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ABSTRACT Background subtraction (BS) in video sequences is a main research field, and the aim
is to separate moving objects in the foreground from stationary background. Using the framework of
schemes-based robust principal component analysis (RPCA), we propose a novel BS method employing
the more refined prior representations for the static and dynamic components of the video sequences.
Specifically, the rank-1 constraint is exploited to describe the strong low-rank property of background layer
(temporal correlation of static component), and 3-D total variation measure and L1 norm are used to model the
spatial-temporal smoothness of foreground layer and sparseness of noise (dynamic component). This method
introduces rank-1, smooth, and sparse properties into the RPCA framework for BS task, and it is dubbed
TRI1-RPCA. In addition, an efficient algorithm based on the alternating direction method of multipliers is
designed to solve the proposed BS model. Extensive experiments on simulated and real videos demonstrate
the superiority of the proposed method.

INDEX TERMS Background subtraction, total variation, rank-1 property, robust principal component

analysis, spatial-temporal correlations.

I. INTRODUCTION

Background subtraction (BS) originates from many appli-
cations in computer vision and pattern recognition, includ-
ing moving object detection [1], object tracking [2], video
surveillance [3] and so on. This operation involves recovering
a high quality background component from a given obser-
vation or video frames degraded by outliers. The algorithms
used for modeling the static and dynamic components have
great effects on the performance of BS. Recently, many BS
methods have been proposed [4]-[12].

Among various BS modeling approaches, one of the
most famous ones is pixel-based methods. Lin et al. [4] uti-
lized a mixture of Gaussian probability density functions,
i.e. Gaussian Mixture Models, to model color intensity vari-
ations of individual pixels, which can provide a tradeoff
between robustness to background changes and sensitivity
to foreground abnormalities. Li et al. [5] characterized back-
ground appearances under a Bayesian framework using fea-
tures extracted over spectral-spatial-temporal domains and

their statistics property. In [6], an alternative strategy to infer
the pixels as either background or foreground is presented.
By considering local pixel prior knowledge, the decision
framework is based on maximum a posteriori Markov ran-
dom field. Using a combination of a series of codebooks,
Guo et al. [7] used hierarchical scheme and distance function
to describe the pixel states across the background and the
foreground. A major effect of codebook is to promote effi-
ciency as data volume is reduced via compressed information.
In [8] and [9], the self-organizing BS algorithms based on
artificial neural network were used to detect moving objects.

Another type of popular BS methods is based on the
robust principal component analysis (RPCA) [10], which
decomposed a video into a single low-rank component and
a sparse component, and therefore the background variations
are modelled naturally as approximately low rank and fore-
ground objects as sparse errors. Candes et al. [10] exploited
the RPCA technique for BS problem by decomposing video
sequences into a low-rank component denoting background
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and a sparse component denoting foreground, which can be
expressed as the following optimization problems.

min Ll +AIEl. oY =L+E (1)

where Y € R™>*! is the observed video streams, mn and ¢
are the size of a frame and the number of frames, respec-
tively. L and E correspond to the background and foreground
components. Due to the intrinsic relation of the background
images over temporal domain, the reshaped matrix is of
low-rankness (||L||,. denotes the nuclear norm of matrix L).
And the Li-norm is employed to characterize the sparse-
ness of the foreground. However, the model is performed
for BS task under coarse assumption for static and dynamic
components, which correspond to the video background and
foreground respectively. Therefore, it is necessary to consider
the finer knowledge to deal with the growing challenges.

Focusing on the limitations of the RPCA-based methods,
in this paper, we propose a TV and rank-1 regularized RPCA
model for BS, taking full advantage of the static and dynamic
component prior information. Our contributions can be sum-
marized as three folds: First, it is the first work to model the
BS task in a rank-1 constraint RPCA framework. This rank-1
constraint RPCA-based video representation enables us to
better encode the static component (i.e., latent background
knowledge) of temporal structures in a video sequence. Sec-
ond, we further refine the dynamic component in RPCA,
it can be regarded as the superposition of smooth video fore-
ground and sparse noise along the spatial-temporal domain,
which can be described by total variation and L; norm terms.
Third, we design efficient algorithms based on ADMM to
solve the proposed model and achieve competitive perfor-
mances with state-of-the-art methods based on various video
sequences.

