulas in 

digital models for establishing object relationships representing design intents.  

 

6.1.1. Prototype 1 

Establishing a simple linear relationship in a digital model can be a 

straightforward process. In Revit, a designer can set up a dimensional constraint such as 

Length between two geometric objects. The input for this relationship can be as simple 

as a numerical value or a function to create a more sophisticated parametric model. In 

complex models, relationships are established between several objects, which can be 

challenging for designers to express mathematically. An example is the Reactor model 
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by Woodbury (2010), a pattern example from his book Elements of Parametric Design. 

Reactors demonstrate a linear type of object relationships. In Woodbury’s example, a 

circle’s radius is controlled by a free point, referred to as a controller. The radius of the 

circle is the function of the distance between the controller and the center point of the 

circle. The designer changes the size of the circle by moving the controller closer or 

away from its center point; the circle gets smaller when the controller is close to its 

center and larger otherwise. The function is relatively simple for novice-programmers to 

create between two objects. However, using the same Reactor example for several 

circles (an array distributed across a two-dimensional grid) requires some programming 

skills, especially when the distance between the centers of these circles is not equal to 

the controller. 

Considering the panel array example used in Prototype 1, in a conventional 

workflow, the designer sets up a parametric model by writing an algorithm in Dynamo 

(or any other algorithmic editor supported by the modeling platform) as illustrated in 

Figure 6.1. The figure shows that a relationship between the panels can be created by 

averaging the angles of rotation values of both Panels 1 and 3 and using the result for 

rotating Panel 2.  
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Figure 6.1 Workflow for establishing a relationship between a panel array using visual 
programming.  

 

Similar to the Reactor example, a designer can easily visualize the parametric 

framework for controlling a single object in a digital model. However, it is challenging 

to write the algorithm for controlling multiple circles that are spread across a two-

dimensional plane, because each circle will demonstrate a distinct responsive behavior 

according to its location. This is a similar problem found in multi-dimensional arrays. 

Conversely, the workflow for Prototype 1 uses a regression model to deduce the 

relationship between the panels in the array. If the array includes three or more panels, 

the workflow can generate a mathematical equation for setting up the relationship. The 

designer can modify the current relationship by rotating the panels and having the 

algorithm automatically regenerating the equation with the updated coefficients. 

Generating and parameterizing a linear equation can be trivially done, yet the challenge 

is in the process of finding the mathematical coefficients for representing object 

relationships. Simple physical interaction, such as rotating the panels in the TUI, allows 

for hand-eye coordination, which provides designers with a natural way to create and 

modify geometric relationships, instead of manually constructing equations and inserting 

them in digital models.  
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6.1.2. Prototype 2 

Testing of Prototype 2 has shown that the regression model using curve-fitting 

generates the correct geometric profile for replicating the louvers’ physical layout in the 

digital model. The results other than being visually accurate in both models, the 

generated equation was also plotted in GeoGebra (2018) to verify the results of the 

algorithm (Figure 6.2). This method for validating the mathematical result was not 

performed for Prototype 1, because plotting a linear equation produces a straight line, 

which makes it difficult to immediately establish the connection between the panels’ 

rotation and the straight line representing the mathematical equation.   

Establishing a parametric model using a polynomial equation can be a 

complicated process. A designer can create a curvilinear profile by simply using 

geometric points in Rhino and then connecting them using an Interpolated Curve or 

NURBS Curve nodes. These points can be moved using a mouse or Number Slider in 

Grasshopper to modify the overall configuration of the curve. Another example of 

creating such curve profiles with a higher level of control is through embedding a sine 

function in the visual program, as shown in Figure 6.3.  

 



 

122 

 

 

Figure 6.2 The results of plotting the mathematical equation generated using Prototype 2 
(Prototype Implementation chapter, Figure 5.9). The third-degree polynomial curve 

shown here matches the roof’s configuration in the artifact and Rhino model. 
 

 

Figure 6.3 workflow in Grasshopper for constructing a curvilinear profile using a sine 
function. An example equation is ( 𝒂𝒂 ∗ 𝒔𝒔𝒔𝒔𝒔𝒔(𝒕𝒕)), where a is the amplitude and t is the 

angle parameter. The amplitude can be controlled by inserting numerical values through 
a Number Slider or manually.  

 

The use of mathematical functions for creating curvilinear objects allows for 

accuracy, flexibility, and additional control over the geometric object by increasing 

parameter inputs. For example, the designer can include variables to control amplitude, 
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wavelength, and frequency; which generally require a level of mathematical knowledge 

and programming skills. 

Autodesk Knowledge Network provides a description of how to use and 

parametrize polynomial equations in digital models (The Mathematics Behind NURBS, 

2016). This process of creating a curvilinear object follows a similar approach to the 

previously described method using a sine function. For a polynomial equation, the 

designer must construct the equation and solve it for both x and y using a free parameter 

(t) and then translate it into computer code. In this process, the assumption is that the 

designer is familiar with such equations and mathematical procedures.  

In other occasions, the designer might already have created a curvilinear object 

(digitally or physically) and wishes to use it in a parametric model. In this case, the 

designer can approach this modeling problem by using a graphing software such as 

GeoGebra to find the polynomial equation and then manually embed the equation in the 

digital model, or to use a mathematical library such as MathNet.Numerics (Ruegg et al., 

2002). Other modules such as SciPy (Jones, Oliphant, & Peterson, 2001) is commonly 

used with programming languages like Python for generating mathematical information 

from geometry.  

