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Abstract—Dimensionality reduction (DR) is an important and helpful preprocessing 

step for hyperspectral image (HSI) classification. Recently, sparse graph embedding 

(SGE) has been widely used in the DR of HSIs. In this letter, we propose a weighted 

sparse graph based DR (WSGDR) method for HSIs. Instead of only exploring the 

locality structure (as in neighborhood preserving embedding) or the linearity structure 

(as in SGE) of the HSI data, the proposed method couples the locality and linearity 

properties of HSI data together in a unified framework for the DR of HSIs. The 

proposed method was tested on two widely used HSI data sets, and the results suggest 

that the locality and linearity are complementary properties for HSIs. In addition, the 

experimental results also confirm the superiority of the proposed WSGDR method over 

the other state-of-the-art DR methods. 

 

Index terms—hyperspectral image, dimensionality reduction, weighted sparse coding, 

nearest neighbor graph, sparse graph embedding 

 

I. INTRODUCTION 

Hyperspectral images (HSIs) are acquired by high spectral resolution sensors, and 

consist of hundreds of contiguous narrow spectral bands. With the wealth of available 
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spectral information, hyperspectral imagery has become an invaluable tool for detection, 

identification, and classification of materials and objects with complex compositions 

[1]. However, new challenges arise when dealing with extremely large hyperspectral 

data sets [2]. When the ratio between the feature dimension (spectral bands) and the 

number of data samples (in vector-based pixels) is vastly different, high-dimensional 

data suffers from the well-known curse of dimensionality. In addition, high-

dimensionality data processing also requires huge computational resources and storage 

capacities [3]. It is therefore an important preprocessing step to reduce the dimension 

of hyperspectral imagery. 

As a preprocessing step, dimensionality reduction (DR) tries to find a low-

dimensional representation for high-dimensional data that may contain crucial 

information. To date, many DR methods have been proposed for hyperspectral imagery. 

These DR methods can be classified into unsupervised [4], [5], supervised [6], [7], and 

semi-supervised approaches [8]. Recently, a general graph-embedding (GE) framework 

[9] was proposed to formulate most of the existing DR methods. In the GE framework, 

there are two main steps: graph construction and projection computing. A graph is a 

mathematical representation that describes the geometric structures of data nodes [10]. 

In a graph, each element measures the similarity for a pair of vertices. An appropriate 

graph provides a high level of DR, and preserves the manifold structures of the data. 

Traditionally, k-nearest neighbor and  -radius ball [11] have been used to construct 

the graph. In [3], a new method which integrates the spatial and spectral information of 

the HSI was proposed to learn a local discriminant graph. In recent years, sparse 



representation has been exploited to produce a graph whose edges are intended to be 

sparse [12]. This sparse graph embedding (SGE) explores the linearity structure of the 

data, and has been widely used in HSI DR. Ly et al. [10] proposed block sparse graph 

based discriminant analysis (BSGDA), which learns a block sparse graph for supervised 

DR. In [13], collaborative representation among labeled samples was adopted to realize 

collaborative graph based discriminant analysis for HSIs. In [14], spatial information 

was integrated into the sparse graph learning process, and a spatial and spectral 

regularized local discriminant embedding (SSRLDE) method was proposed for the DR 

of HSIs. 

The SGE-based methods can achieve state-of-the-art HSI DR performances. 

However, they only explore the linearity structure of the HSI data. In this case, the 

sparse coding procedure may reconstruct a test pixel with training pixels which are far 

from the test pixel. Thus, the sparse graph tends to lose the local similarity of the 

training pixels. However, under certain assumptions, as pointed in [11] and [15], the 

locality is more essential than the sparsity. To overcome the drawback of sparse coding, 

we propose a more robust weighted sparse representation method which couples both 

the locality and linearity structure of the HSI data into a unified framework, to construct 

the weighted sparse graph for the DR of HSIs. 