The paper is organized as follows: we provide an overview
of related works about RPCA-based BS tasks in Section II.
Then we introduce the TR1-RPCA model in Section III,
specifically, the property analysis and modellings of static
and dynamic components are presented in Sections III-A
and III-B, and Section III-C describes the optimization algo-
rithm to solve the TR1-RPCA. In Section III-IV we give the
experiments results, and finally we present our conclusions
in Section V.

Il. RELATED WORKS

The main goal of BS is to separate the underlying low-rank
and sparse components from its observation. As background
and foreground layers of the data possess intrinsic low-rank
and sparse structure, the RPCA framework has achieved a
great success in BS problems. Comprehensive reviews can
be found in [11] and [12], we will provide only a brief review
for the current progress on this topic.

Considering that the underlying properties on back-
ground and foreground, some improved methods based on
RPCA using joint spatial-temporal constraints have been
proposed [10], [14], [15], [21]-[39]. As for the modelling of
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the low-rank component, the low-rank approximation based
on the nuclear norm is biased, which may lead to an erro-
neous subspace estimation, especially in BS task, with the
weak and even inaccurate low-rank constraint. In order to
meliorate estimating bias of the nuclear norm, several recent
studies investigated the use of some non-convex low-rank
regularizers, such as the weighted nuclear norm [13], [14],
Schatten p-norm [15]-[17], log function penalty [18], [19],
capped norm [20] and fixed-rank-1 [21]. Extensive appli-
cations on image denoising, background subtraction and
image inpainting have validated the effectiveness of non-
convex low-rank representations. Low-rank matrix factor-
ization (LRMF) is another representative approach utilizing
low-rank presentation for BS [22]-[26]. Instead of using the
sparse and low-rank components characterization in the orig-
inal RPCA model, Zhao et al. [22] proposed a generalized
RPCA model based on the Bayesian framework and treated
noise errors as a mixture of Gaussians (MoG). The MoG
can approximate various noises such as Laplacian, Gaussian,
sparse noises and any mixtures of them, and LRMF is used to
estimate the low-rank component. In the presence of outliers,
robust LRMF methods have been proposed in [23], where
a convex low-rank regularization for factorization matrix is
introduced to improve the robustness of subspace learning,
without considering too much extra prior information. To fit
unknown noise distribution, which cannot be pure Gaussian
(L» loss function) or Laplacian (L; loss function), Meng
and De La Torre [24] proposed a LRMF problem with MoG
noise to effectively deal with the problem of foreground
modeling. Along with their previous works in [22] and [24],
they proposed an online BS method with joint MoG and
LRMF constraints [25], this model have a good generaliza-
tion in other subspace learning tasks, including image align-
ment and video stabilization applications. Similar to [23],
Wang et al. [26] adopt two nonconvex terms instead of the
nuclear norm to approximate the rank function in RPCA
model. Ebadi and Izquierdo [27] used the structured-sparsity
of super-pixel to estimate dynamic foreground regions under
the RPCA framework, so that the spatial coherence on these
regions are considered. Sobral ef al. [28] constrained the
sparse component by shape prior and confidence maps from
spatial saliency. Javed ef al. [29]- [31] employed inter-intra
frame graph Laplacian regularization to learn latent low-rank
of the background part. Xu et al. [32] explored the global
spatial compactness and the appearance consistency of the
foreground for low-rank and sparse separation, which were
characterized by the similar pixel pairs in neighbor and the
informative graphs for the pixels.

In the above-mentioned works, the foreground component
is encoded by sparse priors. In fact, other than the sparsity
term, the TV term can also be used and could be more
effective in modelling the spatial-temporal information of the
video foreground. In [33]-[35], TV regularization is utilized
to only depict the continuity of moving objects over the
spatial domain, and subsequent works [36]—[39] have further
generalized the spatial continuity of foreground component
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FIGURE 1. lllustration of video priors. (a) indicates original video, (b) and (c) are video static and dynamic components.
(d) and (e) indicate the rank-1 prior information of video background (static component) based on the strong temporal correlation.
(f) and (g) indicate the smoothness and sparseness prior information of the video dynamic components corresponding to foreground

and noise descriptions.

to spatial-temporal continuity, namely the 3D-TV regularized
RPCA framework for BS. However, those approaches neglect
the finer structure of background and foreground over the
spatial-temporal domain, and this lead to two shortcomings:
(1) The nuclear norm and its revised version cannot reveal
the nearly repetitive property underlying the video frames;
(2) Superficial presentations are no longer effective to model
the foreground where only the complex dynamic component
is suitable.

