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INTRODUCTION

To ensure the continued safe operation of many of the
UK’s fleet of advanced gas-cooled reactors (AGRs) effective
and reliable monitoring of several of the key plant items is
essential. Out of these key items, a significant portion of
these are rotating plant assets, one asset in particular that
is crucial to the operation of the station are the boiler feed
pumps (BFPs). The BFPs in an AGR station move water
from a condenser into a boiler, the water is then heated which
produces steam and this steam turns the electricity-generating
turbines. Currently, the operator of the AGR stations employs
a time-based maintenance strategy for BFP assets: after a
defined amount of time each asset is removed, replaced with a
rotated spare, and a complete overhaul is then performed on
the removed asset. This procedure can result in the removal
of an asset before any significant wear has occurred, therefore
increasing maintenance and generation costs. Conversely, this
could result in an unplanned outage due to a component failure
which leads to both a decrease in power output of the station
and hence a decrease in revenue for the operator. Because
these pumps are essential for the generation of electricity
there are several pressure, temperature, vibration and speed
parameters constantly monitored during the operation of this
asset. Currently, data analysts have to manually analyse all this
data by following a set diagnosis process, the consequential
time burden on the analyst is therefore extremely high.

Data-driven approaches to solve this problem, and other
similar problems, have the capability to produce accurate re-
sults similar to what the analysts can achieve in a fraction
of the time. However, the majority of these techniques are
black box techniques and lack explicability which is often a re-
quirement for problems involving critical assets in the nuclear
industry.

The main outcomes of this work are to address the time
burden placed on the analysts by automating elements of the
existing diagnosis process, through the implementation of an
intelligent rule-based expert system, that provides adequate
explicability to the user to satisfy requirements. Additionally,
a recurring problem in the design of expert systems for indus-
try is the cost involved with the knowledge elicitation process.
Here we propose a questionnaire style approach, similar to
what the domain experts currently use, to extract this knowl-
edge without the need for a structured interview. By using
this information a signal-to-symbol transformation algorithm
is designed to assign time periods symbols that relate to the
various rules defined by the domain experts. The final system
combines the data-driven signal-to-symbol transformation al-
gorithm and the rule-based expert system to produce a hybrid
system that can be used to classify defects based on a set of
rules and also explain to the user the reasoning behind this
solution.

EXPERT SYSTEMS

Knowledge Based vs. Data Driven

While both knowledge-based, e.g. expert systems, and
data-driven, e.g. machine learning can produce similar results
they differ significantly in their implementation.

Machine learning techniques are primarily based around
statistical modelling of the problem data. The model param-
eters are learned through a training process that attempts to
produce the correct output given the input data for the major-
ity of cases. In the case of a number of models, it is often
very difficult to explain why or how these results have been
produced.

Expert systems, unlike data-driven approaches, attempt to
solve complex problems that comprise a significant amount of
expert knowledge or human expertise. Encoded into the expert
system is both the expert knowledge but also the reasoning
behind this, therefore, they are able to explain and justify the
reasoning behind any decision made.

For critical assets especially in the nuclear industry where
safety is of the utmost importance, the lack of explicability
of many data-driven approaches presents a problem. There
is often a requirement to provide supporting evidence for ap-
plications such as this when classifying faults as there is a
significant cost involved in the replacement or maintenance
of these assets. This is one of the main advantages of ex-
pert systems over machine learning approaches. However,
there is a significant cost involved in the development of an
expert system through the man-hours required to extract the
domain-specific knowledge from the engineers.

A typical expert system consists of five main components
(Fig. 1):

1. Knowledge Base: This contains all the domain-specific
digitized knowledge acquired from the engineers. For a
rule-based expert system, this is represented in a number
of if...then... rules. This can be considered as a fixed set
of data, i.e. it remains the same throughout the decision
making process.

2. Real World View of Data: The data, or facts relating to
the data which is specific to the problem being solved
is stored here. These facts are then matched with the
if... conditions in the knowledge base to determine the
solution or intermediate facts which are also stored in the
real world view.

3. Inference Engine: This performs the processing of the
knowledge by combining the rules in the knowledge base,
the facts in the real world view and facts determined from
the user to determine a solution.
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4. Explanation Mechanism: Provides explanations and
justifications for any decision made by the inference en-
gine, this includes intermediate actions as well as conclu-
sions. An adequate explanation mechanism is crucial for
the acceptance of the system by the user.