II. PROPOSED METHOD 

First of all, we introduce the notations adopted throughout this letter. For 

hyperspectral data samples 1 2
[ , ,..., ]

B N

N
X x x x


  , we have the corresponding class 

labels 1 2
[ , ,..., ]

N
z z zZ  , where the class label of the m-th pixel m

x  is {1 ,2 ,..., }
m

z p  



and p  is the number of classes in the data set. 
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  denotes all 

the samples except the i-th pixel. 1 2
[ , ,..., ]

K N

N
Y y y y


   represents the low-dimensional 

features extracted from X , and the corresponding DR projection is P. We let 

{ },G X W  be a graph, where X  is the vertex set, and N N
W


  is the similarity 

matrix for the vertex set X . The aim of the DR technique is to find the matrix P to 

project the data X  into the low-dimensional space Y  with T
Y P X , while 

maintaining the similarity or affinity between vertices in the original graph W . 

A. Neighborhood Preserving Embedding (NPE) 

NPE is an unsupervised DR method which aims to preserve the local 

neighborhood structure of the data. The first step of NPE, as introduced in [11], is to 

construct an adjacency graph. Typically, there are two ways to construct the adjacency 

graph: 

k-nearest neighbors (KNNs): put a directed edge from node i to j if j
x  is among 

the KNNs of i
x . 

  neighborhood: put an edge between nodes i and j if 
j i

x x   . 

The adjacency graph provides the neighborhood information which can be used to 

compute the weights for each pixel in its neighborhood. We let W  denote the weight 

matrix, with i , j
W  being nonzero if pixel j

x  belongs to a neighbor of i
x , and 0 if it 

does not. The weights related to the neighbors can then be computed by minimizing the 

following objective function: 

2

1 1 2
i i, j j i, jj j

i

m in s .t . , j , , ..., Nx W x W       (1) 

From (1), we can find that the matrix W  denotes the weight matrix which summarizes 



the contribution of the j-th neighboring pixel to the reconstruction of the i-th pixel. After 

the optimal coefficients are obtained, the third step is to compute the projections. In this 

step, the DR is converted into solving the following objective function: 
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where ( ) ( )
T

s
L I W I W    and I is the identity matrix. 

B. L1-Graph 

The adjacency graph effectively characterizes the pairwise relations, while the 

relations between pixels can also be exactly estimated by sparse representation (SR). 

Therefore, it is natural to construct the adjacency graph by L1 optimization, since the 

L1 linear reconstruction error minimization can naturally lead to SR for pixels [10], 

[16]. 

Given a pixel i
x X , the SR model aims to represent i

x  using as few entries of 

X  as possible, except i
x  itself, with the sparse representation coefficient vector i

α , 

which can be solved as follows: 

1
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i

i i i
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 α x X α   (3) 

Subsequently, the weighted elements i ,j
W  can be denoted as: 

1
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if i j

if i j
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α
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After obtaining the L1-graph matrix W , we can adopt the same procedure as (2) to 

implement the DR of high-dimensional data. 

In [10], a supervised version of the L1-graph named BSGDA was proposed to 



implement the DR of HSI data. BSGDA assumes that the SR of a labeled sample is 

estimated using the samples within the same class only. As a result, the graph matrix 

W  obtains the block structure, which is more accurate for the pairwise relations of the 

pixels. 

C. Weighted Sparse Graph Based DR (WSGDR) 

The L1-graph explores the linearity structure of the data, and has been widely used 

in the DR of HSIs. As described in [17], sparse coding results in fewer reconstruction 

errors thanks to the over-complete dictionary, and is robust to noise. Unfortunately, due 

to the mechanism of L1-minimization, the sparse coding coefficients can vary a lot, 

even for similar test samples. The sparse coding process may reconstruct a test pixel 

with training samples which are far from the test pixel, and thus bring an unstable 

reconstruction result. From another aspect, the locality information, as pointed out in 

[11] and [15], is more essential than sparsity under certain conditions, as locality must 

lead to sparsity, but not necessarily vice versa [17]. In addition, the locality information 

can ensure that similar pixels will have similar coefficients. In this letter, we propose 

an improved SR method named weighted sparse graph based DR (WSGDR), which 

incorporates a locality constraint into the sparse coding constraint to learn the local 

sparse representation of the test pixels. 