Very recently, other authors have designed some real-time
strategies for BS task, which speedup the algorithm by sub-
matrices computation [40], compressive sampling [41], [42]
or GPU implementations [43]. Another type of acceler-
ated strategy is multiple online methods [25], [44]-[46], its
core idea is to incrementally compute only one frame at
a time, and gradually enhance the background estimation
by each frame updating. The state-of-the-art approaches
along this research line mainly include OPRMF [44],
GRASTA [45], GOSUS [46], ReProcs [47], MEDROoP [48]
and incPCP [49], [50]. The GRASTA and OPRMF employed
based-L; norm loss function for each frame to encode sparse
foreground component, and updated subspace via ADMM
strategy. The GOSUS introduced a more complex loss term
to characterize the structured sparsity of video foreground.
Besides, the recently proposed PracReProCS, MEDRoP and
incPCP are the incremental extensions of the classical PCP
algorithm.

Ill. PROPOSED TR1-RPCA FOR BACKGROUND
SUBTRACTION

In this section, we will present a novel TV and rank-1 reg-
ularized RPCA model for the BS task. First, we present
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our detailed analysis for video decomposition, focusing
especially on the temporal correlations of static component
spatial-temporal continuity and sparseness of dynamic com-
ponent. Then, we leverage different component properties to
build the BS model.

A. PROPERTY ANALYSIS AND MODELING

STATIC COMPONENT

As shown in Fig. 1, we analyze the typical priors based
on static and dynamic components of the video sequences,
i.e., the temporal rank-1 property for video static component
and the spatial-temporal smoothness and sparseness for video
dynamic component. First, it is easy to observe that a video
sequence can be regarded as the superposition of static and
dynamic components from Figs. 1(a) (b) and (c). Second,
Fig. 1(d) shows that the video background is temporally cor-
related, we introduce SVD on the matrix unfolding along the
temporal dimension, the drastic decaying trend of the curve
of the singular values statistics indicates the lower rank on
the background component, i.e. stronger temporal correlation
among the video background frames. As each frame of the
video background possesses nearly the same information,
and all background video frames can be linearly represented
algebraically by any single frame, with its rank in temporal
dimension approximately 1. Further, the quantitative accumu-
lation energy ratio of top k normalized singular values is used
to measure the close correlation along temporal domain of
video background. Ideally, background frames possesses an
exact replica, thus the ratio of top 1 the singular value is 1.
Due to disturbance of noise and shadow, we find out only the
top 1 singular values can achieve the ratio 0.9906, which justi-
fies that the video background can be approximated as rank-1.
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A great advantage of using the rank-1 constraint over the
background prior is that it preserves the major information
by minimizing the singular values of noise-dominant compo-
nents except for the target rank. The nuclear norm constraint
can obtain a solution that minimizes all singular values, but
the physical meaning of singular values will be neglected.
This will lead to the biased estimation of low-rank compo-
nent. In contrast, the rank-1 regularization not only reserves
the first singular value of a matrix, but also minimizes vari-
ables in residual rank which corresponds to minimizing the
dynamic component of video data. From the above analysis
of the rank-1 regularization based background prior, we only
need to minimize the partial sum of singular values presented
in the objective function [51], the corresponding mathemati-
cal formula is as follows

ILIl,=1 = [rank(L) — 1| = Z,-:z oi(L) 2
where o;(L) is the i singular value of the matrix L.

