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ABSTRACT
Hyperspectral image provides abundant spectral information for remote discrimination of 
subtle differences in ground covers. However, the increasing spectral dimensions, as well as 
the information redundancy, make the analysis and interpretation of hyperspectral images a 
challenge. Feature extraction is a very important step for hyperspectral image processing. 
Feature extraction methods aim at reducing the dimension of data, while preserving as much 
information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum 
noise fraction (KMNF) transformation) have been reported to benefit many applications of 
hyperspectral remote sensing, due to their good preservation of high-order structures of the 
original data. However, conventional KMNF or its extensions have some limitations on noise 
fraction estimation during the feature extraction, and this leads to poor performances for post-
applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral 
images. Instead of estimating noise fraction by the nearest neighborhood information (within 
a sliding window), the proposed method explores the use of image segmentation. The 
approach benefits both noise fraction estimation and information preservation, and enables 
a significant improvement for classification. Experimental results on two real hyperspectral 
images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, 
the improvements of the method on two hyperspectral image classification are 8 and 11%. 
This nonlinear feature extraction method can be also applied to other disciplines where high-
dimensional data analysis is required.

1.  Introduction

Hyperspectral images can synchronously obtain spa-
tial and spectral information of earth targets and have 
extremely high spectral resolution which makes it pos-
sible to precisely identify the target classes (Plaza et al. 
2009; Li et al. 2012). However, hyperspectral data have 
relatively more bands. The number of bands can reach 
up to hundreds, which produce challenges for analysis 
and application of hyperspectral data. On the one hand, 
the large data size and high calculation complexity of 
hyperspectral images generate high requirements for 
hardware equipment. On the other hand, the high-di-
mensional features of hyperspectral data are uncondu-
cive to the precise classification of hyperspectral images. 
The higher the number of hyperspectral data bands is, 
the more the samples are required to achieve the desired 
classification accuracy. Yet, it is difficult to obtain labeled 
samples, which usually demands significant human and 
material resources (Hughes 1968).

In this study, dimensionality reduction is considered 
to be an effective method to solve these problems (Jia, 
Kuo and Crawford 2013; Benediktsson, Palmason and 

Sveinsson 2005). Hyperspectral dimensionality reduc-
tion aims to simplify and optimize image features. It 
could effectively express high-dimensional data infor-
mation, greatly reduce data size, and enable rapid and 
precise extraction of target information. Therefore, 
dimensionality reduction is important to the effective 
use of hyperspectral images. The common methods of 
dimensionality reduction are divided into two major cat-
egories: band selection and feature extraction. According 
to relevant evaluation indicators, band selection chooses 
band subsets from original data. The criteria of band 
selection are mainly based on information theory and 
spectral variance, such as methods based on informa-
tion entropy proposed by Bajcsy and Groves (2004), 
mutual information to evaluate the information content 
of different bands proposed by Guo et al. (2006), and 
information covariance proposed by Ball et al. (2007). 
Feature extraction refers to the transformation of origi-
nal data to the optimized subspace using mathematical 
transformation and thereby generating novel spectral 
data features. Traditional feature extractions include 
the linear and nonlinear feature extraction methods. 
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Principal component analysis (PCA) (Roger 1996) and 
minimum noise fraction (MNF) (Green et al. 1988) are 
the two commonly used linear dimensionality reduction 
methods. PCA uses information content as evaluation 
index of feature extraction and sorts the components 
by descending order of image information content after 
transformation. However, some studies found that, when 
noise distribution is uneven in each band, PCA trans-
formation could not guarantee that the image compo-
nents were sorted in accordance with quality (Green et 
al. 1988). Noise fraction (NF) is used as evaluation index 
of MNF. After MNF transformation, the components 
are sorted in accordance with image quality and are 
not affected by the noise distribution (Lee, Woodyatt 
and Berman 1990). However, MNF is unable to achieve 
reliable performances in real applications (Gao et al. 
2013b). Some work has reported that the fundamental 
reason constraining the transformation of MNF was 
inaccuracy in the calculation of NF (Greco 2006; Liu  
et al. 2009; Gao et al. 2011; Zhao, Gao and Zhang, 2016; 
Gao et al. 2017). The information content for a particular 
hyperspectral image remains unchanged; the calculation 
accuracy of NF mainly depends on the noise estimation 
results. The original MNF transformation uses spatial 
neighborhood information to estimate noise. However, 
hyperspectral images usually have low spatial resolu-
tion with severely mixed pixels. There are relatively large 
errors related to the sole use of spatial information to 
calculate NF. Furthermore, the estimation results are 
unstable. Therefore, Gao et al. (2011; Gao, Du, et al., 
2013; Gao, Zhang, et al., 2013; 2012) introduced the opti-
mized minimum noise fraction (OMNF) method. This 
method adopts spectral and spatial decorrelation (SSDC) 
method to estimate noise by considering the high corre-
lation between bands. This measure improves the results 
of the noise estimation and increases the accuracies of 
NF. Ultimately, the performance of original MNF trans-
formation is improved. However, the above-mentioned 
methods can only extract linear features of hyperspectral 
data and are unable to find the nonlinear features.