Prototype 2 utilizes the module MathNet.Numerics in the Grasshopper algorithm. 

The modeling process is streamlined as the algorithm automatically translates the 

louvers’ layout in the digital model using a curve-fitting function, especially when 

compared to the previous methods of creating similar geometric configurations. 
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Additionally, the designer can fine-tune the curve and its equation by merely increasing 

the polynomial degree to obtain a curve with a higher degree of accuracy.  

 

6.2. Algorithmic Rules  

The complex and distinct behavior of EAs is generated by a specific set of rules. 

Although the rules, especially in the case of CA, appear to be straightforward and can be 

described using natural language (e.g., a cell is born if it has one or two neighbors and 

dies if it has three neighbors), their adaptation for digital modeling requires a level of 

programming skills. An implementation of CA is seen in the Game of life example by 

Soler-Adillon (n.d.) posted on the Processing (Reas & Fry, 2001) website. The 

Processing code is not shown here due to its length. The algorithm generates a two-

dimensional pattern based on Conway’s rules of the game. This Processing example 

shows the level of programming skills required for implementing CA and the challenge 

of translating the rules from what Conway described in natural language into computer 

instructions. 

 In Grasshopper the CA generator Rabbit provides a user-friendly approach to 

generate CA patterns. The designer provides numerical values as inputs to define the 

number of neighbors for a cell to be born and for it to survive, and to create custom seed 

configurations to initiate the evolutionary process. However, setting up the rules by 

inserting numbers does not immediately establish the connection between the rules and 

the geometric results. 
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Prototype 3 was tested having two workflows, one for generating the seeds and 

the other for setting up the rules for a CA component in Grasshopper. Each workflow is 

tested separately.  

The first workflow utilizes the Custom State Configuration node for the CA 

generator, which requires a point configuration on a 2D grid to create the seed. The 

blocks’ configuration on the artifact was translated into Rhino as a list of points by 

converting sensor values from the numerical range of 0 to 1023 to an ON/OFF state; 1 

for ON, if a cell on the workbench has a block on it, and 0 for OFF, when the cell is 

empty. Testing the system has shown consistent results between both the artifact and 

digital model and for creating multiple seed states.  

As for the second workflow, the Life-Like Cell node requires a numerical value 

indicating the number of neighbors for a cell to be born and another for it to survive 

during the evolutionary process. These values were generated by counting the number of 

blocks. Counting the number of cells enabled setting up the rules for CA and changing 

them can generate multiple geometric configurations in Rhino. 

Prototype 3 allows for a more familiar approach for utilizing CA in a digital 

model. The designer uses geometric objects (i.e., the blocks) to define the seed and rules. 

The designer physically arranges blocks on the grid by adding/removing them on the 

workbench to create and iterate the seed and rules. This approach of using tangible 

interaction may provide an approach for developing a better understanding of the logic 

behind some of the abstract notions of programming, and to streamline the application of 

computer algorithms for digital modeling.  
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6.3. TUI Improvements  

The prototypes were tested for interpreting analog data to automatically generate 

geometric operations and modeling procedures instead of defining them using 

mathematics and computer programming in digital workflows.  

 

6.3.1. Prototype 4 

Creating compound transformations in digital models is generally done by 

defining a workflow having a specific sequence of geometric transformation operations. 

These operations must maintain the order of data nodes to avoid disruptions in the 

algorithm. For example, Figure 6.4 shows a workflow for using rotation and translation 

to transform a geometric object. In this example, a rotation is applied and followed by a 

translation. The designer sets up the Rotation node by providing parameter inputs such 

as Geometry, Rotation Plane, and Rotation Angle; and sets up the Translation node by 

providing the following inputs: Geometry and Translation Vector. The designer 

transforms the base geometry from its Start Position (P) to its Target Position (P’) to 

create the new geometry. Rotation is applied first in this sequence to the original (base) 

geometry, and the translation is applied to the resulting geometry generated by the 

rotation transformation. Parameter inputs are provided for the geometric operations (i.e., 

angles of rotation and translation values) using a Number Slider or by manually inserting 

the values. As shown in the figure, the process is linear and must be defined according to 

the sequence of operations. This example is a simple demonstration of creating 
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compound transformations for a single object, which must be repeated for every 

geometric object in a digital model, especially if each piece has a unique configuration. 

 

 

Figure 6.4 Workflow is showing the process of applying compound transformations for 
a single object in a digital model.  

 

Conversely, in Prototype 4 the designer physically applies the transformations to 

the objects. The designer uses tactile and visual senses to provide the algorithm with 

transformation values. The algorithm automatically detects the type of transformation 

and applies it to the corresponding object in the digital model using a transformation 

matrix. It is important to note that the sequence of operations, which transformation is 

applied first, effects the result in both cases, using the TUI and the algorithmic editor. 