B. PROPERTY ANALYSIS AND MODELING

DYNAMIC COMPONENT

For the sparse dynamic components E in video, it can be
decomposed into smooth foreground and sparse noise: E =
X + S as shown in Figs. 1(c) (f) and (g). In Fig. 1(f),
the moving car in video foreground is continuous among suc-
ceeding frames across temporal domain, moreover, the mov-
ing car of each frame is also smooth in local region
across spatial domain. We term this prior as spatial-temporal
continuity of video foreground, i.e., the regularization of
smoothness on foreground can be achieved by imposing
the anisotropic 3D total variation on X, which is defined
in [36]-[39] as

IXW3p—7v = IDX Iy = [[Dpxlly + IDvxlly + [I1Dexlly (3)

where x = vec(X)(vec(.) is the vectorization operator.).
Dy, D, and D; are three difference operators along different
dimension, and D = [Dy, Dy, D;]. In Fig. 1(g), the fluttering
leaves, shadow of car and possible camera noise are consid-
ered together as sparse noise S, and it is modeled by L; norm
constraint.

C. PROPOSED TR1-RPCA-BASED BS MODEL
Based on the above analysis, we now integrate the BS prob-
lem into the following model

min _ |ILll,—; +AEFIEI, + 251SI; + A% 1DX |,
X,L,E.S

st.Y=L+E, E=X+S§ 4)

where AF, 15 and A% are the trade-off parameters. By intro-
ducing auxiliary variable M, Eq. (4) can be reformulated
equivalently as follows
min Lll,—; +AF|ElL + A S ) + 2 M),
X,L.E,S,M
st.Y=L+E, E=X+S8, M=DX 5)
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This constrained problem (5) can be reformulated equiva-
lently as following the augmented Lagrangian form:

Fu(X.L.E.S.M.Z", 2", Z")
= Ll =1 + AFNEN + (2" Y —L—E) + S 1Y —L—EI}

SIS + (25 E = X = 8)+ £ 1E - x — SI
+3¥ M1y + (2", M = DX)+ 5 1M = DXIE - (©)

where Z¥, ZF and ZM are the Lagrange multiplier vectors,
and p is a positive penalty scalar. Then we adopt the alternat-
ing direction method of multipliers (ADMM) [52] to solve
Eq. (6) by alternatively minimizing following sub-problems:

(1) L sub-problem: we solve L by the following
sub-problem:

L 2

A 1 1y
L=min"—|Ll,_; +=|Y+—-2" —E—L
L g

> (N

F

The optimal solution of this sub-problem can be given by
the partial singular value thresholding (PSVT) operator [51]
as follows:

Pi[Y'] = Uy(Dy1 + S:[Dy2)Vy,
= Y1 + Uy2S:[Dy21V}, ®)

where t = puAl and ¥/ = Y + u='Z¥Y — E can be
regarded as the sum of two matrices, Y/ = Y, + Y, =
Uy1Dy, V)Zl + UyszzV)Zz, Uy1, Vy) are the singular vector
matrices corresponding to the first singular value by SVD,
and Uys, Vy, are from the 2 to the last singular values,
Dy, = diag(o1,0,---,0) and Dy, = diag(0, 02, --- , 0y).
And S;[x] = sign(x). max(|x| — t, 0) is the soft-shrinkage
operator [53].

(2) E sub-problem: we solve E by the following
sub-problem:

A 1 1y 2
E=min—|E|;+ =< |Y+—-2Z" —E—-L
E u 2 12 F
1 ZE 2
o |E+ S —x-s ©)
2 nw F

This sub-problem can be solved by the popular soft shrink-
age operator as follows:
zY ZE
E =S8z, [(Y + 7 - X-L)+X+S§ - 7)] (10)

(3) X sub-problem: we solve X by the following sub-
problem:

ZE 2 " M 2
X=min— |E+—-X-S| +=—|M+— —DX

P2 M F

(11)

Further, X can be solved by the following linear problem:
(ul + uD*D)X = w(E — S) + ZF + D*(uM +ZM) (12)
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where D* the adjoint of D. Thanks to the block circulant
structure of the matrix, it can be diagonalized by the 3D FFT
matrix [54], then X can be efficiently and exactly solved like:
FGUE — 8) + ZE + D*(uM + ZM))
pul+p(|F(DR)P + |FD)I* + |F D))