Currently, the widely used nonlinear feature extrac-
tion methods are primarily kernel-based. The advan-
tages of these methods mainly are that nonlinear features 
can be extracted effectively. Based on kernel function, 
these algorithms can transform the original data into a 
higher dimensional feature space. Thus, linear insep-
arable data in the original space can be separated in 
high-dimensional feature space. Nielsen (2011), Gómez-
Chova and Nielsen (2011), Nielsen and Vestergaard 
(2012) proposed the kernel-based minimum noise 
fraction (KMNF) method based on this principle. This 
method has achieved great results in variation detection 
of remote sensing images with high spatial resolution, 
while failing to obtain the desired effect for hyperspec-
tral images in practical application. From the theoret-
ical analyses of KMNF, similar to MNF, KMNF also 

adopts spatial neighborhood information to estimate 
noise; thus, NF is also inaccurate. To overcome this 
problem, the optimized kernel minimum noise fraction 
(OKMNF) method was proposed (Zhao, Gao and Zhang 
2016). This method also uses SSDC to estimate noise; 
thus, the performance of KMNF was improved greatly 
by introducing SSDC to estimate noise. However, in 
practical applications, it was found that the performance 
of OKMNF is still unstable for hyperspectral images with 
complex surface features. The main reason is: there is 
certain inadequacy in using SSDC to evaluate noise in 
hyperspectral images. In SSDC, the minimum region 
of multiple linear regression (MLR) is determined by 
empirical value, such as 6 × 6 pixels and 8 × 8 pixels (Gao 
et al. 2013a). This would involve other surface features 
inevitably to minimum regions, such as borders, when 
hyperspectral images have complex earth objects. Hence, 
the consistency of classes cannot be ensured within all 
divided areas, and this would produce errors while esti-
mating noise and decrease the performance of feature 
extraction.

To overcome the above limitations, we introduce 
image segmentation to feature extraction algorithm. 
Image segmentation divides image into several subre-
gions which do not intersect each other. The features 
are homogeneous within each subregion, while there 
are significant differences from different subregions. 
Traditional image segmentation methods can be divided 
into four categories: threshold-based image segmenta-
tion, region-based image segmentation, edge-based 
image segmentation, and theory-based image segmen-
tation (Huang 1998; Kanungo et al. 2002). The key to 
threshold-based image segmentation is to determine a 
suitable threshold to divide images. Common thresh-
old processing techniques include the adaptive threshold 
method, global threshold method, and optimal threshold 
method. The region-based image segmentation searches 
region directly. This method has two different search 
modes, including region growing and region splitting 
with merging. The edge-based image segmentation 
attempts to divide images through detecting marginal 
information of different regions. However, this method 
is extremely sensitive to noise and thus only suitable 
for low-noise images. Theory-based image segmen-
tation combines theories and methods based on the 
development of various disciplines in new theories. In 
recent years, common theory-based image segmenta-
tion methods are primarily based on the mathematical 
morphology, fuzzy theory, gene coding, wavelet trans-
form, machine learning, and clustering analysis. These 
image segmentation methods based on different spe-
cific theories have their own applications. In particular, 
image segmentation based on clustering analysis, by 
considering not only spatial information but also spec-
tral information, is more suitable for the processing of 
hyperspectral images.
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This paper proposes a new kernel method 
(KM-KMNF) for hyperspectral image feature extrac-
tion. Figure 1 shows the flowchart of the proposed 
KM-KMNF method.