The difference is that the designer using TUIs is not concerned with defining a workflow 

that is strict to a finite number of objects and operations. The artifact can include more 

than one object and apply transformations to them simultaneously, and the algorithm can 

detect rotation and translation in all three axes and applying them to the digital objects.   
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6.3.2. Prototype 5 

Prototype 5 addresses the problem of creating parametric frameworks from 

scratch. The modeling problem used for this example is creating a curvilinear wall using 

NURBS curves. The example demonstrates a typical architectural design process, 

modeling an object within a context. The standard practice for modeling the curvilinear 

wall in Grasshopper is through defining the NURBS curve’s control points. Once the 

curve is constructed, the designer can modify its profile by merely moving the control 

points. A boundary is also created to limit the NURBS curve’s behavior. The boundary 

defines the wall’s range of motion through a numerical value. Boundaries can not only 

maintain the object within its context but also provide the inputs to explore and generate 

design options automatically. This is a conventional digital modeling practice for 

creating parametric models (creating a geometric object, setting up constraints for it, and 

modifying it for generating design options) which requires the designer to visualize the 

workflow and construct it using computer programming.  

Prototype 5 demonstrates a more natural way of modeling objects and setting up 

constraints for them. The designer during interaction with the TUI is constructing the 

parametric framework of that model. The designer adds/removes blocks to create the 

curve’s control points then starts to create different curve profiles and records them to 

define the boundaries. This process is similar in such a way to the analog process of 

sketching design elements. During this process, the designer is exploring the different 

configurations for the wall, rather than strictly defining it. Once the boundaries are set 

up, the designer starts generating the different curve interpolations in between the 
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boundaries, i.e., design options for the wall. This example shows a digital-physical 

workflow that utilizes the designer’s skills to construct digital models, and the 

computer's power to further experiment with the design object.  

 

6.4. Summary 

Myers (1999) mentions that visual programming is widely accepted amongst 

designers as it takes advantage of the users’ visual system. Myers (1990) further 

explains, “The human visual system and human visual information processing are 

clearly optimized. Computer programs, however, are conventionally presented in a one-

dimension textual form, not utilizing the full power of the brain” (p. 3). 

GUI-based programming methods do have their advantage in the parametric 

modeling process. However, they do demonstrate a number of challenges as research has 

shown in the Literature Review chapter. As Ishii (2008) explains, “Interactions with 

pixels on these GUI screens are inconsistent with our interactions with the rest of the 

physical environment” (p. xv), they do not take advantage of our haptic skills, unlike a 

TUI, which makes “digital information directly manipulatable with our hands, and 

perceptible through our peripheral senses by physically embodying it” (p. xvi).  

This research has shown the plausibility for using tangible interaction for 

parametric modeling. In these examples, it was essential that the artifact retains the 

physical characteristics and design qualities in the objects. Physical design 

representations support the intuitiveness of interaction, as claimed and as shown in 

earlier research. A study by Dünser, Looser, Seichter, and Billinghurst (2010) has shown 
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that users were less familiar with how to operate tangible systems such as sliders, track 

paddles, and their variations when compared to a typical computer mouse. Tangible 

interfaces in their study were represented as controllers having no distinct geometric or 

design features. These types of computer input devices as Düser et al. (2010) state, have 

affected participants accuracy and time for completing digital tasks. Conversely, 

participants were faster and more accurate when using a mouse, which they were 

familiar with and use on day-to-day bases (Düser et al., 2010). In other words, context 

and representation make the interaction with the objects natural and intuitive as they 

establish meaning and substance for the designer (Dourish, 2001). 

This chapter provides a qualitative comparison between the conventional 

parametric modeling process using computer applications and tangible interaction. The 

objective of the work is to demonstrate the benefits of utilizing data processing 

procedures and TUIs in a single workflow to automate the generation of modeling 

information and procedures. At this stage, the research prototypes have demonstrated 

their potential for parametric modeling, yet for future validation, user studies will be 

conducted to provide further insight into the application of the proposed workflow in a 

parametric modeling process.  
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7. DISCUSSION  

 

An essential component of the prototypes presented in this research is the 

artifact’s representational characteristics as it facilitates users’ interaction with digital 

models. Ishii (2008) explains that “In the design of TUI, it is important to give an 

appropriate form to each tangible tool and object so that the form will give an indication 

of the function available to the users” (p. xxii) 

The artifacts used for each prototype provide a clear indication of the design 

element in use (panels, louvers, and blocks) and the way they should be interacted with 

to complete the modeling task. Ishii (2008) also mentions that: 

This special-purpose-ness of TUIs can be a big disadvantage if 

users would like to apply it to a wide variety of applications since 

customized physical objects tailored to certain application cannot be 

reused for most other applications. By making the form of objects 

more abstract… you lose the legibility of tangible representation and 

the object will become a generic handle rather than the representation 

of underlying digital information. It is important to attain a balance 

between specific/concrete vs. generic/abstract to give a form to digital 

information and computational function. (p. xxii)  

Later prototypes do include a level of abstraction in the artifacts’ representation; 

for example, the physical objects in Prototype 3 are shown as solid geometry (blocks) 
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without having any distinct architectural features. These blocks, however, are a direct 

physical translation of the CA cells and lattice, which are essentially abstract geometric 

representations. Prototype 5 also shows similar qualities to Prototype 3 as the design 

objects represent digital information (i.e., blocks as control points) instead of design 

elements. The artifact in these examples creates a balance between “specific” and 

“generic” representations, i.e., the blocks representing NURBS control points that are 

placed within a workbench representing an architectural space. Prototypes 3 and 5 

provide a flexible modeling platform with generic features for a wide range of modeling 

applications when compared to Prototypes 1 and 2, with CA being a generic algorithm 

for creating pattern configurations, and NURBS being a generic mathematical 

representation. 