Due to the superiority of BSGDA [10], we also describe a block version of 

weighted sparse graph based DR. Suppose [ , ,..., ]
B N

1 2 p
X X X X


  , where i

B N

i
X


  

are the samples belonging to the i-th class, 
1

p

ii=
N N , and 

j

i
x  denotes the sample 

selected from the j-th column of i
X . The proposed weighted sparse graph solves the 



following weighted sparse coding problem: 
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where 
j

i
X  denotes training sample i

X  expect the j-th column j

i
x ; the operator  

means element-wise multiplication; j

i
α  represents the SR coefficient vector of 

j

i
x  

with respect to the dictionary base 
j

i
X ; and i, j

d is the locality descriptor, which 

measures the similarity between 
j

i
x  and the other samples in 

j

i
X . Specifically, 
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where dist( )=
j k j k

i i i i
,x x x x  is the Euclidean distance between 

j

i
x and 

k

i
x , and   

is used for adjusting the tolerance for the locality descriptor. A larger d is t( )
j k

i i
,x x  

indicates a greater distance between 
j

i
x  and 

k

i
x , and it can effectively characterize 

the similarity between the test sample and 
j

i
X . As a result, the coding coefficient of the 

weighted sparse coding tends to integrate the locality and linearity characteristics 

together. For a test pixel, the weighted sparse graph computes the weight for a training 

pixel according to the distance or similarity relationship between the test pixel and the 

remaining training pixels. It then seeks the weighted representation of the test pixel 

with respect to the training pixels based on the L1-norm. The goal of WSGDR is that 

given a test pixel, it pays more attention to those remaining training pixels that are more 

similar to the test pixel in representing the test pixel. In this case, WSGDR integrates 

the two complementary properties (locality and linearity) together to improve the 

robustness and representation accuracy of the test pixels. 

The difference between neighborhood construction by NPE, the L1-graph, and the 

weighted sparse graph is shown in Fig. 1. NPE is prone to selecting the pixels nearest 



to the reference pixel (black dot) to contribute to the representation, as presented in Fig. 

1(a). However, for the L1-graph, it is prone to selecting pixels which underlie a low-

dimensional subspace to conduct the representation, as presented in Fig. 1(b). In 

contrast, as shown in Fig. 1(c), the weighted sparse graph has more flexibility in 

constructing the correct neighborhood through the locality sparse coding scheme (5) to 

represent the reference pixel. 

 

   

(a) (b) (c) 

Fig. 1. Neighborhood construction by different methods: (a) NPE, (b) the L1-graph, and (c) the 

weighted sparse graph. 

 

After the sparse coding, we then construct the graph as follows. Suppose 
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W  is the graph matrix of the i-th class sample, then it can be denoted as: 
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As a result, the graph matrix of all the samples is ( , , ..., )
1 2 p

d ia gW W W W . We finally 

adopt the same procedure as (2) to assemble the transformation matrix. Algorithm 1 

illustrates the whole process of the proposed block version of WSGDR. In the algorithm, 

the SPAMS package [18] is adopted to solve the weighted sparse coding problem (5).



Algorithm 1: Block version of WSGDR 

Input: Data set [ , ,..., ]
B N

1 2 p
X X X X


  , the desired reduced dimensionality K. 