The method exploits the homogeneous region gen-
erated by image segmentation as the minimum region 
for multiple linear regression. By integrating the spatial 
information of the homogeneous region with spectral 
decorrelation, KM-KMNF improves noise estimation 
for feature extraction, enabling better performances 
on feature extraction and the post-applications (e.g. 
classification).

The remainder of this paper is organized as follows: 
Section 2 introduces the KM-KMNF algorithm. Section 
3 evaluates the classification performance of KM-KMNF 
in comparison with another established dimensionality 
reduction methods by using two real hyperspectral data 
sets. Finally, Section 4 concludes the paper.

2.  KM-KMNF algorithm

2.1.  Optimized K-means clustering method

Conventional K-means clustering is a rather effective 
unsupervised clustering method. With a certain similar-
ity as a measure criterion, this method divides hyperspec-
tral images into different subregions. The characteristics 
are homogeneous within the same subregion, while there 
are significant differences for different subregions. For a 
given hyperspectral image X containing n pixels and b 
bands, the algorithmic flow of K-means clustering is as 
follows: at the beginning, k pixels are randomly chosen 
as initial cluster centers from hyperspectral image. In 
addition, other pixels are assigned to the most similar 
clusters by computing their similarity with all cluster 
centers. The next step is to calculate the cluster centers of 
new clusters and to repeat the process until the standard 
measure function begins to converge. After K-means 
clustering, each cluster is a subregion of image segmen-
tation. However, as showed in Figure 2(c) and Figure 
4(c), pixels within the same subregions are distributed 
discretely. Thus, not all pixels within the same subregion 
can form a connected region. Moreover, homogeneity of 
the internal features cannot be guaranteed in the same 

subregion. Therefore, the segmentation results of the 
conventional K-means clustering cannot meet the algo-
rithm requirements. To solve these problems, we opti-
mize the K-means (OK-means) clustering algorithm. 
Firstly, in the segment of hyperspectral images, to ensure 
the homogeneous features within the subregions, the 
number of subregions k should be far higher than that 
of normal segmentation. Then, to ensure the connection 
within each subregion, the search area of pixels, in which 
the similarity of pixel with its adjacent cluster center be 
measured, should be limited. Finally, pixels are assigned 
to the most similar clusters. By conducting OK-means 
image segmentation, all pixels within the same subregion 
can form a connected region, and homogeneity of the 
internal features can be guaranteed in each subregion. 
Therefore, OK-means image segmentation algorithm is 
more suitable for the processing of hyperspectral images. 
The segmentation results of the OK-means algorithm are 
shown in Figure 2(d) and Figure 4(d).

The flow of algorithm is as follows:
Step 1: Initialize K cluster centers. For a hyperspectral 

image X with n pixels and b bands, the ideal subregion 
size is

√
n∕k ×

√
n∕k. With 

√
n∕kas step length, K pixels 

are selected as initial cluster centers (c1, c2, ..., ck).
Step 2: Assign pixel xi to the most sim-

ilar cluster. According to the formula 
dxc =

√
(xi,1 − cv,1)

2 + (xi,2 − cv,2)
2 +⋯ + (xi,b − cv,b)

2 ,  
the similarity between pixel xi and cluster center cv 
located in the spatial neighborhood is calculated, and 
this pixel is assigned to the cluster with the greatest simi-
larity. In other words, this pixel is labeled with the cluster 
that is most similar to it. Where the cluster center located 
in the spatial neighborhood of xi is where the cluster 
center is covered in the area of 2

√
n∕k × 2

√
n∕k with 

xi as the center.
Step 3: Correct cluster center. The centers of pixels 

belonging to the same cluster labels are regarded as the 
new cluster centers.