Conclusively, the aesthetical and functional qualities of representations are 

essential for developing TUIs as they clarify the association between physical objects 

and digital information. The TUI loses its directness and intuitiveness if digital 

information is not given a proper physical form (Ishii, 2008). Design object’s physicality 

can be taken advantage of to support decision making as it provides significant haptic 

feedback and insight into the mechanical behavior of parametric models. Kolarevic 

(2000) explains that Gehry’s design practice, which has shaped the building and 

construction industry through digital production processes, starts his form finding 

process through physical models. These models are helpful for testing the 

constructability of sheet-material that will be used for the actual building (Pottmann, 

Asperl, Hofer, & Kilian, 2013).  
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7.1. Thematic Progress  

The work involves developing digital-physical workflows that utilize custom-

made haptic-based interactive systems for embedding design intents in digital models. 

The example prototypes focus on addressing the issues of utilizing mathematics and 

computer algorithms for establishing parametric frameworks. Throughout this study, 

prototypes were iterated to improve workflow functions for achieving higher levels of 

modeling task automation through implementing analog data interpretation methods 

(using regression models, generative algorithms, and transformation matrices). Figure 

7.1 shows a diagram of the features included for each prototype, in addition to providing 

a visual illustration of the work’s progress. The prototypes in the diagram are color-

coded and chronologically arranged. The diagram also shows the prototypes connected 

to the tasks they are designed to complete from both categories located at the top and 

bottom. Example combines multiple features together to create a unique workflow to 

address the parametric modeling problems discussed in this research.  

In the figure there are low- and high-level automated tasks, which are defined for 

as follows:  

• Low-level: automation features enable the generation of single parameter 

inputs for completing specific modeling tasks, e.g., generating a 

mathematical equation for setting up a geometric constraint. 

• High-level: automation features enable the generation of multiple inputs 

for creating parametric frameworks including modeling procedures and 

geometric operations.  
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Figure 7.1 Diagram showing the progress of the work. Each prototype is designed to 
address a specific modeling problem. As they progress from 1 to 5, they include more 

sophisticated workflows that allow for higher levels of automation to assist in the 
modeling process. 

 

7.1.1. Prototype 1 & 2 

Prototype 1 and 2 are two examples for setting up algebraic constraints in digital 

models. Both examples include similar low-level automation features: geometric 

relationships, defined representations, preprogrammed transformations, single geometric 

transformations, and single data input. The single data input, which is generated using 

the workflow in both examples is a mathematical equation depicting physical object 

relationships; i.e., Prototype 1 a linear equation and Prototype 2 a polynomial equation.  
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The workflow utilizes tangible interaction and data mining (regression analysis 

models) to generate mathematical representations (equations and curves) for digitally 

constructing object relationships. The prototypes have been tested for creating simple 

and complex geometric relationships and for exploring curvilinear geometric 

configurations. The workflow demonstrates great value for parametric modeling as they 

release the designer from the burden of manually expressing implicit design knowledge 

into explicit mathematical functions.  

 

7.1.1.1. Limitation of Prototype 1 & 2 

The prototypes show a pre-structured setup using a single type of geometric 

transformation. The predefined sequence of geometric operation in the visual program 

do limit the prototypes’ modeling potential and the flexibility to adjust it for other types 

of design scenarios. Prototype 1 which includes rotation, uses a rotary potentiometer in 

the artifact for monitoring the panels’ angles of rotation and a Rotation parameter node 

in the visual programming graph to transform the panels’ digital counterparts. This is 

done to maintain consistency between the inputs and outputs in the prototypes. The 

Rotation parameter inputs include 1) base geometry, the panels’ configuration; 2) angles 

of rotation, using the rotary potentiometer sensors of Panel 1 and 3; 3) plane of rotation; 

4) center of rotation, etc. that were set directly in Grasshopper except for the angles for 

rotating Panel 2, which were provided by the TUI. Prototype 2 includes a similar system 

setup, except for the Rotation node which is replaced by Translation node for moving the 
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louvers. The limitations found in these examples can be summarized in the following 

two points: 

• A limited number of inputs, i.e., geometric transformation applied by 

physically manipulating the objects. 

• Strict data flow, which is a common problem using history-based 

programming. Davis (2013) explains data and operation nodes must be 

arranged in a specific way to avoid any interruption in the program. In 

these current prototype examples, the designer must visualize the 

workflow and the expected results to construct the TUI accordingly. 

 

7.1.2. Prototype 3 

Unlike constraints, which associates geometric entities together by applying them 

one at a time, CA patterns establish more complex geometric configurations through 

creating a relationship between objects through a set of rules. Prototype 3 includes high-

level automation features such as pattern configuration and abstract representation. 

However, some of its features does overlap the previous two prototypes such as having a 

single input (block location). The artifact’s purely geometric representations offer a 

more flexible medium for digital modeling, as it can be interpreted in several ways (e.g., 

building components, spatial and urban layouts, etc.). Although the artifact includes a 

level of abstraction, it is a direct translation of the CA grid and cells, which can assist in 

making the connection between the different block layouts and number, and the 

generated rules in the digital model. 
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7.1.2.1. Limitation of Prototype 3 

The artifact, the 9-square grid (i.e., the single cell neighborhood) in both the 

artifact and the digital model, can be used to explore pattern configurations. The visual 

program in Grasshopper includes two workflows; both tested using the same artifact, one 

for generating the seeds and the other for generating the rules. However, if the designer 

wants to simultaneously set up the seeds and rules in a single workflow, then a 

procedure must be written in the visual programming environment to enable this action.  