Output: Transformation matrix P 

for i=1 to p do 

for j=1 to Ni do 

Set 1 1
i , j

i
Nd ( )    zero vector (locality constraint parameter) 

Compute 
i, j

d  via (6) 

Weighted sparse coding via (5) 

end for 

 Construct the i-th class sample similarity matrix i
W  via (7) 

end for 

( , , ..., )
1 2 p

d ia gW W W W , 

Solve the generalized eigenvalue problem: 

T T

k k k
X L X p X X p , where k

  is the k-th minimum eigenvalue, and k
p  is the 

corresponding eigenvector. 

Construct transformation matrix  1

B K

K
, ...P p p


   

 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

The support vector machine (SVM) classifier was used to evaluate the 

performance of the different DR methods in the experiments. The LIBSVM toolkit1 

was adopted to implement the SVM classifier with a radial basis function (RBF) kernel, 

and the parameters were selected via cross-validation (CV). Several other DR methods, 

i.e., local Fisher discriminant analysis (LFDA) [6], NPE [11], SGE [12], and BSGDA 

[10], were also implemented for comparison. The codes for LFDA2 and NPE3 were 

downloaded online. SGE and BSGDA were implemented using the SPAMS tool4, 

                                                 
1http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2http://research.cs.buct.edu.cn/liwei/ 
3http://www.cad.zju.edu.cn/home/dengcai/ 
4http://spams-devel.gforge.inria.fr/ 



which was also used in the proposed WSGDR. We tested the proposed DR method 

based on the following two widely used HSIs. All the experiments involved 

independent Monte Carlo runs, and the average overall accuracy (OA), the average 

accuracy (AA), the kappa statistic (κ), and the standard deviation are reported. 

A. Experiments With the University of Pavia Data Set 

We first tested the proposed method on the University of Pavia data set, which 

was collected by the Reflective Optics System Imaging Spectrometer (ROSIS-03). This 

data set has 115 bands with a spectral range of 0.43–0.86 μm. After removing 12 water 

absorption and noisy bands, 103 bands were used in the experiments. The data set is of 

610 × 340 in size, and 42776 samples containing nine classes are available. In the 

experiments, 5% of the samples were used as training samples and the rest were used 

for testing. 

Fig. 2 illustrates the scatter plots for the different DR methods considering the first 

two bands or features. As shown in Fig. 2(a), the different pixels are highly mixed in 

the first two bands of the original image. Fortunately, after DR by the different methods, 

the discrimination of the pixels (from different classes) related to the first two bands is 

greatly enhanced. 

   

 (a) (b) (c) 
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(d) (e) (f)  

Fig. 2. Scatter plots of the first two bands for the different DR methods on the University of Pavia data 

set. (a) Original. (b) LFDA [6]. (c) NPE [11]. (d) SGE [12]. (e) BSGDA [10]. (f) The proposed 

WSGDR. 

 

 

Fig. 3. Overall classification comparison of the different DR methods on the University of 

Pavia data set with respect to different dimensions. 

 

TABLE I 

OA (%), AA (%), Individual Class Accuracy (%), κ, and the Standard Deviation of 10 Conducted Monte Carlo Runs Obtained by 

the Different DR Methods on the University of Pavia Data Set (the Reduced Dimension is K=15). 

Class 
Samples Methods 

Train Test Origin LFDA NPE SGE BSGDA WSGDR 

Asphalt (C1) 332 6299 91.84±0.61 93.95±0.75 92.11±0.75 90.11±1.28 92.41±0.74 93.18±0.87 

Meadows (C2) 932 17717 98.29±0.26 98.00±0.34 97.47±0.41 96.95±0.32 97.29±0.43 97.88±0.24 

Gravel (C3) 105 1994 75.30±3.36 72.17±3.74 76.25±2.39 71.23±3.65 74.89±2.52 77.37±3.06 

Tree (C4) 153 2911 91.51±1.52 94.04±0.97 91.98±1.89 89.86±2.01 92.29±1.79 92.61±1.62 

Painted metal sheets (C5) 67 1278 99.05±0.27 98.79±0.99 99.12±0.28 98.78±0.33 99.02±0.36 98.90±1.24 