Step 4: Calculate distance D. This distance is the dif-
ference between pixels and their cluster centers. The 
algorithm will be terminated if D converges. Otherwise, 
it is required to return to Step 2.

2.2.  KM-KMNF algorithm

Remote sensing images are inevitably degraded by 
certain types of noise due to the influence of sensor 
instrument errors and other environmental factors. The 
hyperspectral image X, which contains n pixels and b 
bands, is composed of two parts signal and noise (Green 
et al. 1988; Landgrebe and Malaret 1986),
 

where x(p) is the pixel vector at position p, xs(p) and xN(p) 
are the signal and noise contained in x(p), respectively. 
For optical images, the signal and noise are commonly 

(1)x
(
p
)
= xs

(
p
)
+ xN

(
p
)

Original 
hyperspectral 

image

OK-means 
image 

segmentation

Perform MLR 
based on the 
segmented 
subregions 

KM-KMNF feature extraction

Noise value

Figure 1. Flowchart of the KM-KMNF algorithm.
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Similarly, Let us consider x̃Nk as the average of the noise 
in k-th band, the mean noise matrix Xmean with n rows 
b columns can be obtained.
 

The centralization matrix ZN of the noise matrix XN can 
be expressed as:
 

The covariance matrix SN of the noise matrix XN can be 
expressed as:
 

(5)S = ZTZ∕(n − 1)

(6)XNmean
=

⎡
⎢⎢⎢⎢⎣

x̃N1
x̃N2

⋯ x̃Nb
x̃N1

x̃N2
⋯ x̃Nb

⋮ ⋮ ⋮ ⋮

x̃N1
x̃N2

⋯ x̃Nb

⎤⎥⎥⎥⎥⎦

(7)ZN = XN − Xmean

(8)SN = ZT
NZN∕(n − 1)

considered independent of each other (Landgrebe and 
Malaret 1986; Green et al. 1988). Thus, the covariance 
matrix S of image X can be expressed as the sum of the noise 
covariance matrix SN and the signal covariance matrix SS:
 

Using x̃k to represent the mean value of all pixels in the 
k-th band of the image, the mean matrix Xmean with n 
rows b columns can be obtained. 
 

Then, the centralization matrix Z of X can be expressed 
as follows:
 

The covariance matrix of image X can be expressed as

(2)S = SN + SS

(3)X
mean

=

⎡
⎢⎢⎢⎢⎣

x̃
1

x̃
2

⋯ x̃b
x̃
1

x̃
2

⋯ x̃b
⋮ ⋮ ⋮ ⋮

x̃
1

x̃
2

⋯ x̃b

⎤⎥⎥⎥⎥⎦

(4)Z = X − Xmean

Figure 2. Experiment results on Pavia University data (a) Original Pavia University image. (b) Ground reference map containing nine 
land-cover classes. (c) Original K-means clustering result (same-colored region belongs to the same subregion). (d) The result of the 
image segmentation using the OK-means clustering method (each closed region is a subregion). The results of the ML classification 
after using different dimensionality reduction methods (number of features = 8), (e) OMNF method, (f ) KMNF method, (g) OKMNF 
method, and (h) KM-KMNF method.
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The adopted MLR model can be expressed as:
 

 

where B represents the spectral neighborhood matrix, 
μ is the coefficient matrix, and � is the residual value. 
Then, μ could be estimated by: 
 

The signal value could be estimated through:
 

The noise value can be obtained from the difference 
between the true and estimated values:
 

Then, estimating noise in all subregions was performed 
by image segmentation. The noise estimation result N 
of the whole hyperspectral image can be obtained accu-
rately. To acquire the kernel minimum noise fraction 
(KNF), the noise estimation result is inserted into the 
NF calculation Equation (9), and NF is performed with 
dual transformation a ∝ ZTb and kernel transformation 
(Nielsen and Vestergaard 2012).
 