 

7.1.3. Prototype 4 & 5 

Prototypes 4 and 5 demonstrate significant improvements by automating 

essential modeling tasks. The improvements also include a new approach to creating 

artifacts that are more flexible for customization and operation. These two examples 

have similar features including abstract representations, automatic detection of 

transformations, and multiple data inputs. Additionally, Prototype 5 enables setting up 

geometric constraints, which was a feature in Prototype 1 and 2. The improvement in 

Prototype 5 is that it assists in creating a parametric framework as it automatically 

provides several inputs to the Grasshopper algorithm during the interaction process. 

 

7.1.3.1. Improved Workflow & TUI 

Prototype 4 has shown that artifacts linked to Transformation Matrices can 

provide a practical approach for making compound transformations and apply them 

simultaneously in parametric models. Non-compound transformations as explained in 
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Prototypes 1 and 2 are applied sequentially in the visual programming graph, which 

Hearn and Baker (1997) mention that it can be computationally expensive. If the order of 

these nodes in these examples is to be rearranged then the visual program, as Hoffmann 

and Joan-Arinyo (2002) mention, must be rebuilt to accommodate the changes. Stavric 

and Marina (2011) state that, it is difficult to make procedural changes to existing visual 

programs; a data flow must be defined for every design task (Sharp, 1992). However, 

using artifacts with transformation matrices in the TUIs helped in reducing the time 

spent creating parametric frameworks, more precisely it helped in avoiding the use of 

specific transformation nodes; like Move, Rotate, Scale, etc. explicitly in the visual 

program.  

Prototype 5 extended the functionality of the workflow used in Prototype 4 to 

include 1) modeling NURBS objects, 2) setting up boundaries for them, and 3) 

generating design options. The digital model and its parametric functions are generated 

during the designer’s interaction with the TUI. This attempt demonstrates an approach to 

creating a more flexible and generic system for parametric modeling using tangible 

interaction and NURBS curves.  

The algorithms in the TUI Improvements section show the potential for a broader 

range of design scenarios. The parametric framework in previous examples do have a 

level of specificity; e.g., Prototype 1 establishes a relationship using linear equations. 

However, Prototype 4 demonstrates an algorithm for detecting physical interaction 

(mainly geometric transformation), and Prototype 5 demonstrates a workflow for 

modeling NURBS objects and setting up constraints. These workflows provide a 
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straightforward approach for designers to work with parametric models when compared 

to the conventional approach of only using text-based and graph-based programming 

tools.  

Out-of-the-box sensors do restrict to some extent the design of the artifact; e.g., 

the artifacts in Prototypes 1 to 3 were designed according to sensor specifications. The 

use of conductive paint in the place of out-of-the-box sensors provided several 

advantages to the work such as 1) achieving a higher level of integration between the 

sensors and objects, which made it easier to customize the artifacts’ design, including 

adding/removing objects on the workbench during operation; 2) sensing different and 

multiple types of transformations; and 3) cutting down the cost margin for constructing 

the TUIs for this research. Unlike conventional sensors, which were inserted in the 

workbench and were handled as separate entities, the conductive paint was applied 

(using a paintbrush) directly on to the objects to monitor their physical changes, which 

made the sensors as an integral part of the objects. Furthermore, conductive paint 

enabled creating multiple sensing mechanisms to simultaneously monitor the different 

types of object transformations, which was difficult to achieve in previous TUI models. 

As seen in Figure 5.24 in the Prototype Implementation chapter - Prototype 4, the panel 

and circuit were designed and assembled as a single unit.  

 

7.1.3.2. Limitation of Prototype 4 & 5 

Prototype 4 shows the transformation of a single object using translation and 

rotation, which may suggest limited use of the TUI. However, the algorithm in 
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Grasshopper is set up for detecting translation in all three axes and rotation 

transformations for multiple objects. Similarly, the blocks in Prototype 5 show a similar 

limitation as the blocks are spaced out at fixed intervals, and the objects can only be 

translated in one direction. The pre-structured setup for the TUI in these examples 

allows for controlling the number of inputs for testing the workflow, and the strictness of 

the TUI is not a reflection of the algorithm’s capabilities. Other types of affine and non-

affine transformation can be included in this workflow for manipulating digital models. 

These prototypes demonstrated more sophisticated workflows than earlier 

examples, yet they do require some programming on behalf of the designer for 

implementation. Algorithmic procedures in these examples, such as analog data 

matching, do require designers to be acquainted with programming languages such as 

Python or other text-based scripting platforms. This might be challenging as some basic 

training is needed for managing data lists and writing conditional statements in the 

computer code.  

 

7.2. Complexity  

The design of the physical part of the TUI (artifact and physical computing 

setup) demonstrate a level of complexity in comparison to the modeling task it is 

intended to complete (e.g., creating a single type of object relationship or rules for CA). 