5. User Interface: Provides communication between the
expert system and the user. Inputs can be additional
facts through the use of question and answers, natural
language, graphics interface, or menu driven. The output
is the solution with a detailed explanation of the reasoning
behind this, the information can also be passed to an
external program.

Fig. 1: Typical expert system architecture

Knowledge Acquisition

The knowledge acquisition phase is a critical step in the
building of an expert system. This relates to the process of
extracting the domain-specific knowledge from the engineers
and organising this into a set of rules. A common approach to
knowledge acquisition adopted for the implementation of an
expert system follows a four-staged approach:

1. Scoping: This phase looks into gaining an understanding
of the problem domain, identifying domain experts, and

deciding an appropriate knowledge acquisition process,
e.g. structured or unstructured interviewing, or question-
naires.

2. Knowledge Elicitation: Having decided on an appropri-
ate knowledge acquisition process, this stage involves
conducting a structured interview with domain experts.

3. Knowledge Modelling: Having extracted all the infor-
mation from the experts in the previous step, the knowl-
edge and information are collated and analysed. The
output from this is a set of formal rules that can be used
as a basis for the implementation of a prototype expert
system.

4. Knowledge Verification: The prototype expert system is
then applied to a specific problem by the experts to verify
the correct capture and formulation of the knowledge.
If the knowledge base is incorrect or incomplete it is
necessary to understand the reason for this and what is
missing, the entire process has to then be repeated until
the knowledge base is sufficient for the given problem.

METHODOLOGY

For many industrial applications fault diagnosis involves
the engineers following a set diagnosis process, therefore, the
expert knowledge has already been acquired, although this is
not always complete enough to be formalised into a set of rules
for an expert system. For the BFP problem, the diagnostic
rules for the asset were supplied by the original equipment
manufacturer (OEM), see Table I. This related to each data
stream necessary to diagnosis a given fault, and the rules were
represented by a set of trends, i.e. stable, fluctuating, rising or
falling. The data contained 37 faults and the associated trends
for 10 specific data streams covering pressure, temperature and
speed. While these rules are sufficient for the domain experts
to analyse the problem, there is a significant amount of knowl-
edge that is not captured. The diagnostic rules did not quantify
what a specific rise, fall or fluctuation of a specific data stream
was, and also whether these changes were consistent or rule
specific. Additionally, due to the nature of the asset under
investigation and the different types of data, (e.g. pressure and
temperature), no information was supplied regarding the order
these changes might occur. This is a common problem when
formalising the rules for an expert system, as there is a con-
siderable amount of acquired knowledge that engineers have

Cause Pump Suction Pump Discharge Oil Supply Gland CW Supply Gland Drain / Outlet

Anti friction bearing failing F ↓ ↑ ↑

Speed (rpm) too low ↑

Higher sand concentration F ↓ ↓

Inadequate lubrication F ↓

Effects of high tides ↑ F

TABLE I: Example format of pressure datastream specific rules. (F is Fluctuating, ↑ is Rising and ↓ is Falling). Data representative
of actual rules, however, specific rules have been changed.



Datastream How much? How long? Order Comments

Pump Suction 5% dec 1 hour 2 As defined in O&M manual
Pump Discharge 10% dec 1 hour 1 this is the standard expected
Gland Drain / Outlet 5% dec 1 hour 3 response.

TABLE II: Example of data trend qualification document response

to asses the problem. The preferred approach for extracting
this additional information is to set up a structured interview,
where a set of questions can be developed to address each
point. However, in many applications, the engineers that asses
these problems are time poor and therefore it is not always for
them to allocate a sufficient amount of time to address all these
issues. Alternative approaches aimed at reducing the time bur-
den include observation of the expert or a questionnaire style
approach. For this problem, a questionnaire style approach
was adopted as this allowed the time impact on the experts
to be spread over several weeks. The key information that
had to be extracted from the experts about the rules previously
supplied was a quantification of rising, falling and fluctuating,
how long this trend occurs over, and any order to the rules.
These questions were written up in a questionnaire to be sent
to the domain experts. For each fault a table was produced, to
answer these three questions, an example of this is shown in
Table II with an example response.