where κ is the Gaussian radial basis function (RBF).
 

where σ is the proportional parameter, which can be 
obtained by calculating the mean distance between 
the observed value xi and xj (Nielsen 2011). To sort the 
image components according to the quality order after 
dimensionality reduction, KNF needs to be minimized, 
thus by solving the transformation matrix for feature 
extraction. Solving the minimized KNF equals to solve 
the symmetric generalized eigenvalues that can be solved 
using the maximized Rayleigh entropy (Nielsen 2011) 
which does not elaborate the detailed solution process. 
It should be noted that as far as KNF is concerned, the 
kernel noise value is calculated in the kernel space. In 

(12)
ni,j,k = zi,j,k − ẑi,j,k

= zi,j,k − (a + bzi,j,k−1 + czi,j,k+1)

(13)Xsub = B� + �

(14)

X
sub

=

⎡
⎢⎢⎢⎢⎣

x
1,2,k

x
1,3,k

⋮

xw,h,k

⎤
⎥⎥⎥⎥⎦
,B =

⎡
⎢⎢⎢⎢⎣

1 x
1,2,k−1 x

1,2,k+1

1 x
1,3,k−1 x

1,3,k+1

⋮ ⋮ ⋮

1 xw,h,k−1 xw,h,k+1

⎤
⎥⎥⎥⎥⎦
,� =

⎡⎢⎢⎢⎣

a

b

c

⎤⎥⎥⎥⎦

(15)𝝁̂ = (BT
B)−1BT

X
sub

(16)X̂
sub

= B𝝁̂

(17)N
sub

= X
sub

− X̂
sub

(18)KNF = b
T
�N�

T

Nb∕b
T
�2
b

(19)�(xi, xj) = exp[−
‖‖‖xi − xj

‖‖‖
2

∕(2�2)]

The NF is defined as the ratio of the noise covariance 
matrix to the total covariance matrix of image X. 
Therefore, for the linear combination aTZ(p),
 

where a is the eigenvector of NF. In NF, it is significant 
that the noise is estimated reliably. The original KMNF 
method primarily uses the spatial neighborhood 3 × 3 
information of a hyperspectral image to estimate noise 
ZN, as shown below: 
 

where zi,j,k is the pixel value in the i-th row, j-th col-
umn, and k-th band of hyperspectral image Z, ẑi,j,k is 
the estimated value of this pixel, and ni,j,k represents the 
estimated noise value ofzi,j,k. Many works have reported 
that the estimated results have a relatively large error 
and are unstable when the noise is estimated by only 
using the spatial neighborhood information alone (Gao 
et al. 2013a; 2013b). In comparison, the results are more 
accurate using the SSDC method in OKMNF, as shown 
in Equation (11):
 

where the parameters a, b, c, and d are the coefficients 
of the MLR, and zp,k represents the pixel value of the 
adjacent spatial positions at the same band. To estimate 
noise, we calculate the inversion parameters of the MLR, 
which is equivalent to identify minimum region of the 
MLR. In OKMNF, a region covering 6 × 6 pixels is set as 
the minimum region to obtain MLR parameters by vir-
tue of the empirical value. However, this segmentation 
method would inevitably separate other classes to the 
same minimum region, such as boundary, this makes it 
difficult to guarantee homogeneous category within the 
region. In comparison, in the KM-KMNF algorithm, 
subregion Xsub generated by OK-means clustering is 
used as the minimum region to estimate noise, ensuring 
the homogeneity of the pixel features in the minimum 
region. Meanwhile, within each minimum region, the 
noise estimated by spectral decorrelation (which only 
considers the spectral information of hyperspectral 
image and the correction made by spatial neighborhood 
pixel zp,k to zi,j,k in Equation (11)) is eliminated. Thus, 
the impact of heterogeneous information of the image 
spatial neighborhood on the noise estimation results can 
be avoided. The equation for the spectral decorrelation 
excluding the spatial neighborhood information is as 
follows:

(9)NF = a
T
SNa∕a

T
Sa = a

T
Z

T
NZNa∕a

T
Z

T
Za

(10)

ni,j,k = zi,j,k − ẑi,j,k
= zi,j,k − (−zi−1,j−1,k + 2zi,j−1,k − zi+1,j−1,k + 2zi−1,j,k
+5zi,j,k + 2zi+1,j,k − zi−1,j+1,k + 2zi,j+1,k − zi+1,j+1,k)∕9

(11)
ni,j,k = zi,j,k − ẑi,j,k

= zi,j,k − (a + bzi,j,k−1 + czi,j,k+1 + dzp,k)
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3.2.  Experiment on Indian Pines data

Indian Pines hyperspectral data are acquired by the 
Airborne Visible/Infrared Imaging Spectrometer in 
1992, which contains 145 × 145 pixels and 220 bands. 
The spectrum ranges from 0.4 μm to 2.5 μm, and the spa-
tial resolution is 20 m. Only 200 bands of the image are 
taken into account in this experiment, whereas the noise 
bands and the atmospheric vapor absorption bands are 
excluded. Nine large classes are considered in this exper-
iment (Figure 4(a) and (b)). About 25% percent of the 
samples are randomly selected as the training samples. 
The remaining 75% of the samples are used as testing 
samples. The sample categories and quantities are shown 

other words, the real X of hyperspectral image and the 
estimated X̂ of the MLR are converted to the kernel 
space at the same time. Subsequently, the noise value 
is obtained in the kernel space instead of the original 
space (Nielsen and Vestergaard 2012). Finally, the fea-
ture extraction results can be expressed as:
 

3.  Experiment and analysis

We compare the KM-KMNF with OMNF, KMNF, 
and OKMNF on two real hyperspectral remote sens-
ing images. The features extracted by each method are 
used as input of the maximum likelihood (ML) classi-
fication and support vector machine (SVM) to validate 
the performances. The SVM classifier with RBF kernels 
in MATLAB SVM Toolbox, LIBSVM (Chang and Lin 
2011; Liao et al. 2012), is applied in our experiments. The 
fivefold cross-validation is used to find the best parame-
ters in SVM (Liao et al. 2012). Each experiment runs ten 
times, and the average value of these ten experiments is 
reported for comparison.

3.1.  Experiment on Pavia University data

The Italian hyperspectral data of Pavia University were 
collected using the reflective optical system imaging 
spectrometer in 2001. The data contain 610 × 340 pixels 
and 103 spectral bands. In addition, the spectrum ranges 
from 0.43 μm to 0.86 μm, and the data have a spatial res-
olution of 1.3 m. The image contains nine different types 
of surface classes (Figure 2(a) and (b)). About 50% of the 
samples are randomly selected as the training samples. 
The remaining 50% of the samples are used as testing 
samples. The sample categories and quantities are shown 
in Table 1. The classification accuracy of the different fea-
ture extraction methods is shown in Table 2 and Figure 3. 
The results of classification are shown in Figure 2(e−h).

In Table 2, the classification accuracy of the four 
different feature extraction methods increases with the 
growing number of features. In particular, KM-KMNF 
produces a higher accuracy than the other three meth-
ods. Compared with KMNF and OKMNF, the accu-
racy of KM-KMNF could be improved by 10.95 and 
4.69%, respectively, which indicates that incorporating 
the spatial information through image segmentation to 
the KM-KMNF algorithm as the minimum region of 
the MLR benefits post-applications. The accuracies of 
KM-KMNF and OKMNF are much higher than that of 
KMNF. In the meantime, the KM-KMNF performs bet-
ter than OKMNF. The results show that for the noise esti-
mation in KMNF algorithm, the spectral information is 
more important than the spatial dimension information 
of hyperspectral image. Moreover, Figure 2(e–h) shows 
that the classification results after KM-KMNF transfor-
mation are more consistent with the actual distribution 
of the surface features than those of other methods.