To set up a system with similar features requires both the knowledge and the skillset in 

parametric modeling, circuitry, and electronics. Nevertheless, the physical computing 

system in all five examples follows a similar setup, with small variations related to the 
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electronics to achieve the different modeling tasks. The design, fabrication, and 

assembly of the artifact require a similar set of physical modeling skills as in 

architecture, in addition to some knowledge of motion and behavioral dynamics to 

construct the interactive features of the artifact. Prototypes 4 and 5 show a more cost-

effective and flexible approach for setting up the physical computing system using 

conductive paint for creating custom sensors. These sensors are easily integrated with 

the artifact and connected to the electrical circuit and the microcontroller board 

following the same procedure as in prototypes 1 to 3. More importantly, the prototypes 

as shown in Figure (7.1) progress from achieving single to multiple and simple to 

complex modeling tasks while the complexity of the physical system remains almost at 

the same level. 

The algorithm differs from one example to the other, yet they all share similar 

logic, which can be further explained in Figure 7.2. The algorithm in these examples 

takes in raw sensor data and sends it to the data interpretation segment of the algorithm 

for generating the required information to set up the parametric model. 

 

7.3. Framework 

Figure 7.2 shows a framework of the system induced from the prototypes 

demonstrated in this research. The diagram explains the logic followed in this research 

for reproducing the TUIs. The grey components show the different physical states of a 

physical object. Raw analog data is transferred during interaction with a design object to 

the digital model. Physical properties may include geometric transformations, material 
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behavior under environmental conditions such as heat levels, light levels, etc. The blue 

components show the data interpretation process for generating digital information 

required for setting up a parametric model. The Orange components show the digital 

model, which can include geometric objects, or objects and their extended BIM 

database. 
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Figure 7.2 Diagram showing the induced general framework for establishing a TUI for 
generating mathematical and algorithmic information for setting up parametric models. 
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7.4. Prototype Applications  

Aish (2005) mentions that “Our expectation is that geometric skills, 

compositional skills, and algorithmic skills will be the key to future design” (p. 12). For 

developing students’ skills in these areas, it is essential to reformulate the framework of 

architectural design theory (Oxman & Gu, 2015) to develop a level of algorithmic 

thinking. For Karle and Kelly (2011) algorithmic thinking “is a way of relating tangible 

and intangible systems into a design proposal removed from digital tools specificity and 

establishes relationships between properties within a system” (p. 109). Karle and Kelly 

(2011) also suggest an educational structure that is parametrically driven by asking 

designers to focus on establishing rule-sets and associating variables to create a 

generative design instead of the conventional practice of designers starting by seeking 

the “right” design. 

McNerney provides an overview of the development of tangible interfaces at 

MIT for supporting computing education (2004). Similarly, works by Horn and Jacob 

(2007), Zuckerman, Arida, and Renick (2005); Klemmer, Hartmann, and Takayama 

(2006) focus on teaching children computer programming concepts and other related 

skills through artifacts, which are not necessarily computationally enhanced such as 

having sensors or microcontrollers embedded in them. These examples may not relate 

directly to architecture or computational design in general, yet they demonstrate new and 

innovative ways of teaching algorithmic thinking. 

Vermillion (2014) experiments with using artifacts to teach design students the 

fundamentals of L-Systems. The work initially started with integrating artifacts with 
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physical computing systems. However, students, later on, were asked to remove the 

physical computing system and focus on the high-level design goals of L-Systems 

instead of the low-level technical problems of setting up the circuits. Abell (2013) 

provides a similar approach where students combined traditional skills like handcrafting 

with parametric modeling. The objective was to find a balance between traditional and 

non-traditional design skills for educating students. The previous examples demonstrate 

some of the attempts some educators have made for teaching students some of the 

abstract concepts of computer programming. The combination of analog methods with 

digital tools has shown to promote a level of algorithmic thinking.  

CA as a design method has been extensively explored in research (Cruz et al., 

2016). The work by Herr (2008) provides a comprehensive overview of the applications 

of CA in architecture and urban design. CA includes unique features that make it 

accessible as a design tool, Frazer (1995) explains; CA is straightforward to implement 

in a design context because designers can use simple rules to produce complex 

geometric patterns rapidly. Prototype 3 contributes to these investigations by providing a 

tactile component to the algorithm. CA and TUIs can benefit digital design in several 

ways: the blocks can be seen as 1) architectural elements, or 2) entire buildings in an 

urban context. The former, designers can use the lattice as the layout of the building and 

the blocks as design elements or spaces. The latter, designers, can use each block as an 

entire building and the lattice as a neighborhood. Other possibilities for the TUI can be 

inspired by the work of Herr (2008), where CA is used to analyze urban growth or as a 
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tool for architectural space programming (i.e., a diagram for the layout of building 

facilities).  

In Prototype 4, the TUI makes transformation matrices more accessible in a 

modeling process as it establishes a visual connection between physical object 

transformations and their mathematical representation using a matrix. This can be useful 

to educate students about geometric transformations and the benefits of using such a 

mathematical tool for computational modeling. Prototype 5 allows for constructing 

parametric models using a TUI. The designer can set up modeling constraints using the 

artifact and NURBS curves, which can make the transition of a design concept 

(represented in a physical model) into a parametric model much smoother. These 

constraints can be later used for further form experimentation and analysis. 

