

# Understanding and mitigating the consequences of undesired crystallisation taking place during washing of active pharmaceuticals

Muhid Shahid <sup>1,2,\*</sup>, Georgia Sanxaridou <sup>1,2</sup>, Sara Ottoboni <sup>1,2</sup>, Leo Lue <sup>2</sup>, Chris Price <sup>1,2</sup> \* email: *muhid.shahid@strath.ac.uk* 



#### Results

Anti-solvent effect observed from previous 1ml glass vial procedure (where  $300\mu$ L of saturated solution and  $700\mu$ L of wash solution is used):

|                             |                 | Wash Solvents        |               |                      |
|-----------------------------|-----------------|----------------------|---------------|----------------------|
|                             |                 | Heptane              | Acetonitrile  | Isopropyl acetate    |
| Crystallisation<br>Solvents | Ethanol         | <b>40</b> -60% (v/v) | No nucleation | <b>10</b> -90% (v/v) |
|                             | Isopropanol     | <b>40</b> -60% (v/v) | No nucleation | <b>0</b> -100% (v/v) |
|                             | Isoamyl alcohol | <b>20-</b> 80% (v/v) | No nucleation | No nucleation        |

Anti-solvent effect observed from centrifuge filter vial method (where 120 µL of saturated solution and 280  $\mu$ L of wash solution is used):

Wash Solvents

brought to you by 🗓 CORE

- saturation and particles

## **Project Aim & Objective**

A wash solvent guide is designed to look at various important factors while selecting a wash solvent:



#### **Materials & Method**

This analysis is conducted on paracetamol crystalised from three different crystallisation solvents; ethanol, isopropanol and isoamyl alcohol

|                             |                 | Heptane              | Acetonitrile  | Isopropyl acetate |
|-----------------------------|-----------------|----------------------|---------------|-------------------|
| Crystallisation<br>Solvents | Ethanol         | <b>30-</b> 70% (v/v) | No nucleation | No nucleation     |
|                             | Isopropanol     | <b>30-7</b> 0% (v/v) | No nucleation | No nucleation     |
|                             | Isoamyl alcohol | <b>10</b> -90% (v/v) | No nucleation | No nucleation     |

Delayed precipitation of solutes observed using the centrifuge vial method is due to the kinetics of nucleation (mixing and scale of the experiment?).

#### • Two distinct examples:

200 -

### - Ethanol – Acetonitrile: no anti-solvent effect was observed



#### - Ethanol – Heptane: anti-solvent effect was observed

Polynomial Fit



- Three wash solvents are evaluated; heptane, acetonitrile and isopropyl acetate
- Saturated solution is prepared using paracetamol and two related impurities (at 2mol %); metacetamol & acetanilide
- For wash solution, different ratios of crystallisation and wash solvents are used; 90:10, 75:25, 50:50, 40:60, 30:70, 20:80, 10:90, 100% wash solvent (% by volumes)

#### Anti-solvent screening procedure:



UNIVERSITY OF CAMBRIDGE

BATH

![](_page_0_Figure_29.jpeg)

## **Conclusion & Future Work**

AstraZeneca NOVARTIS

- Poorly designed washing process can result in uncontrolled crystallisation of both API and impurities, affecting final product quality
- Binary solvent mixture's solubility data (crystallisation & wash solvent) assist in developing washing strategy that prevents product dissolution & agglomeration
- Ethanol Heptane system, washing should be carried out in steps (first wash: 40:60 ratio (cryst : wash solvent) of wash solution; final wash: pure heptane)
- In future, this work on mapped wash solvent composition boundaries will be used to explore the role of uncontrolled washing on product purity and agglomeration

[1] EPSRC Centre for Future Manufacturing in Continuous Manufacturing and Crystallisation, University of Strathclyde, Glasgow G1 1RD, UK [2] Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1RD, UK

**UNIVERSITY OF LEEDS** 

Loughborough

University

gsk

Imperial College

![](_page_0_Picture_36.jpeg)