(4) M sub-problem: we solve M by the following
sub-problem:

X =F ) (13)

M 2
‘M—i———DX
n

. w
M = minM |M = 14
mind ™ Ml + 2 (14)

F
Just as the solving method of Eq. (9), its solution is as
follows:
ZM
M = S;m,,[DX — 7] (15)
(5) S sub-problem: we solve S by the following
sub-problem:

A5 1 H ZE
(16)

S=min—|S|y+=|E+——-X—-3S

S 2 7

Like solving method of Egs. (9) and (15), its solution is as
follows:

F

ZE
S:SAS/M[E+7—X] a7

(6) Updating Multipliers: According to the ADMM,
the corresponding multipliers are updated by the following
form:

Z¥Y <« 7Y+ u(Y —L —E)
ZE —7ZF f WE-X-9) (18)
M «— 7ZM 4+ (M — DX)

where the penalty parameter u follows an adaptive updating
scheme.

D. PARAMETER SETTING

There are four parameters AE A5 2 X and (4 in our model. For
parameter AEif it is too large, the trivial solution of E = 0
is obtained, otherwise small A leads to L = 0. However,
we have set Af = O.S/M, similar to [10], because a strong
rank-1 constraint is used on foreground component in our
proposed model. Considering the different characteristics of
background and foreground, we give different settings for
25 and AX. Similar to the analysis of AF, when A5 is very
large, the solution of S is close to zero, otherwise small value
generates to X = 0. For video frames with static background,
the sparse components can be regarded as foreground, a large
A5 is beneficial to detect objects as well as to balance the
parameter A¥, and thus we set AS = 4/./mn and 12X =
0.1/ /mn. But for video frames with dynamic background,
the sparse components mainly include the foreground and
disturbance just like a shadow or ripple. Therefore, we set
a relative small A5 to improve the separation of disturbance
components, e.g., in WaterSurface with ripples we set A5 =
3.8//mn and AX = 0.2//mn, in blowing Curtain we set
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AS = 3.5/ mn and A¥ = 0.23/./mn. For those scenes
(Video-2 and library) with relative big moving objects due
to strong smoothness and sparseness of foreground, we set
AE = 0.1/mn, 25 = 3.9/ /mn and AX = 0.2//mn.
Experimental results show that our settings is good. In all the
experiments, u is initialized by a small value u = 1.25/C (C
is the largest singular values of matrix Y) as suggested in [14]
and [39], and then updated by the scheme:

< cp, 19)

where ¢ can be taken as 1.05.

For clarity, we summarize the whole procedure of opti-
mization in Algorithm 1, and we abbreviate the proposed
method as TR1-RPCA. The algorithm terminates when the
maximal number of iteration is reached.

Algorithm 1 Optimization Algorithm for TR1-RPCA
Input: The measure Y

1: Initialize: L =Y, X =S=M=E =0,ZY =7F =
ZM =0, A A5, A%, and u

2:fork=1,2,---K do

3: Updating L by Eq.(7);
4: Updating E by Eq.(9);
5: Updating X by Eq.(13);
6.
7
8

Updating M by Eq.(15);
Updating S by Eq.(17);
Updating multipliers and the associated parameters
by Eqgs.(18) and (19);
9: end for

Output: Background L and foreground X

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on synthetic and
real video datasets to demonstrate the superiority of the pro-
posed model, i.e., TR1-RPCA, over the existing state-of-the-
art approaches for the BS task. And we use the F-measure
to assess the detection performances of video foreground.
F-measure is defined as:

precision.recall
F-measure =2——————— (20)
precision+recall

where recall and precision are defined as:

#correctly classified foreground pixels
recall = : : 2D
#foreground pixels in ground truth

.. #correctly classified foreground pixels
precision = - — (22)
# pixels classified as foreground

The larger the F-measure is, the closer will be the detected
foreground area to the ground truth foreground area. The
comparison methods include four state-of-the-art RPCA
methods: RPCA [10], MoG-RPCA [22], RegL1ALM [23],
MoG [24], TVRPCA [39], ReProcs [47], MEDRoP [48] and
incPCP [49] models.
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(@)
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FIGURE 2. From left to right: (a) is original video frames, (b)-(j) are background and foreground frames extracted by different methods in synthetic data,
i.e., (b)) MoG-RPCA. (c) MoG. (d) RegL1ALM. (e) RPCA. (f) incPCP. (g) MEDROoP. (h) ReProcs. (i) TVRPCA. (j) TR1-RPCA.