Bare Soil (C6) 251 4778 85.79±0.84 86.97±1.34 85.71±1.72 78.77±2.97 82.44±1.25 88.74±1.03 

Bitumen (C7) 67 1263 83.82±2.28 75.65±3.59 83.38±3.43 81.46±2.83 83.25±2.07 84.64±2.18 

Self-blocking bricks (C8) 184 3498 90.43±1.21 89.65±2.02 89.34±0.86 87.03±1.39 89.66±1.65 89.85±1.90 

Shadows (C9) 47 900 99.64±0.30 99.60±0.23 99.76±0.27 99.52±0.34 99.79±0.13 99.48±0.60 

OA -- -- 93.13±0.22 93.17±0.26 92.79±0.27 90.76±0.63 92.35±0.38 93.66±0.21 

AA -- -- 90.63±0.48 89.87±0.61 90.57±0.56 88.19±0.69 90.12±0.48 91.41±0.39 

κ -- -- 91.10±0.28 91.15±0.33 90.69±0.35 88.15±0.78 90.14±0.48 91.78±0.27 
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Fig. 3 presents the OA values of the different DR methods with respect to the 

reduced dimension numbers. In the figure, the result of SVM on the original Pavia 

University data set is used as a baseline. As depicted in Fig. 3, the proposed WSGDR 

outperforms the other methods in almost all the cases. In particular, WSGDR 

outperforms BSGDA and NPE in all the dimension cases. That is to say, the 

neighborhood information and linearity property are both important and 

complementary for the analysis of HSI data. In addition, we also used a reduced 

dimensionality of K=15, and present the mean OA, AA, individual class accuracy, κ, 

and standard deviation of 10 Monte Carlo runs obtained by the different DR methods 

in Table I. From the table, we can again see that WSGDR outperforms the other 

methods in terms of OA, AA, and κ values. 

 
Fig. 4. OA values of the proposed method on the University of Pavia data set with respect to 

parameter  . 

For the proposed WSGDR, the selection of parameter   affects the DR 

performance. Fig. 4 presents the OA values of WSGDR on the University of Pavia data 

set with respect to  . From the figure, it can be observed that the result is relatively 

stable with regard to the value of  . This inspired us to set  =1.4 in all the 
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experiments. 

B. Experiments With the AVIRIS Indian Pines Data Set 

The second data used in the experiments was acquired by the NASA AVIRIS 

(Airborne Visible/Infrared Imaging Spectrometer) instrument over the Indian Pines test 

site in Northwestern Indiana in 1992. The data size is 145 × 145 pixels and 220 bands. 

In our experiments, the noisy and water absorption bands were removed, leaving a total 

of 200 bands. A total of 10249 samples containing 16 classes are available, of which 

10% were used as training samples and the rest for testing. 

 

TABLE II 

OA (%), AA (%), Individual Class Accuracy (%), κ, and the Standard Deviation of 10 Conducted Monte Carlo Runs Obtained By 

the Different DR Methods on the Indian Pines Data Set (the Reduced Dimension is K=20). 

Class 
Samples Methods 

Train Test Origin LFDA NPE SGE BSGDA WSGDA 

Alfalfa 5 41 80.49±9.55 58.54±14.31 80.00±11.71 73.66±12.32 78.29±7.40 83.17±7.58 

Corn-notill 143 1285 83.14±2.22 83.32±1.84 78.44±2.87 79.49±2.36 82.88±2.11 83.56±2.02 

Corn-mintill 83 747 76.63±3.76 69.77±2.87 68.53±4.15 74.39±2.30 72.13±4.58 78.27±2.77 

Corn 24 213 73.43±9.86 65.63±10.08 70.14±11.42 62.21±9.21 74.37±8.55 80.89±4.94 

Grass-pasture 48 435 91.33±1.97 90.90±3.27 90.94±2.12 90.39±2.61 92.28±1.99 93.08±1.94 