After receiving this information from the experts it was
then possible to begin to formulate this into a prototype expert
system. Due to the individual rules being based on trends
in the data it is necessary to have a pre-processing stage to
calculate these trends. The approach adopted for this applica-
tion was to use a signal-to-symbol transformation approach
[1]. Splitting up the trace into various timesteps based on the
information provided by the expert, each timestep is assigned
a symbol which is either rising, falling, fluctuating or stable.
By inputting these symbols as facts into the database, it is
possible for the expert system to determine if there is a fault at
that given moment in time. If a fault is detected the output will
explicitly state the fault detected, the individual data streams
used to determine this fault, and any associated comments
provided by the experts as to why these trends relate to this
fault.

FINAL SYSTEM

The complete architecture from the expert system is
shown in Fig. 2. CLIPS (C Language Integrated Production
System) is used for the main components of the expert system,
i.e. the database, inference engine, and explanation mech-
anism, a shell program is written in MATLAB to interface
both the user interface and the signal-to-symbol transforma-
tion algorithm with CLIPS. In addition to this, the original
rules supplied by the OEM came in the form of a Microsoft
Excel spreadsheet because of this and to keep the system as
flexible as possible an algorithm was produced to convert this
spreadsheet into a CLIPS format knowledge base ".clp" file.
This will allow the user to add additional rules or alter existing
rules as it becomes appropriate and also allows for a new set

of rules for an alternate rotating asset.

Fig. 2: Final expert system architecture

RESULTS

The output from the expert system will inform the user of
the fault diagnosis conclusion, the datastreams used to reach
this conclusion with the associated information relating to the
quantification of any trends and also any additional comments
provided by the experts. An example output of this is shown
in Fig. 3.

Fault detected at 10th Feb 2021 between 1200 and 1300
Cause of fault was Anti friction bearing failing

Pump discharge decreased by over 10%
Pump suction decreased by over 5%
Gland drain/outlet decreased by over 5%

Comments: As defined in the O&M manual this is the
standard expected response for this type of fault.

Fig. 3: Example output to the user from the expert system

As well as providing this detailed information to the user
about the fault detected, it is also necessary to supply the



analyst with additional information in a format that is familiar
to them, so that they can verify the results. The way this
was done was to show the output of the signal-to-symbol
transformation for all the relevant signals. This allows the
user to analyse each individual data stream to confirm that
the trends have been classified correctly and this is the correct
diagnosis of the fault. Example output for both the pump
suction pressure and thrust bearing temperature is shown in
Fig. 4. From this, the expert can not only see the relevant
information but by displaying the historical information allows
them to asses if this fault has happened in the past, and whether
there is an underlying reason this fault is occurring again.

(a)

(b)

Fig. 4: Example of signal to symbol transformation for (a)
pump suction pressure and (b) thrust bearing temperature.
(Green - Stable, Blue - Rising, Yellow - Falling, and Red -
Fluctuating)

To date all 37 rules from the operator’s fault diagnosis
process have been implemented in the expert system. How-
ever, this currently does not include information regarding the
relative order of the features occurring in the data. While the
37 rules defined by the operator cover all known faults that
can occur on the BFPs, this only covers a small region of the
problem space. With 10 data streams and 4 possible states this
produces a total of 1,048,576 (410) possible rules, although
many of these states are likely to be physically impossible or

related to normal behaviour.

CONCLUSIONS AND FUTURE WORK

Following the approach discussed in the paper, it has been
possible to develop an expert system that can identify faults in
near-realtime that occur in a BFP of an AGR. By following a
formal knowledge acquisition process it was quickly possible
to identify the missing information in the knowledge initially
supplied by the OEM. Due to the problem of not being able
to formally interview the domain experts it was necessary to
develop a questionnaire that the experts could complete to
acquire this missing information. The final system integrates
several platforms, i.e. MATLAB, CLIPS and Microsoft Excel,
to produce an end to end system for automatic fault detection
in rotating assets.

As mentioned the current set of rules only covers a very
small percentage of the total problem space therefore further
work will involve the exploration of the remaining problem
space to eliminate impossible states and attempt to uncover
new rules based on historical states. Additionally, the temporal
aspect of certain rules will have to be addressed. Finally, a
complete system will have to be validated by the domain
experts to ensure that all the knowledge was captured and
formulated correctly. If not more work will be required to
extract any additional information necessary.
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