 

7.5. Summary  

This chapter explains the progress of the work that involves developing several 

methods for automating parametric modeling procedures using tangible interaction and 

provides a theoretical framework of the method. The artifact, as shown in this research, 

provide more than a simple control system for analog data input. The designer’s 

interaction with the artifact and data interpretation methods implemented using visual 

programs create a workflow for automating modeling procedures, thus extending the 

capabilities of TUIs to benefit parametric modeling. The TUI models in this work are 

simple prototypes developed for research purposes. Nonetheless, they do have potential 

applications across the fields of mathematics, computer science, HCI, and architecture.  
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Prototypes 1 to 3 have shown to provide an approach to address some of the 

challenges of parametric modeling by generating some of the essential and difficult 

information for setting up a digital model. However, they do require extensive 

preparation including designing, fabricating, and assembling the artifacts; and creating 

the computer algorithm, which can seem like two distinct tasks. The systems’ set up is 

usually influenced by the type of transformations the designer is going to apply to the 

objects, e.g., if the designer is going to rotate an object, then a sensor for rotation must 

be used in the TUI, and a rotation parameter node must be used in the visual program. 

The TUIs in these examples are linked to visual programs that were created for 

conventional modeling (i.e., a defined sequence of nodes). In this case, the TUI can be 

replaced by a keyboard or a mouse. This approach of creating the prototypes’ 

components has shown to limit the potential of tangible interaction for parametric 

modeling. Prototypes 4 and 5 demonstrate a different approach, which reduces 

extensively the task of defining parametric frameworks and mainly focus on analog data 

interpretation. These workflows take advantage of the physical and digital components 

in such a way to complement each other and to create a more generic tangible medium 

for creating and operating parametric models.  
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8. CONCLUSION & FUTURE WORK 

 

In this research, workflows using tangible interaction have been developed for 

addressing the problems of defining parametric frameworks using mathematics and 

computer programming. Five haptic-based prototypes were constructed to demonstrate 

these workflows. Each example included a unique data interpretation method for 

analyzing analog data to automate the process of generating parametric modeling 

information (mathematical equations and algorithmic rules) and for performing some 

modeling tasks (applying geometric transformations and creating NURBS objects). 

These prototypes were later evaluated by comparing them to conventional parametric 

modeling approaches to provide more insight into their benefits and drawback. This 

research has shown the plausibility of tangible interaction for parametric modeling and 

the potential uses and applications of such a digital-physical workflow in both academia 

and practice.  

 

8.1. Testing & Evaluation  

Each workflow was implemented using an architectural case study. These 

examples demonstrate a design scenario where a type of digital information 

(mathematical or algorithmic) is required in a design process for creating a parametric 

model. The results of each test assisted in evaluating the workflow and discussing the 

implementation of further improvements to establish a more sophisticated system to 

address the problem of parametrizing and representing a design intent digitally. The 
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prototypes were internally tested, and the results of the tests have shown that the 

proposed workflows work as expected. More precisely, the information generated using 

the prototypes were representative of the design objects’ physical state (design intent) 

and produced parametric models where the digital objects’ state was consistent with 

their physical counterpart.   

Furthermore, a qualitative evaluation was also conducted comparing between the 

workflows developed in this research and the conventional modeling practice using text-

based and/or graph-based programming methods. The evaluation focused on 

demonstrating the benefits and drawbacks of the workflows for addressing the modeling 

challenges of defining parametric frameworks. The analysis has shown that the TUI 

examples do require a level of programming knowledge and skills for constructing and 

integrating them in a design framework. Nevertheless, the TUIs can enhance the digital 

design process by capturing physical design intents and representing them as modeling 

information. For Algebraic Constraints (Prototype 1 and 2), a TUI can assist in 

representing a design intent mathematically and use the generated equations for setting 

up parametric constraints, which alleviates from the burden of manually constructing the 

equations and calculating their coefficients. For Algorithmic Rules (Prototype 3), the 

workflows provide a natural way of expressing algorithmic rules in a similar way to the 

written description of cell states (alive or dead) in Conway’s Game of Life. The use of 

geometry provides a visual and tactile medium to create and manipulate the rules of the 

CA component in the visual program instead of providing numerical values representing 

the rules. For TUI Improvements (Prototype 4 and 5), this category demonstrates more 
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sophisticated workflows for data interpretation and adjustable artifacts. Prototype 4 

allowed for applying compound and non-compound transformations to geometric objects 

(rotation and translation) using transformation matrices. The TUI was able to distinguish 

between both types of transformations when the physical object was manipulated. 

Applying these two types of transformations is a straightforward process using Graph-

based programming. Nevertheless, the algorithm developed for this prototype can 

include other types of transformations and implement them in all three dimensions using 

the TUI. Prototype 5 was used for creating a NURBS curve. This type of curve requires 

several types of inputs to be constructed; this work focused on providing the number of 

control points and their location. The TUI’s construction provided the flexibility needed 

to increase or decrease the accuracy of the NURBS curve by adding or removing more 

design objects in the artifact. Furthermore, boundaries were constructed for this curve 

for generating alternative configurations (i.e., design options). This work demonstrates a 

workflow for automating several modeling procedures using the TUI. Generally, such a 

process using a conventional workflow requires a level of understanding of 

programming procedures to create, parametrize, and generate interpolations using 

NURBS curves.  