Grass-trees 73 657 96.26±3.11 96.88±2.92 94.89±3.18 95.24±3.13 97.40±2.64 96.54±2.56 

Grass-pasture-mowed 3 25 87.20±3.68 49.2±22.79 88.80±4.13 88.80±4.13 87.60±4.40 88.00±3.77 

Hay-windrowed 48 430 98.88±0.98 99.53±0.49 98.74±1.32 98.37±1.53 99.16±0.53 99.53±0.55 

Oats 2 18 57.22±21.76 29.44±27.72 48.33±20.63 50.56±24.77 61.11±25.93 68.89±19.81 

Soybean-notill 97 875 78.71±3.92 69.19±3.19 73.81±3.05 77.50±5.05 75.89±2.84 77.95±2.91 

Soybean-mintill 246 2209 87.22±1.40 86.22±2.28 83.57±1.63 87.52±1.17 86.47±2.07 84.69±1.46 

Soybean-clean 59 534 81.82±4.31 83.18±3.65 77.08±5.14 76.67±3.54 82.60±3.33 86.95±3.34 

Wheat 21 184 97.93±1.25 96.68±2.75 96.96±2.13 96.09±2.84 97.88±1.24 98.75±0.85 

Woods 127 1138 95.15±2.39 95.34±1.26 96.24±1.81 95.98±1.73 96.50±1.16 94.59±1.49 

Buildings-Grass-Trees-Drives 39 347 59.94±5.80 67.29±3.22 58.33±5.42 53.29±6.48 63.23±5.44 68.41±5.53 

Stone-Steel-Towers 9 84 87.62±4.02 59.52±12.57 87.02±5.25 87.86±4.59 85.95±4.34 84.05±4.53 

OA -- -- 85.82±0.99 83.86±0.90 82.73±0.45 84.16±1.08 85.45±0.65 86.20±0.79 

AA -- -- 83.31±1.69 75.04±4.80 80.74±1.01 80.5±1.44 83.36±1.54 85.46±1.15 

κ -- -- 84.36±1.06 82.25±0.97 81.08±0.48 82.57±1.16 83.97±0.70 84.81±0.85 

 

Table I presents the mean OA, AA, individual class accuracy, κ, and the standard 



deviation of 10 Monte Carlo runs obtained by the different DR methods on the Indian 

Pines data set. It can again be observed that the proposed WSGDR method outperforms 

the other methods. Notably, LFDA performs even worse than the baseline SVM on the 

original data. This is mainly because LFDA is sensitive to the number of nearest 

neighbors, and it fails in the case of a low number of training samples (e.g., Alfalfa, 

Grass-pasture-mowed, and Oats). 

IV. CONCLUSION 

In this paper, we have proposed a novel weighted sparse graph based 

dimensionality reduction (WSGDR) method for the DR of HSI data. The proposed 

method learns a weighted sparse graph which computes the weight for a training pixel 

according to the distance or similarity relationship between the test pixel and the 

remaining training pixels. It then represents the test pixel by exploiting the weighted 

training pixels based on the L1-norm. WSGDR integrates both the locality and linearity 

structure of the training pixels, and was compared with other DR methods on two HSI 

data sets. The experimental results confirm the superiority of the proposed WSGDR, 

with better performances and higher classification accuracies. 

REFERENCES 

[1] W. He, H. Zhang, L. Zhang, and  H. Shen, “Hyperspectral Image Denoising via 

Noise-Adjusted Iterative Low-Rank Matrix Approximation,” IEEE J. Sel.Topics Appl. 

Earth Observ. Remote Sens., vol. 8, pp. 3050-3061, Jan. 2015. 

[2] J. Ren, J. Zabalza, S. Marshall, and  J. Zheng, “Effective feature extraction and data 

reduction in remote sensing using hyperspectral imaging [Applications Corner],” IEEE 

Signal Process Mag. , vol. 31, pp. 149-154, Jul. 2014. 