(20)Y = �b

Table 1. Pavia University samples used for training and testing.

Classes Training Testing
Asphalt 3315 3316
Meadows 9324 9325
Gravel 1049 1050
Trees 1532 1532
Metal sheets 672 673
Bare soil 2514 2515
Bitumen 665 665
Bricks 1841 1841
Shadows 473 474
Total 21,385 21,391

Table 2. Overall accuracy of the ML classification on Pavia 
University image using different dimensionality reduction 
methods.

Number of 
features KMNF, % OMNF, % OKMNF, %

KM-KMNF, 
%

3 67.63 73.70 74.13 78.23
4 70.99 78.53 77.71 80.45
5 73.85 79.66 79.24 84.25
6 78.28 81.01 83.03 85.59
7 81.45 82.79 86.11 88.06
8 83.06 84.05 87.24 88.94
9 83.37 85.96 89.31 90.60
10 84.04 87.96 90.02 91.42
11 85.31 90.71 91.10 92.56
12 86.15 91.54 91.46 93.74
13 86.85 91.67 92.39 94.26
14 87.79 92.01 92.44 94.81
15 88.61 92.24 92.46 94.45
16 88.88 92.21 92.37 94.52
17 88.97 92.61 92.56 94.17
18 88.58 92.15 92.19 94.20
19 88.59 92.45 92.57 93.49
20 88.25 92.13 92.55 93.52

Figure 3. Comparison of the accuracies of the ML classification 
on Pavia University image using different number of features.
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Tables 4 and 5 show that KM-KMNF contributes a 
higher accuracy than the other algorithms as the num-
ber of features increases, similar to that of the Pavia 
University data. This further demonstrates that the 
efficiency of KM-KMNF on feature extraction. Figure 
5 also reveals that the accuracies of the three methods. 
By taking the spatial and spectral information of image 
into consideration, our KM-KMNF produces higher 
accuracy than that of the KMNF method which solely 
considers the spatial information for noise estimation. 
This confirms that the accurate calculation of the noise 
is crucial to the performance of the feature extraction 
for KMNF and MNF-based methods. In Table 4, we also 
can find that most standard deviations of KM-KMNF are 
relatively smaller than the others, indicating the stable 
performance of KM-KMNF. From Figure 3 and Figure 5, 

in Table 3. The classification accuracy of the different 
classifiers (ML and SVM) using different feature extrac-
tion methods is shown in Table 4, Table 5, and Figure 
5. The classification results are shown in Figure 4(e−h).

Figure 4. Experiment results on Indian Pines data (a) Original Indian Pines image. (b) Ground reference map containing nine land-
cover classes. (c) Original K-means clustering result (same-colored region belongs to the same subregion). (d) The result of image 
segmentation using the optimal K-means clustering method (each closed region is a subregion). The results of the ML classification 
after using different dimensionality reduction methods (number of features = 8), (e) OMNF method, (f ) KMNF method, (g) OKMNF 
method, and (h) KM-KMNF method.

Table 3. Samples from Indian Pines used for training and 
testing.

Classes Training Testing
Corn-no till 359 1075
Corn-min till 209 625
Grass/Pasture 124 373
Grass/Trees 187 560
Hay-windrowed 122 367
Soybean-no till 242 726
Soybean-min till 617 1851
Soybean-clean till 154 460
Woods 324 970
Total 2338 7007

Table 4. Overall accuracies of the ML classification on Indian Pines image using different dimensionality reduction methods.