(®) () (d

B Fil

® (€] () ® (O]

FIGURE 3. Visual results comparison on Hall, Bootstrap, Highway and PETS frames with static background: from left to right, (a) is original video
frames, (b)-(j) are background and foreground frames extracted by different methods in real data, i.e., (b) MoG-RPCA. (c) MoG. (d) RegL1ALM.

(e) RPCA. (f) incPCP. (g) MEDROP. (h) ReProcs. (i) TVRPCA. (j) TR1-RPCA.

A. SYNTHETIC DATA

To evaluate the performance of our proposed approach,
we select a bootstrap video of size 400x300x75 with
dynamic background on a synthetic SABS! dataset to con-
duct simulation experiments. The part of visual comparative

1 http://www.vis.uni-stuttgart.de/index.php?id=sabs.
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results are shown in Fig. 2. From these figures, we find
that the proposed TRI1-RPCA method can estimate more
clear background and accurate foreground, and avoid neg-
ative interference of the complexed background as much
as possible. Comparatively, the results presented by MoG,
incPCP and ReProcs cannot separate the background
and foreground components completely, the undetected

VOLUME 6, 2018



J. Xue et al.: Total Variation and Rank-1 Constraint RPCA for Background Subtraction

IEEE Access

(2) (b) (© (@ (O]
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FIGURE 4. Visual results comparison on Watersurface frames with dynamic background. The first and the last columns show the original frames and the
corresponding annotated groundtruth foregrounds. The second to sixth columns show the foregrounds extracted by different methods in real data.
(a) Original. (b) MoG-RPCA. (c) MoG. (d) RegL1ALM. (e) RPCA. (f) incPCP. (g) MEDROP. (h) ReProcs. (i) TVRPCA. (j) TR1-RPCA. (k) Ground truth.

foreground information is mixed in the background, mainly
because the compared methods have paid more attention to
the dynamic components prior while neglecting the intrin-
sic known rank of the background. In MoG-RPCA model,
the inaccurate estimation for the number of Gaussian dis-
tribution will lead to the underfitting to sparse foreground.
The main goal of the RegL1ALM model is how to build
an appropriate characterization form in matrix factorization
framework for low-rank knowledge, thus its BS results are
also unsatisfactory. The MEDROP falsely detects the bright-
ness changes and blowing leaves as the moving objects, and
the TVRPCA over-smoothes the details and textures of mov-
ing objects. Although the RPCA method achieves relatively
desirable moving object detection results, there are some
artifacts in the background and some objects like fluttering
leaves and the shadow of a car in the foreground are not as
well detected as compared to the proposed TR1-RPCA.

B. REAL DATA
In this section, we collect the I2R,> UCSD? and CD.net*
datasets, including 9, 5 and 4 video sequences respectively,

2http://perception.in.a—star‘edu.sg/bk model/bk index.html.
3 http://www.svcl.ucsd.edu/projects/background/subtraction-ucsdbgsub-
dataset.htm.

4http://wordpress—j odoin.dmi.usherb.ca/datasetOverview/.
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to evaluate our proposed approach. These video sequences
cover various kinds of background scenarios, such as static
background (e.g., Airport, Highway, Pedestrians), dynamic
background indoors (e.g., Campus, Fountain, Escalator, Cur-
tain) and illumination changes (e.g., Lobby). For each video,
we choose parts of frames with pre-annotated groundtruth
foregrounds for evaluating the accuracy of foreground detec-
tion by all methods.

The results of typical frames with static background in the
Hall, Bootstrap, Highway and PETS sequences are shown
in Fig. 3. From the partial enlarged view of these figures,
we can see that TR1-RPCA method can recover more per-
fect background with less ghost shadows and sharper fore-
ground even under multi-object sequences. Comparatively,
the results estimated by other competing methods falsely
classify the static and dynamic components, and some objects
originally belong to the static component are detected as the
dynamic foreground. Table 1 lists the 18 quantitative com-
parative results based on F-measure, averaged on annotated
groundtruth frames of each video in the known dataset. It is
easy to observe the superiority of the proposed method to
other competitive methods on all the tested videos.