Testing results and the comparative evaluation demonstrate a proof-of-concept 

and the plausibility of the workflows for design practice and education. Further 

validation of the work through user studies is needed and is planned as future work. This 

research is in the early stages of development; establishing the workflows, 

experimenting with prototypes, and conducting the internal qualitative evaluation; and 
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for having user studies, there must be a well-defined framework of the system and 

thoroughly developed prototypes to be integrated into a design workflow. A description 

of a preliminary user study outline is provided in the Future Work section of this 

chapter.  

 

8.2. Research Contribution  

This work provides three categories of prototypes that are tested and evaluated 

for addressing the problems of defining parametric models using mathematics and 

computer programming. The result of developing the work has assisted in inducing a 

novel framework for using tangible interaction in the parametric modeling process, as 

shown in Figure 7.2 in the Discussion chapter. This framework provides a step-by-step 

description of the primary procedures for constructing the prototypes. In addition, the 

workflows (Figure 5.3, 5.8, 5.16, 5.19, 5.25, and 5.32) provide a detailed description of 

each of the steps in the framework for reproducing the work for each TUI example.  

The Literature Review chapter has shown that TUIs are developed and used for a 

wide range of applications across the fields of art and science, as interactive instruments, 

educational tools, etc. TUIs are also increasingly integrated into digital workflows for 

design applications, and to name a few, as a platform for design collaboration, geometry 

manipulation, and environmental analysis and simulation. This research provides a 

framework for integrating tangible interaction and parametric modeling where physical 

design intents are captured into mathematical and algorithmic information and 

embedded in parametric models. This research explores tangible interaction and data 
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interpretation schemes to cover a range of digital modeling procedures and design tasks. 

To the knowledge of the author, this research contributes original work to the extensive 

body of research in the field of Computer-Aided Architectural Design or Design 

Computing.  

 

8.3. Workflow Complexity & Generalizability  

Figure 7.1 shows the progress of the workflows for performing modeling tasks, 

from single to multiple and simple to complex. Furthermore, the progress of the work 

also shows the development of the overall workflow from specific to generic. For 

example, prototypes 1 and 2 demonstrate a workflow for generating object relationships 

using linear and polynomial equations. Although these equations provide a range of 

possibilities for parametric modeling, the workflows are limited to these two types of 

relationships. Conversely, prototypes 3 to 5 demonstrate a more general approach for 

parametric modeling; Prototype 3 using a generative algorithm, which has been 

extensively researched as a design tool; Prototype 4 applying geometric transformations; 

and Prototype 5 creating NURBS objects, which are versatile modeling components.  

 

8.4. Future Work 

Future development of this research will focus on several areas including 

incorporating other types of Mixed Reality technologies, such as smart handheld devices 

and computer vision, in the workflows for creating a more practical user interface for 

interacting with parametric models. In addition, the current research in this document 
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suggests that the developed workflows can assist in design education for developing a 

level of algorithmic thinking. Such claims will be further validated by conducting user 

studies. 

 

8.4.1. User Studies  

Further development of the workflow will take place prior to performing user 

studies, such as: 

• Developing a more flexible TUI, which will be used for Study 1 (below) 

• Integrating more sophisticated algorithms for data interpretation such as 

machine learning (ML), which will be used for Study 2. Further 

description of ML is provided in section 8.2.2. 

An initial outline of user studies is provided below, which will include two 

experiments, Study 1 and 2. Both studies will provide qualitative and quantitative data 

for validating the workflows. The studies will be conducted in an academic setting 

having architecture students as participants.  

1. Study 1 

This study focuses on students with no formal education in parametric design. 

The study will provide quantitative data for evaluating the workflow. The study will 

focus on the students’ 1) speed, 2) efficiency, and 3) accuracy in completing design tasks 

using parametric modeling tools. The students will have a series of training sessions to 

familiarize them with digital tools and some of the basics in mathematics and computer 
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programming. Students are expected to learn how to operate digital tools using 

geometric operations to create simple parametric models. 

This test will be conducted in two phases: Phase 1, creating a parametric model 

using algebraic constraints; and Phase 2, setting up generative algorithms. Each phase 

will have two sessions. For the first session, students will be asked to create a parametric 

model using computer input devices such as keyboards and mice; and for the second 

session, to repeat the same modeling process but with using TUIs. The test limits the 

students to a specific modeling scenario and using the corresponding prototype for 

completing the task.  

2. Study 2 

Like Study 1, students will be partaking in the experiment. This study will 

provide qualitative data as it mostly focuses on the participants’ subjective experience 

working with GUIs and TUIs. They are given the freedom to create any geometric model 

of their choice, without having any restrictions, using their own acquired knowledge in 

parametric modeling. The experiment will be structured in a similar manner to Study 1, 

by having two sessions: one session using computer input devices and another using 

TUIs. Students are asked to provide their opinion regarding their modeling experience 

and which modeling tool did assist them in their creative process. Study 2 provides the 

opportunity to test more sophisticated workflows using ML.  
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8.4.2. Machine Learning  

There is an increasing interest in the application of ML in the context of 

architecture. Future work will investigate the integration of tangible interaction with ML 

for capturing more complex types of design intents. Such an approach will provide 

designers with a sophisticated system that can automatically interpret physical 

interaction as modeling information without any extensive programming. Users 

interacting with the system can help build the knowledge base that would support the 

design process. In other words, a workflow combining tangible interaction and ML can 

learn designers’ preferences through interaction and create an advanced system for 

human and machine collaboration. This ML component of the TUI will require big data 

that can be obtained from users of the TUI systems. 
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