[3] Y. Zhou, J. Peng, and C.P. Chen, “Dimension Reduction Using Spatial and Spectral 

Regularized Local Discriminant Embedding for Hyperspectral Image Classification,” 

IEEE Trans. Geosci. Remote Sens. , vol. 53, pp. 1082-1095, Feb. 2015. 

[4] C.-I. Chang, and Q. Du, “Interference and noise-adjusted principal components 

analysis,” IEEE Trans. Geosci. Remote Sens. , vol. 37, pp. 2387-2396, Sep. 1999. 



[5] A.A. Green, M. Berman, P. Switzer, and  M.D. Craig, “A transformation for ordering 

multispectral data in terms of image quality with implications for noise removal,” IEEE 

Trans. Geosci. Remote Sens. , vol. 26, pp. 65-74, Jan. 1988. 

[6] W. Li, S. Prasad, J.E. Fowler, and  L.M. Bruce, “Locality-preserving dimensionality 

reduction and classification for hyperspectral image analysis,” IEEE Trans. Geosci. 

Remote Sens. , vol. 50, pp. 1185-1198, Apr. 2012. 

[7] L. Zhang, L. Zhang, D. Tao, and  X. Huang, “Tensor discriminative locality alignment 

for hyperspectral image spectral–spatial feature extraction,” IEEE Trans. Geosci. 

Remote Sens. , vol. 51, pp. 242-256, Jan. 2013. 

[8] K. Tan, S. Zhou, and Q. Du, “Semisupervised Discriminant Analysis for Hyperspectral 

Imagery With Block-Sparse Graph,” IEEE Geosci. Remote Sens. Lett. , vol. 12, pp. 

1765-1769, Aug. 2015. 

[9] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and  S. Lin, “Graph embedding and 

extensions: a general framework for dimensionality reduction,” IEEE Trans. Pattern 

Anal. Mach. Intell. , vol. 29, pp. 40-51, Jan. 2007. 

[10] N.H. Ly, D. Qian, and J.E. Fowler, “Sparse Graph-Based Discriminant Analysis for 

Hyperspectral Imagery,” IEEE Trans. Geosci. Remote Sens. , vol. 52, pp. 3872-3884, 

Jun. 2014. 

[11] X. He, D. Cai, S. Yan, and  H.-J. Zhang, “Neighborhood preserving embedding,” in 

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, 2005, 

pp. 1208-1213. 

[12] B. Cheng, J. Yang, S. Yan, Y. Fu, and  T.S. Huang, “Learning with-graph for image 

analysis,” IEEE Trans. Image Process. , vol. 19, pp. 858-866, Apr. 2010. 

[13] N.H. Ly, Q. Du, and J.E. Fowler, “Collaborative Graph-Based Discriminant Analysis 

for Hyperspectral Imagery,” IEEE J. Sel.Topics Appl. Earth Observ. Remote Sens., vol. 

7, pp. 2688-2696, Jun. 2014. 

[14] Z. Xue, P. Du, J. Li, and  H. Su, “Simultaneous Sparse Graph Embedding for 

Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens. , vol. PP, pp. 

1-20, Nov. 2015. 

[15] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coordinate coding,” in 

Advances in neural information processing systems, 2009, pp. 2223-2231. 

[16] L. Qiao, S. Chen, and X. Tan, “Sparsity preserving projections with applications to face 

recognition,” Pattern Recognit. , vol. 43, pp. 331-341, 2010. 

[17] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and  Y. Gong, “Locality-constrained Linear 

Coding for image classification,” in IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2010, pp. 3360-3367. 

[18] J. Mairal, F. Bach, J. Ponce, and  G. Sapiro, “Online learning for matrix factorization 

and sparse coding,” The Journal of Machine Learning Research, vol. 11, pp. 19-60, 

2010. 

 

 