The results of videos with dynamic background in
the Watersurface and Curtain sequences are shown
in Figs. 4 and 5. The proposed TR1-RPCA method can
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TABLE 1. Quantitative performance comparison based the F-measure of different methods.

Datasets || Videos MoG-RPCA | MoG | RegLIALM | RPCA [ incPCP | MEDRoP| ReProcs | TVRPCA| TRI-RPCA
Airport 0.4634 0.3957]  0.1976 | 0.4800] 0.1985 | 05026 | 0.3877 | 0.4086 0.5467
ShoppingMall | 0.6562 0.5745]  0.1198 | 0.6654| 0.1445 | 02579 | 04052 | 03178 0.6804

Lobby 0.7442 0.7262]  0.0408 | 0.7628| 02763 | 0.6931 | 0.5375 | 0.5518 0.7825

Escalator 0.5478 0.4644] 01238 | 0.5478] 0.2926 | 04154 | 03685 | 0.4431 0.6297

2R Fountain 0.7977 04160 0.0883 | 0.8045| 0.0403 | 05901 | 0.4944 | 0.7460 0.8372
Campus 0.5041 0.3164] 00205 | 04975 04943 | 03947 | 0.1889 | 0.5125 0.5218

Hall 0.6708 0.5712] 02633 | 0.6708| 04553 | 05374 | 05829 | 0.4532 0.7412

Curtain 0.6534 0.5350  0.1990 | 0.7538] 03072 | 0.5610 | 0.5078 | 0.7911 0.8122
WaterSurface 0.7744 0.3971]  0.1449 | 0.8336] 04892 | 0.6215 | 0.6973 | 0.8219 0.9054

Freeway 0.2022 0.2083]  0.0279 [ 0.2123] 0.1825 | 0.1062 | 0.1379 | 0.2018 0.2365

Peds 0.2887 0.2715] 00586 | 0.2712] 02031 | 02610 | 02321 | 03219 0.3751

UCsD Ocean 0.1859 0.1518]  0.0218 | 0.1876 0.1108 | 0.1527 | 0.1639 | 0.1925 0.2179
Rain 0.7753 0.6966| 0.1444 | 0.7740| 05163 | 0.6219 | 04217 | 0.7198 0.7997

Traffic 0.3068 0.2401]  0.0350 | 03015 0.2610 | 0.2100 | 0.1963 | 0.2995 0.3239

Highway 0.4630 0.4201]  0.1209 [ 0.4750] 04719 | 04417 [ 04258 | 04517 0.4922

CD.net Office 0.5961 0.5577|  0.1188 | 0.7254] 03029 | 07417 | 0.5297 | 0.6343 0.7724
Pedestrians 0.8610 0.5683]  0.0492 | 0.7721] 0.1157 | 0.7875 | 0.7168 | 0.8057 0.8872

PETS 0.8486 0.5073]  0.0913 | 0.8612] 0.5806 | 0.8657 | 0.5127 | 0.7704 0.8779

el el el G i

(a) () )] (k)

FIGURE 5. Visual results comparison on Curtain frames with dynamic background. The first and the last columns show the original frames and the
corresponding annotated groundtruth foregrounds. The second to tenth columns show the foregrounds extracted by different methods in real data.
(a) Original. (b) MoG-RPCA. (c) MoG. (d) RegL1ALM. (e) RPCA. (f) incPCP. (g) MEDRoP. (h) ReProcs. (i) TVRPCA. (j) TR1-RPCA. (k) Ground truth.

provide better object estimation with less noisy compo- approaches are only able to detect the profile of the dynamic
nents when compared with ground truth foregrounds. While objects, the RPCA, MEDRoP and TVRPCA confusedly
the MoG-RPCA, MoG RegLL1ALM, incPCP and ReProcs embed the detected the dynamic objects of the adjacent
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FIGURE 6. Visual results comparison on Video-2 of BMC dataset. The first column show the original frames. The second to tenth columns show the
foregrounds extracted by different methods in real data. (a) Original. (b) MoG-RPCA. (c) MoG. (d) RegL1ALM. (e) RPCA. (f) incPCP. (g) MEDRoP.