Number of features KMNF(Std) OMNF(Std) OKMNF(Std) KM-KMNF(Std)
3 59.79% (0.012 3) 66.56% (0.004 8) 64.41% (0.005 2) 67.65% (0.004 3)
4 66.62% (0.011 6) 72.83% (0.004 7) 67.53% (0.007 7) 72.75% (0.003 0)
5 69.72% (0.017 2) 74.80% (0.004 4) 76.60% (0.004 1) 77.50% (0.004 6)
6 73.55% (0.008 5) 76.54% (0.004 2) 78.48% (0.002 6) 80.39% (0.003 1)
7 74.77% (0.006 7) 77.81% (0.004 5) 79.94% (0.003 3) 81.98% (0.003 7)
8 76.27% (0.003 8) 77.96% (0.004 2) 82.84% (0.005 3) 84.31% (0.004 0)
9 76.84% (0.001 7) 82.02% (0.004 3) 84.84% (0.006 2) 84.36% (0.007 1)
10 77.90% (0.004 2) 83.92% (0.003 9) 85.48% (0.003 9) 85.54% (0.004 8)
11 78.62% (0.006 5) 84.89% (0.003 7) 85.92% (0.003 7) 86.43% (0.004 5)
12 79.17% (0.017 6) 86.27% (0.003 3) 86.33% (0.003 3) 87.17% (0.004 5)
13 79.79% (0.015 0) 86.68% (0.005 7) 86.61% (0.005 7) 88.00% (0.002 4)
14 80.43% (0.013 7) 87.70% (0.004 0) 86.89% (0.001 6) 89.01% (0.004 6)
15 80.74% (0.002 0) 88.07% (0.002 7) 87.40% (0.001 7) 89.30% (0.003 4)
16 80.89% (0.004 5) 88.54% (0.003 9) 87.75% (0.001 0) 89.70% (0.003 1)
17 80.93% (0.007 3) 88.44% (0.003 4) 87.94% (0.002 2) 89.65% (0.003 4)
18 81.07% (0.006 2) 88.94% (0.004 4) 87.91% (0.001 2) 89.64% (0.003 7)
19 81.20% (0.005 4) 88.88% (0.004 2) 88.17% (0.002 0) 89.61% (0.003 3)
20 81.18% (0.005 0) 88.94% (0.004 2) 88.51% (0.003 3) 89.75% (0.003 2)
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find that KM-KMNF consumes relative more time but 
with better performances. When extracting less features, 
KM-KMNF can reduce the consumed time, and get the 
best performance when using around 14 features.

4.  Conclusions

This paper is to propose a new kernel minimum noise 
fractional transformation for the feature extraction of 
hyperspectral data. Our method uses spectral-dimen-
sion decorrelation for calculation of the NF, and fur-
ther improves the accuracy of the NF by introducing 
the spatial information through image segmentation to 
determine the minimum region of the MLR. Moreover, 
the conventional K-means clustering method has been 
improved to make OK-means algorithm more suitable 
for hyperspectral image segmentation. Two real hyper-
spectral image data sets are used for the experiments, and 
the classification accuracy is used as the index to eval-
uate the performances of feature extraction algorithms. 
The results show that the accuracy of the MNF based 
on image segmentation is much higher than that of the 
original KMNF algorithm. Meanwhile, it is also much 
higher than that of the OMNF and OKMNF algorithms. 
Better noise estimation brings better performances on 
both feature extraction and its post-application to hyper-
spectral image classification for MNF- and KMNF-based 
methods.
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Table 5. Overall accuracies of the SVM classification on Indian 
Pines image using different dimensionality reduction methods.

Number of 
features KMNF, % OMNF, % OKMNF, %

KM-KMNF, 
%

3 55.65 66.00 63.52 71.39
4 64.38 72.66 71.26 77.55
5 68.23 76.64 73.78 81.15
6 70.89 79.18 77.99 82.16
7 72.82 80.33 80.21 84.10
8 74.23 81.27 82.72 85.96
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17 79.90 87.67 86.85 88.12
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Figure 5. Comparison of the accuracies of the SVM classification 
on Indian Pines image after using different dimensionality 
reduction methods.

Table 6. Overall classification accuracies by using different number of training samples.

Methods

Training samples/class (Pavia University) Training samples/class (Indian Pines)

50 100 150 200 50 100 150 200
KMNF 80.95% 82.82% 82.93% 83.55% 74.72% 75.29% 75.82% 76.44%
KM-KMNF 86.94% 87.72% 88.46% 88.26% 83.11% 84.23% 84.28% 84.20%
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