(h) ReProcs. (i) TVRPCA. (j) TR1-RPCA.

frames into current foreground frame. It indicates that the
spatial-temporal smoothness based on the TV regularizer can
be more effective to characterize the slowly moving objects
when compared with the sparseness prior of foreground
video.

To further demonstrate the superior performance of
TR1-RPCA in complex scenarios, we select two sequences:
(1) Video-2 from the BMC? dataset and (2) library captured
by far-infrared camera on CD.net dataset. Different from
the previous sequences, those moving objects of the two
sequences are relatively big (close distance to the camera)
and move slowly, which makes it more difficult to distin-
guish the static and dynamic components. The sequences and
their corresponding results are presented in Figs. 7 and 8.
The RPCA can produce relatively good results when those
objects move in high speed, otherwise the foreground objects
will generate severe artifacts and ghosting. The MoG-RPCA,
MoG, ReglL.1ALM, incPCP and ReProcs can only detect
the profile of moving objects, losing more textural details
of the detected objects. The MEDRoP sharpens edges of
video foreground while misses the slowly moving ingre-
dient as shown in Fig. 8, and it sometimes confuses the
dynamic objects of adjacent frames as shown in Fig. 7.

5 http://bmc.iut-auvergne.com/.
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The TRRPCA over-smoothes the details and falsely detects
the dust behind the car as the moving objects (in Fig. 7).
The results in Fig.8 show pseudo-shadows around the thermal
objects and with that TR1-RPCA can correctly detect objects
such as cars and pedestrians. In summary, the TR1-RPCA
can correctly detect big objects with slow and continuous
movements.

C. EFFECTIVENESS ANALYSIS OF TV AND RANK-1 PRIORS
Here, we will use two experiments on watersurface to further
demonstrate the effectiveness of TV and rank-1 regularization
in our model. The first experiment is conducted via replacing
the TV term by sparse prior, we denote it as SR1-RPCA
for short. Another experiment is performed for BS task via
replacing the rank-1 term by low-rank constraint based on
nuclear norm, and it is abbreviated to TLR-RPCA.

Fig. 8 shows the visual results of SR1-RPCA, TLR-RPCA
and the proposed TR1-RPCA methods algorithm on Water-
surface. It is easy to observe that the results generated by
SR1-RPCA have serious artifacts, with duplication of the
standing person. TLR-RPCA regards the dynamic water rip-
ples and static tree as the foreground components. By com-
parison, the proposed TRI-RPCA achieves the best BS
results with consideration of more refined information in its
configurations.
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FIGURE 7. Visual results comparison on library by thermal camera on CD.net dataset. The first column show the original frames. The second to tenth
columns show the foregrounds extracted by different methods in real data. (a) Original. (b) MoG-RPCA. (c) MoG. (d) RegL1ALM. (e) RPCA. (f) incPCP.

(g) MEDROoP. (h) ReProcs. (i) TVRPCA. (j) TR1-RPCA.

FIGURE 8. Visual results comparison of SR1-RPCA, TLR-RPCA and our TR1-RPCA methods on Watersurface
frames with dynamic background. The first and the last columns show the original frames and the
corresponding annotated groundtruth foregrounds. (a) Original. (b) SR1-RPCA. (c) TLR-RPCA. (d) TR1-RPCA.
(e) Ground truth.

(b) (©

V. CONCLUSIONS representations for the static and dynamic components of the
In this paper, we propose a joint TV and rank-1 regular- video frames in RPCA framework are employed. The rank-1
ized RPCA method for BS, in which more refined prior property is employed to model the close temporal correlation
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of the background (static component) in video frames, and the
TV term and L; norm are used to model the spatial-temporal
smoothness of dynamic foreground layer and sparseness of
noise component. The extensive experiments on both syn-
thetic and real datasets verify the superiority of TR1-RPCA
approach, with noteworthy improvements over the state-of-
the-art competing methods.
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